
Particle Accelerators, 1990, Vol. 29, pp. 145-152
Reprints available directly from the publisher
Photocopying permitted by license only

© 1990 Gordon and Breach, Science Publishers, Inc.
Printed in the United States of America

THE VACUUM SYSTEM OF THE HERA ELECTRON STORAGE RING
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Abstract The 6.3 km long vacuum system of the HERA electron ring
is fabricated by brazing tubes made from the alloy CuSn2. This copper
alloy absorbs synchrotron light more efficiently than aluminium and
therefore reduces radiation shielding problems. The system is mainly
pumped by integrated sputter-ion pumps using the fields of the dipole
and quadrupole magnets. They provide a maximum linear pumping speed of
30 lis per meter. The impedance of the beam environment is kept small
by minimizing the dimensions of the pump slots and avoiding steps of
greater than 1 mm inside the vacuum chamber~ A vacuum pressure in the
10- 9 mbar range was achieved some days after assembly of the vacuum
system and without bake out in situ. A beam life time of more than one
hour was observed during the first test runs of HERA.

INTRODUCTION

Since 1961 much experience has been gained on vacuum performance and

the requirements of electron storage rings up to beam energies of 25
GeV. 1 Problems due to intense synchrotron light, such as compcnent

overheating or high gas desorption rates turned out not to be serious.

Overheating can be avoided by fabricating the vacuum components from

high thermal conductivity materials and by using water cooling. Also,

high gas desorption rates are significantly reduced after an adequate
operating time, due to the cleaning effect of synchrotron light. 1 This

also makes superfluous the bake-out in situ, which ;s normally used to

reduce gas desorption.

It seems that attention has to be paid to two other effects.

These are the possibility of the escape of synchotron light through
the vacuum chamber walls 2 and the excitation of transverse single
bunch instabilities3

, due to interaction of the beam with the
environment. 4 Both effects are more serious for the new high energy
storage rings HERA5 and LEp6, due to the shift of the synchrotron
radiation spectrum towards higher energy1 and to the higher bunch

currents which are necessary to fill the increased circumference.
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The vacuum chambers of nearly all electron storage rings are made

from aluminium alloys which can be inexpensively extruded to form va

cuum tight tubes consisting of more than one channel which accommodate

the beam, pumps, and water cooling. In addition, aluminium provides

high thermal conductivity, low degassing rate~ and good weldability.

The relatively high transparency to the x- and y-rays did not impede

its use in existing storage rings, since the escaping radiation power

was too low to cause thermal effects on the surrounding magnets. Their

iron yokes have therefore been used as an additional inexpensive

radiation shield.
For the new large storage rings HERAs and LEp6, there is, how

ever, a significant increase in the synchrotron light power escaping

through an aluminium chamber. To avoid unacceptable heating of the

magnets, either less transparent materials have to be used instead of

aluminium, or a lead shield some millimeters thick has to be soldered

onto the aluminum vacuum chamber.6 In the last case, the magnet gaps

must be enlarged. This increases the production and operation costs of

the magnets.

Therefore, a copper alloy was preferred for the fabrication of

the HERA vacuum chambers, because of its relativly high absorption

coefficient and because of the high thermal conductivity. The 4 mm

thick copper chamber reduces the escaping synchrotron radiation power

in HERA, at the nominal energy of 30 GeV, to less than 8%, compered to
about 50% for aluminum. s At these low power levels, it is still

possible to use the magnet yokes as an additional radiation shield.

Thus additional lead shields and magnet gap enlargement can be

avoided. As in the case of small rings, only the magnet openings have

to be provided with lead shields(Fig. 1).

In addition to design principles this report presents an outline

of the main vacuum components, including fabrication materials and

techniques. Finally, the first operational experience with the HERA

vacuum system will be described.

THE HERA VACUUM SYSTEM

The arcs of the HERA electron ring, having a total length of 4.8 km,
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consist of 400 modules. Each module consists of a 9 m long bending

magnet, a quadrupole magnet, a sextupole magnet and a steering magnet.

A single copper vacuum chamber spans the total module length of about

12 m. Fig. 1 shows the vacuum chamber inside a bending and quadrupole

magnet respectively. The chamber is also provided with small, 5 mm

thick, lead radiation shields to close just the magnet joke gaps. The

modules were prepared outside of the HERA tunnel, including the

assembly of vacuum chambers with radiation shields etc.. Such

completed modules were then taken into the tunnel and installed in

their predetermined positions.

a) Bending Magnet b) Quadrupole Magnet

FIGURE 1 : Vacuum chamber cross sections inside the magnets.
1 beam pipe; 2 = pump channel/appendix; 3 = cooling water;
4 = integrated pump; 5 = lead shields; 6 = iron magnet yokes

The vacuum system ;s mainly pumped by integrated sputter-ion pumps

which use the magnetic field of the dipoles and quadrupoles. The main

beam pipe has a cross section of 80x40 mm2
. Over the 9 m length of

the bending magnet it is provided with a longitudinal brazed channel

for the integrated dipole pump(Fig. la}. Similar pumps have been also

installed inside the quadrupole magnets by brazing on stainless steel

appendices, both on the top and bottom of the beam p;pe(Fig. lb). The

quadrupole pumps are mainly foreseen for pumping the 3 m length of the

vacuum pipe between two dipoles, which has too low a conductance to be
otherwise effectively pumped. Both integrated pump types are des;gned7
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to give a maximum effective linear pumping speed of about 30

1 .S-1 .m-1
. This is sufficient to make the vacuum performance of HERA

similar to that of PETRA. Additionally, every second module is

provided with a standard 80 1.s- 1 sputter-ion pump to maintain the

vacuum when the magnets are switched off.

FIGURE 2 : The HERA expansion joint between two chambers
An rf-shield with sliding contacts screens the joint bellow.

The vacuum chambers of two modules are connected together by a 140 mm

long expansion joint(Fig. 2) having a bellow for the mechanical

tolerances, and the thermal expansion. The bellow is short circuited

internally by using an rf-shield with sliding contacts. The remaining

steps inside the beam environment are kept to less than 1 mm in order
to reduce the transverse beam impedance.) The expansion joint must

also be intensively water cooled, since it is illuminated by the

synchrotron light.

The vacuum chambers of the remaining 1.5 km long straight

sections are also mainly made from copper. Their lengths, lying

between .5 and 12 m, are chosen to accommodate the straight section

components such as rf-cavities, spin rotators etc.. The vacuum
chambers close to the experiments are especially designed7 in order to

reduce the backgrounds in the experiments, caused by the synchrotron

radiation photons. They are either provided locally with special

collimators to shield the experiment from the main part of incident

photons, or they are asymmetrically enlarged to allow the remaining
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photons to strike the chamber walls far away from the experiment. The

straight sections are pumped with the same pumping speed as the arcs,

by using either integrated pumps installed in the quadrupole magnets,

or additional standard 80 1.s- 1 sputter-ion pumps.

FIGURE 3 : The new HERA compact gate valve in open position.

The HERA electron vacuum system is divided by gate valves into 42

vacuum sections having various lengths up to 200 m. The patented gate

valve has been especially developed for HERA. It is the most compact

valve with low beam transverse impedance to be developed so far Fig.

3 shows such a valve in the open position. The same valve can be seen

installed between two vacuum sections in HERA{Fig. 4). Each vacuum

section is provided with a turbomolecu1ar pump for pump-down before

the sputter-ion pumps are started. Groups of four such pumps are

driven by a small, newly developed, inexpensive high voltage power

supply. The current of these power supplies serves to monitor the

pressure distribution in HERA.

MATERIALS AND FABRICATION TECHNIQUES

The use of copper alloys for the vacuum chamber fabrication implied

the development of new techniques, since it is not possible (as for

aluminium) to extrude vacuum tight copper tubes consisting of more
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than one channel. The HERA vacuum chambers are therefore fabricated by

brazing together the various single tubes needed to accommodate the

beam, the integrated pumps, and the water cooling. The use of single

tubes also allows optimal machining of the pump slots which connect

the beam channel with the pumps, and whose use is preferable for

reducing the rf parasitic mode losses and the transversal beam pipe

impedance seen by the beam. 4

Only the water cooling tubes of the vacuum chambers are made from

ordinary oxygen free copper. On the contrary, the main beam tube and

the pump channel are solid-drawn from the copper bronze CuSn2. The

bronze contains 2% of tin to add stiffness to the copper and therefore

FIGURE 4 : The new HERA gate valve as installed between two
vacuum sections.

stability to the chamber form after the heat treatment for brazing.

This low tin content does not influence significantly the other copper

properties, especially its high thermal conductivity needed for

dissipation of the synchrotron l"ight power.

Besides the copper elements, the chambers are, in addition,

provided with components made from stainless steel such as flanges and

pump appendices, monitors, etc., which must be also brazed vacuum

tightly onto the beam pipe. The total length of all vacuum tightly

brazed joints for the HERA electron vacuum system amounts to about

12.5 km. In order to increase their reliability, several techniques
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have been either newly developed, or modified. 9 Among them, the most

significant are the chemical cleaning of the copper elements, based on

H 0 instead of HNO, and the use of brazing steps at different
2 2 3

temperatures. 9 Thus, joints between stainless steel parts are made
using copper wires as braze at 1100 °c in a vacuum furnace; between
copper and stainless steel with B-CuSn12 at 1000 °C~ also in a vacuum

furnace. The final brazing between copper components is made in a

special 15 m long furnace(Fig. 5} in a reducing gas atmosphere at 800

°C, by using the common eutectic silver-copper braze. 9 In total, 1,400

vacuum chambers, having lengths between .14 and 12 m were produced in

a time of less than one year.

FIGURE 5 The 15 m long brazing furnace used for the HERA
vacuum chamber fabrication.

PERFORMANCE OF THE HERA VACUUM SYSTEM

The assembly of the HERA electron vacuum system was finished on August

9th 1988. Ten days later, just before injecting the first electrons in
HERA, the mean vacuum pressure of the systems was 5.10- 9 mbar without

any previous bake-out of the chambers in situ. During the following

two months of tests, HERA was operated for machine studies only up to

energies of 10 GeV with beam currents usually below.3 rnA. Therefore

it was not possible to study the vacuum system performance at the
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maximum pumping speed of the integrated pumps, which exists at higher

energies. Also the cleaning effect of the synchrotron radiation could

not be studied, since the time integral of the stored current was too

low.

At the end of the HERA test runs, two months later, the vacuum
pressure was reduced to values lying below 10-9 mbar. The pressure

increase, due to stored beam, was 9x10-9 rnbarlrnA at 7 GeV. or 1.3x10- 8

mbar/mA at 10 GeV. During these tests, the beam life time due to

residual gas was always better than one hour.
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