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NEW ASPECTS OF THE THEORY OF RESONANT BEAM EXTRACTION
FROM SYNCHROTRONS (STRETCHERS)

Kh.A. SIMONIAI'!
Yerevan Physics Institute~ Yerevan Armenia, USSR

Abstract The work is devoted to a detailed study of
particles radial motion in synchrotrons near the
third integral resonance. The well-known generalized
equations describing the radial motion of a particle
from cycle to cycle (one cycle equals three
revolutions) in the general case are shown to
describe the process of particle ejection from
synchrotrons. It has been proved that in order to
describe the process of slow ejection on the third
integral resonance correctly, it is necessary to
follow the particle position at a given aZimuth, at
least after each its revolution. From the derived
linearized equations of the particle r-motion with
respect to revolutions two new criteria have been
obtained for the ejection system optimization in the
form of two additional conditions which the ejection
system must satisfy so that the well-known phase
pattern (the triangular separatrix, etc.) of particle
motion would really take place.

The theory of extraction at the third integral

resonance is known for a long time (1955, Bartont
) and the

estimates of the parameters of the extracted beam are

based on the corresponding pattern of the

r-motion on the normalized phase plane (n,n);
n=f3'tt/2(dr/ds - 1/2 df3/ds .. (3-tr }). However, our

particle
-1./2

<n=rf3 ;
detailed

investigations show that the generally accepted theory of

resonant extraction (Bartont , Mashke2 , Hemmie9
) is based

on incorrect assumptions. Indeed, while the existence of a

triangular separatrix on the plane <n,n) really follows

from the linearized "cycle eqLlations", the application of

this theory to explain the process of the particles

throwing into the septLlm-magnet contains a wrong

assumption, namely, during a cycle (three revolutions),

after each revolution, the phase pattern is rotated so

that the separatrix branches cyclically interchange their

places. But in reality (see below), for this to take place
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it is necessary that the ejection system (the number of

sextupoles, their location, etc.) satisfies certain

conditions. Only under such conditions the separatrix

branches will be really "identical" at the moment of the

beam throwing into the septum-magnet. That is why we call

them conditions of the beam extraction system

optimization.

The investigations are based on the equation
"r + K(s) r = - g(s)r2 (1)
s

where g is a small magnitude.

AssLlme that there are j II thin II sex tupo I es wi th I eng th

~s. (i=1,2, ••• ,j) on the azimuths s .• Let us introduce the
1. 1.

small parameter £, 2nG=(2nm+£)/3, which characterizes

closeness of the oscillation frequency 9 to its resonance

value m/3 and take three revolutions (a cycle) as unit

time of changing of particle coordinates. Then in the

polar coordinate frame (R,a) with n=cosa, n=R sina, and in

the linear approximation of g and £ one can write the

well-known equation of motion in the following recurrent

form:

R =R 1u2+ V2
n+t n n n

a
n+t

V
n

otn - arctg U
n

U 1-3ER sin(~+3a). V = £ + 3ER cos(~+3a)
n n n· n n n

where n is the cycle number and

C

/22E =YC-+D-; 'P

g. fJ.s. (3~/2cos3¥,.; D
1.. 1.. 1.. 1..

arctg C/D;

-1/4 ~ g. t.s.fl~/2sin3lJ1..l ~ 1. 1. 1.
1. =1

~i and ¥'i are amplitude and phase functions on the azimuth

of the i-th sextupole, respectively. From (2) follows the

well-known triangular separatrix with rectilinear branches

which allow to visualize the particles throwing into the

septum. Far from the resonance the tr~angle's area is

considerably larger than the emittance of the circulating

beam. The closer to the resonance (£~O), the smaller the

triangle's area:
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The triangle "squeezes" the emittance in three directions.

In a certain instant of time the accelerated beam

"occupies" the triangle. Then, when £ ...0, part of particles

is "forced OLtt .. of the triangle through all its vertices

simultaneously. Therefore, the particles turn out to be

distributed near the separatrix branches, and moving along

them depart from the beam core. Choosing the number of

sextupoles, j, and their location sites, si' relative to

s one can achieve that on the septum azimuth s one
~ep ~QP

of the separatrix branches is parallel to the n axis. This

requires satisfaction of the condition c=o. Then,

pattern

thirdfrom cycle to cycle, however, itfollows that only a

depending on what side of the orbit the septum-magnet is

placed and on the sign of £, one provides such a sign of D

that the particle motion along the separatrix branch

parallel to the n axis turns out to be directed to the

septum. Then, with a definite probability, the particles

extracted from the region of stability will reach the

septum and part of them will appear beyond it.

From SLtch a "behaviour" of the beam phase

of the beam will be thrown into the septum (without

account of losses on the IIblade" of the septLtm), since it

is not clear how the particles moving along the two other

branches will "behave" relative to the septum. It is just

here that the generally accepted theory makes baseless

assumptions that the separatrix branches interchange their

places within a cycle. First, it supposes existence of a

triangle separatrix within a cycle, at least after each

revolution. And second, it supposes that after each

revolution the separatrix is rotated by an angle equal to

exactly 2nm/3. But it is not proved. If it is really so,

then it must be followed from the investigations of the

motion from turn to turn, just what we have done.

In contrast to the generally accepted theory we

followed the position of particles on the given azimuth

after each revolution. In the polar coordinate frame, and
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in the same approximation the motion of particles from

turn to turn is described by the recurrent formulae

V
k

arctg u;
k

Uk = l-ER
k

[sin(!p+30t
k

) - A cos Ot
k

+ 8 sin Ot
k
]; (3)

Vk = £/3 + ER
k

[COS(!P+3Ot
k

) + 3A sin Ot
k

+ 38 cos Ot
k

]

where k is the number of revolutions and

A = 1/4E t g . .dS.1?3,/2. 8 1/4E ~ A ~9/2. £ 1. 1.1,\. s~n VIi; = . l 9 i U.Si 1.1 i cos Y-\
1.=1 1.=1

A simple comparison of (2) with (3) shows that the motion

from turn to turn depends on the parameters A, B, m,

whereas the "cycle eqLtations" lack these parameters.

Therefore, on the first stage the investigations were

carried out according to (3), assuming A=B=O. It became

clear (see fig.!) that only at A=B=Othere really exists a

triangular separatrix with rectilinear branches which

after each revolution are rotated by 2nm/3 and the beam

phase pattern exactly corresponds to the generally

accepted notion. In all other cases (see, e.g. fig.2).

i.e. when A~O, B~O, there is no such separatrix. In other

words, in the general case t.he "cycle equations" describe

t.he particles motion near the resonance region incorrectly

and hence, it. is at least. incorrect to compare the

experiment with the predictions of the generally accepted

theory. The investigations via (3) have shown that when

A~O, B~O t.he quadratic nonlinearit.y leads to deformation

of the beam phase volume, which is different. at. different

values of A and B. At £~ we get more accurate formulae

(without linearization over e)

R =R ~2+V2
k+l k Jc k

A cos Cl), + 8 sin Cl),]' (4)
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The conditions of existence of quasistationary points on

the plane (n,n), i.e. points cyclically interchanging

their places after each revolution, are:

Rst Rst 9t 9t 2nm (5)= ; Ol = ot
k

-
3 •k+t k lc+t

It is easy to show that at any Ilk" the expressions (5)

have solutions only when A=B=O, which have the form:

sin M ·
6 '

9t
Cll.

t.
(i=0,1,2)

6
+

'P + M
3 18

(6)

assure

where (±) is the sign of s.

In conclusion let us elucidate the physical meaning

of the conditions A=B=O. To do this, come back to the

eq.(l), the solution of which we represent as:

res) = r 0 (s) + r
t
(s) (7)

where roes) is the solution of (1) at g=O. St.tbsti tLlting

(7) into (1), in an approximation linear over g we obtain

" [K(S) + 2 g r o]
2r + r = - gro. (8)

t t

When deriving the relations (2)+(4), we did not take

account of the second term in square brackets which, as is

known, gives correction to the frequency 9. In our case it

has the form:

(9)

whence it follows that the conditions A=B=O

independence of G on the amplitude of oscillations.

The results of calculations according to (4) have

been compared with the numerical computations using the

parameters of our synchrotron. The smaller the value of

'g', the better the agreement between the results.

Thus, the new approach developed allows to make the

ejection system optimization easy and simple.
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