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OF AN INTENSE BUNCH IN A PROTON SYNCHROTRON
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Institute for High Energy Physics, 142284, Serpukhov,
Moscow region, USSR

Abstract Evolution of stationary longitudinal distribution of
particles in a bunch is investigated by means of computer calculations.
The bunch is supposed to be circulating in a proton synchrotron with
a space charge parameter slowly increasing. The coupling impedance is
represented by a low-Q and high-F resonant cavity-like element. The
longitudinal distribution is shown to tend to Gauss one and does not
depend on the initial distribution, provided the impedance value is
sufficiently large. The bunch parameters satisfy the well-known Boussard
criterion commonly interpreted as a microwave instability threshold.

There are two view-points regarding the so called microwave insta­
bility. The first one identifies it with the "fast (or turbulent)" in­
stability, whose typical time is much less than the synchrotron oscil­
lation period, and a typical distance is much shorter than the bunch
length1 ,2. It is considered that in this view one can ignore the synch­
rotron oscillations as well as the beam bunching, and use the coasting
beam model. This model leads to the threshold relation3 which is in
this case should be interpreted as the condition for the absence of the
fast instability:

(1 )'

Here Z is the vacuum chamber impedance at the n-th harmonic of the re­
volutign frequency, E=mc2r is the energy, p is the momentum, J3 is the
normalized velocity of a particle, J is the average current, B is the
bunching factor, 6p is the specific momentum spread of the beam,
'1 =«-r 2, d. is the momentum compaction factor.

The shortcomings of such an approach were considered in4 ,5. The
principal one is that in the above assumptions there are no conditions
for a positive feedback in the bunched beam, which is necessary for the
usual (regenerative) instability to appear. At the same time it has
been pointed out that sometimes the violation of (1) leads to the po­
werful strengthening of the bunch response to the external perturba­
tions, always occurring, say, due to continuous deviation from the sta­
tionary state during the standard acceleration. Therefore the supposi­
tion has been made that inequality (1) determines the minimum momentum
spread of the bunch, which is in thermodynamic balance with its own
radiation (short-wave and fast-waked). The results of computational
analysis are demonstrated below, which can, to our mind, clarify the
problem.

We cannot restrict ourselves to solving the stationary problem

because it has an infinite number of solutions, and it can hardly be
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expected that all of them will satisfy the inequality (1). It seems mo­
re realistic to investigate a non-stationary process when condition (1)
is first definitely fulfilled but violated later due to a change of the
external conditions. A typical example is the parameter I~I diminishing
when the beam energy approaches transition. This case has been conside­
red in Ref. 6 . Here another process, when the impedance gradually increa­
ses in time, is investigated. A similar situation takes place at the
lHEP accelerator (U-70), the coupling impedance of which is of the
high-F and low-Q resonant type, and the shunt impedance increases by an
order of magnitude in the 4';'6 GeV range7 ,8. Our computations have been
performed with the parameters of the U-70 at the 5 GeV flat top. We ha­
ve used the macroparticles method (up to 40.000 per bunch), when each
particle was ascribed a certain weight factor ("the charge"). The ini­
tial longitudinal phase space distribution function was formed by an
appropriate arrangement of the macroparticles with a certain '~harge"

in the phase plane. The coupling impedance is represented by a short
low-Q and high-F resonant cavity-like element whose characteristic is

Z(f)
2iRf af

(2)

where f is the frequency, f o is the resonant frequency, 2 /). f is the
bandwidth, R is the shunt impedance. The parasitic cavity (to be termed
just "cavity" further on) is assumed to be placed at the same azimuth
as the accelerating RF-cavity. In order to find the instantaneous cur­
rent the bunch in the phase space plane is divided by a large number of
vertical strips (up to 130 ones). Then the charge of each strip is cal­
culated. The voltage induced by a strip after it has passed through the
cavity can be found using expression (2). The resulting voltage was
smoothed by means of spline interpolation in order to diminish the noise
due to the discrete nature of macroparticles. The necessary parameters
used in the program are listed in Table I.

TABLE I. U-70,Parasitic Cavity and Initial Bunch Parameters.

Average radius
Harmonic number
Momentum compaction factor
Peak RF-voltage
Resonant frequency
Bandwidth
Longitudinal emittance (total)
Bunch population
Synchrotron period

Ro =236 m
q=30
c« = 0.01112
V=O.35 MV
f o =300 MHz
2 6f=32 MHz
£=74 MeV/c·m
N=1.7~1012 protons/bunch
Ts =1.74 ms

We take into account a single bunch, but there is no loss of gene­
rality as the bunGhes in the machine do not influence each other pro­
vided Af is sufficiently large.

The typical result is that the high-frequency modulation of the
bunch current appears, when the shunt impedance exceeds some threshold
value. The modulation does not grow much with R increasing further, but
the growth of the effective bunch phase-space area becomes essential. If
the rate of the impedance growth is not too high we find the bunch in
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a quasi-stationary state, i.e. its longitudinal phase space distribution
function depends, to a first approximation, only on the phase oscilla­
tion energy.

The evolution of the longitudinal distribution function averaged
over the phases of synchrotron oscillations is shown in Fig.1. The shunt
impedance increases linearly from 0 to R/n=85 Ohm in 28 ms (16 phase os­
cillation periods) and further is kept constant. Here n=fo/fs ' f s is the
revolution frequency. The normalized square of the phase oscillation
amplitude is plotted horizontally. The initial distribution function
f(x)"'-I~ changes in time and tends to be exponential, at least in
the bunch core. The final distribution appears to be actually indepen­
dent on the initial one. This is illustrated in Fig.2, where the pre­
vious case is considered for different initial distributions. The dist­
ributions (1,2,3) in 40 Ts's come to the same final state (a). The re­
sult is slightly different (b) for the initial distribution f(x)=const
(4). The reason is that 40 Ts's are insufficient for such a distribution
to come to the stationary one, so more prolonged runs are required which
would conswne too much of the computer time.
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FIGURE 1. Evolution of the longitudinal distribution function;

x is the energy of phase oscillations.

Analyzing these results we have come to the conclusion that the
interaction of a single bunch with the high-frequency and low-Q impe­
dance leads to a new stationary distribution. For the longitudinal co­
ordinates and momenta this distribution is Gaussian:

r 2Js2 (p-ps)

F....,exp - 2~ - 262 = exp

- p

(3)

where t is the phase space area (divided by n ) enclosed within a
trajectory in the coordinate-momentum phase plane, £ =6 6 is the rms
longitudinal bunch emittance. We show in Fig.3 t a~ aSfRnction of
shunt impedance. The bunch parameters are listed ~n Table I and the
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initial distribution was combined of two conjugated parabolas (see cur­
ve 1 in Fig.2). Two ways of the impedance variation were investigated:
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FIGURE 2. Final stationary distribution function (solid lines)
for different initial distributions (dashed lines).
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FIGURE 3. RMS longitudinal emittance versus impedance.

1. The shunt impedance increased gradually with a rate R/n=765 Ohm/s
(curve 1). Two different cavities were considered in this variant:

a) f o =300 MHz, ~f=16 MHz (e)
b) f o =900 MHz, llf=16 MHz (0)

The results have actually coincided, so further calculations were per­
formed for case a) only.

2. The shunt impedance increased gradually in the same manner as
above until it has reached a certain value and kept constant afterwards.

The emittance was calculated when it became actually stationary. These
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stationary values are shown as crosses in Fig.3. The dashed curve 2 is
plotted only for illustration purposes. As seen, the bunch sometimes has
no time to reach the quasi stationary state in the case when the impe~

dance increases gradually. 2/3
Curve 2 corresponds well to the law f. 0 '" (~). • The law follows

from expression (2) and is shown by curve 3 in Fig.3. Some discrepancy
(~1.7 times) is explained by the fact that the cavity filling time was
in our calculations comparable with the bunch duration (10 ns and 20 ns
respectively), which is equivalent to some increase of the bunching
factor. To make sure of that we have repeated the calculation for the
case la, using a smaller filling time, 'f=2 ns (Af=80 MHz) and R/n=
=380 Ohm/so As a result we have curve 4 which is much closer to the
"theoretical" curve 3.

The dependence of Eo on 8f is plotted in Fig.4. The case 2a has
been considered with the final value of the impedance R/n=60 Ohm. The
emittance satisfies condition (1) at t[ ~ 0.1 tf b (the dashed line shows
the value that follows from (1». We have no visible effect on the ini­
tial bunch for rr ~ 2'fb though the impedance is about twice as much as
the formal "threshold" (1).

35
e.
~ 30
:>
~
• 25
o

to

20

15

10

~
~\-

\
\~

"-
~~

£oi-
1p

JO 20 30 «> 't=1/ (2'JtAf) ,nB

FIGURE 4. RMS longitudinal emittance versus cavity bandwidth.

If the impedance grows too quickly there is no time for a quasi­
stationary state to establish. A powerful high-frequency modulation of
the bunch current develops which leads to an additional bunch blow-up
(see Fig.5). The value of R/n increased from 0 to 85 Ohm in a manner
shown in Fig.l, the rising time varying in rather a wide range. The two
curves correspond to the initial distributions noted as in Fig.l. It is
seen that the "adiabaticity" condition is more difficult to be fulfil­
led for the distributions with sharp boundaries.

Thus, we can state that under the conditions considered in this
work the longitudinal distribution function tends to that expressed by
(3). The value of Ap~2.87 6 p is determined by Boussard criterion (1)
The process of the distribution function reconstruction is quasi adia­
batic, its rate is determined by the rate of variation of the external
conditions.
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FIGURE 5.
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