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An alternate derivation of the transient solution for cumulative beam break~p is presented. This
solution, which is identical to the solution derived earlier for constant parameters, permits the analysis
for randomly fluctuating parameters. Analytical results are obtaine9 for random initial displacement,
fluctuating charge per bunch, and for a distribution of deflecting-mode frequencies such as might
occur because of construction tolerances. These results are shown to be in close agreement with
simulations. Fluctuating charge per bunch will enhance beam breakup if the beam has a systematic
initial displacement. The distribution of deflectiQg-mode frequencies helps to suppress beam breakup,
especially for cavities with large Q. In fact the relative width of the distribution of frequencies
corresponds to a reduced value of Q, as might have been expected.

1. INTRODUCTION

The theory of beam breakupl-5 has been worked out for identical uncoupled
cavities and for a constant beam current. The difference equations for transverse
displacement and angle have been solved exactly for a coasting beam, and
expressions have been obtained for the steady-state solution where the input­
beam displacement is constant or modulated at an arbitrary frequency. 5 In
addition, an approximate result was obtained for the transient in the absence of
external focusing by means of a saddle-point approximation. These results were
shown. to be in excellent agreement with the numerical simulations for parameters
appropriate to a 30-cavity 1300-MHz standing-wave rf linear-accelerator structure
with a 2.5-MeV, 6.5-A average-current coasting beam.5

The dominant feature of the transient result is amplification of the transverse
displacement in the absence of external focusing, corresponding to the real
exponent:f:

(1.1)

t Supported by the U.S. Department of Energy.
:I: This is the result in Eq. (71) of Ref. 5.
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(1.2)

where N is the cavity number and M is the bunch number. Here

r == LR =elcr (21- T
2
)L2

y 2W LQ '

where I is the beam· current for particles of energy W, L is the distance between
cavity centers, r-1 is the bunch frequency, and

1J
O£ e-iwz/c dz I•. 2

Zi T 2 = 2cZO_J_x _

LQ w LJE2 dv
(1.3)

is the usual ratio of transverse shunt impedance to quality factor Q. Here
Zo = 120n ohms is the impedance of free ,space. The ~orm of Eq. (1.3) is used to
make explicit the linear dependence of Zi on cavity length. We assume no space
between the cavities, "which are each of length L.

It can be shown5 that for an accelerated beam, one can replace W in Eq. (1.2)
by

(1.4)

where the final and initial energies satisfy "f »",;, and where W' is the rate of
energy gain per meter. Our result for the exponent in Eq. (1.1) can then be
written as

(1.5)

where z =NL is the accelerator length and t =Mr is the pulse duration.
Equation (1.5) corresponds ·to the expression obtained at SLAC for a

traveling-wave linac. Experimental studies1
,2 of the dependence of starting

current· on pulse duration and accelerator length give approximate confirmation
of the form of Eq. (1.5), with the. conclusion that beam breakup occurs when et is
between 15 and 20, corresponding to an amplification of some stimulus by a
factor of order 107 to 108

• Efforts to identify the initial noise stimulus have been
inconclusive.

It is apparent that the large amplification in Eqs. (1.1) or (1.5) depends on
coherent oscillations of all the cavities. A distribution in frequency of the
transverse deflecting mode in the cavities, which would be expected from
construction tolerances, is expected to lower the effective exponent. In fact,
SLAC increased the starting currents significantly by intentionally detuning many
of the cavities. 1

,2 What is not clear is whether the initial construction tolerances
were large enough to modify the result in Eq. (1.5) and thereby imply a reduced
amplification of a larger initial stimulus.

In the present paper, we derive the effect of a distribution in transverse
frequencies. In the process we treat random variation of other parameters; such
as the initial displacement and the charge per beam bunch as well. In order to
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take into account random variation of parameters, we find it necessary to rederive
the transient result using an approximate summation technique, since the analytic
solution obtained earlier is only valid for constant transverse frequency and
constant charge per bunch.

1.1. Notation

The notation is consistent with that used in Ref. 5. Additional symbols are
defined as follows:

r =M12R/y
M 12 =L in the absence of external focusing.

et = the real part of the exponent for transient beam breakup, not
including the term involving Q

lj>(N, M) = the angular deflection experienced by the M bunch due to the
excitation of the N cavity

a =rms width of the transient pulse amplitude
p, p(M) = the real part of the total exponent for transient beam breakup

Nt = value of M at which p (M) is a maximum
fJ = maximum value of p(M)

f!t. n , f!t.(n) = deviation of wt' in cavity n from its average value
G = Nr1l2

c = Qf!t. rms/ w t'

w(M), wl(M) = function defined in Eq. (4.18), constructed from the simulation,
to test the validity of the analysis

~m = relative charge fluctuation of bunch m
C(~) = correction factor to the maximum of the single pulse transient

due to charge fluctuation

The following typographical corrections to Ref. 5 are noted:

i 1
Eq. (52) and Eq. (B-16) - 2n~ 2n

Eq. (52) and Eq. (B-16)

Eq. (64)

Eq. (A-4)

Eq. (B-14)

Eq. (B-14)

. h N sinhNaSIn a~-.--

sInh a

N
N-,'>V4Jr

(N - r)!~ r! (N - r)!

1 1
--~-

2n 2ni

sinh (Na(u))-,'> sinh (Na(u))
sinh (a(u))
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2. ALTERNATIVE ANALYSIS OF TRANSIENT GROWTH

Our starting point for a coasting beam is the difference equations5

;(N + 1, M) = M11;(N, M) + M1Z[B(N, M) + (jJ(N, M)], (2.1)

B(N + 1, M) = MZI;(N, M) + Mzz[B(N, M) + (jJ(N, M)], (2.2)

where ;(N, M) and B(N, M) are the displacement and angle of the Mth bunch as
it enters the Nth cavity and

R M - I

(jJ(N, M) = - L sM-/;(N, I) (2.3)
y /=0

(2.4)Sk = e-kwT:IZQ sin kwr:.

is the angular deflection experienced by the Mth bunch in traversing the Nth
cavity. Here

As in Ref. 5, we obtain a solution in powers of r = M1ZR/y by analogy to the
Laplace transform in the variable N. The result for a single initially displaced
bunch (M' = 0), in the absence of transverse focusing (Il = 0, MIZ = L), is6

;(N, M) _ ~ j j (N + j)!
f= - ~ (S )MOr (N - .)' (2')' '
'='0 J=O J. J.

where the matrix element Spq is given by

_ _ {e-(p-q)WT:IZQ sin [(p - q)wr:], p > q}
Spq -Sp_q - 0, p::;;q ·

The MO element of sj is then given by
M M M

(Sj)MO= LL··· L SM~a:~··· S{)O

(2.5)

(2.6)

a:>~>'''>{)

M

=e-MwT:IZQ L L ···L sin [(M - a)wr:] sin [(a - f3)wr:] · . · sin [Dwr:].
a:>~> ... >{)

(2.7)
The first two terms in the product can be combined to give

! cos [(M + 13 - 2a)wr:] - ~ cos [(M - f3)wr:].

Subsequent summation over a for M» 1 will cause the first term to average to
zero while the second term accumulates. Accordingly, we expect the only
surviving term, after trigonometric combination of the factors in Eq. (2.7), to be
the one independent of a, 13, ... ,D, corresponding to the sum of all phase
angles, specifically

(Si)MO == e-
Mar

r:/2Q cos ~~WT - j(1'i/2» ~ L L (1)
2 a:>~> >{)

e -(MWT:IZQ)+iMWT:-ij(lrIZ)Mj-I

== Re 2i-1(j _ 1)! . (2.8)
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For the parameters of interest, the dominant terms in the sum in Eq. (2.5) come
from values of j that satisfy

1«j «N «M.

Equation (2.5) can therefore be written as

;(N M) e-MwT;/ZQ . 00 E3j
, --- Re e,MwT; ~ ------

;0 = M ~o zi-l(j - I)! (2j)! '

(2.9)

(2.10)

where
E = rl/3Ml/3NZ/3e-iJtI6. (2.11)

(2.12)(3j)! (3j ) l/Z(3)3i

zi- 1(j-1)!(2j)!==;; 2'

The sum in Eq. (2.10) cannot be readily evaluated as it stands. However, since
the important contributions come from j »1, we can use Stirling's approximation
to show that

leading to

(2.13)
;(N, M) e-MWT;/ZQ . 00 (3j)l/Z (~E)3j

== Ree'MwT;~ - --.-, .
;0 M j=O Jt (3J).

The (3j)l/Z term in the sum can be similarly absorbed into the factorial term in the
sum, leading to r(3j + !) as a replacement for (3j)! The final result for lEI » 1 is
the same as that obtained by setting j = E/2, representing the "saddle" of the
sum, in the j1/Z term. One then can write

00 (~E)3i 3[3 (-1 + ivJ)] [3 (1 + ivJ)]
3j~ (3j)! = exp bE] + exp 2E 2 + exp - 2E 2 '

(2.14)

where the first term dominates for the particular phase of E chosen in Eq. (2.11).
We then obtain

(2.16)

(2.15)

1
IKI = 21sin (wt/2) I.

f=(N M) -M(WT;/ZQ)
~ , == e Re [YE eiMWT;+(3/Z)E],

;0 MV6ir
in exact agreement with Eq. (69) of Ref. 5.

For a constant initial displacement the approach to equilibrium has the same
form as Eq. (2.15), except that the bracket [ ] has an additional factor K whose
amplitude is given by

Figure 1 shows a simulation for a constant initial displacement of 1 mm, with the
parameters r = 2.88 X 10-3

, wr/2Jt = 24/13, Q = 1000, and N = 30. As discussed
in Ref. 5, the agreement with Eqs. (2.15), (2.16) is excellent.

The above derivation is less rigorous than that using the saddle-point
approximation derived from the integral representation,5 particularly because it
uses approximate forms for a series in which there is some cancellation of the
terms due to the factor exp (-ijn/2) in Eq. (2.10). Nevertheless, this derivation
can be readily extended to include fluctuating parameters, in contrast to the one
in Ref. 5.
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FIGURE 1 Displacement vs M for wr/2:Jr = 24/13, r = 2.88 X 10-3
, Q = 1000, N = 30, ~o = 1 mm.

3. RANDOM INITIAL DISPLACEMENT

For completeness, we include the solution for random initial displacement. This
has been treated in greater detai17 starting with the transient for a single displaced
pulse given in Eq. (2.15). The final result for the rms displacement is given by

(';~ms) \= l';m;xI2

avJr , (3.1)
;rms ;0 2

where a is the rms width of the transient pulse amplitude and where I;maxl /;0 is
the maximum amplitude of Eq. (2.15). It can be shown that the rms width is
given by

where
p = M(Wi/Q)

(3.2)

(3.3)

(3.4)

is the maximu.ffi value of the real part of the exponent in Eq. (2.15), occurring att

_ (3)3/4 (Q )3/2M= - N - ,112.
4 Wi

t If one takes into account the M- 5
/
6 dependence of the coefficient multiplying the exponential in

Eq. (2.15), the actual maximum shifts to

Mmax=M - (5/2)(Q/wr). (3.4a)
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FIGURE 2 Displacement vs M for wr:/2Jr = 24/13, r = 2.88 x 10-3
, Q = 1000, N = 30, ;~ms = 1 mm.

In terms of these parameters the rms displacement is

(;~::r == 61 (~r2e2fi.
The same result can be derived by Fourier analyzing the random initial

displacement and using an earlier result for a modulated beam.5 The major
contributions come from the frequency bands of width

around the resonances at

2wr
~(w't) === __ (p)-1I2

3Q
(3.6)

(3.7)W'T: = ±(WT: - 2~-0)(mOd 2,n'),

and the final result is identical with that in Eq. (3.5).
Numerical simulations7 confirm the validity of Eq. (3.5). An example of such a

simulation, with the same parameters as in Fig. 1, is shown in Fig. 2, where the
distribution in initial displacement is Gaussian, with ~~ms = 1 mm. In this case, the
predicted value of ;rmsl;~ms is about 2800.

4. FLUCTUATION OF DEFLECTING-MODEL FREQUENCY

We can now proceed to include the variation of the deflecting-mode frequency
with cavity number. If we write each lOr in Eq. (2.7) as

wr = iiJr +~, (4.1)

the combination with the sum of phases will still be expected to dominate. This
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(4.4)

will now have the form
. e- M(wT/2Q)+iMiirr-ij(:Jr/2)

S~o == Re 2j - 1

M

X ~ ~ • • •~ exp {i[M - £1')~a + (a - {3)~b .. · + D~d]}' (4.2)
cx>{3>···>6

were ~a, ~b' ••• , ~d are for cavity numbers a, b, ... ,d. [There are j cavities
and j - 1 sums that enter into Eq. (4.2).]

We will now expand the exponential to second order to simplify the sums over
a, {3, ... , D. This leads to the typical terms

1, i!1c ({3 - y), -!1b !1c ( (l' - {3)({3 - y), - ~~ ((l' - {3f, (4.3)

where sums need to be taken over all combinations of lower-case Greek indices.
When these sums are approximated by integrals for large M we find

M Mj-l

~~···~1=. ,
cx>{3>···6 (J - 1).

M Mj
~~".~(£1'-{3)==-.,

cx>{3>···6 J.
M Mj+l

~~···~(£1'-{3)(y-D)==. "
cx>{3>···6 (J + 1).

M 2Mj+l

~ ~ · · .~ (a - {3)2 ==. ,.
cx>{3>···{, (J + 1).

Equation (4.5) must now be averaged over all possible configurations of j
frequency errors among N cavities. Assuming that the weighting (N +
j)!/(2j)! (N - j)! in Eq. (2.5) is the same for all configurations,t we have

t This assumption appears to be only approximately correct.
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The bracket [ ] in Eq. (4.5) must now be written as the product of a term with
unit amplitude, corresponding to a frequency shift, and an amplitude reduction,
i.e.,

(4.7)

accurate to order ~2
• The expected value of the amplitude reduction for large j

then becomes, using Eq. (4.6),

where ~;ms is the mean square of the width of the distribution, given by

~;ms = (~2) _ (~)2.

(4.8)

(4.9)

For a symmetric distribution of the frequency fluctuation, we have (~) = O. Since
the discussion following Eq. (2.13) implies that one can set j == E/2 in terms like
that in Eq. (4.8), the displacement in Eq. (2.15) can be rewritten, for j «N, as

;(N, M) 1 ~ [J; (. WT 3 2~;msM2)
~O = M\I6Jr Re v E exp lMWT: - M 2Q + 2E - E ' (4.10)

where we have written the term involving (~;ms) as an exponential, and where E
is given in Eq. (2.11). If one writes

G = N r l/
2

, (4.11)

the real part of the exponent in Eq. (4.10) can be written as

P (M) = - MWT: +30 G 2I3M 1I3 _ ~ '3L\2 M5/3G-213
1 2Q 4 v :J rms .

This exponent reaches a maximum valuet

at
~l = (1 + A)-3/2
M 2 '

(4.12)

(4.13)

(4.14)

where p and M are given in Eqs. (3.3) and (3.4), and where

A2= 1+ 20£2, £2 = Q2~;ms/W
2

T
2

• (4.15)

Equations (4.12) and (4.13) have been derived under the assumption of small
~;ms. Nevertheless, they can be expected to be approximately valid for £ ~ 1,
since one expects a rapid decrease of the transient growth if the relative
frequency spread is greater than Q-l. In fact, if one assumes £YW» 1, one

t As in Eq. (3.4a), the coefficient M-SI6 causes the maximum to shift to

Mr;ax == M1- (5/2)(Q / w1')/(l + 20£2)112.
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finds, from Eqs. (3.3) and (3.4), a maximum exponent

- O. 8 _ - 1/2 -1/2
Pl=JJip=0.65Nr ~rms,

E
(4.16)

independent of Q. The factor Q-l in Eqs. (3.3) and (3.4) has been replaced by
the relative frequency spread ~rms/Wi, as might have been expected. This result
is similar to that obtained by Yokoya8 using a uniform distribution of transverse
deflecting-mode frequency to modify an integral representation.

The envelope associated with the single-pulse transient in the presence of
frequency fluctuation is therefore given by

~env=G
1I3

Pl(M)
~o - M S/6·W;;i/ ' (4.17)

where Pl(M) is given in Eq. (4.10). (The subscript 1 here refers to the case of
frequency fluctuation.) Comparisons with numerical simulations have been
carried out with the same parameters as in Fig. 1.9 The validity of the above
analysis was confirmed by plotting

w (M) = In (~env) + M W1" - 30 G2I3M1/3 + ~ In M
1 ~o ZQ 4

In G In (6Jr) 0 ~;msM5/3
-3- - -Z-- - G2/3 (4.18)

against M5
/
3 for different values of E = Q~rms/Wi, where ;env is taken from the

simulations. The second form in Eq. (4.18) depends on the validity of Eq. (4.15).
Figures 3 and 4 contain such plots for two different random-number sets for

-1.35 -.,.--------------------,.
DISTRIBUTED TRANSVERSE MODE FREQUENCY

£.~

-1.46

-1.45

won

-1.5B

-1.55

................-. ~.~ : .

E: =.3

8 1eao 2eao 3008 "5/3 4008 5888 6080 7800

FIGURE 3 Plot of w(M) in Eq. (4.18) vs M5
/
3 for frequency distribution (random seed #1).
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FIGURE 4 Plot of w(M) in Eq. (4.18) vs M5
/
3 for frequency distribution (random seed #2).

values of £ from 0 to 0.4. As predicted by Eq. (4.18), the plots are straight lines
in a wide range around the maximum of ~env, and the slopes and intercepts are in
good agreement with the predicted values. A more precise test is shown in Fig. 5,
where

0.0 --.;;~----------------- --.

-e.1;

- 1 •e

c::> £. 4.0

[!J £. 6.0

.. 1 .6 -t--r----y---,r--,.-----r--.,.---,--...;.-..r--....----J
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FIGURE 6 Distribution of slopes for 10,000 samples like the one in Fig. 5.

has been plotted against e2Ms/3 for e = 0.5, 1.0, 1.5, 2.0, 4.0, and 6.0 for the
same random-number seed as in Fig. 3. The slope as e2Ms/3~0 is obtained for
10,000 random sets, and the distribution is plotted in Fig. 6. The mean slope
obtained is 1.45 x 10-4 while the slope predicted by Eq. (4.18) is 1.69 x 10-4

• If
one includes the modifying factor 1- (j/2N) in Eq. (4.8), the predicted slope is
1.52 x 10-4

, in good agreement with that obtained from the simulation.
It therefore appears that Eq. (4.10) is an accurate representation of the effect

of frequency fluctuation, even for values of e = Q~rms/WT: above 1. This is quite
surprising since, for e > 1, only a few cavities will become excited.

In a companion paperlO we derive results for smooth variation of parameters.
The result for smooth variation of deflecting-mode frequency is close to that in
Eq. (4.10), but the value of E has been generalized to

E = e-inI6Ml/3[LNVr(n) dnr3

,

r(n) = LnRn/Yn

takes into account smooth variation of L, R, and Y with cavity number. This
value of E can therefore be used in Eqs. (4.~ to (4.12) when r is dependent on
n. In this case, however, a weighting factor r(n) must be used to calculate the
rms frequency spread. IO

5. FLUCTUATION OF CHARGE PER BUNCH

If the charge per bunch fluctuates, the parameter R in Eq. (1.2) must be written
as
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where 6m is the fractional change in the charge of the mth bunch. It is clear from
the origin of Eq. (2.3) that the field stimulation due to the lth bunch is connected
with the lin SM-Z. For this reason the summand in Eq. (2.7) must be modified by
the factor

(5.1)

The sums over a', f3, ... , 6 will still lead to the dominance of the term
involving the sum of phases, but the modification due to the factors (1 + 6a-)(1 +
6(3) · · · (1 + 6~) in Eq. (5.1) will lead to corrections of order (1 + 6rms). These
corrections will not lead to any significant change for charge fluctuations of the
order of 10% or less.

The above comments do not include the factor (1 + 60) in Eq. (5.1), since we
do not sum over the index O. However, the conclusion for the single-pulse
transient is the same: the factor (1 + 60) will only contribute a small correction.

The situation is, however, different for a beam with a systematic initial
displacement, such as might occur in the presence of steering errors. In this case
the transient peak will be governed by the sum

M-l

;(N, M) = Re L eiwT
(M-M')(l + 6M ,);(0, M')h(M - M'), (5.2)

M'=O

where h(M - M') is the single-pulse transient given in Eq. (2.15) and has the
form

with

e-mwT/2Q

h(m)= . VEe(3/2)E,

m\l6n (5.3)

(5.4)

For constant ;(0, M') = ;0, the term not involving 6M , describes the usual
approach to equilibrium, where the amplitude of the single-pulse transient is
modified by the factor IKI in Eq. (2.16), which is of order 1 away from the
resonance roT = 2nn. On the other hand, the term involving 6 M' will accumulate
in an rms sense to a value that is identical to that in Eqs. (3.1) and (3.2) for

<;~) = ;~< 62
) = ;~6;ms. (5.5)

If we assume a factor 2-112 for oscillation of the displacement and a factor 2- 112

for the oscillation of the envelope, we find that Eq. (5.5) corresponds to a
modification of the peak of the single-pulse transient by the factor

DrmsMl/2C~Jr)1/4, (5.6)

The two effects together will then lead to a correction factor to the maximum of
the single-pulse transient given by C(6), where

C2(6) = IKI2+ <62
) (12n/p)1/2. (5.7)

It is clear that, for large Sf, the term in the charge fluctuation can dominate, even
for small 6rms •

Simulations have been run for several random samples of a Gaussian
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FIGURE 7 Displacement vs M for wr/2Jr = 24/13, r = 2.88 X 10-3, Q = 1000, N = 30, ;0 = 1 mm,
25% fluctuating charge.

distribution in the charge fluctuation. Two of these for Drms = 0.25 and 1.0 (using
the same random-number seed) are shown in Figs. 7 and 8. From such
simulations one obtains '(D) for the first major peak. A plot of [,2(D) - ,2(0)]112
VS Drms is shown in Fig. 9. It clearly shows the validity of the linear prediction
even for Drms """" 1 (which corresponds to a charge fluctuation that can change the
sign of the bunch charge). It is clear that, even for Drms = 0.25, the second term in
Eq. (5.7) dominates. And the comparison of Fig. 5 with Fig. 1 confirms the strong

2
DISPLACEMENT

t(N,,.,) IN METERS

•

-2

FLUCTUATING CHARGE 100% RMS (SEED ,1>

:t+;:1

"'-::"':;:-:.;,

FIGURE 8 Displacement vs M for wr/2Jr = 24/13, r = 2.88 x 10-3, Q = 1000, N = 30, ;0 = 1 mm,
100% fluctuating charge.
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FIGURE 9 Maximum displacement vs rms charge fluctuation (random seed #1) for ;0 = 1 mm.

similarity of the results for random initial displacement and charge fluctuation. In
particular, the curves differ essentially by a factor 0.25, as predicted by Eq. (5.5).

The above result implies that beam breakup will be enhanced by charge
fluctuation if there are steering errors (systematic displacement of the beam
injected into the accelerator). This enhancement can be estimated from Eq. (5.6)
or (5.7).

DISCUSSION

We have provided an alternate derivation of the transient in cumulative beam
breakup, yielding the same result as the more rigorous derivation used earlier.
This alternate derivation provides a convenient vehicle for analyzing random
fluctuation of various parameters. An earlier result for random initial displace­
ment is included for completeness.

The analysis for random fluctuation of the deflecting-mode frequency is carried
out for a small frequency spread, but the final result, presented in Eqs. (4.10) and
(4.15), appears to be valid for values of £ = QJ1. rms/roT at least as large as 6. The
result is particularly simple and not unexpected for £ > 1: the value of Q-l in the
constant-frequency result is replaced by J1. rms / roT, the equivalent Q-l due to the
frequency spread.

This result has particular significance where one has a high value of Q for each
cavity, such as for a superconducting rf linac. A standard feature in such a
design11 is to couple the most troublesome deflecting modes (the ones with the
highest value of R) to a normally conducting load, thus reducing the Q by several
orders of magnitude. The effective Q is also reduced by the expected fabrication
tolerances, which can lead to a frequency spread in the deflecting modes of a few
parts in 10,000, even if the accelerating modes are tuned more precisely to one
another.
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The effect of fabrication tolerances may also be relevant to SLAC. In their
study of the scaling laws for current, accelerator length, and pulse length, the
effect of deflecting-mode frequency spread was not included in reaching the
conclusion that beam breakup corresponded to an exponent between 15 and 20.
According to Eqs. (4.11) and (4.13), this exponent would have been between 12
and 16 for e = 2 and between 8 and 10 for £ = 3. Clearly the implied growth of
the initial noise stimulus would be significantly reduced from the original estimate
of 107 to 108 in these cases.

The analysis of the effect of fluctuation in the charge per bunch is carried out
both for a single offset bunch and for all bunches offset. The effect is not serious
in the former case, but when all bunches are offset the charge fluctuation
corresponds to an equivalent fluctuation in initial displacement described in Eqs.
(5.5) to (5.7) that can amplify the single-bunch transient by a large factor (of
order of the square root of the "width" of the single-bunch transient correspond­
ing to Fig. 1). Clearly this effect will be important in the presence of steering
errors in the beam.
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