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We discuss the design and performance of special-purpose processors for tracking particles through an
alternating-gradient synchrotron. We present block diagram designs for two hardware processors.
Both processors use algorithms based on the “kick’ approximation, i.e., transport matrices are used
for dipoles and quadrupoles, and the thin-lens approximation is used for all higher multipoles. The
faster processor makes extensive use of memory look-up tables for evaluating functions. For the case
of magnets with multipoles up to pole 30 and using one kick per magnet, this processor can track 19
particles through an accelerator at a rate that is only 220 times slower than the time it takes real
particles to travel around the machine. For a model consisting of only thin lenses, it is only 150 times
slower than real particles. An additional factor of 2 can be obtained with chips now becoming
available. The number of magnets in the accelerator is limited only by the amount of memory
available for storing magnet parameters.

1. INTRODUCTION

Particle storage rings provide a unique laboratory for studying both theoretically
and experimentally the behavior of nonlinear systems for periods of 10'" cycles.
Their development has created a need for techniques that can verify the stability
of proposed designs for new machines.

The tracking method that we will discuss uses linear matrix transformations for
dipoles and quadrupoles and transverse momentum kicks for all higher-order
terms. This method is commonly called the kick or thin-lens method.

A subset where the thin-lens approximation is used for all elements can be
obtained by nulling out the matrix operations. The thin-lens approximation is
considerably easier to implement than the full matrix transformation. However, it
is not clear to us that these approximations are valid for tracking a very large
number of turns. Discussions of other types of tracking algorithms can be found
in Refs. 1-3.

The main advantages of the kick method are that there is no restriction on the
number of multipoles that can be included and the computer code is quite simple
to write and to check. However, it does require a large number of calculations.
For a magnet with multipoles up to pole 30 and one kick, an optimized serial
algorithm has about 175 multiplications and additions per magnet. Thus, a
10,000-magnet accelerator requires 1,750,000 arithmetic operations per particle
per turn.
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A special processor designed specifically for orbit tracking can be much more
powerful than a standard computer. Currently available chips can do 64-bit
floating-point calculations at 100 ns per calculation (pipelined).* This will soon be
decreased to less than 50 ns per multiplication.” The processors that we have
designed can be completely pipelined so that the number of particles that are
simultaneously computed is equal to the number of steps in the calculation. They
can also take into account all the inherent parallelism in the calculation and thus
get a further increase in speed. Our fastest processor can track 19 particles
around the 10,000-magnet accelerator described above in approximately 32 ms
(16 ms with new chips). This is for a thin-lens-only subset; a model which uses
ideal dipoles and quadrupoles and a single thin lens per magnet for all higher
multipoles would take about 50% longer. The same calculation on the CRAY I at
10 million floating-point operations per second would take approximately
2600 ms; we thus realize a speed gain of over 80. This assumes that some form of
memory look-up is used for the square root in the CRAY and no synchrotron
oscillations are calculated. If this is not true, the CRAY would take longer.

Orbits in a nonlinear system can appear stable for a large number of cycles and
then make relatively sudden shifts in phase space. For this reason, we believe that
it is more important to calculate a few particles (10 to 20) for a large number of
turns, rather than many particles for a few turns. Of course, two processors can
do twice as many particles as one, so there is no technical limit to the number of
particles that can be tracked.

We also feel that the accelerator physicist must be intimately involved in the
calculations. To achieve this, we propose to instrument the dedicated processor
with the analog of accelerator instruments. These devices could do such things as
plot the phase space or beam position at a point. They could also give a plot of
beam position at every quadrupole around the accelerator or the tune of the
machine or any other parameter that can be measured. In addition, there can be
stimulus devices such as beam dampers or special rf cavities for multibunch
coalescing. This approach can certainly be done with current tracking programs.
However, these pseudo-instruments, combined with the speed of the processor,
should allow someone to sit at a display and do experiments and see the results as
if he were working on a somewhat slow-motion accelerator. Of course, we would
provide a throttle so that one could move slowly through an interesting region
and a reverse so that one could back up and proceed through an interesting
region again—perhaps at slower speed.

Section 2 describes algorithms for tracking particles through magnets and drift
spaces. Synchrotron oscillations are included. Section 3 discusses the affects of
round-off error, and Section 4 describes a method of calculating complex
functions using interpolation tables. Finally, Section 5 describes processors to
implement the algorithms of Section 2.

2 ALGORITHMS

There are many excellent articles on tracking particles through nonlinear
magnetic fields.*® We will list the standard equations in forms suitable for
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hardware implementation. We will adopt the notation used by Schachinger and
Talman for the program TEAPOT.'

The kick method calculates the effect of the nonlinear field components as a
kick in transverse momentum at a single point. This kick changes the slope of the
particles trajectory but not its position. There may, of course, be several kicks per
magnet. The linear fields can be treated either by transport matrices or as part of
a thin lens.

Synchrotron motion is treated as an instantaneous acceleration at the center of
the accelerating gap. We implicitly assume only one accelerating gap per turn, but
there could be more. The momentum variation is determined by computing an
approximation to the difference in revolution time between the reference particle
and the particle being tracked. This is then converted to a phase difference in the
applied voltage at the accelerating gap.

2.1. Linear Matrix Multiplication

The matrix equation for a focusing quadrupole is'!

sin KL
. KL
X ) cos X X )
A . Vol 7
- —Ksin KL cos KL||—
|4 Vio

where K?=G/Bp, G is the field gradient, Bp is the magnetic rigidity of the
particle, L is the length of the magnet, x is the horizontal position, and V,/V; is
the slope of the particles trajectory. V, is the velocity perpendicular to the magnet
axis, and V is the velocity along the axis. The equation for a horizontally
defocusing quadrupole is the same as Eq. (1), with the trigonometric functions
replaced by hyperbolic functions and with no minus sign. K is a function of the
particle’s momentum, so it must be recomputed every turn if acceleration is
present.

For dipoles we use the small-angle approximation for wedge dipoles."* The
vertical coordinate y is represented by 2 X 2 matrices:
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The horizontal coordinate requires a 3 X3 matrix in order to incorporate
momentum dispersion:
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where « is the bending angle of the dipole and p is the radius of curvature for the
reference particle.

2.2 Nonlinear Filed Components

The equation for the thin-lens approximation is given by'®'>"

éx‘//—x"'a—://y_(lcfaB; o 2 (bu+ i)~ 0x) — iy — )", )

where 8x and Oy are the x and y offset of the magnetic center with respect to the
reference particle, b, and a, are the normal and skew components of the
multipole field, k is the number of multipoles, V is the velocity of the particle, p,
is the momentum of the reference particle, L is the length of the magnet, B, is
value of the principal field of the magnet (dipole or quadrupole), c is a constant,
and § is the momentum difference of the particle from the reference particle,
such that (1 + 8)p, equals the particle’s momentum. The real part of Eq. (4) is
the kick in the x direction, and the imaginary part is the kick in the y direction.
Applying Horner’s rule to the complex equations in Eq. (4) gives
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where the 6x and dy offsets have been set to zero for clarity.

A second algorithm can be obtained by writing Eq. (4) in polar coordinates.
This algorithm involves evaluating trigonometric functions and taking square
roots. Thus, on a serial computer, it would be much slower than the first
algorithm. However, in a dedicated processor, these functions can be computed
very quickly by storing an interpolation table for each function in a large memory
and then performing a quadratic interpolation to get the value. In addition, each
multipole term can be evaluated in parallel with all the other terms.

In polar coordinates,

th CLBO k
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where R =V[(x — 6x)>+ (y — 8y)?], x=R cos ¢, and y = Rsin ¢. Thus, it is
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possible to achieve higher computational speeds than by using Horner’s rule, but
at a substantial cost in memory.

2.3. Coordinate Transformations

The above equations transport a particle through a magnetic element in the local
coordinate system of that element. To go on to the next element, one must
translate into the local coordinate system of that element. Thin lenses imbedded
in the center of a dipole or quadrupole are treated as residing in the local
coordinate system of that element. That is, there is no coordinate transformation
until the end of the magnet is reached.

The coordinate system that we use is the same one used in TEAPOT. All the
elements are described in the absolute Cartesian coordinate system (x, y, z). The
y coordinate of all devices is zero and the plane of the reference orbit is also
taken as y = 0. The local coordinate system is defined as y for vertical x along the
radius from the nominal center of the accelerator, and s in the direction of
particle motion, such that x, y, and s form a right-handed system.

If there is a drift distance between elements, the particle orbit must be tracked
across it. The TEAPOT report describes this rotation and transport in great
detail. We use the same method, but we have modified the equations so that they
are easier for a dedicated processor to compute.

The ith magnet is located at point P, The quantities X;,.,S;, are the
coordinates of the next element (e.g., beginning of a dipole or location of a thin
lens) in the current local coordinate system. The velocity components are v,, vy,
and v;. The rotation angle to the next element is ¢,,, and it is ngeative for
clockwise rotations.

The equations for rotation and translation from the TEAPOT report are

1 Xi — Xi+ + Ux/UsSi+

Yir1= s ¢ 1+v /v tan ¢, @)
Yisr=yi t z_}; s ;-ff;x—;v)s(;;:lt;id)H ’ (8)
Si+1=0, )

Ux(i+1) = Ux COS @, — U SIN @, (10)
UyGi+1) = Uy, (11)

Us(i+1) = Uy SIN @4 + U COS @B 4. (12)

One must compute v, from the relation v, = V(v* — v?), where v?=1v2+v2. We
have identified 2 ways to calculate this quantity in a hardware processor. The first
method relies on the fact that v, and v, are much less than v,. Typical maximum
ratios in the Tevatron are less than 0.001."* Thus, one can expand 1/v, in a Taylor
series to order 6. The error is then ~(v,/v)® or 1072, The expansion is

LU SR ,
o ViE—o o\t ) (13)
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The velocity of the particle, v, is constant between accelerating gaps, so 1/v can
be calculated once at a gap and then used for all tracking in between.

A second method is to use Newton’s interation method to compute 1/v,. Let
A = an initial estimate of 1/v, and x = 1/v,. Then,

x,~+1 = O.Sx,(3 - Ax?). (14)

This algorithm involves no divisions, so it is easy to implement. If the initial guess
is close, it converges quadratically, i.e., the error is squared with each iteration.*
By using two memories, one to look up the exponent and the other to look up the
mantissa, one can make a very good initial guess.'® The exponent for IEEE
standard floating point is 11 bits, so a 2K by 11 memory will uniquely determine
the exponent. The mantissa approximation can be found to 15 bits by using a 64K
by 16 memory. The error in this is then 27'°, and it is reduced quadratically with
each iteration. With two iterations, the error is less than the rounding error in
IEEE double-precision floating point. This method has the advantage of working
for all values of A. However, it takes somewhat longer than the Taylor expansion
mentioned above.

¢; is also a small quantity. In a machine such as the Tevatron, ¢, is of the order
of 27/1000 = 6.28 X 10~>. Therefore, we can expand the denominator of Eq. (7)
as

2
—L—zl—&tan¢i+2v—;tan2¢i..., (15)
1+ Ztan ¢; Us Us

Since v, /v, is of order 107>, the error in dropping the fourth-order term is
~10"%, 1/v, was calculated above. Thus, all the terms in the above expressions
can be calculated with multiplications and additions. Note that if these ap-
proximations are not adequate there is little computational penalty for including
one additional term in Eq. (15).

2.4. Synchrotron Oscillations

Synchrotron oscillations depend on the difference in revolution time between the
reference particle and the particle being tracked. One element in computing this
time difference is the difference in path length.
The path length difference for a dipole is developed as follows. From Fig. 1,
the angle ¢ is
p=a+0,—0=a+A6, (16)

where « is the bend angle of the reference particle, 6, is the incoming angle, and
0 is the exit angle. The reference path length is pa, where p is the radius of
curvature for the reference particle. The particle path length for small 6 is then
(p +6p)¢.

We have

SP-SPos, (17)
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FIGURE 1 Diagram showing particle paths through a wedge dipole. AC is the path of the reference
particle, and BD is the path of the particle of interest. x, is the input position and x is the output
position.

where p is the particle’s momentum and & is the fractional difference in
momentum. This is the same definition as in TEAPOT. Therefore,

Al=pa—(p—Ap)p=—(pA0 — Apa— ApAB)=—p(AO —6(a+ AB). (18)

The path length difference for a quadrupole is approximated by a drift distance
of equal length.
The formula for A/ for a drift distance is given in Refs. 17 and 18 as

Al =VAx* + Ay* + As?> — VX% - §2. (19)

Equation (19) involves taking the difference of two large numbers. Reference 17
describes a formula which avoids this problem. However, this formula is
considerably harder to implement in a processor. Qur approach is as follows.

We first factor out As® from the first term in Eq. (19). (Ax*+ Ay?)/As? is the
square of the tangent of the angle that the particle makes with respect to the
reference path. It is equal to v?/v2 1/v, has been calculated in the drift section
[eq. (4)], so v?/v? can be calculated with no divisions. It was also mentioned
above that v,/v, is of order 0.001. Therefore, we expand this term in a Taylor
series: 2

2\2
As[1+lﬂ—1<v—;> -'-]—VX%+S?. (20)

2v2 8 \v?

Next, we use an expression for As from Ref. 17:
As =s;, =8, —tan ¢, (x; — Xi,). (21)
Substituting Eq. (21) into the leading term in Eq. (19) gives

1v? 1/v3\? \/CZ 2
As| = — _<'—2) +--+|—tan ¢i+(xi+ _Xi+) + (Sz+ - Si+ + Xi+- (22)

2v2 8\v?
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The last term is a constant for each element and can be computed to arbitrary
precision before starting the tracking processor. Thus, the problem of subtracting
large numbers has been removed without the need for divisions and square roots.
The error in the above expansion is equal to the magnitude of the last term [not
the first neglected term since a common term in the first part of Eq. (22) can be
factored out]. Assuming a maximum ratio of At/As=0.01, an expansion to 5
terms is all that is required. Expansion to 8 terms incurs little penalty in time but
does require more hardware.

At the next accelerating gap, this length difference is converted to a time
difference by the following relation:®

Al 1 1
A== AC( - o), @3

where v; is the velocity of the particle, v, is the velocity of the reference particle,
and AC is the path length of the reference particle in this element.

The change in energy is given by converting the time difference to a phase
difference in the accelerating voltage. 6 and the quadrupole constant K are then
computed for the next orbit.

3 ERROR ANALYSIS

Error analysis for such a large computational effort is very important. Each
magnet requires about 175 multiplications and additions to track a particle
through it. For a machine such as the Tevatron there are about 1.7 x 10"
calculations for 10 million turns. There have been some recent publications'®?°
which analyze the errors for large-scale tracking of particles using kick codes.
They show that the error is proportional to n? where n is the number of turns.
The primary source of error comes from the fact that the finite precision of the
computer forces the quadrupole transport matrix to be non unitary. For the case
where there is no acceleration, the same incorrect matrix multiplies the
phase-space vector at every quadrupole. This causes the phase space to grow or
shrink, depending on whether the determinant of the matrix is greater or less
than unity. For the accelerating case, this should be less of a problem since at
every turn the determinant is recalculated and should have an equal probability of
being greater or less than unity. Reference 20 shows that going to 120-bit
precision for the quadrupole matrix increases the precision of the calculation by
several orders of magnitude.

Round-off errors from the nonlinear part of the calculation should go as the
square root of the number of turns, so less precision is needed. Preliminary
studies indicate that 32-bit floating point is not adequate.

4. INTERPOLATION

The rapid increase in size of semiconductor memories makes it practical to
evaluate complex functions by interpolating a table stored in memory. A common
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example of this is evaluating log(x) by linearly interpolating a table of
logarithms. This is done by fitting a straight line through a pair of adjacent values
in the table and then using this line as an approximation to the function in this
interval. Most logarithm tables contain only the endpoints of the intervals.
However, the endpoints are not the points which minimize the maximum error on
the interval. This is done exactly by finding the minmax polynomial on the
interval or, to a very good approximation, by using the zeros of the Chebychev
polynomial. The minmax polynomial of a given order is the polynomial which
minimizes the maximum error on an interval. Thus, if one wanted the best
straight line fit to the logarithm function between 0.1 and 0.2, one would not use
the endpoints of the interval for the line fit, but rather determine the coefficients
of the line which would minimize the maximum error. This would then be the
minmax straight line.

Table I shows the maximum error for quadratic fits for four different functions,
using Chebychev points as a function of the size of the interpolation table for a
specified range. The maximum error was determined by finding the difference
between the function and the quadratic fit in the specified interval. This difference
has a maximum in the interval since the two functions are equal at the Chebechev
points. The maximum of this equation was found using standard calculus and
numerically solving the equations using 120-bit precision on a Cyber 875
computer. The results were checked by a Monte Carlo method which chose
random points in random intervals and computed the difference between the fit
and the function. Again, 120-bit precision was used. These results agreed quite
well for the larger intervals (typically less than 2'*). For the small intervals, the
Monte Carlo method gave errors that became constant, independent of the
interval size. This did not occur for the analytical method. Figure 2 shows a plot
of log, (number of intervals) versus log, (maximum error). A straight line fit to
the data is also shown. Finding the true minmax polynomial changes the
maximum error by less than 0.1%. Use of the Chebechev points instead of the
endpoints of the interval reduced the maximum error by about 50% for all four
functions.

TABLE 1

Maximum error in the specified interval for four different functions, as a function of the
number of bits in the look-up table. The results are for a quadratic fit to the Chebychev

points
No. of sin (15 arctan ¢) e x73 sin x
bits 0<op<) 0.5<x<1) O<x<1) 0.5<x<1)
14 4.0 10712 321071 321071 1.0 1071
15 501071 4.0 10716 4.0 1071 1.3 10716
16 6.2 107+ 5.0 107" 5.0 107" 1.6 1077
17 7.8 10713 6.3 10718 6.2 1071¢ 2.0 10718
18 9.7 10716 7.9 107 7.8 10717 2.5 107"
19 1.2 1071 9.8 1072 9.7 10718 3.2 107%

20 1.5 107V 1.2 107% 1.2 10718 4.0 107
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Data from sin (15 atan(x))

s 0
o
Fat 1 y=2.8318-2.0778x
4
e -10 4
32
=
X -20
E -+
S -30
[}
& 1
S -40 B —t } +
0 10 20 30

number of address bits in lookup table

FIGURE 2 Plot of the number of address bits in versus the log, of the maximum error from Table I.
The equation is that of the best fit straight line.

Interpolation can be used to compute more complicated functions. To calculate
the contribution from pole 30, one must evaluate R'’, cos (15¢), and sin (15¢),
where R =V(x?+ y?) and ¢ = arctan (y/x). Interpolation can be used to comp-
ute each of these five functions independently, but it can also be used to compute
(R®™"?, sin (15 arctan (u)], and cos [15 arctan («)] directly, where u =y/x. R is
the radius of the good-field region of the magnet, so it has a restricted range of
values. For the purposes of error analysis, we have chosen 0 <R < 1. For the best
accuracy, the argument of the arctan function should be less than unity. So, if
y >x, we interchange x and y before dividing. This also removes any possible
division by zero and allows the table to cover the entire range. Interchanging x
and y changes the sine into the cosine and vice versa. Since both are being
calculated anyway, we just set a flag identifying which term is the sine. Table I
shows that these complex functions can be calculated to IEEE double precision
with 2'°-bit tables.

5. PROCESSOR ARCHITECTURE

Figure 3a shows a block diagram of the processor. The processor calculates one
element in the accelerator at a time. If a real dipole is represented as two ideal
dipoles with a thin lens in the middle for the higher-order multipoles, it would
have three elements.

The operation of the processor is quite straightforward. The element type is
used to select one of four calculation routes. If the type is an rf station, the new
momentum and such things as the quadrupole constant K are calculated. Since
there is usually only one rf station in an accelerator, these calculations are not
performed very frequently. Thus, we plan to use a fast conventional computer. If
quadrupole matrices are used, this involves sine functions. We would use
interpolation to compute these functions in order to keep the calculation fast.

The other three calculations are done with dedicated hardware and are
described below. The matrix multiply section is used for both quadrupoles and
dipoles. If one is using only thin lenses, this section is never used. The drift space
calculation is used for all drift spaces.
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FIGURE 3 (a) Overall processor flow diagram, where the matrix operations are performed in
parallel with the thin-lens ones. The accelerator instrumentation section is just a part on the processor
for adding specialized functions. (b) Overall processor flow diagram, where matrix operations are
appended to the beginning and end of a thin-lens calculation.

After the new coordinates are determined, the processor loops around to start
the next element. At the same time, the new coordinates are passed to the path
length difference calculator. Thus, the path length for element n —1 is being
computed in parallel with the transport through element n. This doubles the
speed of the calculations.

For the case where most of the magnets are represented as two ideal dipoles or
quadrupoles with a thin lens in the center, the architecture shown in Fig. 3b is
more than a factor of two faster. Here the matrix multiplies have been put at the
beginning and end of the thin-lens calculation. This increases the time of the
thin-lens calculation by 33% but reduces the number of elements to calculate
from three to one. It does require a length difference calculation to be added in
parallel with the thin-lens calculation to pick up the length difference from the
first half of the magnet.

The matrix multiplication part for a 2 X2 matrix is shown in Fig. 4. The
calculations in vertical columns are done at the same clock step (and thus in
parallel). It is a pipeline design so that at every clock cycle all elements are active.
Each column is working on a different particle. That is, on a given clock cycle,
column 1 computes a;,*y, - - - for particle 1. On the next cycle, it computes the
same quantity for particle 2 while column 2 computes ay;y, + a;, * vy, for particle
1. When the pipeline is full, each hardware unit is engaged in processing a
different particle. The total time to process one particle is the same as with one
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Y0 Vyo

Ay ®) O<—Rra Ap X Xe—Ara

G ®

YT Aot AV, Vg Ao Yot AV g

FIGURE 4 Overall block diagram of the processor for performing the 2 X 2 matrix multiply to
calculate y, and V;.

cell running in a loop. What is gained is the ability to compute several particles at
no increase in time. This is an important advantage of a dedicated processor over
a supercomputer. Multiple array processors or microprocessors can also compute
several particles at once, but they do it by replicating processors and are limited
by the speed at which they can compute one particle.

Figure 5a shows the evaluation of Eq. (14) for 1/v,. Two Newton—Raphson
iterations are used. Figure 5b shows the evaluation of Eq. (15), and Fig. Sc shows
the complete calculation of x;,; and y;,; [Egs. (7) and (8)]. Sixteen steps are
required. This means that 16 particles can be computed simultaneously with no
loss in speed. It also means that each section except the rf in Fig. 3 must take at
least 16 steps.

v v
3, A\ x (2 -A=)=_¥_
vx(ex ZX)V vy (3x-4x

Vs

1 27y
10 STEPS TOTAL

(2)

FIGURE 5 (a) Section of processor to evaluate Eq. (14). Delay blocks are used to synchronize the
calculation. (b) Section of processor to evaluate Eq. (15). (c¢) Complete processor section to compute
the coordinate transformation [Eq. (7) and (8)]. The numbers in the upper left index indicates the
number of delay cycles referred for the evaluation of the sections shown in Figs. 5a and 5b.
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FIGURE 5(c)

The thin-lens processor is more complicated. We have designed two different
processors (labeled P1 and P2) for calculating the nonlinear term. Processor P1 is
a straightforward implementation of Horner’s rule [Eq. (5)]. This is shown in Fig.
6a. The relationship between the number of multipoles and the number of steps
needed to compute them is:

n, = 3(ﬁ - 1) +1, (24)
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FIGURE 6 (a) Pipelined processor to evaluate Eq. (5) (processor P1). (b) Pipelined processor to
evaluate Eq. (6) (processor P2).

where n; is the number of steps and n is the pole number (n =2 for dipole, 4 for
quadrupole, etc.). The constant 1 at the end is for adding the Av to the input v. If
we assume that 16 steps are available, this processor could compute only up to
pole 12. Computing through pole 20 would require 28 steps.

Processor P2 is based on the expansion given by Eq. (9). It makes extensive use
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of interpolation, pipelining, and parallel processing. Figure 6b shows a block
diagram of the kick section of the processor. All of the multipole terms are
evaluated in parallel with each other and then summed by a decimation adder at
the end. For simplicity only a linear interpolation is shown. An actual processor
would require a quadratic interpolation which adds two steps to the pipeline. For
each of the multipoles, the input x and y coordinates are converted to polar
coordinates, and then Eq. (9) is calculated. The coordinate transformation is
combined with calculating the sine, cosine, and r” terms into one look-up table
for each function, as was described in Section 4. The output from each multipole
calculator is the év, and év, contribution from that multipole. These are then
added together by a decimation adder to give the total dv, and év, for this kick.
These results are finally added to the input v, and v, to get the output values. For
clarity only linear interpolation is shown; an actual processor would need
quadratic interpolation to get the required accuracy. The number of steps needed
to compute through a given multipole is given by

ny =15 +log, (n/2). (25)

The result from the log function must always be rounded up to the nearest
integer. The processor shown in Fig. 6b has 14 steps in it. One employing
quadratic interpolation would require 19 steps. Assuming floating-point calcula-
tion times of 100 ns, the total time would be about 7.4 us per magnet (assuming
an ideal magnet, thin lens, ideal magnet, and a drift space for each real magnet)
or about 7 ms per turn for the Tevatron. Since there are 19 steps in the pipeline,
19 particles would be computed in this time.

Figure 7 shows the time difference calculation for synchrotron oscillations as
given in Eq. (19).

Y. i+ vX/vS vy/v5

1VZ iVEZ_LV23_5_v21lv25—2LVES
Al:éVE"E AT 75__12873-+2557£_—1024 _v—g'

S

B

FIGURE 7 Calculation of Eq. (22) to evaluate synchrotron oscillations. Delays are shown as “del
n,” where n is the number of cycles to wait.
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6. DISCUSSION AND REMARKS

Table I shows that the interpolation tables for sin [15 arctan (x)] require 18 or 19
bits in the memory address. One-megabit static memories are just now coming to
market. These are typically organized as 128 K (17 address bits) by 8 bits.
Quadratic interpolation requires three 64-bit constants per function. Twenty-four
of the above chips are needed for a 17-address bit table and 96 for a 19-address
bit table. The sin and cos tables together require 192 chips, and the R’ table
requires 48 chips for a total of 240 chips. This is required for each multipole.

Such a large number of chips is difficult to work with. Since the error in Table I
is the maximum error in the entire interval, it may be possible to go to the next
larger interval which will halve the number of memory chips. Another solution is
to switch to cubic interpolation. This adds more adders and multipliers but only
one more step in the pipeline. cubic interpolation requires only a 15-address bit
table, so one can use 32K by 8 memories. Cubic interpolation requires four
constants, which means 32 chips per table or 96 memory chips for all three tables.

Each multipole also requires 23 arithmetic units (32 for cubic interpolation) and
the memory for the multipole constants. The latter is quite small. Assuming
32,000 magnets in the accelerator and one real and one imaginary double-
precision constant per multipole, only sixteen 32K by 8-bit chips would be
required. The above results are summarized in Table II.

TABLE 1I

Number of multipliers, adders, and memories required for the

different processors; n is the number of multipoles. The

quadratic interpolation tables are based on 18-address bit

interpolation for sin [15 arctan (x)] and 17-address bit tables for

R’ The drift space and Al calculations have been optimized

for speed, assuming processor P2. If P1 is used, more time is
available, so less hardware is required

Number of Number of  Number of

Multipliers Adders Memories

Thin Lens

Horner’s rule 4n +1 4n +3 magnet const
16n 32K x 8

Thin Lens

Interpolation 15n+8 9n +5 magnet const
16n 32K x 8
quad interp
120n 128 K x

8 cubic interp

9%6n 32K X 8

Al calculation 18 12

Drift Space 34 13

Matrix

Multiplies 3 X 3 6 4
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One multipole from P2 takes about 200 chips, including bus interfacing, etc.
This should easily fit on a single FASTBUS card. The drift space and Al
calculations should also each fit on a card. The acceleration system, system
control, and accelerator instrument interface will also take about a card each, so a
complete system will fit easily into a single crate.

P1 takes about 400 chips using 32 K X 8 memories. Switching to 128K X 8
reduces the count to around 200, which again would fit on a single card. Thus, P2
takes about 15 times as much hardware as P1 for the kick calculation.

So which processor is best? It depends on the number of particles to be
tracked. For multipoles up to 30 and 18 particles, P2 is more than twice as fast. It
requires more hardware, but it is not at all impractical. On the other hand,
tracking 1000 particles would require over 50 crates for P2 and only 5 crates for
P1. This assumes a 40-particle pipeline and five processors per crate (note that P1
still requires acceleration, drift spaces, etc.). All of the other calculations, such as
the Al calculation, were optimized for speed under the assumption that they
would be in parallel with P2. For P1 there would be more than twice as much
time, so fewer operations would have to be done in parallel, and less hardware
would be required.

Verifying the correct operation of these processors will be a difficult task.
Initial commissioning can be done by checking the results against programs coded
on a standard computer. For long runs, this will be impossible. One way of
verifying the correct operation is to run the same problem on two different
processors and to use specialized hardware to compare the output after every
element calculation. This can be done by using the accelerator instrumentation
port. The results from the last 20 or so elements would be stored in a circular
buffer so that if a difference is found, the correct result can be determined by a
standard computer. The part of the problem that caused the failure can be run
repeatedly on the broken processor until the fault is found.
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