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The effect of synchrotron radiation damping on the transverse beam emittance for an inverse
free-electron laser (IFEL) accelerator is studied. A beam envelope equation is derived and solved for
an arbitrarily tapered wiggler field. The expression for the evolution of the normalized transverse
beam emittance is derived and found to decrease exponentially with distance, due to radiation
damping, until it is limited by quantum excitation. Our results show that for acceleration distances
comparable to the radiation damping e-folding length, substantial improvements in the beam quality
can be realized.

1. INTRODUCTION

Electron beam quality as measured by the transverse emittance is usually
determined by the gun and propagation configurations in accelerators. Under
idealized conditions, the transverse normalized beam emittance remains a
constant of motion as the beam propagates through the accelerat9r. Therefore, to
improve the quality of the beam, it is necessary to decrease the beam emittance at
the injection point. However, since the normalized beam emittance is essentially
the transverse area in phase space for the collection of beam particles, one can in
principle reduce the emittance if a dissipative mechanism is introduced. A natural
candidate for such a dissipation mechanism is the induced synchrotron radiation
damping due to the transverse motion of the particles in an external periodic
transverse magnetic field. It is on this mechanism that we will focus when the
external magnetic field is chosen to be a helical wiggler field. Since this radiation
damping effect is small at low energies, it is in the context of the recently
proposed high energy IFEL accelerators1

-
11 that we will concentrate in this paper.

We begin by obtaining the electron orbits in an IFEL accelerator. A fully
relativistic formulation of the equations of motion that include radiation damping
force is considered. The damping coefficients are obtained from the transverse
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dynamics of the particles, whereas the axial dynamics describe the acceleration
of the particles. In Section 3, we derive a relativistic envelope equation for
the average radius of the electron beam, assuming continuous emission of
the synchrotron radiation. It is apparent from this envelope equation that the
normalized transverse emittance decays exponentially at a rate given by the
radiation damping coefficient. The envelope equation is solved using a WKB
method in Section 4, and the spatial evolution of the beam radius is obtained.
Quantum excitation sets a minimum value on the normalized transverse emit­
tance in an IFEL accelerator, and it is derived in Section 5. Strong focusing is
found to be necessary to reduce such a minimum to an acceptable value. An
example is given in Section 6 for a set of proposed IFEL accelerator parameters.2
It is found that radiation damping does reduce the emittance of the accelerated
electron beam while resulting in an insignificant loss in particle energy.

2. SINGLE-PARTICLE DYNAMICS

We shall consider the motion of an electron under the influence of a helical
wiggler field and a circularly polarized electromagnetic wave with the inclusion of
the radiation reaction force. The fully relativistic equation of motion is12

where

dp (V X B)
dt = -lei E+-c- +F

R
, (1)

FR= T {_P [(y2_1)(~)2 _ (dP)2] +!!.- ( dP)}
R m5c2 y dt Y dt dt Y dt

is the radiation damping force, TR = 2IeI 2
/ 3moc3

, and y2= 1 + IpI2/m~c2. The
radiation field is given by its vector potential A L =AL(cos </>ex - sin </>ey ), where
</> = kz - wt. We shall assume z dependence for both the magnitude and period
of the wiggler field. The vector potential A w for the helical wiggler field is given
by A w =Aw[cos Bex + sin Bey], where A w=Aw(z) and (] = J~ kw(z') dz'. The
requirement that the wiggler field satisfies both V· Bw = 0 and V X Bw = 0
introduces transverse variation as well as a nonzero z component of the magnetic
field. 13

Since we shall be primarily interested in laser-driven accelerators, the normal­
ized wigger field strength aw = lei A w /moc2 is assumed to be much greater than
the corresponding quantity aL = lei A L/mOc2 for the radiation; i.e., aw » aLe It
can then be shown that the major contribution to the radiation damping is from
the wiggler field.

We shall first look at the radiation damping term in Eq. (1). By neglecting the
transverse dependence of the wiggler field for a beam that is confined sufficiently
close to the axis, we have the immediate consequence that the canonical
momenta in the x and y directions are constants of motion and may be chosen to
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be zero. The mechanical momenta are then given by Px =~ AT • ex, py =
C

~ AT· ey , where AT = A w + Av Also, in the zeroth-order approximation, the
C

total relativistic energy is conserved, which leads to y= 0 and pz = O. Therefore,
the only significant term remaining in the radiation reaction force is

Neglecting terms of order aL/aw « 1, the components of the radiation reaction
force are F: = -v1-CPx, F: = -v1-Cpy, F: = -v"cpz, where

v 1- = l'Ryk~c(a~ + 1) (2a)

and

(2b)

are, respectively, the spatial decay coefficients due to radiation damping in the
transverse and axial directions. Note that v 1- = v" for a~» 1, which is the case in
the IFEL accelerator.

The most significant feature of the transverse motions of the electrons is the
betatron oscillation caused by either the inhomogeneity of the wiggler field in the
transverse plane or other focusing mechanisms. It can be shown that, for small
oscillations about the axis of the wiggler field, the transverse equations of motion
are

(3a)

and

(3b)

where d/dt==::vz 8/8z, Vz==::C, y'=8y/8z have been used, and KB is the wave
number of the longitudinal betatron oscillation. For betatron oscillations that are
originated from the v X B force due to the nonzero magnetic field in the z
direction of the realizable wiggler field,!3 K B = aw kw /(V2y).

The axial motion of the electron is governed by

where

(4)

dy = -lei v· E
dz moc3

(v 1-pi + vIIP~)

m~c3y
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(7)

(6)

(5)

(8b)

It is straightforward to show that the axial electron acceleration is

dvz c aa~ ZawaLkwc. 2kw 3v1.aLaw
-d··· = --Z·2-a + 2 SIn 1JJ --k· VIIVz + 2 COS 1JJ,z yz y y

where 1JJ = e+ ep = So [k + kw(z') - w/vz(z')] dz' + 1JJo is the phase between the
electrons and the ponderomotive wave generated by the beating between the
radiation and wiggler fields, and 1JJo is the initial phase at the entrance of the
interaction region. Equation (5) can be transformed into the following pendulum
equation:

d21JJ dkw k aa~ 2awaLkkw . 2v ll kw 3v1.aLawk
-.=----+ SIn 1JJ ---+ 2 cos 1JJ.
dz2 dz 2y2 az y2 c cy

The rate of change of relativistic energy may be obtained from Eq. (4) and is

dy aLawk. v 1. aLaw( k) VII 2 2-=--sIn1JJ-V y+ --2 COS1JJ--(aw+aL)'
dz y II Y k w y

Equations (3), (6), and (7) will be the basic equations we shall use in studying the
effects on beam quality due to radiation damping. The terms containing cos 1JJ in
Eqs. (5), (6), and (7), as well as the last term in Eq. (7), may be neglected when
the conditions a~» ai, a~» 1, k» kw, and y2» 1 are satisfied. These condi­
tions are easily achieved in high-energy IFEL accelerators.

3. DERIVATION OF ENVELOPE EQUATION WITH RADIATION
DAMPING

The single-particle equations of motion that we have developed in the last section
will enable us to study the macroscopic behavior of the beam. This is
accomplished by considering the evolution of various averaged quantities
associated with the single-particle variables. 14

,15 We begin by multiplying Eq. (3a)
by x' and x, and Eq. (3b) by y' and y, where the prime denotes a/az. Combining
the resulting equations yields the following set of equations:

~~ f32 + K~~ r2= -1If32 (8a)
2 dz 1. 2 dz r 1.,

1 d
2

2 2 2 2 Il d 2
"2 dz 2 ' - f3 1. + K B' = - 2dz' ,

dl
-= -Ill
dz

(8c)

where ,2 = X2 + y2, f3i = X,2 + y'2, Il = Y' /Y + V..1-' and I = (x'y - y'x) is the
normalized angular momentum. We eliminated f3i by substituting Eq. (8b) into
Eq. (8a). By taking transverse ensemble averages over beam particles in Eq. (8),
and denoting the ensemble average of ,2 by a2 = (,2), we obtain an equation that
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(10)

governs the evolution of the root-mean-square radius of the electron beam:

d d2 d(f1d ) ld
3
a

2
d d

J.l2 dz a
2+ J.l dz2a

2
+ 2J.lK~a2 + dz 2" dz a

2
+ 2dz3 + dz (K~a2) + K~dz a

2
= O.

(9)

It is easy to show that the integration factor for Eq. (9) is g2a2, where
g2 = y2 exp(2 f~ v l- dz '). Equation (9) can now be put into the form
d/dz[g2(a3a" + f1a 3a' + a4K~)] = 0 and can be integrated to give g2(a3a" +
lla3a ' + a4K~) =H 2, where H 2 is a constant of motion associated with the beam.
It can be shown, using the following representation for the particles' normalized
transverse velocities, 14

where Dill- is the normalized transverse velocity spread and L = (l) from Eq.
(8c), that the constant H 2 is given by

H 2=y2(O)L2(O) + y2a2(<5JJ1-n exp (2f V1- dz'),

where yeO) = y(z = 0) and L(O) = L(z = 0). We may therefore define the squared
normalized beam emittance14

,16 as E~(Z) = y2a2(IDIl~12) and arrive at the follow­
ing envelope equation

d
2
a (! dy ) da K2 _ [E~(Z) + y2

L
2(z)] _ 0

d 2+ d +Vl- d + Ba 2 3 - •
Z Y z z ya

The spatial dependence of the normalized emittance and average angular
momentum, respectively, are given by

En(Z) = En(O) exp ( - f v1- dZ'),

L(z) = (y(O)/y)L(O) exp ( - f v1- dZ'),

(lla)

(lIb)

where En(O) = En(Z = 0). Equation (10), together with Eqs. (lla,b), constitute the
beam envelope equation with radiation damping terms included.

One can see that when v l- = 0 Eq. (lla) shows that En remains constant, and
Eq. (10) reduces to the usual relativistic beam-envelope equation, where En is the
familiar normalized beam emittance. 14

,16 Therefore, in the presence of radiation
damping, the root-mean-square beam radius is still described by an envelope
equation, but the normalized beam emittance is no longer constant but decays
exponentially according to Eq. (lla). However, the decay of the normalized
beam emittance will eventually be limited by quantum excitation due to the
discrete nature of the synchrotron radiation. It is shown in a later section that
when an equilibrium is reached between these two competing processes, the
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minimum normalized emittance achievable through radiation damping in the
IFEL accelerator is given by (En)min ~ 3ha~kwl(V2mocKB).

In the presence of radiation damping, the average angular momentum also
decays exponentially, as given by Eq. (lIb). However, one may choose L(O) = 0
for beam-generation schemes that do not impart an average angular momentum
to the electron beam, I.e., zero magnetic field at the cathode. We shall assume
that this is the case in our study of beam quality. We shall also not distinguish
between V.l and vII and will denote both by v.

4. EVOLUTION OF BEAM RADIUS

The equation for the root-mean-square radius a in Eq. (10) is nonlinear. It is
found, however, that the mean-square radius a2 satisfies Eq. (9), which is a linear
differential equation. For beam focusing provided by the wiggler, Eq. (9) may be
solved exactly for untapered wiggler fields when y' = O. If y' *0 or when the
tapering is known, it can be solved using a WKB method if we assume the
coefficients are slowly varying. Equation (9) can be simplified in certain limits of
accelerator designs to facilitate analytical study. It can be shown that y' Iy« K B

and V:$ K B , which allow us to arrive at the following appropriate equation:

S'" + 3tLS" + 4K~S' + [4tLK~ + 2(K~)']S = 0, (12)

where S = a2
•

In order to obtain net acceleration of the electrons trapped in the ponderomo­
tive potential, the wiggler field must be spatially tapered. In such a case, the
envelope equation, Eq. (12), is a linear differential equation with spatially
dependent coefficients. We solved it by using the WKB method, which assumes
these coefficients to be slowly varying functions of longitudinal distance. By
assuming both K~IKB and tL «KB , the general solution to Eq. (12) is found to be

_ KB(O) .
S=e M KB(Z)(A+Bcos2~+Csm2~),

where M = f~ tL(z') dz', and ~ = f~ KB(z ') dz'. The coefficients A, B, and C can
be found by using the initial conditions for a matched beam, a(z = 0) = ao,
a'(z = 0) = 0, a"(z = 0) = O. The matched-beam radius ao is related to the initial
transverse emittance ari = E~(0)/[K~(O)y2(0)]. Using the initial conditions, we
arrive at the following expression for the root-mean-square beam radius:

a - a e-MI2 [KB (0)J1I2[ /leO) + K's(O)/KB(O) . J1I2
- 0 KB(z) 1 + 2KB(O) sm 2~ · (13)

Equation (13) shows that the beam radius does not remain constant even when
the beam is matched at injection. In addition to the exponential decay from the
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radiation damping, the beam envelope develops an induced betatron oscillation.
However, the normalized emittance is just an exponential decay given by Eq.
(lla).

We may gain some insight into the general effect of radiation damping on the
transverse emittance by studying Eq. (12) in the case of untapered wiggler field.
We shall first consider the case where y' = O. This could be the situation when the
acceleration mechanism is saturated by the radiation damping, and the beam
energy is constant. The evolution of the beam radius is then given by the
appropriate limit of Eq. (13). Since there is no tapering of the wiggler, the
solution is exact and given by

(

V )V2
a = a e-vzl2 I +-- sin 2K z .o 2K

B
B

The beam radius again exponentially decays with an induced betatron oscillation.
Since y is constant, the damping rate v is constant, and the normalized emittance
En is given by En(Z) = En (0) exp (-vz).

Next, we consider the situation when an accelerated beam is cooled by passing
it through an untapered external wiggler field. Since the beam decelerates due to
the synchrotron radiation damping, we have y'ly = -v. This gives f.l = 0, and,
since K B = awkwl(V2y), the betatron wave number K B is a function of z. The
spatial dependence of y can be evaluated using y'ly = -v, and Eq. (13) reduces
to a = ao(l + V~Z2), where Vo = t'Ra~k;yoc. Although the beam radius remains
constant up to order of Z2, the normalized beam emittance decreases algebrai­
cally: En = En(O)/(l + voz).

The relevance of the above analysis depends on the magnitude of the damping
rate Yo. For the following set of accelerator parameters,2 E L = 1.5 X 109 VIcm,
Bw = 50 kG, Aw = 1 m, it is estimated that the e fold length, l/vo, could be as
short as 600 m for Yo = 105

• Therefore, our results show that one can improve, by
induced synchrotron radiation, the quality of an electron beam by passing it
through an external wiggler field.

5. QUANTUM EXCITATION

An estimate for the minimum transverse normalized beam emittance due to
quantum excitation in an IFEL accelerator can be obtained from the following
qualitative treatment. Similar arguments can be made for electron beams in
storage rings. 17

,18 The norQlalized transverse velocity and radial displacement of
an electron in a wiggler field are given by f3w = awly and rw= awAwl(2.ny). For a
fluctuation ~E in the energy of the electron, the corresponding fluctuations in rw

and f3w are ~rw= TJ~EIe and ~f3w = ;~EIE, where TJ = awAwl(2.ny) and ; = awly.
The increase in normalized emittance due to such fluctuations iS17,19 ~En =
y(KB <~r~) + <~f3~) IK B ), which for a weakly focusing channel, K B « k w , can be
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approximated by ~En ~ r(6f3~)/KB = (y;2/KB)(6E2)/E2. Due to the discrete
nature of the synchrotron radiation, (6£2) is given by N(ftwc )2, where
N =pz / (cftwc ) is the number of photons emitted in a distance z, P is the
synchrotron radiation power, and ftwc is the energy associated with a quantum of
synchrotron radiation. We can therefore obtain the rate of change of En due to
quantum excitation,

(
dEn)
dz Q.E.

However, with radiation damping, the total change in En is given by

( d~) (d~)
dz Q.E. = -YEn + dz Q.E.

The normalized emittance En reaches a minimum, dEn/dz = 0, when the two
effects are balanced. This gives En = y;2ftwc /(KBE) for the minimum normalized
emittance, where we have used vc ~ P /E. For synchrotron radiation, ftwc =
3ftcy3/(2p), where p = y/(awkw) is the radius of curvature of the electron orbit in
the wiggler. The minimum transverse normalized beam emittance is then
approximately given by

(14)

In the case of weak focusing due to wiggler transverse gradients, K B =
awkw/(Viy), and the minimum normalized emittance is

(En)min ~ 3ftya~/(Vimoc). (15)

Using the accelerator parameters at the end of Section 4, Eq. (15) gives the
value of the minimum normalized emittance to be ---1.8 cm-rad. Such a large
value of the minimum emittance indicates the inadequacy of the weak focusing
from the wiggler transverse gradients. Strong focusing from, for example, a
rotating quadrupole field produced by a pair of (or four) helical current
windings2o

,21 may be required. The betatron wave number for such a focusing
mechanism22 is given by K~= lei (BB/Br)/ymoc2, where BB/Br is the magnetic
field gradient of the quadrupole field on axis. For BB / Br == 250 G/cm, aw = 600,
Aw = 10 m, and y = 4 X 105, Eq. (14) gives a minimum normalized emittance of
En == 0.13 cm-rad. Another possible strong-focusing force could be the electro­
static radial electric field of an ion column. Such a column could be created by the
ionization of the residual gas by a low-energy, high-current electron beam pulse
preceding the main accelerating beam pulse. 2

3-25 The betatron wave number for
such a focusing mechanism can be easily shown to be K~ = w~i(mi/mO)/(2yc2),

where Wpi is the ion plasma frequency and (mi/mO) is the mass ratio between the
ions and the electrons. For ni = 1012/cm3

, aw = 600, Aw = 10 m, and y = 4 X 105,
Eq. (14) gives a minimum normalized emittance of En == 0.04 cm-rad. An
additional benefit of having ion focusing in the IFEL accelerator is that the radial
plasma electron density profile in an ion column can also be a focusing medium
for the laser beam.



INVERSE FREE-ELECTRON LASER ACCELERATOR

6. NUMERICAL EXAMPLE
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We shall consider only resonant particles whose phase tjJ satisfies the conditions
dtjJ I dz = 0 and dZtjJ I dzz= O. The first condition gives

_ lelv'k -3/Z
YR - "' M2 Z Bwkw , (16a)

v~moc

(16b)

(16c)

(18a)

(18b)

where R 1 = Vi lei EL sin tjJRI(moczv'k), Rz= leI6kl(3m6clO), tjJR is the resonance
phase, EL the laser electric field strength, and k the laser wave number. The
second condition, together with the pendulum equation, Eq. (6), provide the
spatial dependences of k w and Bw :

, 2kw , 4EL . k~ 2Y2mcz B~
3kw- B

w
Bw+TSlO'l/JR B

w
- lelv'k RzYk:.,=O. (17)

Equation (17) shows that the required tapering of the wiggler field may be
obtained by prescribing tjJR and a relationship between kw and Bw in Eq. (17). As
an example, we assume the tapering of the wiggler field to be that of a
maximum-rate IFEL accelerator.z For such a case, the wiggler strength and the
wiggler period are related by the following power law:

B = (R /6R )1/4k 7
/
8

w 1 Z w •

Equation (17) may then be solved to give

Bw = Bw (O)[l + R 4z ]-7/9,

kw = k w (O)[l + R 4z ]-8/9,

where

_ 9Y2mc
2

3/7 9/7
R 4 - lelv'k Rz(Rt/6Rz) Bw(O) ·

Evaluating Eqs. (11) and (16a) with (16c) and (18a,b) gives the normalized
transverse emittance and the resonant energy of the beam as functions of the
propagation distances.

For our example, we will consider the following set of accelerator parametersz:

EL = 1.5 X 109 V/cm, Bw(O) = 50 kG, Aw(O) = 100 cm, and A= 10.6 ~m with a
resonance phase of sin tjJR = 0.6. The initial conditions are for a matched beam
with a radius of 1 mm and a normalized emittance of Eo = 0.205 cm-rad, and the
required beam injection energy is ---52 GeV. The beam is allowed to propagate
for 1 km without depleting the laser radiation. We repeated the calculation by
assuming there is no radiation damping but with the same -power law tapering of
the wiggler field.
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FIGURE 1 Beam energy as a function of propagation distance, with (0) and without (0) radiation
damping.

The results are represented in Figs. 1, 2, and 3. The open squares denote the
presence of radiation damping, while open circles denote its absence. From Fig.
1, we can see that the final energy is not significantly reduced by the radiation
damping. Figure 2 shows the exponential decay of the normalized emittance. At
the end of the one-kilometer accelerator, the normalized emittance is reduced to
0.05 cm-rad, which is very close to the minimum normalized emittance of
"-'0.04 cm-rad at that point if ion-column focusing is assumed in the accelerator.
In Fig. 3, the appropriate tapering of kw and Bw for the two cases is shown.
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FIGURE 2 Normalized emittance as a function of propagation distance.
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FIGURE 3 Appropriate tapering of the wiggler period length and magnetic field, with (0) and
without (0) radiation damping.

7. CONCLUSION

We have studied the evolution of transverse emittance and the beam radius due
to the radiation damping effect in an IFEL accelerator. We derived the beam
envelope equation, Eq. (10), which includes the effects of radiation damping, and
have demonstrated that the normalized transverse emittance decreases exponen­
tially with a damping rate given by the radiation damping coefficient v until it
reaches a minimum value due to quantum excitation. The beam envelope
equation was solved analytically for a slowly varying wiggler field. We have
derived an expression for the minimum normalized emittance in the IFEL
accelerator and showed that strong focusing is essential in reducing this minimum
emittance due to quantum excitation. We have shown that radiation damping can
play an important role in improving beam quality without a significant sacrifice in
beam energy.
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