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A Fokker-Planck equation that describes stochastic momentum cooling with a notch filter is
formulated. The Fokker-Planck coefficients are calculated for an idealized linear notch filter. The
coherent energy correction is expressed explicitly with a parameter representing the difference of the
particle's time-of-flight and the signal's transmission time from the pickup to the kicker. This
formulation provides us with a guide to determine the system bandpass and the setting accuracy of the
signal's transmission time for a given momentum spread of the beam. From the Fokker-Planck
equation, a differential equation for the time variation of a standard deviation of ene~gy error is
derived to obtain the initial cooling time and the final momentum spread. This formulation is useful
for experimental data analysis and for cooling system design, Le., optimization of the system bandpass
and gain, specification of the accuracy of the signal's transmission time, etc.

1. INTRODUCTION

In the stochastic momentum cooling process, a particle circulating in a storage
ring has its energy error corrected by a signal produced by the particle itself. The
particles are detected in a pickup, and the output signal is transformed by a notch
filter so that the signal voltage is proportional to the energy error. This signal is
applied to a kicker, where the particle is accelerated or decelerated, Le., the
energy error is corrected. For this correction, the signal and the particle must
arrive at the kicker at the same time. The signal corrects the particle energy
coherently during the cooling process.

If the particles were affected only by such coherent signals, the situation might
be simple, and the momentum spread could be damped within one revolution
time of a particle. In a real feedback system, however, the particle is also kicked
by noises. We must consider two kinds of noise: One is the amplifier noise, and
the other is the beam noise. The former is the thermal noise originating in the
pickup and the preamplifier. The latter is the sum of signals from other particles.
With a finite system bandwidth, the signal of a particle has a finite time width,
which is much larger than the time interval between two particles. Therefore, the
signal of one particle kicks other particles around it. Owing to these two
incoherent noises, the motion of a particle is stochastic, like a Brownian motion.
This situation requires us to examine the statistical behavior of the whole
collection of particles. Our problem is simplified by the assumption that the
noises are random. The amplifier noise is, in fact, inherently random, and the
beam noise is approximately random because of the mixing effect, that is, the
particles affecting a certain particle change with time owing to their momentum

99



100 T. KATAYAMA AND N. TOKUDA

difference. With this assumption, we expect that the effect of the coherent signal
will appear and that the energy spread of the beam will be damped after a cooling
time much longer than the revolution time of the particle, because the average of
the coherent signal over a long time exceeds that of the random noises. This is·the
basic principle of stochastic cooling invented by van der Meer. 1

Van der Meer derived a differential equation that describes the damping of the
beam emittance in the process of betatron cooling. On the assumption that the
above noises are random, Sacherer pointed out that the kinetic equation is a
Fokker-Planck equation and formulated ,the equation for momentum cooling
with a notch filter. 2 On the other hand, Bisognano also derived a Fokker-Planck
equation in another way: He developed his calculation accrding to BBGKY
theory.3 The Fokker-Planck equation turns out to be a powerful tool for
investigating the stochastic cooling process and for optimizing the electronic
characteristics of the feedback system.

The subject of this paper is to improve Sacherer's formulation by presenting
the calculation of the Fokker-Planck coefficients more clearly. In our formula­
tion, the coherent energy correction Ii.Ec is first expressed with a parameter
denoting the difference between the transmission time of a single particle's signal
and the time-of-flight of the particle from the pickup to the kicker. This
formulation enables us to investigate how crucially the setting error of the signal's
transmission time affects the dependence of Ii.Ec on the particle's energy error,
and to determine the system bandwidth needed for a given momentum spread of
the beam. Another subject of this paper is to express the initial cooling time and
the final momentum spread as a function of the system gain. For this purpose, the
Fokker-Planck equation is transformed to a differential equation describing the
time variation of the standard deviation of energy error. Thus, the two important
characteristics of the cooling system are calculable without solving the Fokker­
Planck equation numerically.

In this paper, the beam is assumed to be an ion beam with a charge-to-mass
ratio q/A.

In a forthcoming publication, we shall present the experimental results on
momentum cooling at TARN and discuss the questions of signal suppression and
parameter choices.

2. DERIVATION OF THE FOKKER-PLANCK EQUATION

Our aim is to derive a Fokker-Planck equation that describes the time evolution
of the particle density function,

dN
lJJ(E, t) == dE' (1)

where E is the energy deviation from the nominal kinetic energy per unit mass,
Eo. It is convenient to consider the particle flux <1>, which is the number of
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particles crossing E per unit time. Then we have the continuity equation,

a1jJ a<l>
at+ aE=O.
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(2)

When particle energy is corrected at the kicker by ~Ek' the number of particles
crossing E is given by the shaded area in Fig. 1; the flux is given by

(3)

As the kicker is excited by the coherent correction signal and the incoherent
noise, ~Ek is divided into corresponding two terms:

~Ek = ~Ec + ~Eic. (4)

To evaluate Eq. (4), we consider the average values of ~Ek and (~Ek)2, because
we are not interested in the instantaneous motion of the particles, but rather in
the motion over a time much longer than the revolution time of the particles.
Then we have

~Ek== ~Ec,

(~Ek)2 == (~Eic)2,

assuming
~Eic = 0,

(~Eic)2» (~Ec)2.

With these averaged values, the flux is rewritten as

We now introduce here coefficients F and D defined by

F==fo~Ec,

D == !fO(~Eic)2.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

FIGURE 1 Energy distribution of particles in a bunch, showing those (hatched area) that cross a
line corresponding to an energy E,given an energy correction f!.Ek at the kicker.
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Then the continuity equation is expressed as

a1Jl a a ( a1Jl )-+-(F1Jl)--' D- =0.
at aE aE aE

(12)

(13)

Inserting for F and D the electrical characteristics of the real feedback system,
we obtain the required Fokker-Planck equation.

3. TIME EVOLUTION OF THE RMS ENERGY SPREAD

Prior to the calculation of F and D, we derive an equation describing the time
evolution of the rms energy spread by representing F and D with simple
equations.

We assume the coherent coefficient F to be given by

F= _E ,
1"0

because ~Ec should ideally be proportional to E; this is a postulate of stochastic
cooling theory. The incoherent coefficient D is proportional to the noise power,
which consists of two components. One is the amplifier noise, and the other the
beam noise. The former remains constant during the cooling process; the latter is
proportional to the square of the standard deviation of energy error,

(14)

provided that the single-particle signal is proportional to E and that 1Jl (E, t) is
symmetrical with respect to E = O. Therefore, we parametrize D as

D = Da + dba 2
, (15)

where Da comes from the amplifier noise and dba2 from the beam noise.
With the above parametrized F and D, the Fokker-Planck equation is

expressed as
a 1Jl a ( E ) 2 a

2
1Jl-+- --1Jl - (D +dba )-=0.

at aE 1"0 a aE2

Differentiating Eq. (14) and using Eq. (16), we have

da ( 1 ) 2a-= - --db a +Da •
dt To

The solution is

a(t) = [(a~ - 1"Da )e-2tIT
; + 1"Da ]1/2,

1 1 .
-=~-db.
l' 1"0

(16)

(17)

(18)

(19)
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The final value of a at t = 00 is

and the initial cooling time 'ti is
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(20)

ao
ri == - 0'(0) (21)

= r[1- (1~OO)rl, (22)

where iJ == da/dt. From Eq. (22), the final energy spread and the initial cooling
time relate closely to each other. The relation between them is discussed later.

Setting a1jJ/at=o in Eq. (16), we have the final distribution function 1jJ(E, (0)
of a Gaussian with a standard deviation given by Eq. (20).

In the absence of the noises, we have

a(t) = aoe-t1r:o• (23)

The energy spread decreases exponentially with a time constant 'to, which we call
the single-particle cooling time.

4. COOLING TERM

In this section, we calculate the coherent correction energy ~Ec and the
single-particle cooling time 'to. The particles are assumed to be ions with a
charge-to-mass ratio of q /A.

4.1. Transfer Functions of the Feedback System

We consider a feedback system including a notch filter. Figure 2 shows the layout
of the system from the pickup down to the kicker. The transfer functions of the
elements are defined as follows.

Pickup. We define the coupling impedance of the pickup, Zp, as the ratio of

time - of - flight, TF

beam
i b Vp=Zpib

!
amp. delay line

Gamp IHie jcI> NF T0

(real)

Zo ( 500 )
~I

FIGURE 2 Layout of the feedback system from the pickup to the kicker.
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the output voltage of the pickup, ~, to the beam current ib :

~ =Zpib • (24)

The characteristic impedance is Zc.
Transformers. For impedance matching between the 50-Q electronics and the

pickup or the kicker, transformers are inserted. Ideal transformers are assumed,
that is, no electric power is lost in the transformers. We assume that the pickup
and the kicker are identical in structure and that two identical transformers are
used; therefore, we do not consider the transformers in the following calculation.

Amplifier. The gain of the amplifier, Gamp' is assumed to be real. The delay
time in the amplifier is added to that of the following delay cable.

Notch filter. The transfer function of the notch filter is

H(J) = IH(J) Iexp[;ljJnf(J)]. (25)

We assume an ideal notch filter, whose amplitude and phase responses are
illustrated in Figs. 3a and 3b:

IH(f)1 = gpole I!~/'fI[(n - !)!o ~! ~ (n +!)/ol, (26)

Jl
[(n - ~)fo $;f $; nfo]·

2

(27)

,t (a) amplitude

gpole~
0-

(b) phase
1&/2

0
-1t/2

,UC) KE > 0

I J .Lqef 0 I
o , ,'uKE < 0 I I J~qef~ J

-2fo -f o 0 f o 2f 0 f

FIGURE 3 Amplitude and phase responses of the ideal notch filter [(a) and (b)]; and spectra for
single particle current for KE > 0 (c) and KE < 0 (d). The frequency dispersion K is defined by Eq.
(31).
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Delay line. The transmission time of the beam signal from the pickup to the
kicker is expressed as the delay time in the delay cable, TD • This time is set nearly
equal to the time-of-flight TF of the equilibrium particle with energy Eo:

TD = TF + ~TD. (28)

Assuming TD is constant, though it varies generally with frequency, we have the
phase shift of the signal in the delay cable, qJD:

qJD(f) = -2:JrfI'D. (29)

The time-of-flight of a particle with energy Eo + E differs from TF by ~TF:

~TF E
-= -K- (30)
TF Eo'

TJtY
K=- (31)

1 + Y'

where Yis the relativistic factor and TJf is the dispersion of revolution frequency
due to the momentum error of a particle:

~fo ~P- = TJf- . (32)to Po

Kicker. For energy correction of the particles, a longitudinal electric field Ez is
induced in the kicker by an applied voltage to the kicker, Vk • We define the
efficiency fk of the kicker of length I as

Re (!kVk) = Ezi. (33)

With this correction, the energy per nucleon of an ion changes by

(34)

4.2. Calculation of L1Ec

Our task here is to represent Vk (t = TF+ ~TF)' induced by a particle passing the
pickup at t = 0, with parameters defined above. Then we can obtain ~Ec from
Eq. (34).

The current of a single particle with energy Eo + E and revolution frequency
f~ = fo + ~to is the sum of delta functions:

00

=qef~ 2: exp (j2:Jrnf~t).
n=-oo

(35)

(36)

Multiplying this current by the transfer functions of the pickup, the amplifier, the



106 T. KATAYAMA AND N. TOKUDA

notch filter, and the delay cable, we have

00

Vk(t) = qeth 2: Zp(nth)Gamp(nth)H(nth) exp {j[21lntht + 4>D(nth)]}. (37)
n=-oo

It is straightforward to obtain flEe by putting t = TF + flTF into this equation:

(39)

In the derivation of Eq. (38), Gamp , Zp, andtk are assumed to vary smoothly with
frequency.

A numerical calculation with the aid of a computer allows us to evaluate Eq.
(38), which is a general expression of flEe' because it is usually impossible to
represent Zp, tk' H, and their product with simple functions. Therefore, we
assume simplified transfer functions of the components in the feedback system.
First, we employ the above ideal notch filter. In the case of no Schottky band
overlap, the amplitude is (Figs. 3a-3d)

and the phase is

IH(nf~)1 =2gpo1e InK~ I ' (40)

As a result, we have

1l+"2 (nKE/Eo>O),

1l (nKEIEo < 0).
2

(41)

(42)

Second, we assume that the amplifier has a constant gain over the bandpass:

G (f) = {Gamp (nJo$;f$;nifo),
amp 0 (I < nJo, I> n'ifo),

(43)

and that Zp and Ik are also constant. Consequently, dropping the £2 term, we
transform Eq. (38) to

(qe)2 E
.6.Ec(E) = -4TfoG IZpAI KF,,(nv nz, «,~) Eo' (44)
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G == Gampgpole, (45)

a'== arg(Zp[k), (46)
nz nz

F;;(nt, n2, a', ;) == -cos a' 2:. n sin n; + sin a' 2: n cos n;. (47)

Formulas for the summations of the circular functions are summarized in
Appendix B.

As described above, the ideal ~Ee(E) for cooling is proportional to E, that is,
GKF;;(nt, n2, a', ;) in Eq. (44) should be a positive constant. For this purpose, we
must set nt, n2, and ~TD at adequate values so that F;;(nt, n2, a', ;) remains
almost constant over a range of ; given by

~Eo ~Eosc - :!rio TpK Eo :5 S:5 sc + :!rioTpK Eo '

where ~o is the central value of ;:

;e == 2nfo~TD'

(48)

(49)

and ~Eo is the full width of the beam's energy spread. To satisfy the condition of
no Schottky band overlap, ~Eo must be smaller than a critical energy error Ee:

(50)

This is one of the conditions that determines the upper limit of the system
bandwidth for a given energy spread of the beam:

nZ,max =; (~~) · (51)

Now we investigate the behavior of Fe(nt, n2, a', ;) for the case of TARN. The
parameters necessary here are summarized in Table I. With these values, we have
EelEo = 0.0336. Figure 4 illustrates profiles of Pc(nt, n2, £1', ;) for a' = 0, :rt14,
n/2, and 3n/4. When a' = :rt12, for example (the solid line in the figure),
Pc(nt, n2, £1', ;) takes its maximum value at ; =0:

Pc(nt, n2, n/2, 0) == !(n~ - ni)

= 3366. (52)

We can obtain a nearly constant Pc over the required range of ; by setting ;e = 0,
or dTD= O. With this delay time and at E = ±Ee/2 (; = ±0.0142), Pc(nt, n2, :rtl
2, ;) decreases to 2200, about two-thirds of the maximum value. As a result, dEc
is approximately proportional to E, as shown by the solid line in Fig. 5, where
Pc(nt, n2, n/2,;)· EIEe for dTD=0, ±1, and 2ns are illustrated. As is apparent
in the figure, the setting error of dTD within ±1 ns is acceptable, but the error of
2 ns is not. The full width of the acceptable setting error of d TD is about a few
tenths of 1/(jmin +[max), as will be discussed in Section 7.
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TABLE I

Main Parameters of the Cooling System at TARN

Ions
Kinetic energy, Eo
Beam velocity, fJ = v/ c
Number of particles, N
Revolution frequency, 10
Time-of-flight from pickup to kicker, TF

Frequency dispersion, 11/
K

Momentum spread (full width), ~Po/Po
Bandpass (fmin, Imax)
Minimum harmonic number, n 1

Maximum harmonic number, n2
System bandwidth, W

Protons, (l' particles
?MeV/u

0.1215
"""107-108

1.13 MHz
335ns
0.705
0.354
0.01

20-95 MHz
18
84

75 MHz

At ; = ±0.05, Fe(nl,n2, Jr/2, ;) also takes ~n extreme value of -2200, as
shown in Fig. 4. This enables us to achieve cooling by setting ;c to ±O.05, or 6.TD

to ±7 ns, and reversing the polarity of the amplifier gain, though the cooling
efficiency decreases to two-thirds of that with 6.TD = 0 ns.

Also, for other values of a', we can keep Fe(nl' n2, a', ;) almost constant by

t
t
I

-3000

-2000

2000

3000

" 1000
IJJ'

d
~'i 0 t---+-+-+-+--r+----+---++-~~__\_-+-t----+-__++-1____+t_---+__,__+_J'_I

g
o

LL -1000

-4000 L....-...1---L---L._..L....-...1-~-----L._..L....---L-~---'-_..L..----&.---4-----"----'

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

~

FIGURE 4 Profiles of f;;(18, 84, (l', ;) for (l' = 0 (_. -), 1r/4 (- - -), 1r/2 (-), and 31r/4 (...).
The maximum value of !f;;! is approximately ~(842 -182) = 3366, independent of Q'.
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-50 ~--L.-.-'----J-_L..-....L----L.----L.._L-...I.----l.-.--L..----IL-...L..----1..----l..----J

-1.6 -1 .2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

E/Eo (%)

FIGURE 5 Profiles of ~(18, 84, 1r/2, ~) . E/Eo for L\TD = 0 ns (-),1 ns (- - -),2 ns (_. -), and
-1 ns (...). L\Ec is nearly proportional to E with L\TD = 0 ns. A setting error of L\TD equal to ±1 ns is
acceptable, but one of 2 ns is not.

setting ~TD to
A 7' ;opt
U~DOPt = 2n/o ' (53)

where ;opt is the value at which I~(nl' n2, tl', ;)/ takes is maximum value. The
maximum value, I~(nl' n2, tl', ;opt)l, hardly varies with tl', as shown in Fig. 4:

( ..--1 2 2
~ nl, n2, tl', ;opt) = 2 (n2 - nl). (54)

Therefore, independent of tl', we have an approximate expression for ~Ec(E):

( ) ..-- (qe)2 2 2 I I E
~Ec E = - 2-A (n2 - nl)/o KGZp/ k -. (55)

Eo
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Defining the system bandwidth Wand the central frequency of the bandpass, ~,
as

W == (nz - n1)/o,

~ == !(nz + nl)/o,

we have the single-particle cooling time defined by Eq. (13):

[
(qe)Z 1 ]-1

~o= 4A~IKGZp!kIEo ·

(56)

(57)

(58)

(59)

(61)

In Appendix A, we discuss the coherent energy correction with another type of
a notch filter, whose phase response is not a square wave [as defined by Eq. (41)]
but rather a sawtooth shape. With this notch filter, the single-particle cooling time
of Eq.(58) is also derived, though the region of E where baEe is proportional to E
is appreciably reduced.

5. DIFFUSION TERM

The kicker is excited by noises-both the beam noise and the amplifier noise. The
calculation of the electric power of the noises leads to (baEie)z:

(AE;c)2 =(:;t [fkI2Zc(Pa+ Pb),

where Pa is the power of the amplifier noise, and Pb the beam noise. The powers
are obtained by integrating the noise spectrums over the bandpass.

5.1. Beam Noise

The spectrum of the beam current is illustrated in Figs. 3c and 3d. The rms
current in a Schottky band is

i rms = V2N qefo, (60)

because the current amplitude of one particle is 2efo, and the phase is random.
The density of the noise power induced by this current is

2( )Zfz/ZpI2 dN
qe ° Ze df

at the output of the pickup. This noise is amplified in the feedback system, and at
the kicker,

For simplicity, we assume a flat distribution of E; then we have

dN N
----
df nbafo

(62)

(63)
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at the nth harmonic. Then, with the ideal linear notch filter, we have

P
b
=~ (qe)2I ZpI2 NG2(!:!J.fo)2 ~ n2.

3 Zc n=nl

With an approximation,

we have

The resulting diffusion coefficient is

1 N 1 ( 1 W
2

)

db = 4w T~ 1 + 12 W~ ,

where the following relation is used:

~Eo = v'i2 aE(O) (for the flat distribution).

5.2. Amplifier Noise

111

(64)

(65)

(66)

(67)

(68)

For an amplifier with a noise temperature 1'", the effective power density of the
thermal noise at the input of the amplifier is

k(T + 1',,), (69)

(71)

where T is the ambient temperature, and k is Boltzmann's constant, 8.617 x
10-5 eVIK = 1.381 x 10-23 JIK. At the normal temperature To = 290 K, the ther­
mal noise power is expressed with a noise figure NF:

10NFllokTo. (70)

Integrating the power density in the same way as above, we have

1 2
Po = 3k(T + 1',,)G w.

We define noise-to-signal ratio at the pickup, Up, then the ratio of the amplifier
noise power to the beam noise power:

(72)

(73)

The numerator and the denominator are powers per Schottky band at the input of
the amplifier. Then we have the diffusion coefficient

D =~ N~ Up.foE~
o 48 W T~ W~K2 .
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6. INITIAL COOLING TIME, FINAL ENERGY SPREAD, AND
SYSTEM GAIN

The coefficients necessary to calculate the final energy spread and the initial
cooling time have been obtained. Their dependences on the amplifier gain are
presented here.

It is convenient to define a noise-to-signal ratio at the kicker,

(74)

in order to measure which noise is dominant. This value grows large with the
reduction of the energy spread of the beam; its initial value is given by

Da

Uk(O) = db~(O)

(
1 W

2)-1( to Eo)2= 1+-- -- U
12 W~ K~ ~Eo p.

(75)

(76)

The initial cooling time defined by Eq. (71) is a function of the system gain G
and takes its minimum value

with

N ( 1 W
2

)
'ri,min =W 1 +12 W 2 (1 + Uk(O)),

c

(77)

(78)

At this maximum system gain, the electric power applied to the kicker at t = 0 is

and the final energy spread is

OE(oo) ( Uk (0) )112
(1E(O) = 2U

k
(0) + 1 (IGI = IGmaxl)·

(79)

(80)

It is usual to set the system gain lower than IGmaxl for the following reasons.
First, in the case of a high-energy beam and a broad bandwidth, Pmax exceeds a
practically available. value. Second, in the case of a large noise-to-signal ratio,
Uk(O) »1, the final energy spread is as large as oE(O)/V2. Defining the
normalized system gain as

G
GN=G'max

(81)
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FIGURE 6 (a) Profiles of 0E(t)/OE(O) for Uk(O) = 10, GN = 1 (-), 0.1 (- - -), 0.0316 (_. -),
and 0.01 ( ); (b) profiles of 0E(t)/OE(O) for Uk(O) = 1, GN = 1 (-), 0.1 (- - -), 0.0316 (_. -),
and 0.01 ( ); and (c) profiles of 0E(t)/OE(O) for Uk(O) =0.1, GN = 1 (-), 0.1 (- - -), 0.0316
(_. -), and 0.01 (...).
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we can express Eq. (18) as

OE(t) = ([1 + Uk (O)](2 - GN ) exp { _ [4G
N

_ 2Gy" ] _t_}
OE(O) 2[1 + Uk(O)] - GN 1 + Uk(O) 1:imin

GNUk(O) )112
+ 2[1 + Uk(O)] - G

N
' (82)

with

(83)

1:imin

1:i = G
N

(2 - G
N
)'

When Uk(O»> 1, Eq. (82) is simplified as

OE(t) = [(1- GN) exp (_ 4GNt) + GN]ll2,
OE(O) 2 1:imin 2

(84)

(85)

(86)OE(OO) = (GN)ll2.
OE(O) 2

Figures 6a through 6c show profiles of OE(t)/OE(O) given by Eq. (82) for values
of Uk(O) = 10, 1, and 0.1. As is apparent in the figures, the system gain must be
set much smaller than Gmax to attain a small final energy spread, e.g.,
oE(oo)/oE(0):50.1, especially in the case of Uk (0) > 1. As a result, it takes much
longer than 1:; min'

with
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The system gain is optimized so that a desired final energy spread is attained in
as short a time as possible, and so that the electric power applied to the kicker, in
practice the output power of the final power amplifier,

(87)

is realistic.

7. ACCELERATION RATE

Removing the notch filter from the cooling system, we can accelerate or
decelerate the beam: A particle is kicked by its own signal provided that the
signal's transmission time is set nearly equal to the time-of-flight of the particle.

Setting H(f) = 1 in Eq. (38), we have the acceleration rate per turn:

!lEa = (~)2 fo( 1 + K ~)L~oo Gamp(nfo) IZp(nfo)lk(nfo)1

X [cos a(nlo) cos n; + sin a(nfo) sin n;]} , (88)

where ; and a' are defined by Eqs. (39) and (46), respectively. With an
assumption that Zp and tk are independent of frequency and that Gamp is constant
over the bandpass, Eq. (88) leads to

( e)2 ( E ) (n2 n2
)

!lEa = 2 ~ 10 1 + K Eo Gamp IZplkl cos an~1 cosn; + sin a n~1 sinn;. (89)

To measure the acceleration rate, the momentum spread of the beam is set small
to observe easily the shift of the Schottky signal. In this case, we can set E = 0,
and we have

(90)

(93)

where
~ == 2nto~TD' (91)

n2 n2

~(nl' n2, £1', ~) == cos a' L cos n~ + sin a' L sin n~. (92)

The summations of the circular functions can be found in Appendix B. For the
case of TARN, nl = 18 and n2 = 84, the factor F;,(nl' n2, £1', ~) for a' = 0, n/4,
n/2, and 3n/4 are shown in Fig. 7. As is apparent in the figure, I~I takes a
maximum value of about n2 - nl, independently of £1'. Therefore, we obtain the
maximum acceleration rate with an acceptable signal transmission time,

'- (qe)2
!lEa,max=2T W IGampZplkL
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FIGURE 7 Profiles of ~(18, 84, ll', C) for ll' = 0 (_. -), n/4 (- - -), n/2 (-), and 3n/4 (...).
The maximum value of I~I is nearly nz - n t = 66, independent of ll'.

with

AT Copt
U D,opt = 2nfo ' (94)

where Copt is the value at which I~(nl' n2, a', Copt) I takes its maximum value. It
should be noted that the value of ~TD providing the maximum acceleration rate
differs from the one providing the maximum cooling rate. For instance, at
a' = n /2, ~TD should be 4 ns for acceleration, but 0 ns for cooling.

As is apparent in Fig. 7, ~ is nearly zero at ~TD = ~TD,opt ± !(fmin +fmax)-l;
this is also derived from the following approximation for C« 1:

(95)

Therefore, (fmin +f max)-l gives the pulse width of a single-particle signal. A
setting error of the signal transmission time within a few tenths of this pulse width
has little effect on acceleration rate. This is the required setting accuracy of the
transmission time for a given bandpass.
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The Fokker-Planck equation presented here was developed to analyze the
experimental results of stochastic momentum cooling with a notch filter at
TARN, where protons and ll' particles of 7 MeVlu are cooled. In the formula­
tion, the coherent energy correction ~Ec and the acceleration rate ~Ea are
expressed in terms of the parameter ~TD' denoting the difference between the
particle's time-of-flight and the signal transmission time from the pickup to the
kicker. This formulation provides a required setting accuracy of the signal
transmission time for a given momentum spread and bandpass.

The experimental results at TARN, i.e., the initial cooling time, final
momentum spread, and acceleration rate, have been compared with this theory,
assuming that the pickup's coupling impedance, the kicker's efficiency, and the
system gain are constant over the bandpass. Despite this assumption, good
agreement with the experimental results has been obtained. 4 These results will be
discussed in more detail in a forthcoming publication, which will also treat the
matter of signal suppression.
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APPENDIX A

Coherent Energy Correction with a Notch Filter with a Sawtooth Phase
Response

In Section 4, we assume the phase response of a notch filter is a square wave
defined by Eq. (41). In the case of TARN, however, the phase response of the
notch filter is a sawtooth, as in Fig. AI. Here we investigate the coherent energy
correction with such a notch filter.

The amplitude and the phase characteristics are expressed as follows:

I I
f - nfo I

H(f)1 = 2gpole 10/2 [(n - !)/o =5f =5 (n + !)/o], (A-I)

1r 1r
epnJCf) = "2 -10 (f - nlo) [nlo ~f < (n + 1)10], (A-2)
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I. (a) amplitude

gpoleo . .. ~

(b) phase
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FIGURE A-I Amplitude and phase responses of the notch filter with a sawlike phase response [(a)
and (b)]; and spectra for single particle current for KE > 0 (c), and KE < 0 (d).
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(A-3)

With constant Zp, !k, and Gamp over the bandpass, Eq. (38) leads to

(qe)2 .. . E
ilEc(E) = - 4 A foG IZpAI KF,,(nv n2' £1', ;) Eo ' (A-4)

where

[( 1) E 6.TD J; == 21ifoTF 1 +2foT
F

K Eo + T
F

• (A-5)

Equation (A-4) is the same as Eq. (44) except that the definition of ; is different
from Eq. (39). Consequently, the single particle cooling time is given by Eq. (58).
However, the region of E where 6.Ec is proportional to E is appreciably reduced;
Fig. A-2 shows Pc(nl, n2, a, ;) · E/Eo for £1'= n/2 and 6.TD= 0, which can be
compared with the one for the ideal linear notch filter discussed in Section 4.

APPENDIX B

Formulas for the Summation of Circular Functions

(
N +1) N

N cos -2- x sinZ-x
L cos nx=-------
n=l . X

sln-
2

. (N +1) N
N sin --x sin-x
~ . 2 2
L.J sin nx=-------
n=l • X

sln-
2

±n cosnx =_1_ [N sin (N + !)x sin ~ - sin2Nx]
n=l 2 . 2 X 2 2sin -

2

~. 1 [N (N 1) · x 1. ]L.J nSlnnx=-- - cos +- xSln-+-slnNx
n=l 2 . 2 X 2 2 2sin -

2

n2 1
L cos nx == - (sin n2X - sin nIx)

n=n} X

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)
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n2 1
2: sin nx == - - (cos n2X - cos nlX)

n=nl X

~ n2 sin n2x - nl sin nlx cos n2x - cos nlx
L,., n cos nx == + 2

n=nl X X

(B-6)

(B-7)

(B-8)




