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We reformulate the acceleration of polarized protons through a spin resonance in terms of the spin
transfer matrix. The method is then applied to the acceleration of polarized protons through
nonoverlapping spin resonances. We find that the phase factor between two resonances is important
when two resonances have moderate strength. The method has also been applied to resonance
jumping. Good agreement with the AGS experiment is achieved. However, when two resonances
overlap, no analytic solution is available; we therefore resort to a numerical calculation by solving the
system of first-order differential equations. We find that: (i) overlapping resonances can be considered
as a single resonance with an effective strength that oscillates rapidly as a function of the spacing of
these resonances. Because of this rapid fluctuation, tune spread averaging is also considered. (ii) For
isolated resonances, the final spin also oscillates rapidly around a nominal value, which depends solely
on the Froissart-Stora equation of individual resonance. Our analytic results in both cases agree very
well with the numerical solutions.

1. INTRODUCTION

The scattering of polarized protons is one of the important tools for studying the
nature of fundamental interactions. 1 Their acceleration has been discussed
extensively in the past few years,2-8 and great understanding has been achieved
theoretically and experimentally. Unfortunately most investigative methods are
limited only to a single resonance and cannot be extended easily to the case of
many resonances. Since high-energy polarized proton experiments are of great
interest,1 the acceleration of polarized proton beams through many depolarizing
resonances is also important in accelerator physics.

Two or more depolarizing resonances can be classified into two cases: (1)
nonoverlapping resonances, where each spin particle is under the influence of a
single resonance at a time; and (2) overlapping resonances. In the first situation,
the spin equation for a single resonance can be solved analytically. Accordingly,
in this paper, we develop a transfer matrix method for the spin particle. Particle
acceleration through several nonoverlapping resonances can be handled via
matrix products. On the other hand, when resonances are overlapping (e.g., the
60-v intrinsic resonance and the 51 imperfection resonance at Brookhaven's
AGS), there is no known analytic solution. Therefore, we will solve the
differential equation numerically and then analyze the result analytically.

t This was performed under the auspices of the U.S. Department of Energy under contract
DEAC0276CH00016.
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(1)

dS =Sx n
dO

g = - tx + rs - Ky,

The plan of this paper is as follows: In Section 2, a spin transfer matrix method
is developed. 9 The method is then applied in Section 3 to study the physics of the
spin resonance tune jump and to study the effects of resonances on the spin after
passing through two nearby, yet nonoverlapping, spin resonances. For the case of
two overlapping resonances, we resort in Section 4 to the numerical ordinary
differential equation solver (DEABM).lO Section 5 discusses the effect of the tune
spread averaging, and our conclusions are summarized in Section 6.

2. SPIN TRANSFER MATRIX

Spin precession for a group of particles in a magnetic field is described by the
Bargman, Michel, and Telegdi equation for a single classical particle,2

dd
S

= _e_ Sx [(1 + yG)B-l + (1 + G)B
11

- (1 + yG - __1_) ! x EJ
t ymc 1 + Y c

where G = (g - 2)/2 is the Pauli anomalous magnetic g factor; S is the average
spin of the group of particles in the particle rest frame; B -l and B

II
are magnetic

fields transverse and parallel, respectively, to the velocity v of the particles; E is
the electric field; and y, e, m, c, and t are, respectively, the Lorentz factor,
electric charge" mass, speed of light, and time in the laboratory frame.

Assuming that the beam particles travel along a nominal path, Froissart and
Stora3 and Courant and Ruth4 have derived an equation for the spin precession in
circular accelerators (see also Appendix A):

(2)

(3)

where K= yG is the spin precession frequency in the guide field, r = (1 +
yG)y' - p(1 + G)(y/p)', and t = (1 + yG)py"; p is the radius of curvature of the
dipoles, and the prime stands for d/ds (the derivative with respect to the path
length of the particles).

Using a two-component spinor 1jJ, we can also define the spin as

(4)
Thus,

(5)

where we have assumed that the spinor satisfies the spinor Hamiltonian equation,

(6)

where H is Hermitian.
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Equating Eqs. (6) and (2), we obtain

d1jJ = _ ~ (Gy(e) -~)
dB 2 - C* -Gy(B) 1jJ,

3

(7)

where ~ = -( - ir is the depolarizing resonance strength and e is the angle around
the accelerator, i.e., jS ds

B= 0 p(s) , (8)

where s is the distance traveled by the particle and pes) is the radius of curvature
of its path. The off-diagonal component of the matrix in Eq. (7), ~, causes the
spin to precess away from the vertical and may lead to depolarization. Due to the
periodic nature of the circular accelerator, ~ can be expanded into an almost­
periodic Fourier series,

~ = 2: £/e- ix/(8),

I

(9)

where £1 is the resonance strength, which depends mainly on the horizontal
focusing and defocusing magnetic field. 4 A stronger-focusing accelerator tends to
increase the resonance strength.

A circular accelerator has a periodicity of 2n (one revolution) and also a
betatron tune periodicity. Therefore, the Fourier component XI(e) can be
expressed as

with
(10)

(11)
{

k imperfection resonance

K I = kP ± v(e) intrinsic resonance
k ± v(e) gradient-error resonance,

where k, P and vee), are an integer, the periodicity of the machine, and the
vertical tune of the machine, respectively. In the normal operation of the
accelerator, the machine tune v(e) is a constant. However, when a tune jump is
,applied to the accelerator, the machine tune v will depend on time or e. In a
perfect accelerator, there are no imperfection or gradient-error resonances. In an
actual machine, these can be reduced by quality control and correction elements.
Intrinsic resonances must, however, be treated differently. The standard ap­
proach is called resonance jumping.4

,6-8

We consider only a single resonance in this section. (This procedure is justified
for situations in which the resonances are well-separated; the calculation for
resonances overlapping each other is discussed in Section 4.) We shall assume
further that the acceleration of the particle is a continuous linear function, i.e.,

yG = Ko+ (¥e, (12)

(13)

where Ko can be chosen to be the resonance 'osition at e= O. Making the
transformation to the intrinsic precession frames ( nteraction picture), i.e.,

1jJ(B) =exp ( - ~f yG dB0'3)cI>(B),
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(15a)

(15b)

where a3 is the third component of the Pauli matrix, we obtain

d i
de <p(0) = +2

(

0 eexpi {[(Ko-K)O + !a02]})

{
i } 2 <1>(0). (14)

e* exp -:2 [(Ko- K)O + !a02] 0

The resonance effect is greatest when the exponent in Eq. (14) reaches a
stationary phase, Le.,

d/dO( -KO + KoO + !a(2)!8=8
R
= o.

At the resonance, OR, the perturbing kicks add up coherently from turn to turn.
We choose K o - K = 0, so that OR = 0 corresponds to the resonance position.
Expressing the spinor wave functions in terms of two components ;1(0) and
;2(0), Le.,

we have then

:0 ;1(0) = + ~ee(i/2)<r1.l2;2(0),

:0 ;2(0) = + ~ e*e-(iI2)<r1.l
2
;1(0).

Eliminating ;2(0) in Eqs. (15a) and (15b) gives a second-order differential
equation in ;1(0):

The solution of this equation can be expressed as

;1(0) =Az(8) - Bw(O),

d .. f ft h . f . 11 12where z an ware gIven In terms 0 con uent ypergeometrIc unctIons. '

(16)

(17)

z(0) = M(iq, t ~ (02
) ,

w(0) = +~ eoe(i/2)<r1.l2M(1 - iq, t - ~ (02)

where the dimensionless resonance strength q is given by

lel2
q= 8a·

From Eq. (15a) one finds

;2(0) =Aw(8) + Bi«(J),

(18a)

(18b)

(19)
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where z{O) and w{O) are complex conjugate functions of z{O) and w{O),
respectively. From Eqs. (17) and (19), we write

<I>{O) = (Z{O) -W{O))(A)
w{O) i{O) B

= T(l1)(;).
Equation (20) defines the matrix T{ 0), which has the property that

det [T{O)] = 1.

(20)

(21)

This can be verified easily from the spinor equation [Eq. (16)] due to the
conservation of the magnitude of the spin in the course of acceleration. Constants
A and B are determined from the initial conditions as

(A) -1B = T (O;)<I>{ 0;).

Equation (20) thus becomes

<I>{0) = T{ 0)T- 1
{ O;)<I>{ 0;).

(22)

(23)

Here T(0)T- 1{0;) is called the spin transfer matrix. It allows us to transform the
spinor wave function from one side to the other side of a resonance. The essential
idea is similar to the wave propagation matrix method in the semiclassical
theory13 or the transfer matrix method in the lattice calculation. 14 Ruth has given
a similar formulation by using perturbation series expansion. 15 However, his
approach cannot easily be generalized.

Using the asymptotic expansion of the confluent hypergeometric functions of
Eqs. (18) for large 1ll'82

, we obtain the asymptotic spin transfer matrix as (see
Appendix B)

T(0)T- 1{8;) = exp [-iq In (!£1' 181 2)a3]U{q) exp [+iq In (!ll' 10;1 2)a3]' (24)
where

with

and

(
e-21UJ C{q))

U(q) = -C(q) e-2 ffL/

i /;r{! + iq) .C{q) = - - E - . e' :rd4e- 1UJ {e 1UJ + e- 1UJ ).
4 £1'r{l-zq)

This expansion is valid, provided that the asymptotic condition

is satisfied, where (See Appendix B)

1 02 cosh nq
2£1' A» q . h

sIn nq

1 !£1'8~

21n (!a8~)>>q

(25)

(26a)

(26b)

(26c)
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FIGURE 1 Plot of the dimensionless resonance strength q as a function of !aO} for the asymptotic
conditions (Eqs. B-7 and B-9). The corresponding Froissart-Stora value of polarization is also shown.

and q is the dimensionless resonance strength defined earlier. Equation (26b)
shows that the spinor wave function is dominated by the first term of the
asymptotic expansion. When Eq. (26c) is also considered, the precession
frequency modulation due to the spin resonance [Eq. (24)] would be much
smaller than the normal spin precession frequency. Figure 1 shows the curves for
the conditions of Eqs. (26). We expect that 8A should be an order of magnitude
greater than (JT obtained from Fig. 1, to obtain a good asymptotic region. As an
example, the K = v resonance of the AGS at Brookhaven is lEI = 0.00786. The
asymptotic region is estimated to be IrG - KI »0.02.

For a single resonance, our matrix equation [Eq. (25)] gives trivially the
Froissart-Stora formula,3 i.e.,

SFS(q) = 2e-4
n:q -1 (27)

for an initial (~) spinor wave function. Since spin resonances outside the

asymptotic regions give a negligible effect to the spin of the particles (except the
modulating phases), the spin transfer matrix can be applied successively through
each resonance to calculate the effect on the total spin. This topic will be
discussed in the next section. We note especially that, when the resonances are
moderately strong, the modulating phase becomes very important also.

3. APPLICATION OF THE SPIN TRANSFER MATRIX

(28)

3.1. Two Non-overlapping Resonances

Let us consider the acceleration of the particles through two resonances, where
,(8) is given by
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The resonance tunes K 1 and K2 are well outside the asymptotic region of one
another (nonoverlapping). We can therefore solve the spinor wave function for
each resonance separately and match the wave functions. Let 81 and 82 represent
the angles for which the particle crosses the resonances K1 and K2' respectively;
i.e.,

K1 = Gy(81),

K2 = Gy(82).

(29a)

(29b)

(32)

We can choose an angle 8M in the asymptotic region of both resonances such that

81 « 8M « 82 • (30)

Using the spin transfer matrix of Eq. (23) twice, we obtain the spinor wave
function passing through two resonances as

cI>(8 - 82) = T2(8 - 82)T21(8M - 82)

x exp [ +~ (2yG d003]ll(OM - (1)Ti1(Oinj - (1)ep(Oinj - ( 1) (31)

where 8 inj and 8 are the injection and observation angles, respectively. The spin
transfer matrices TtT11 and I;T21 depend on resonances £1 and £2' respectively.
The phase factor between the spin transfer matrices comes from matching the
wave function in the laboratory frame. If the asymptotic condition discussed in
Appendix A holds for 8, 8M , and 8 inj , we have

cI>(8 - 82) = exp {-iq2ln [!£1'( 8 - (2)2]a3}

· U(q2) exp (i{q2In Ha(OM - ( 2)2]

- ql ln Ha( OM - ( 1)2] -1 (2yG dO}03)

· U(q1) exp {+iq1 ln [!£1'( Oinj - (1)2]a3}cI>( Oinj - ( 1),

where the phase factors in front of U(q2) and behind U(q1) are diagonal in the
spinor space and therefore irrelevant to the final spin. When the asymptotic
condition of Eq. (26c) is also considered, the phase modulation due to the
resonances can be neglected; therefore, Eq. (32) becomes

where

q2 = 1£21 2/8£1'.,

q1 = 1£11 2/8£1'

(33)

(34)

are the dimensionless resonance strengths of the two resonances. Particle rotating
angles in a circular accelerator, 01 and O2 , correspond to the resonance condition
of Eqs. (29). Note that we have neglected the slow precession phase due to
resonances in Eq. (33).
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(36)

(35)

where

The phase factor in Eq. (33) can be expressed as

f
fh 1

f=! yGd(J'=-(K~-Ki).
8 1 4a

Let us assume a full spin-up polarization for the initial state, i.e., <1>( (Ji) =

(~). With U(q) as defined in Eq. (25), the final polarization S of <1>(8/) in Eq.

(33) can be obtained easily as

S = SN(qZ, q1) + SF(qZ, q1) cos x,

with

SN(qZ, q1) = SFS(qZ)SFS(q1),

SF(qZ, q1) = {[I - S}s(qz)][1 - S}S(q1)]}!,

X = 2f + III - Ilz + n

f(! + iqi)
lli = arg f(1 - iq;) ,

SFS(q;) = 2e-41tqi
- 1.

(37)

(38)

(39)

(40)

(41)

Equation (36) consists of two parts: (i) a ~-parameter-independent part
SN(qZ, ql), which is equal to the product of the Froissart-Stora values of each
resonance in Eq. (41) and (ii) an oscillatory part with amplitude SF(qZ, ql)' When
the spacing ~ = Kz - KI changes, the polarization will fluctuate between SN - SF
and SN + SF' When ql' qz:5 0.001 or q1, qz 2:: 0.35, the amplitude SF becomes
unimportant and the nominal spin SN is nearly 1. Thus, these two resonances
combined may be considered as spin transparent. Alternatively, when 0.001 < ql
and qz < 0.35, the fluctuation becomes very important.

The peak positions of the spin S = SN + SF are located at

KZ-KZ

Z I = (2m + l)n + Ilz - ttl,
2a

or, for small spacing (~ «K1),

a
~ ~ - [(2m + 1) + ttz - ttl]'

KI

m = 0,1,2, ... ,

m =0,1,2,

(42)

(43)

Thus, we expect an equal spacing for the fluctuation pattern of these two isolated
resonances (see the discussion in Section 4). These highly oscillatory structures
will be modulated by the slower oscillatory structure of the remaining phase in
Eq. (32), i.e.,

(44)

The slow phase hlow is, in fact, independent of 8M , provided that Eq. (30) holds
and the full spin transfer matrix is used. When the asymptotic expansion is
applied, the dependence on 8M in Eq. (44) appears. Appendix A shows the
condition for which the slow phase can be neglected.
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FIGURE 2 Schematic representation of resonance jumping; 81 is the quadrupole firing time. At
8 = (J2 the tune of the machine returns to its nominal value. (J * is the reference crossing point
between the yG and the shifting time.

3.2. Resonance Jumping

The effect of intrinsic resonances, with strengths 0.001 < q < 0.35, can be
minimized by shifting the tune during passage through resonance. 4,6 Using the
spin transfer matrix developed previously, we shall now examine resonance
jumping. Figure 2 shows schematically the tune shift at () = (}1' where the
nominal resonance tune is decreased suddenly by ~v and then returns to its
nominal value at () = (J2 after a decay time of ~t. Figure 2 also shows yG, which
is also a function of (J. The slope of the resonance tune (assumed linear) between
(Jl and (J2 is

The resonance in this case is given by

where
C((J) = Ee - i x( 8) ,

X( (J) = {v(J + ~av( (J2 - 2(J(}2),

v(J,

(Jl < (J < (J2

otherwise.

(45)

Applying the matrix formulation, we obtain the spinor wave function after the
resonance jump as

(46)
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where 8f and 8 inj are the final and initial injection angles, respectively, and

T(8f , 8 2 , 8 1 , 8 inj) = T(8f)T-1(82)1;(82)T;1(8t1)T(81)T-1(8inj). (47)

The matrix 1; is the same as that of Eq. (18), with the following substitutions:

8~8t=8-8*,

e~ et = e . exp [-ia'~8~/2(a' - a'y)],

q~ qt = q . a' /(a' - a'y),

and

where

8t2 =82-8*,

8t1 = 81 - 8*,

8 * = - a'y82/(a' - a'y).

0* is the point of crossing between yG and the shifted tune. The physical picture
of Eq. (40) is clear in that the spinor wave function propagates from Oinj to 8 1,

then, during the tune shift, from 01 to °1 , and finally to Of at final energy. The
wave-function-matching procedure is realized through matrix products.

Figure 3 illustrates the polarization obtained as a function of 01 or the

T{OLD GAUSS CLOCK TIME)

8400 8600 8800 9000

(ill) (II) (I)
0.6
0.5
0.4
0.3
0.2
0.1
0~--------Y'---~---f-------+-----1

-0.\
-0.2
-0.3

J; -0.4

1£1 =0.0078620.5
0.4
0.3
0.2
0.1

o~---------+-------+-------t
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6

-.-8000 -4000 -2000 0 2000
8, (rod)

FIGURE 3 (Upper plot) Experimental polarization as a function of the quadrupole firing time (old
Gauss clock or ( 1), as obtained by the AGS Data Group.17 (Lower plot) Theoretical calculation of a
simple resonance jumping model, with initial polarization of 60%. The following parameters for
resonance jumping of yG = v are used: L\v = 0.2, L\t = 2.5 ms, E = -0.007862 - iO.OO004.
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FIGURE 4 Representation of simple tune jump model for the boundaries of regions I, II, and III in
Fig. 3.

resonance-jump firing time. The upper part shows the experimental results from
the AGS,t6 and the calculation is shown in the lower part. 17 We observe that
there are three distinct regions in this figure (marked I, II, and III). Region I is
characterized by a flat plateau of negligible depolarization. Here the resonance is
jumped successfully. Region II features a spin-flip. This is because the effective
acceleration rate of the particle through the resonance is a' - a'v, which is much
smaller than a'. Thus, the dimensionless resonance strength Jr leI 2/2(a' - a'v) is
much larger. Region III appears to have interesting side-peaking.

These three regions can be separated by three characteristic "times," 0, 0a, and
0b' indicated on Fig. 3. Figure 4 shows the schematic quadrupole firing sequence
for 0 1 = 0a, 0 1 = 0b' and 0 1 = 0, respectively. We see that region I corresponds to
the firing time 0a:::; 01 :::; 0, and region II corresponds to 0b:::; 01 :::; 0a, where the
effective acceleration rate is a' - a'v. From Fig. 4, we find easily that

10al=~v/a',

lOa - Obi =~v(~_!).
a'v a'

Thus, the width of the spin-flip region will be smaller for smaller a' - a'v.

4. NUMERICAL SOLUTION OF THE SPIN EQUATION

When two or more depolarizing spin resonances are close together such that there
is an overlapping region where they are both important, the spin transfer matrix
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(48)

(49)

(50)

(51)

method cannot be applied directly. In this case there is no known solution
available at present. To study the physics of overlapping resonances, we resort to
solving the classical spin equations [Eq. (2)] numerically. 1,5,6,18 It is sometimes
advantageous to transform from the lab frame to the center-of-precession frame,

Le., S± = e=fi f K(8) d8S±,

Equation (2) then becomes

~S = ir*e-ifK(8)d8S
dO + '=' 3,

~S = _ireifK(8)d8S
dO - ~ 3,

:O's3 = i( t;eiJK(8)d8,S+ - t;*e- iJK(8)d8,S_).

Note that the resonance condition corresponds to the stationary phase in Eq.
(49). The coherent contribution is the main source of depolarization.

To simplify the calculation, we consider only two resonances. The interference
effect is maximized with two resonances of equal strength, i.e.,

~(O) = £le-iKt8 + £2e-iK28

= 21 1 -i(K08-cjJo) (~O+ <PI - <P2)
£e cos 2 2 '

where Ko and <Po are the average frequency and average phase of two resonances,
i.e.,

KO = !(Kl'+ K2),

<Po = !(<Pl + 4>2)'

with <PI = arg (£1) and <P2 = arg (£2). The parameter .~ = K2 - Kl is the spacing
between two resonances.

The task is to solve either Eq. (2) or Eq. (49) numerically. This is a nontrivial
problem due to the highly oscillatory kernel. 7 Because of the necessity for
long-term spin tracking, double precision is absolutely essential in the numerical
calculation.

Results of the numerical calculation are shown in Fig. 5, where the polarization
of protons at 2.41 GeV/c (or yG = 4.605) passing through two resonances at
Kl = 3.2 and K2 = 3.2 + ~ is plotted versus the spacing parameter ~. The lower
part of the figure corresponds to £ = £1 = £2 = 0.05 [1m (£) = 0], which are very
strong resonances. The upper part corresponds to £ = £1 = £2 = 0.0023, where the
coherent contributions of two resonances will give zero polarization (this can be
seen clearly at very small Ll in Fig. 1). The constant acceleration rate
a = 4.86 X 10-5 for the AGS is assumed for this calculation. There are no realistic
double resonances at these energies in the AGS. This was chosen to save
computer time. The particles, at injection energy 200 MeV, will make 7957 turns
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FIGURE 5 Spin polarization S of particles passing through dual spin resonances of equal strength as
functions of ~, the spacing between resonances. The upper part of the figure corresponds to the
intermediate strength £ = 0.0023, and the lower part of the figure corresponds to a strong resonance
with £ =0.05. Note the regular oscillatory pattern at small ~. The chaos of S for r> 0.01 in the
E = 0.0023 case turns out to be an orderly oscillation, which will continue to oscillate forever as ~

increases.

(52)

or 50,000 radians to reach 2.41 GeV/c. Each point in Fig. 5 takes about
30-50 CPU minutes on a VAX 11/780.

Note that the spin polarization in Fig. 5 has a very regular oscillatory behavior
at small ~ < 0.005. At large ~, the polarization of particles passing through these
two large resonances becomes unity. On the other hand, the polarization of
particles passing through two intermediate-strength resonances fluctuates con­
tinuously and appears randomly distributed. The spin for large separation can be
understood analytically in the next section by using the spin transfer matrix.z We
shall address the regular oscillatory pattern at small L\ here.

When two or more resonances are within the asymptotic regionZ of each other,
we call them overlapping resonances. To understand the regular oscillatory
pattern of overlapping resonances in Fig. 5 for small L\, we can rearrange Eq.
(50) into a single resonance with an effective strength Eeff, where

Eeff =2 lei ei</>o cos [ ~8+!(<P2 - <PI)]'

Since the phase of two resonances cjJl' cjJz does not depend on e and only shifts
the peak position of Eeff, we assume cjJl = cjJz = 0 in the calculation. For a particle
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(53)

passing through the effective resonance Ko at e= eo, we have

Gy(eo) = Ko.
The effective single resonance strength becomes

£eff = 21£1 cos [!~eo + !~(e- eo)]. (54a)

In the region Ie - eol < eA [see Eqs. (26)], where the particle is influenced by
the resonance, the factor ~(e - eo) in Eq. (54a) is negligible because

I!~(e - eo)1 ~1!~eAI« 1

for overlapping resonances. Therefore, the effective single resonance strength
becomes

m = 1,2,3, ...

£eff = 21£1 cos (!~eo).

which is independent of e. The polarization is easily found to be

S(~) = 2 exp ( - ;r ~;ffI2) -1

= 2 exp [ - 2;r!E12

cos2 (!~OO)] -1.

Equation (55) indicates that when

~eo = (2m + l)n,

(54b)

(55)

(56)

or ~(K - Kinj) = (2m + l)na, then S(~) is peaked at a maximum value of 1. This
regular oscillatory behavior is clearly seen in Fig. 5 for ~ < 0.005. The equal
spacing is obscured by the logarithmic scale of the abscissa.

We have treated two equal-strength resonances here. Resonances with unequal
strength can be handled in a similar way. In this latter case, the cancellation of
two resonances will not be exact, and the final spin is given by Eq. (55) with

I£efflz = l£llz+ l£zlz + 21£1£zl cos (~eo + 4>z - 4>1),

where 4>1 and 4>z are arg (£1) and arg (£z), respectively. The spin fluctuates
between

and
(57a)

(57b)

with the same oscillatory frequency as that of Eq. (56). For more than two
resonances, the essential picture remains the same, with some complIcations.

When ~ > 0.005, the polarization begins to deviate from the results given by
Eq. (55). Also, the actual fluctuating behavior cannot be ascertained in this
region due to logarithmic compression. This fluctuating trend continues for tile
case £ = 0.0023, as ~ increases, whereas the amplitude of fluctuation vanishes for
1£1 = 0.05 at ~ ~ 0.2. For large ~, these two resonances can be considered as
nonoverlapping.

As an example, Fig. 5 shows our result for £1 = £z = 0.0023 and a = 4.86 x
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FIGURE 6 Plots of SN and SF versus q, for dual isolated resonances of equal strength. The
coordinate scale E corresponds to the nominal acceleration rate a = 4.86 X 10-5 of the AGS.

10-5
• We have ql = q2 = 0.0136. Thus,

SFS(ql) = SFS(Q2) = 0.686,

SN=0·470,

SF= 0.530.

Thus, the total spin [Eq. (36)] would fluctuate from 1 to -0.06 at a spacing of
9.5 x 10-5

• This highly oscillatory pattern with such a small width is impossible to
observe (it cannot even be plotted in Fig. 5). In fact, the tune spread of the
machine would average over these fluctuations and give the final spin as the
nominal value.

Figure 6 plots SN(q, q) and SF(q, q) from Eqs. (37) and (38) vs the
dimensionless strength parameter q for two resonances with equal strength. It is
observed easily that a large-amplitude fluctuation corresponds to a very small
nominal spin polarization.

5. TUNE SPREAD AVERAGING

5.1. Overlapping Resonances

The tune spread of a machine is normally much larger than the width of the
fluctuation due to the interference of two resonances; therefore, we are not able
to observe the fluctuations discussed in Sections 3 and 4. Tune spread averaging is
necessary to compare the experimental results with that of the theoretical
calculation.
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To simplify the computation, we assume that the tune of the machine has a
uniform distribution, with width 2a, around the nominal tune Vo. Besides, each
individual particle in the beam may have a different tune than its neighboring
particle. These effects are lumped into a distribution function

I~- ~ol <a
elsewhere,

(58)

where a uniform distribution is chosen for simplicity. In the following, we shall
discuss the tune averaging of two overlapping equal resonances.

The polarization due to overlapping resonances with spacing ~o can then be
written as

(S) = fS(~)P(~ - ~o) d~

= 2f exp [-16Jlq cos2 (!~Oo)]P(~ - ~o) d~ - 1, (59)

where Eq. (55) has been used. Since a ---10-3 is much larger than the width of
fluctuation (---10-4

) and the integrand in Eq. (59) is periodic, the average spin
(S) becomes

1 jll(S) = 2e-81lq - e-81lqcos(x) dx - 1
Jr 0

=2e-81lQlo(8Jiq) -1, (60)

where 10 is the Bessel function of the second kind, order zero. 11

Figure 7 shows the average spin (S) vs q of Eq. (60). It is interesting to note
that (S) ~ SN of Eq. (37) at small q, i.e., (S) - SN = O((8Jiq)3). At large q, we
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FIGURE 7 Plot of the average spin (S) as a function of q for dual overlapping resonances of equal
strength (solid line). The Froissart-Stora formula for an equivalent single resonance with twice the
strength is also shown (dashed curve).
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(61)
1

(S)SJ<Q»l ~ -1 + 2:Tryq'

Thus strong overlapping resonances are not particularly harmful to the spin
polarization of the particles. The remaining amount of polarization for q = 0.35 is
approximately 73%. This is evident from the lower part of Fig. 1, where we
observe that the fluctuation width becomes extremely narrow for strong
resonances.

5.2. Tune A veraging for Isolated Resonance

Tune averaging for an isolated resonance is relatively simple because of the
simplicity of Eq. (36). The average spin becomes the nominal value, i.e.,

(S) = SN,

and the standard deviation becomes

1
as =o SF'

The only way that these two resonances might not depolarize the spin is if both of
them are either strong (q > 0.35) or weak (q < 0.001). Separate corrections
should be possible because they are isolated.

6. CONCLUSION

We have reformulated the acceleration of polarized protons through depolarizing
resonances in terms of products of spin transfer matrices. For a single resonance,
the spin transfer matrix gives the Froissart-Stora formula. For many nonoverlap­
ping resonances, the spin transfer matrix method can easily be used to calculate
the polarization of particles passing through these resonances. We have discussed
the effect of the phase of precession on final polarization for two resonances. It
was found that intermediate resonance strengths (0.001:5 q :5 0.35) must be
handled carefully in order to get a high degree of polarization. Intrinsic
resonances between 0.001 and 0.35 should be jumped by shifting the tune
appropriately. The matrix formulation was applied to resonance jumping, giving
good agreement with experimental data.

These applications are illustrative examples of the method of the spin transfer
matrix. The method offers a clear physical picture for the acceleration of particles
through depolarizing resonances.

We have also studied numerically the acceleration of polarized protons through
two resonances. We found, first, that when two resonances are overlapping the
final spin will fluctuate at a regular spacing. For stronger resonances, the
fluctuation will be correspondingly sharper. The range of fluctuation will be
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bet\\een Smin and Smax of Eqs. (57a) and (57b), respectively. Since the spacing of
these fluctuations is very small, tune spread averaging is very important. Because
of the sharp spike in the polarization passing through two strong resonances (see
Fig. 5), the tune average does not substantially depolarize the spins of the
particles. However, when the resonances are weak, correction procedures have to
be used to get a respectable final polarization. Because of the finite tune spread of
the machine, the interference effect between two resonances is not effective for
the cancellation of two resonances.

We also found that when two resonances are isolated the spin transfer matrix
method can be applied to understand the physics of the interference of these
resonances. For strong resonances (q > 0.35) or weak resonances (q < 0.001), the
phase of precession between the two resonances is not important. For resonances
with intermediate strength (0.001 < q < 0.35), the phase becomes very important.
The final spin will fluctuate around the nominal values of SN with fluctuation
amplitude SF; these values are given by Eqs. (37) and (38), respectively. SN
becomes the final spin of the particles when the tune averaging procedure is
considered.

Finally, we should mention that we solved two spin resonance problems
numerically by using a double-precision version of a differential equation solver
with the Adams method. 9 We found that the spins of the particles can be tracked
successfully. It takes approximately 30-50 CPU minutes in the VAX 11/780
machine to track the spin 104 turns, depending on the strength of the depolarizing
resonances. The method can also be used to study resonance jumping with a
nonlinear time decay constant.
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APPENDIX A

Spin Precussion in Circular Accelerators

Following Courant and Ruth,4 we define the Frenet-Serret curvilinear coordin­
ates as

s = distance along the reference orbit,
p(s) = local radius of curvature of the reference orbit,
ro(s) = the reference orbit,

s= dro/ds = the unit tangent reactor,
x= unit vector in the orbit plane perpendicular to s,
y=z =x xs.

We also have the following relations:

dx S

ds p

ds x
-= --
ds p

dy =0
ds . (A-I)

An arbitrary point near the reference orbit is given by

r = ro(s) + xx + yy.

The velocity of a particle is

dr ds dr ds [ (X) ]
V= dt= dtds = dt x'i+ l+ ps+y'y ,

(A-2)

(A-3)

where a prime denotes differentiation by s. Keeping terms linear in ds/dt, x, z,
and their derivatives, we find that

or
V= V(x'x +s +y'y),

V' = v[(x" - ~)x +~s+ y"y ] .

(A-4)

(A-5)
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The transverse magnetic field becomes

B=~(VXB)X V= ymc (dV) XV
VZ eVz dt

= BP(1-~)[-y"x + (x" -~)y +~ s], (A-6)

where Bp = ymvc/e is the magnetic rigidity of the particle, and the Lorentz force
is used in deriving the above equation.

The next task is to obtain BII in terms of particle coordinates. We assume that
the longitudinal field Bs on the reference orbit is zero. Applying Maxwell's
equations, we have

oBs= oBy= -Bp.!!.- (!)
ay as ds p ,

where the guide field By = -(Bp)/p is used. Thus,

Bs = -(Bp)y~(~).
To first order,

BII = Bss + y'Bys = -[BPY(~)'+ (BP)~]s

=-BP(~)'S.

Substituting Eqs. (A-6) and (A-9) into Eq. (1), we obtain

dS
-=SXF
ds '

where

(A-7)

(A-8)

(A-9)

(A-I0)

S =81i + SzS + S3,9

F = fix + F;s + F;Y (A-H)

= -(1 + yG)y"x + [ (1 + yG)~ - (1 + G)(~) ']s + (1 + yG)(x" - ~)Y'

Making a coordinate transformation, e= fods/p, and using Eq. (A-I), we
obtain

dS1
de = - KSz - ,83 ,

dSz
de = KS1 - tS3 ,

dS3
de = ,Sl + tS3 ,

(A-12)
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K = yG - (1 + yG)p == yG,

r= (1 + yG)y' - p(l + G)(~)',

t = (1 + yG)py",

APPENDIX B

Asymptotic Expansion of Confluent Hypergeometric Functions
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(A-13)

Equations (18) show that the spinor wave function for a single resonance can be
put in the form:

<1>(8 ) = (z(8f ) -we8f ») (z(8;) -we8;»)-1ell(0.) (B-1)
f w(8f ) i(8f ) w(8;) i(O;) I ,

where <1>( 8;) is the initial two-component spinor function and <1>( 8f ) is the
resulting spinor.

The purpose of this appendix is to consider the case where8f and 8; are large.
This is done by considering the asymptotic expansion of confluent hypergeometric
functions, 11,12

f(b). feb)
M(a b· z) ..-- e±l1raz -a +--. e 2z a- b + · · · · (B-2)

" f(b -a) rea) ,
where the ± sign corresponds to 1m (z) ~ 0, respectively. With the asymptotic
expansion in Eq. (B-2), the z(O) and w(8) of Eqs. (18a) and (18b) become

r(1)
z(O) - r(l 2. ) exp (-nq/2) exp [-iq In (!£1'02

)] + · · · · , (B-3)
. ·2 -lq

i /2 r(~)
w(O) - ±2£ V~ r(1- iq) exp (in/4) exp (-nq/2) exp [-iq In (!£1'02

)] + · · · · ,
(B-4)

where the plus sign is for 0 > 0 and the minus is for 0 < O. With Eqs. (B-3) and
(B-4), the matrix of Eq. (B-1) becomes

<1>(Of) = exp [- iq In (!aOj)03] U(q) exp [iq In (!a8f)03]<1>(8;), (B-5)
where

(

e-27UJ C(q»)
U(q) = -t(q) e-2nq

with
i ~2 r(! + iq) .C(q) = - - E - . el:lrI4e-nq(e7UJ + e- 7UJ ).
4 af(l-lq)

The condition for the validity of the asymptotic expansion is given by

101» 8T ,

(B-6)
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where
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1 (}z _ cosh 1Cq
za T- q . h .

sIn 1Cq

Curve 1 in Fig. 1 shows q of Eq. (B-7) as a function of !a()}.
Let us now rewrite Eq. (B-5) in the laboratory frame:

(
i rOt )

1/J(Of) = exp - 2J
o

yG dO(J3 exp [-iq In (!aO})(J3]

· U(q) exp [-iq In (!a07)(J3] exp (!fi yG dO(J3) · 1/J(Oi)'

Note here that the precession induced by the resonance can be neglected if

!f yG dO » q In !a02

or

where

(B-7)

(B-8)

1 !a(}}
q = 2In (!aO~) · (B-9)

Curve 2 in Fig. 1 shows q vs !a(}} for Eq. (B-9). Note especially that the region
where (J is much larger than (JT for both curves has a special meaning, namely,
that the resonance plays little role in the precession of the spin. We thus call this
region the asymptotic region of the resonance, as marked in Fig. 1.




