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The technique of isolating resonant behavior is described using an example. The significance of
stochastic layers in enhancing diffusion is discussed. Diffusion along resonance layers, that arises in
more than two degrees of freedom, e.g., Arnol'd diffusion, and modulation diffusion is described and
illustrated with an example.

I. INTRODUCTION

It is well known that Hamiltonian systems with one degree of freedom H(p, q)
are integrable. For two degrees of freedom H(Pt, Pz, qt, qz), integrability is
exceptional. In general, resonances between the two degrees of freedom lead to
the formation of resonance layers in the action space. Within each resonance
layer, chaotic motion appears. Energy conservation prevents large excursions of
the motion along the layer. Only motion across the layer is important. For an
integrable system with a weak perturbation, the chaotic layers are isolated by
Kolmogorov-Arnol'd-Moser (KAM) surfaces. Thus motion from one layer to
another is forbidden. For strong perturbations, resonance layers can overlap, the
intervening KAM surfaces being destroyed. A more global chaotic motion then
develops, leading to large excursions in both actions over long times.

For three or more degrees of freedom, strong perturbations also lead to
overlap of resonance layers and globally chaotic motion. However, for weak
perturbations, two new effects appear:

1. Resonance layers are no longer isolated by KAM surfaces. Generically, the
layers intersect, forming a connected web dense in the action space.

2. Conservation of energy no longer prevents large chaotic motions of the
actions along the layers over long times. As a result, large, long-time excursions
of the actions along resonance layers are generic in systems with three or more
degrees of freedom. The interconnection of the dense set of layers ensures that
the chaotic motion, stepping from layer to layer, can carry the system arbitrarily
close to any region of the phase space consistent with energy conservation.

The basic technique for analyzing these phenomena starts with the isolation of
a single resonance. A transformation is made to action-angle variables for which
one angle is slowly varying near the resonance. The method of averaging is then
employed to average over the fast variables, reducing the problem to a single
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(1)

degree of freedom, for which the solution is obtainable. By reintroducing the
higher-order terms, the process can be repeated to isolate a second-order
resonance between the primary motion and the slow oscillation about the
resonance. Since the resonances are derived from Fourier expansions, all
resonances have the same form, when expressed in appropriate variables. The
process may be called resonance renormalization.

We consider first the technique of resonance renormalization with an example.
We then indicate the phenomenon of diffusion along resonance layers (Arnol'd
diffusion) in systems with more than two degrees of freedom, again illustrating
the behavior with an example. The treatment in the following sections will be
quite brief, with references given for the longer calculations. For simplicity the
references will refer to the monograph Regular and Stochastic Motion,l rather
than to the original sources which are referenced there.

II. RESONANCE RENORMALIZATION AND RESONANCE OVERLAP

We use the technique of resonance renormalization to calculate the transition at
which the intermingling of the stochastic layers of neighboring resonances creates
a band of stochasticity. We use as an example a toroidal magnetic field which is
perturbed by a helical perturbation. The toroidal coordinates are shown in Fig. 1.
The equations of a field line are defined by

dr rdO Rd(jJ
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FIGURE 1 Toroidal magnetic-field configuration.
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where R =Ro + r cos 0 and, for a tokamak, the field-strength variation from
outside to inside the torus is also proportional to the inverse aspect ratio r 1R.

The Hamiltonian for afield line is

HI = L Jlk/2leik8 L A mnei(m8-n</»,
k m,n

where
H = Ho(J) + HI(J, 0, <jJ),

Ho(J) =1:t(J) dJ,

(2)

(3)

with t(J) the rotational transform, t = llq (q is the safety factor), and, to lowest
order, J = r2 /2; the summation over k is the expansion of the toroidal correction,
and the double summation over m, n is the expansion of the perturbing field.

We shall first assume that the main island amplitude is determined by the
lowest-order perturbation term m =n = 1. (The methods to be described below
are taken from Ref. 1, Chapters 2 and 4.) We transform to new variables in a
rotating coordinate system:

(4)

and expand about Jo, where t(Jo) = 1, J =Jo+ ilJ, giving the Hamiltonian for the
perturbation:

A dt I (ilJ)2 A

ilH=dJ _ -2-+AIICOSO
I-Jo

+L (!Q.t 1ek(8+</» L Amnei[m8+ (m-n) </>1, (5)
k Ro m,n

m,n=l=±1 for k=O

where we have added the ±1 terms (assumed equal to obtain a pendulum in
lowest order) and evaluated the perturbation at Jo= r~/2. Here and in the
following calculations, we ignore small corrections to the dominant terms, which
is justified by the lack of detailed knowledge of the Fourier coefficients A mn. In
the same spirit, we do not distinguish the symmetry so that exponentials and
sinusoids are taken to be interchangeable.

Averaging over the fast variable, <jJ, we obtain the pendulum Hamiltonian with
the amplitude on the separatrix:

ilJM = 2(FIG)I/2,

and the frequency at the fixed point:

Wo = (FG)1/2,
where

(6)

(7)

(8)

We transform to action-angle variables, I, 8, in the pendulum Hamiltonian
frame, to exhibit the second-order resonances (islands). Reintroducing the
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(9)

rapidly varying terms in the new variables, we have a Hamiltonian of the form

(
r. )Ikl

K(I, 8, l/J) = Ko(I) + 2: RO A mn 2: Viei[lll+(m+k-n)</>J,

k,m,n 0 I

where the Vi are the coefficients of the Fourier expansion in e. Since rolRo« 1,
we look at small k. Since iJ« 4>, we only consider m + k - n = ±1. For
harmonics with q = 1 helical symmetry, m = n for which we take k = ± 1. In
addition, the m = 2, n = 1 mode can be important because it is resonant with
k=O.

Considering these modes only, we obtain the second-order islands by expand
ing about the resonant action I = 10 , for which

Iw(Io) = 1. (10)

Setting fJ = Ie- - qJ, i = III, and, as previously, averaging over the fast variables,
we obtain the pendulum Hamiltonian for second-order islands:

(~i)2
Gs -

2
-+F; cos e,

where the largest forcing terms can be collected as

(11)

(12)

For the second-order islands we then have for the amplitude and the frequency:

~iM = 2(FsIGs )1/2, roo = (F;Gs )1/2. (13)

In second order, we have the universal relations for island "overlap," i.e., no
KAM surfaces between the I and 1+1 islands (Ref. 1, Chapter 4):

(14)

For nearly equal-size islands, substituting from the above, we obtain the
condition for stochasticity joining two island chains:

(15)

The overlap of second-order resonances determines the thickness of the stochastic
layer that exists generically around the separatrices of each resonance.

The diffusion rate across the resonance layer can be calculated by first
modifying the phase space so that it looks locally like a standard mapping (see
Ref. 1, Sections 3.5 and 4.1) and then using the long-time diffusion calculation in
the presence of correlations and islands (see Ref. 1, Sections 5.4d and 5.5). This
procedure has been shown to give a reasonably accurate picture of the local,
short-time, diffusion rate. Of course KAM barriers exist to inhibit long-time
diffusion to distant parts of the phase space.
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III. ARNOL'D DIFFUSION

201

We consider the geometry of stochastic layers in the 2N-dimensional phase space.
The layers, defined by Eq. (3), are surfaces having dimension 2N -1. The KAM
surfaces, being perturbed tori, are N-dimensional. The interconnection of
resonance layers into the Arnol'd web can then be understood geometrically. For
N ~ 3, the (2N - I)-dimensional resonance surfaces cannot be isolated from one
another by N-dimensional KAM surfaces. The "Arnol'd" diffusion along the
separatrix layers of the interconnected resonances is generic to systems with more
than two degrees of freedom.

A simple example of a system illustrating Arnol'd diffusion is that of a ball
bouncing back and forth between a smooth wall at z = h and a fixed wall that is
rippled in two dimensions, x and Y, at z =O. The surface of section is given in
terms of the ball positions in the Xn and Yn directions and the trajectory angles
ll'n = tan-1vx/vz and f3n = tan-1vy/vz , just before the nth collision with the rippled
wall. The ball motion is shown schematically, and variables in the x, z-plane are
defined in Fig. 2. Assuming that the ripple is small, the rippled wall may be
replaced by a flat wall at z = 0 whose normal vector is a function of x and Y,
analogous to the idea of a Fresnel mirror. The simplified difference equations
exhibit the general features of the exact equations and may be written in explicit
form

ll'n+l = ll'n - 2axkx sin kxx + f.lkxyc,

Xn+l = Xn + 2h tan ll'n+l'

[3n+l = [3n - 2ayky sin kyY + f.lkc,

Yn+l = Yn + 2h tan [3n+l'

where Yc = sin (kxx + kyY), ax and ay are the amplitudes of the ripple in the x and
Y directions, respectively, and f.l is the amplitnde of the diagonal ripple and
represents the coupling between the x and Y motions.

A typical numerical calculation showing Arnol'd diffusion in the coupled
system is given in Fig. 3. The surface of section for the system is four-dimensional
(a', x, f3, y), which we represent in the form of a pair of two-dimensional plots

SMOOTH WALL

I

xntl

RIPPLED WAL L

FIGURE 2 Motion in two degrees of freedom, illustrating the definition of the trajectory angle an
and bounce position Xn just before the nth collision with the rippled ball.
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FIGURE 3 Thin-layer diffusion. Initial conditions are close to the central resonance in the a - x
space and within the separatrix stochastic layer in the p- y space. Parameters are IJ/h = 0.004;
Ax:h :ax and Ay:h :ay as 100: 10:2.

(a, x) and (f3, y). Thus, two points, one in (a, x) and one in (f3, y), are required
to specify a point in the four-dimensional section. In Fig. 3 the two plots are
superimposed for convenience, and x and y have been normalized to their
respective wavelengths, 2:Jr/kx and 2:Jr/ky • The initial condition (Fig. 3a) has been
chosen on an island encircling the central resonance in x, and within the thin
separatrix layer for y. This corresponds to an initial adiabatic motion in x, well
confined in the valley, while in y the motion just reaches or passes over a hill. We
observe numerically that the y motion is confined to its separatrix layer until the x
motion reaches its own separatrix layer. The successive stages of the diffusion of
the a - x motion are shown in Figs 3b, 3c, and 3d, respectively. In the absence of
coupling (tt = 0), the motion in the a - x plane should be confined to a smooth
closed curve encircling the central resonance. For a finite coupling, a' and x
diffuse slowly because of the small randomizing influence of the stochastic f3 - y
motion. The a - x diffusion is motion along the f3 - y stochastic layer; that is, it is
the Arnol'd diffusion. The diffusion is shown for 1.5 x 105

, 3.5 X 106
, and 107
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iterations of the mapping. At this time the a - x motion has diffused out to its
own thin separatrix layer. Continued iteration of the mapping shows that the
trajectory point diffuses over the entire a - x plane. In particular, the change of
direction from diffusion along the p - y separatrix layer to diffusion along the
a - x separatrix layer has been observed numerically.

The rate of diffusion for this example has been calculated, using the stochastic
pump model, and compared with the numerical results giving good agreement
(Ref. 1, Section 6.2). The diffusion rates can be very sensitive, however, to
resonance positions and thickness, so that accurate diffusion calculations are
dfficult in most practical cases.

There is a an interesting, related case in which the frequency of one of the two
interacting degrees of feedom is slowly modulated in time. For a single modulated
degree of freedom the slow variation is adiabatic, and KAM surfaces exist.
Remarkably, with the addition of the second degree of freedom a multiplet layer
is formed which can overlap, leading to diffusion across the layer and enhanced
diffusion along the -layer, known as modulational diffusion. The onset of the
overlap depends on the slowness of the modulation, which is in contradistinction
to the normal adiabatic problem. The diffusion along a multiplet layer can be
calculated and is often strong compared to the diffusion along the separatrix layer
of a single resonance.
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