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This paper analyzes the errors due to roundoff in kick-type accelerator tracking codes. We show that
the error in the angle of the phase-space vector goes as m? and the error in magnitude goes as m,
where m is the number of turns that a particle has been tracked. The latter is true only for small
values of the kick term. This error is due entirely to the fact that because of roundoff errors, the
determinant of the quadrupole transport matrix is not unity. This is demonstrated with a simple kick
model of the Tevatron.

I. INTRODUCTION

The design of the Superconducting Super Collider (SSC) will require extensive
particle tracking to check the design of the accelerator. Since the accelerator is so
large, these calculations will require a very large number of numeric operations.
This paper discusses the roundoff errors in these calculations. The analysis is done
for the so-called “kick” codes, i.e., the dipoles and quadrupoles are described by
transport matrices, and all higher multipoles are treated in the thin-lens
approximation as a kick at one or more points in the magnet.

A recent paper by Wilhelm and Lohrmann' gives extensive experimental
measurements of the calculational errors in modeling the HERA accelerator
using the RACETRACK program. Their data show that the error in position goes as
m for a linear model (dipoles and quadrupoles only) and as m? for the nonlinear
machine where m is the number of turns. They explain the error dependence for
the linear machine by noting that the determinant of the transport matrices for
quadrupoles is not exactly 1 because of the finite precision of a computer.

Transport through a quadrupole magnet is just a rotation in phase space. Using
complex variables, the input coordinate, z(=x +iy), is multipled by exp (i0)
where 6 is the betatron phase advance of the quadruple:

z = ze'°. 1)

T Operated by Universities Research Assoc., Inc., under contract with the U.S. Department of
Energy.
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Because of the finite length of a floating-point number in a computer:
le’®| # 1. @

This difference from unity can be represented by adding a small real number, a,
to the rotation angle. The value of z after passing through n quadrupoles of the
same type is then

z= zoein9+na. (3)

Expanding exp (ra) to first order in a gives
Az = zynae™®;  Ar =ryna, 4
where r is the radius of the circle. Thus the error in radius grows linearly with n.
For single precision on the Cyber 875, |a| is about 1 X 107*°. The exact value of a
depends of course on the transport matrix and, as shown in Ref. 1, can be
positive or negative.
There is, however, no explanation in Ref. 1 for the m* dependence of the
nonlinear machine. In the following discussion we show that this dependence is
also due to Eq. (2).

II. ANALYSIS OF THE NONLINEAR MACHINE

Qualitatively, the errors can be understood as follows. Just as in the linear
machine, there will be an error in radius that goes linearly with n because the
transport matrices are nonunitary [Eq. (4)]. There is an additional error whose
source can be seen from Fig. 1. The dotted line in the figure shows a particle
trajectory with no errors. The solid line shows the trajectory with errors for the
case where the transport-matrix error shrinks the radius. The calculated trajec-
tory will have a displacement less than the real one. The trajectory will then pass
through the thin lens at a smaller x distance than the real particle and so will have
a small kick than the real one because the field is proportional to x* or higher
powers.

This can also be seen from the circle diagram (Fig. 2). A kick from a nonlinear
component appears as an instantaneous change in angle (y coordinate) and no
change in x, i.e., a vertical jump in the circle diagram. Because of the
nonunitarity of the transport matrix, this vertical jump starts at a different x
coordinate than one where this error was not present. Since the strength of the

FIGURE 1 The dotted line is the orbit of a particle with no roundoff error. The solid line is the orbit
with errors. In this example the determinant of the transport matrix is less than 1, so the particle’s
displacement from the axis is reduced. Consequently, the kick from the nonlinear element is also
reduced.
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FIGURE 2 Circle diagram showing the effects of the nonlinear kick on a particle’s trajectory in
phase space. The initial phase-space coordinates are at r, ¢. The transport matrix rotates it through
an angle 6. The solid line is the phase-space trajectory with no roundoff error. The dotted line is an
exaggerated trajectory including roundoff errors. A6 is the angle error introduced by the kick term.

magnetic field is proportional to at least x>, there is an additional error in z
introduced by the kick. A more quantitative analysis shows that the error in
radius, Ar, goes as n, while the error in phase, A8, goes as n>

The nonlinear machine must have the linear error growth in r due to Eq. (2).
Let us examine the effects of the kick term on the radius and the angle when the
kick is applied at a radius that is slightly different from the no-roundoff one to try
to develop a quantitative expression for the error amplification described in Fig.
1. This analysis assumes no error; we look only at the effect of the kick term
applied to a two radii, r and r + d, to see if the position difference between them
grows with n.

First, look at the effect of the kick term on the radius. From geometry the kick
term increases the y displacement on one half of the circle and decreases the y
dispalcement on the other half. Since the particle travels around the circle many,
many times, the first-order average displacement will be zero provided the tune of
the machine is not near a resonance and the strength of the kick term is small.
Since the average radius does not change with n, the displacement between the
two radii, r and r +d, is indpendent of n and equal to d. Note that we have
ignored the effects of random roundoff errors which would cause this error to
grow as Vn. We have observed this behavior in simple models. As the strength of
the kick term is increased, however, we observe a linear error growth in 6r. We
are currently investigating this effect.

The angle difference behaves differently. As can be seen in Fig. 2, the angle
difference increases with each kick, so the difference should grow linearly with 7.
This can be demonstrated quantitatively as follows. A recursive relation for the
nth position in terms of the (n — 1)th term is:

2, = 2,1w +iG real” (z,_,w). )
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Here G is a constant that combines the strength of the multipole field and the
terms that convert field strength and displacement to angle, N is the order of the
multipole field (N =2 for sextupole), real takes the real part of the expression,
and w =exp (i6). Note that the nonunitarity of the transport matrix has been
ignored.

One can write the position after n quadrupoles to order G? as

n
z, =zW" +iG >, w7 real™ (zow)
j=1

n—1 j ) ) ) 6
+G%3i ), Y, w7 real™ ! (zow*1) real (iw* %) real™ (zow*). ©)
j=1 k=1
Now, use Eq. (6) to compute the phase at radius r. Both the G and the G? term
have sums over angle coordinates. From table of trigonometric sums we have

n—1 -1
> sin (x + ky) =sin <x + n—y) sin 2 cosec? @)
k=0 2 2 2
and o —1
S sinnx 0 2 "
> ksinkx = - . ®)
k=0 sin?= 2sin=
2 2

From these formulas one can see that the sum of sin (kx) gives a function of
sin (nx) and a sum of k sin (kx) gives a function of # sin (nx). That is, no higher
powers of n are introduced. However,

n n’+n
2= ©)
P

2 )
which gives a higher power of n. Let us use the octupole (N = 3) as an example.

The sums in Eq. (6) generate many terms. Only the term with the highest power
of n in each sum is kept. The phase at radius r is

_, 128r sin (n0 + @) + 48Gnr> cos (n6 + ¢) — 9Gn*r® sin (n6 + ¢)

128r cos (n0 + ¢) — 48Gnr’ sin (n6 + ¢) — 9G*n*r® cos (n6 + ¢)
the phase at radius r +d is the same as in the above equation exept that r is
replaced by (r +d). The two equations are expanded in a Taylor series in G to

second order and then subtracted. This gives an approximation of the phase
error, 60, to order G2 The result is

tan

_3Gdrn

66 2

(10)

to first order in d. From this we see that the phase error grows linearly with » and
depends on G and d to first order. The non-unitarity of the rotation matrix causes
the radius difference d to grow linearly with n. Combining Egs. (4) and (10) gives

_3Gr’n’a

A6
4

(11)
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FIGURE 3 Error ratio for a factor-of-8 change in G for sextupoles and octupoles. The sextupole
error depends on G? while the octupole error depends only on G.

Thus we see that the roundoff error in the quadrupole transfer matrix causes
the total error to grow as n”.

Calculating the phase error for the sextupole (N = 2) is complicated since there
are a large number of terms in the sum. However, one can go back to Eq. (6) and
include the exp (a) term. Expanding exp (@) as in Eq. (1) allows one to compute a
series for Az. If one evaluates the sum for the G term, one finds that it depends
on n, not on n” (the same exercise for octupole does give an n*> dependence). The
G? term does give an n* dependence. From the structure of the equations one can
show that all even multipoles will have no n* dependence for the G term while all
odd multipoles will have an n”> dependence for the G term.

The above predictions were checked with a simplified model of the Tevatron.

TABLE 1

Position Error as Function of Number of Turns for
Single-Precision and Double-Precision Matrix Multiples

Number of Single-precision Double-precision
turns position error position error
1 5.9E-13 3.3E-26
10 1.0E-11 2.7E-25
100 6.5E-10 3.2E-25
1000 5.2E-8 4.5E-25

10 000 5.0E-6 9.3E-25
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The erros were measured in the same manner as described in Ref. 1. That is, the
particle was run forward for n turns and then backward for n turns. The
difference between the initial and final value is the error. Figure 3 shows the error
ratio for a factor-of-8 change in G for sextupole and for octupole. The G?
dependence of the sextupole is clearly evident.

Our numerical results for single-precision floating point on the Cyber 875
(48-bit mantissa) are very similar to those of Ref. 1. Since the source of the error
is the nonunitarity of the transfer matrix, we converted all the matrix multiplica-
tions to double precision (120-bit word length). All of the kick terms were left in
single precision. This increased the computing time by about 50% over the
all-single precision calculation. However, no effort was made to optimize the
program. Table I shows a comparison of the single-precision and limited
double-precision runs as a function of the number of turns in a simplified model
of the Tevatron. For a 10 000-turn run the error was reduced by about 107",
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