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I. INTRODUCTION

The phenomenon of cumulative beam breakup has been widely observed in rf electron
linacs 1 and in induction linacs. 2 Briefly stated, the mechanism responsible for this
instability is the interaction of the beam with a deflecting mode (one having cos <p or
sin <p azimuthal dependence) of the accelerating structure. Any beam offset or structure
misalignment will cause the beam to drive such a mode, which will then cause
subsequent portions of the beam to be deflected. This deflected beam will drive the
same (or a similar) mode in the next accelerating unit, which will further deflect the later
portions of the beam, which will drive the mode in the next unit even more effectively,
and so on. Ultimately the beam transverse amplitude may be driven to the point where
the beam will intercept the walls of the accelerating structure and be lost.

A previous analysis 3 of this instability did not treat the rf structure of the beam, an
omission that will not give the correct steady-state solution. As linac pulse lengths
increase and as cw operation becomes desirable, a detailed knowledge of the steady
state beam behavior, as well as details of the transient behavior, becomes necessary.
This paper treats first the coasting beam with an initial offset. An exact (though non
transparent) solution is derived, various limits are investigated, and numerical
examples are given. Included is the extension of the analysis to accelerating and
decelerating beams.

II. ANALYSIS OF BEAM CAVITY INTERACTION

We model the accelerator as consisting of identical accelerating units (cavities) placed
along the axis with a periodicity L. The accelerating units are not coupled to each other.
The beam is considered to be a series of delta-function pulses traveling with speed c
separated in time by an amount t and each containing charge Npe. We consider beam
displacements in only one plane, and denote the displacement from the axis of pulse M
at cavity N by ~MN. Both the cavities and the bunches are enumerated starting at O. The
displacement of a given bunch is assumed not to change within a given cavity, and it is
further assumed that a bunch is not deflected by the fields it generates in a given cavity
(i.e., single-bunch wake-field effects are not considered). We further consider that a
single mode is responsible for the instability (identified, for example, as the HEM 11
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mode in SLAC, and the TM 130 mode in the ETA [cf. Ref. 2J). The formulation in this
section is essentially that of Helm and Loew.4

The vector potential of the electromagnetic field is expanded, following Condon,5 as

A(r, t) == L q;.(t)A;.(r)
;.

where the normal-mode eigenvectors A;. satisfy the Helmholtz equation
V2A + (co;./e)2 A == 0 with V · A == O. The A;. form an orthogonal set of functions and
as a result, the time-dependent coefficients q satisfy the differential equation

(1)

(Rationalized MKS units are used throughout this work). In the following we will drop
the subscript A, since we are considering only a single mode. In cavity number N, we
take the current density j(r, t) arising from bunch number M to be

j (r, t) == zNpee 8(x - ~MN) 8( y) 8(z - et ) (2)

The coordinates x, Y, and z are local to the cavity under consideration, with the time
being that appropriate to the presence of the bunch. Considering then that the cavity
extends from -g/2 to g/2 in the z direction, the integral on the right side of Eq. (1) is
given by

-g/2e < t < g/2e (3)

(4)

Expanding A z in a Taylor series in x, noting that A z == °on axis and retaining only the
linear term, then the solution of Eq. (1) resulting from bunch M alone is, once the bunch
has left the cavity,

N ee f9/ 2C aA ,q == P ~MN _z (0,0, et') sin co(t - t' ) e-ro(t-t }/2Q dt'
£00) fA2 dV -g/2c OX

where the integral is taken over the time the bunch is inside the cavity. If we define

f aAz . /I == -.- (0 0 z) e - lro cz dz
A - ax " ,
length of cavity

(5)

then, using superposition, we can write the time-dependent amplitude of cavity number
N, after bunch number M - 1 has passed through it, as

QZt-l(t) = Npe Im{~Mt1
~t e- w(t-lr)/2Q eiW(t-hl } (6)

EoO) fA 2 dV 1-0
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The next bunch through the cavity, bunch number M, will have its transverse
momentum changed by an amount

where t' == t - M1. Again ignoring the change in the damping term during the transit
of the cavity, and observing that aA z / ax does not depend, to first order, on
displacement from the axis, we find

Ne 2
{M-l

~Px == p 1m I
A
~ ~IN e-(M-l)wr/2Q ei(M-l)wr

€o())fA 2 dV 1-0

f .,aA }
x elwt axz

(0, 0, Z == ct') d(ct')

N e2I I * M-l
P A A L ~IN e-(M-l)wr/2Q sin(M - l)ffi1.

€o())fA 2 dV 1=0

(8)

Note that if IA is a real quantity, as for a mode with even z-dependence in a symmetric
cavity with z == ° at the cavity center, this last equation can be written as
~Px == eIA qZt-l(M1).

Now the transverse coupling impedance, corrected for transit-time effects and
divided by the mode-quality factor, is defined by

(9)

Thus cavity number N changes the transverse momentum of each particle in bunch
number M by the amount

where
kwr

Sk == e-2:Q sin kffi1.

III. THE BEAM-BREAKUP DIFFERENCE EQUATIONS

(10)

(11)

We now consider tracking the bunches through the accelerator. Subject to the
assumptions made in the previous section, we can write the relationships relating beam
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parameters before and after the action of the cavity as

(12)

so that

(13)

where

(14)

and the + superscript indicates the value after the cavity action. The quantity YN is the
value of the relativistic energy parameter upon entry to cavity number N. If we
consider the cavity action as having taken place at the cavity midplane, then we
transport the beam from cavity center to cavity center by a transport matrix

(15)

In the following analysis we will assume that this transport matrix is a constant, i.e., it
does not depend on N.

Combining Eqs. (12), (13), and (15) gives the final difference equations which must be
solved, given ~Moand OMO:

N+l N YN N Ml2 R M-l N
~M == MIl ~M + M l2 -- OM + -_.- L SM-l~l (16)

YN+ 1 YN+ 1 1=0

In the next section, these difference equations are solved for a coasting beam
(y == constant). Equations (16) and (17) serve as the basis for numerical simulations of
the beam-breakup problem, and allow for arbitrary initial displacements, acceleration,
deceleration, and varied focusing.

Figures 1a-d show the solution of Eqs. (16) and (17) for parameters appropriate to
a 1300-MHz standing-wave rflinear accelerator structure with a coasting 6.5-A beam
of Y == 6. The parameter Ml2 R/y == 2.88 x 10- 3

, ffiT/2n == 1.846, and Q == 1000.
Figure 1a shows the displacement of the first 2000 bunches as they leave the 15th cavity,
all bunches having entered the first cavity offset from the axis by 1 mm. One should
note that there is a steady-state displacement of the beam, and that individual bunches
have displacements that are centered about the steady-state value. Figure 1b shows the
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FIGURES la-d Displacement at fixed cavity number as a function of bunch number. Figures la and Ib
for cavities number 15 and 30, respectively, result from a beam in which all bunches are initially offset by
1 mm. Figures lc and ld result from a beam in which only the first bunch is offset by 1 mm.



130

(c)

R. L. GLUCKSTERN, R. K. COOPER, AND P. 1. CHANNELL

+1 rrm ~------------------------------------.

01 splacement,
~

o
•••••• llC·-

-1~j~,,--'----'"-~i1

0.0 ?OO.O 400.0 6Q[).0 tiOfJ.O loon.a t.?nn.o

Bunch Number, M

1'11''-1. 1) IGOfJ.n ?OOO.O

(d) +15 em ,......------------------------------__

.r·~: '..

Di sp 1aeement,
~

...::: ~ .'.:.

-15 em ....--....,r----r----.....--...,.---~--.....,.--- ..,~-_...,...--_ .....--.....
0.0 200.0 400.1) ~l.O ~llJ.O lorxl.O t2flfl.O 1·\1 ~.I. OJ '''''''.0 2000.0

FIGURE 1 (Cont.)

Bunch Nllmber, M



BEAM BREAKUP IN RF LINACS 131

displacement of the first 2000 bunches after the 30th cavity has been traversed. The
same observations as in Fig. la apply.

Figure lc shows the displacement of the first 2000 bunches as they leave the 15th
cavity for the case in which only the first bunch entering the structure was offset by
1 mm, the rest of the bunches entering along the axis. Note that the steady-state
displacement is zero since the first cavity is driven only by the first pulse, and the cavity
excitation then decays to zero. Figure Id shows bunch displacement after 30 cavities.

The structure evident in these figures is a result of the fact that the ratio of the beam
breakup frequency to the accelerating frequency is 24/13.

The various features of these solutions are calculated in subsequent sections of this
paper.

IV. SOLUTION OF DIFFERENCE EQUATIONS, COASTING BEAM

We rewrite the equations for the displacement and angle of the Mth bunch as it enters
cavity N in a form convenient for subsequent analysis, (y = constant),

M12 RM-l
~(N+l,M)=Mll~(N,M)+M128(N,M)+--L sM-1~(N,1) (18)

y 1=0

M22 RM-l
8(N + 1, M) = M21 ~(N, M) + M22 8(N, M) +-- L SM-1~(N, I) (19)

y 1=0

In analogy to using the Laplace transform to solve a differential equation, let us
transform these difference equations by multiplying by e- yN and summing from N = 0
to CfJ. If we define

we can write

leading to

00

~(y,M) = L e-YN~(N,M)
N=O

00

e(y, M) = L e- YN 8(N, M)
N=O

00

L e-YN~(N + 1, M) = eY[~(y, M) - ~(O, M)J
N=O

00

L e-YN 8(N + 1, M) = ey[e(y, M) - 8(0, M)J
N=O

(20)

(21)

(22)

(23)

- - M12RM-l-
(1 - e-YMll)~(Y' M) - e-YM12 8(y, M) - e-Y-- L SM-1~(Y' I) = ~(O, M)

Y 1=0

(24)

_ - - M 22RM-l-
-e YM21~(Y'M) + (1 - e-YM22 )8(y, M) - e-Y-- L SM-1~(Y' I) = 8(0, M)

y 1=0

(25)
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Equations (24) and (25) can be written in matrix form as

A~ + Be == ~o

C~ + De == So

where

(26)

(27)

C == -YM] -Y M 22 R S-e 21 - e -- ,
y

Here] is the identity matrix and

0 0 0 0

Sl 0 0 0

s== S2 Sl 0 0

S3 S2 Sl 0

and

(28)

(29)

Since A, B, C, D all commute with one another, we can multiply Eq. (26) by D, Eq. (27)
by B and subtract, obtaining

(AD - BC)~ == D~o - BSo.

The matrix AD - BC can be written as

(30)

M R
AD - BC == (1 - 2 cos ~ e- Y + e- 2Y )] - e- Y _1_2- S (31)

y

where

It is useful to write the matrix inverse of AD - Be as an infinite sum. Specifically

(32)
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and we can now write the solution for ~ as

133

_jy (MI2 R)j
~ - ~ e -y- [Sj(1 -YM)~ sj -YM 8 ] (33)
~ - ~ (1 2 -y + -2y )j+l - e 22 ~O - e 12 0

j=O - cos~e e

We can now obtain ~(N, M) by equating it, according to Eq. (20), to the coefficient of
e - Ny in an expansion in powers of e - Y. In order to do this explicitly, we use the
generating function for Gegenbauer polynomials (see Appendix A), namely

We thereby obtain

Moo. (MI2 R)j
~(N, M) = M~O Jo (SJ)MM' -y-

X [(C~+_lj(COS~) - M 22 C~+_lj_l(cos Jl))~(O, M')

+ MI2 C~+_~-1 (cos 11) 8(0, M') J.

(34)

(35)

where we have used the explicit dependence of the matrices and vectors on M and M'.
We can recover a familiar result at this point if we let R ~ 0 (i.e., let the charge per

bunch become negligible). Then only thej == 0 term remains. Recognizing that sj is the
identity matrix whenj == 0, only the term M' == M contributes to the first summation,
leaving

~(N, M) == [CN1(COS 11) - M22C~-1(COS Il)J~(O, M) + M12C~-1(COS 11) 8(0, M)
(36)

If we use the relation (Eq. (A-14) in Appendix A)

1( ) _ sin(N + 1)~
CN cos 11 - . ,

SIn Jl

and the Courant-Snyder parameters

M22 == cos 11 - a. sin 11,

M12 == ~ sin Jl,

then we obtain

(37)

(38)

(39)

~(N,M) == (cos Nil + a.sinNIl)~(O,M) + ~sinNJle(O,M), (40)

which is the standard transport result.
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Returning to the solution Eq. (35) and again employing the Courant-Snyder
parameters, together with the recurrence relation [see Appendix A, Eq. (A-6)J

'+1 '+ 1 N + j ,
C-fv-j(COS /1) - cos /1 C-fv-j-l(COS /1) =~ C-fv-j(COS /1), (41)

we can write Eq. (35) in the form

~(N, M) = Mfo j~O (Sj)MM' (M~2RY

x [(N 27 j)ct_j(COS /1)~(0, M') + sin /1 Ct+-~-l(COS /1)11(0, M')} (42)

where

(43)

In Appendix C, it is shown that (Sj)MM' can be written as a Gegenbauer polynomial.
Specifically, in Eq. (C-5) we show that

(Sj)MM' == e- (M - M')wrj2Q sin j co-r C~ _M' _ j(cos co-r).

Our final result for ~(N, M) is therefore t

(44)

M 00 (M R sin co-r )j ,
~(N, M) = L e- m(wr j 2Q) ,L 12 C:n_j(cosco-r)

m=O )=0 Y

X [(N 27 j) ct-j(cos /1)~(0, M - m) + sin /1 ct+_1j_l(COS /1)11(0, M - m)}

(45)

where we have changed the running index from M' to m = M - M'. Note that for
j = 0, since SO = I, the Cmo (cos OJ-r) terms become 8mo , while the term multiplying
~(O, M - m), i.e., ((N + j)j2j )C~_j(cos ~), becomes cos N~, as discussed immediately
after Eq. (35).

Another previously established result can be recovered from this last equation,
namely the displacement of a continuous beam with a delta-function displacement at
the head of the beam, given by ~(O, t) = d8(t)jco. This problem was treated in Ref. 3; the
result obtained there can be gotten from Eq. (45) as follows. We take r:t == 0,
8(0, M) == 0, and ~(O, M) = °if M i= 0. That is, only ~(o, 0) is different from zero. Then
the solution Eq. (45) is, retaining only the current-dependent part,

t Since C{ _ j vanishes for k < j, it is clear that there is no contribution to the sum over j from terms with
either j > m or j > N in Eq. (45).
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(47)

Now we must take 't ~ 0, M ~ 00 such that MT ~ t, the time measured from the
head of the beam. At the same time we observe that the summation truncates at 1 == N
because of the C~-I(COS ~) term. Now as 't goes to zero, as is shown in Appendix A,

where jl-l is a spherical Bessel function.
For large M we take (M + 1 - l)!/(M - I)! == M 21

-
1 so that Eq. (46) becomes

-wt/2Q ~ (MI2 RM)I(N + 1) I .
~(N, t) == e ~(O, 0) '-'_ 2 l' rotCN-I(COS ~)Jl-l(ro't)

I-I y .

The parameter M I2 RM/2y can be written, using e2 == (4n/Zo)rernoc where re is the
classical particle radius and Zo is the characteristic impedance of free space

M 12 RM == M 12 ~ N e~ (4n)(Z1- T
2

)

2y 4y 't P e Zo Q '

I M12 4n Z1- T 2

==------ct
IA 4 Zo Q '

where I == Npe/t and IA == yec/re • To convert this expression to the notation of Ref. 3,
41t/Zo ~ c, M12 ~ 2p sin 8, and (Z1- T 2 /Q) ~ 2rok/c 2

, so that

(48)

and observing that roT~(O, 0) equals the parameter d of Ref. 3, Eq. (47) is identical with
Eq. (4.22) of Ref. 3.

v. INTEGRAL REPRESENTATION

It is possible to express Eq. (45)in iritegral form by using the integral representation for
C~_ j(x) given in (A-2), Appendix A. After considerable manipulation, which is outlined
in Appendix B, we obtain

~(N,M) = m~o e-mrot/2Q[~(O,M - m)G(x, y) + sin~ TJ(O,M - m)H(x, y)] (49)

where

x == cos rot, y == cos ~, (50)

1 fn . [ sinh Ncr]G(x,y) == -2 d8e- 1mB cosh Ncr + 1(8) . h '
1t -n SIn cr

H(x, y) == 2-
i

fn d8 e- imB sinh Ncr.
n -n

(51)

(52)
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cosh cr = cos Jl + J(8)

J(El) = L'i
cos 8 - cos 0)"[

L\ = M12 R sin 0)1

4y

(53)

(54)

(55)

Thus we have reduced our final expression for the displacement to a sum over initial
pulse displacements and angles and a single integral over 8. The result in Eq. (49) is
exact and serves as the starting point for analysis of the steady-state result, the single
pulse result and the approach to steady-state.

VI. STEADY-STATE SOLUTION

A steady state appropriate to a beam that is misaligned upon entryt to the accelerator
will be produced by setting all ~(O, M') = ~o, 11(0, M') == 110 for M' 2 ° and
evaluating the sum in Eq. (49) for M ~ 00. Using the expressions for G(x, y) and H(x, y)
in Eq. (B-13) and (B-14), the sum over m becomes the geometric series

00 e - mwr/2Q 1

mY;o um + 1 = U - e-wrj2Q'
(56)

convergent as long as lui> e- wr
/
2Q

. At the same time, we must have lui < 1 in order
that we pass inside the singularities in the integrand in Eq. (B-1), as discussed in
Appendix B. The resulting expression for ~(N, 00) is

. sinh Ncr
~(N, (0) = ~o cosh Ncr + (J~o + 110 SIn Jl) . h

SIn cr
(57)

where we have taken the residue at u == e -wr/2
Q

, since this is the only pole remaining
within the contour in Eqs. (B-13) and (B-14). Specifically we have

cosh cr = cos Jl + J

with J in Eq. (54) being written as

(58)

(59)

The result in Eqs. (57)-(59) can also be obtained from Eqs. (1) and (2) by
requiring ~(N, M), 8(N, M) to be independent of M as M ~ 00, and solving the

t The case in which the beam displacement and angle are periodically modulated can also be treated
analytically (see Appendix F).
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FIGURE 2 Relating transport phase advance per cell to rf parameter J.

resulting first order difference equations In ~(N) and 8(N) vs N by simple
diagonalization.

The result in Eq. (57) is exact, and indicates that the solution will either oscillate or
grow exponentially as N increases, depending on whether Icos ~ + JI is less than or
greater than 1.

Equations (58) and (59) show the intimate connection between the beam breakup
frequency, the pulse repetition frequency, and the focusing. Figure 2 shows a plot of J
vs ~ and indicates the region of stability, i.e., that region for which the steady state beam
displacement remains bounded as N ~ 00. Note that for ~ == 0 the sign of J is all
important; negative J is stable while positive J gives unstable solutions. This result
means that sin COT should be negative for stable steady-state displacements. A focusing
phase advance of nl2 per cell clearly gives maximum latitude in the value of J,
although, since IJI « 1in the usual case, a practical focusing system could have a much
lower phase advance per cell and still tolerate positive and negative J values.

The exponent corresponding to exponential growth is

e == Ncr == N In [cos ~ + J + (J2 + 2J cos ~ - sin 2 ~)1/2] (60)

In the absence of external focusing, ~ == 0 in Eq. (58), and we obtain exponential
growth with exponent

(61)

where the last form is valid for IJ I « 1.
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1T

61T
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fQ
- 31T

_ 2Q
1T

FIGURE 3 The resonance function p(u:rr), plotted for Q = 100.

The effect of resonance is contained in Eq. (59). Figure 3 contains a plot of

sin rot
p(rot) =------

. rot . rot
smh

2
4Q + sm

2

2

vs rot for large Q, with the resonant peaks occurring at

with peak values given by

2Q
IPmax I =-.

nn

(62)

(63a)

(63b)

The size of J is then the product of p(rot) and the small parameter M12 Rj8y.
The maximum growth of displacement with cavity number occurs then for

rot = 2n(1 ± Ij2Q), with the growth exponent [cf. Eq. (61)J being given, for IJ/ « 1,
by

(
M Ne2Z T 2

)1/2
N 12 p l-

eo = .
ymoC

(64)
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VII. SOLUTION FOR A SINGLE PULSE
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Further analysis will be carried out for the case where 11(0, M) == 0, and where there is
no external transverse focusing, so that

y == cos ~ == 1 and M12 == ~ sin ~ == L,

where L is the center-to-center separation of adjacent cavities. We then have from
Eqs. (49) and (51)

where

~(N, M) e-Mon/2Q fn .. ( J(e).)
. == de e-

lMO cosh Ncr + -.-- stnh Ncr ,
~o 21'[ - n stnh cr

cosh cr == 1 + J,

(65)

(66)

and where we have set ~(o, 0) == ~o, and ~(o, M) == 0 for M > O. We will assume, and
later confirm, that for the parameters of interest, IJI « 1, in which case we can write

and obtain

~(N M) e-Mwr/2Q fn . (eNJD + e-N.JIT).
~ '~ dee- lMo

~o 21'[ -n 2

(67)

(68)

A saddle-point calculation carried out in Appendix D leads to the result given in
Eqs. (D-7) and (D-8), namely

~(N,M) ~ ft e-MroT/2Q-iMroT+3E/2 + complex conjugate (69)
~o 2M~

where

(70)

Equation (69) contains the behavior for large values of M and N of the amplitude of
pulse number M at cavity number N for a single initially offset pulse (pulse number 0).
If N is fixed, the amplitude reaches a maximum where the real part of the exponent,

Moot 3)3 (M12 R)1/3. 2/3 1/3---+-- -- N M
2Q 4 y

(71)
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reaches a maximum. This maximum occurs att

= 3..
3

/
4

(R)3/2 (MI2 R)1/2
Mmax N 23/ 2 '

CO'! Y

in which case

I>: I (4) 1/4 ( CO't ) 1/2~ ~ _ eMrnaxWt/Q.

~o 3 6nMmax Q

(72)

(73)

Using M max = 1042 for the parameters of Fig. 1d, Eq. (73) predicts a ratio of 147,
which is to be compared with the ratio of 128 obtained in the simulation.

VIII. APPROACH TO STEADY STATE

The approach to steady state can now be worked out quite readily. If we set all
~(O, M') = ~o, 11(0, M') = l1o(for M' ~ 0), we can write Eq. (49) as

00

~(N, M) - ~(N, (0) = - L e-mwt/2Q [~oG(x, y) + sin Jl11o H (x, y)J. (74)
m==M+l

The sum over m is therefore modified from Eq. (56) to

00

L
m==M+l

e -mwt/2Q

um + 1

e -(M+ 1)wt/2Q

U M + 1 u - e- wt/2Q ·
(75)

It can be seen from Eq. (65), withu = eiO that the M dependence for the case of the
single pulse is contained only in the factor.

e-MWt/2Q

uM

Equation (75) therefore suggests that we multiply the integrand in our single pulse
expression by

K= (76)

t The value of M at which ~ reaches a maximum will be shifted because the nonexponential terms in
Eg. (69) also contain M dependence. Furthermore, the result in Eg. (69) is only the first term in an asymptotic
series in inverse powers of M. The order of magnitude of the shift can be estimated from the M - 5/6 behavior
of the external factor in Eg. (69). It leads to a predicted shift of the form

- . 5Q
M max ::::: M max --

20Yt
(72a)

where M max is given in Eg. (72). The original value of M max is to be used in Eg. (73). For the param
eters appropriate to Fig. Id, Mmax = 1042, 5Q/2u)'t = 216, and Mmax = 826. The simulation in Fig. 1d
shows that the maximum amplitude is reached for M = 810.
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which is independent of M and N. Since our single pulse result comes from a saddle
point calculation, the result for ~(N, M) - ~(N, (0) can be obtained from the single
pulse result in Eq. (D-7) by multiplying by the value of K in Eq. (76) evaluated at the
saddle given by Eq. (D-4), where

(77)

We therefore find,. for the parameters used in the preceding section

c,(N, M) - c,(N, 00) ~ KjE e-Mror/2Q-iMror+3E/2 + complex conjugate (78)

~o 2M~

Equation (78) indicates that ~(N, M) oscillates rapidly and symmetrically around
~(N, (0), with the amplitude of oscillation reaching a maximum at M max given in
Eq. (72), whose value is

1c,(N, M) - c,(N, oo)lmax ~ IKI (~)1/4 ( ffi't )1/2 eMrnaxror/Q. (79)
~o 3 6nMmax Q

Once again our result is enhanced by resonant behavior. Specifically

1 ( ffi't CO't) - 1/2IKI ~ - sinh2
- + sin2

-
2 4Q 2 '

reaching a maximum value

QIKlmax ~nn

(80)

(81)

(82)

for ffi't = 2nn. The resonant width is again of order 1/2Q compared with the resonant
frequency.

IX. ACCELERATING AND DECELERATING BEAMS

The exact analytic solution of Eqs. (18) and (19) for y and/or the matrix elements Mij
varying with N is beyond the scope of this work. Nevertheless it is possible to determine
the generalization of the exponential growth behavior for the steady-state solution in
Eq. (57) and for the single pulse behavior in Eq. (69) from consideration of the
differential equation equivalent to Eqs. (18) and (19).

The generalization of the steady-state exponent N (J in Eq. (57) is clear; by analogy
with the WKB solution of a differential equation with slowly varying parameters, it is

es.s. = Ncr -4 fcr dN

where (J is given in Eqs. (58) and (59), allowing for variation of y and Mij with N. For
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example, for Jl == 0 and J « 1, we find

es.s. == fa-dN ~ fJ2l dN == f( sinco't )1/2(MI2R)1/2 dN.
. h2 O)'t . 2 CO't 4y

SIn - + SIn -
4Q 2

(83)

Here it is possible to take into account arbitrary dependence of y, M 12 (separation
between cavities), R, and Q on N.

The generalization of the single-pulse exponent in Eq. (69) is somewhat more
complicated, and is presented in Appendix E. The final result, given in Eqs. (E-14) and
(E-15) for Jl ~ O,o)'t « 1, is that Eqs. (69) and (70) are valid, provided

(
M R )1/3_1_2_ N2M

Y

in Eq. (70) is replaced by

[ f(
M R)1/2 .oJ2/3M 1/ 3 _1_2_ dN .

Y

This replacement also applies to Eq. (72) which now becomes

== 3
3/4 (R)3/2[f(MI2 R)1/2 JMmax 23/2 . dN .

CO't . Y

(84a)

(84b)

(85)

For the case of constant M12 and R, and y depending linearly on N, one can show that
the replacement in Eq. (84b) is equivalent to

(M12~N2MY/3 -+ (M12 RN2M)1/2 (~ ; ~) -2/3. (86)

Thus y in Eq. (70) is to be replaced by the square of the average value of y1 /2.

x. COMPARISON WITH EARLIER WORK

The beam-breakup phenomenon can be characterized by three regimes, which can be
identified in Fig. 1. The first regime is characterized by an exponential increase of
bunch displacement with bunch number (i.e., time). The second regime is that at which
the displacement is maximum, while the third regime is the steady-state regime.

In the exponential-growth regime, the solutions Eqs. (69) and (78) are dominated by
the 3E/2 term in the exponential. In the notation of Ref. 4, the growth exponent
Fe == 3E/2. Comparison with Ref. 4 is facilitated by making the substitutions (for no
focusing) M12 == L, NL == z, (Z.lT 2/Q) == (2n/A)2R.l/Q, Npe/'t == 1o, M't == t,
ymoc2 == eVo, all of which leads to the exponent for a coasting beam

(87)
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From Eq. (86) we deduce that for an accelerating beam with constant accelerating
gradient V', the parameter Va in Eq. (87) should be replaced by V'z/4 when the particle
energy at z is much greater than the initial energy. Thus for an accelerating beam

33
/
2 (Z1 ctn 2R )1/3F(t) - _ a 1.

e - 2 LV''A 2Q ' (88)

which is identical to the result of Ref. 4, as quoted in Ref. 7.
The maximum steady-state displacement arising from an initially modulated beam

has a growth exponent given by Eq. (F-I0), which can be rewritten for a coasting beam
with no focusing as

For an accelerating beam with energy much greater than the initial energy,

(
1 R

)

1/2
3/4 zn a 1.

Fe(cw) = 3 2LV''A

in agreement with Ref. 7.

XI. SUMMARY AND CONCLUSIONS

(89)

(90)

Starting with the difference equations for a coasting beam in the variables bunch
number M and cavity number N [Eqs. (18), (19)J, we have obtained an analytic
solution for the transverse displacement of bunch M at cavity N for arbitrary initial
displacement [Eq. (45)J. This solution, expressed as a sum over Gegenbauer poly
nomials, includes the effect of a bunched beam, and external focusing. We have also
obtained an integral representation for the solution [Eq. (49)J. If one takes the limit in
which M is a continuous variable, our results are in agreement with previous results for
a continuous beam.3

The steady-state solution is obtained [Eq. (51)J directly from the integral represen
tation, and the effect of a resonance between the transverse mode frequency and the
bunch frequency is evaluated [Eqs. (62) and (63)J and displayed (Fig. 3). Steady-state
results are also obtained for an incoming beam with periodically modulated
displacement and angle (Appendix F).

Approximate solutions are obtained in the absence of external focusing for the
transient for a single incoming displaced bunch [Eqs. (69), (72), (73)J, which can lead to
much larger displacements than for the steady state. The transient approach to the
steady state is also evaluated [Eq. (69)J and shown to be closely related to the behavior
for a 'Single displaced bunch. These results are then shown to be in close agreement with
numerical results obtained from a simulation using the difference equations [Eqs. (18)
and (19)J for parameters appropriate to the electron linac used at Los Alamos in the
free electron laser.

Finally, we show how to modify the results for an adiabatic change of energy
[Eqs. (85) and (86)J.
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APPENDIX A

Some useful relations for the Gegenbauer polynomials.

Generating Function

Integral Representation

00

L hNCNM(X), -1:::; x:::; 1, Ihl < 1
N=O

(A-I)

(A-2)

where the contour in the h plane encircles the pole at h == 0, and where Ihl < 1
everywhere on the contour. This equation can be obtained directly by multiplying
Eq. (A-I) by h- N

-
1 and integrating.

Series Expansions

Expansion of Eq. (A-2) in powers of x, and term-by-term integration leads to

N N-l

CNM(X) = 2'''L2
(M + N ~ r - 1)' (-1)' (2x)N-2r (A-3)

r=O (M - I)! (N - 2r)!r!

an expression useful for small values of x. On the other hand, expansion of Eq. (A-2) in
powers of 1 - x and term by term integration leads to

N N-l

C M X _ 21
-

2M 2'-2-(2M + N + r - 1)!r(t)(-IY (1 - x)r
N ( ) - (M - I)! r~ (N - r)!r(M + r + !) 2'

an expression useful for values of x near 1.

See for example Magnus, Oberhettinger and Soni, Section (5.3).

(A-4)
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Many recurrence relations can be derived forCNM(x) and dCNM(X)/dx. The only one
used in the present work comes from the identity

h a 1

2M ah (1 - 2hx + h2)M

1 - hx

Equating like powers of h after using the generating function Eq. (A-I) leads directly to

(A-6)

Sum Relation

We shall find it useful to evaluate the following sum.

U = L C~-r(X)C~-M(X),
all r

o < M < N. (A-7)

where only terms M :::; r :::; N will contribute. Using Eq. (A-2), one can write

where we have extended the sum over r from 0 to 00 for convenience. The sum over r
leads to

provided Ivl > lui. We then find

00 (u)r vL - =-
r=O V V - U

(A-9)

(A-I0)

The integral over v no longer has a singularity at v = 0, nor does it enclose the poles on
the unit circle. But it does enclose the first-order pole at v = u, since we have required
that lui < Ivl. The residue is readily evaluated to give

(A-II)

where the last expression follows directly from Eq. (A-2). Thus we have the sum relation

~ . () k '+k
~ Clv-r x Cr-M(x) = Clv-M(X)
r

(A-12)
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Special Values (M = 1)

Let us rewrite Eq. (A-2) in the form

(A-13)

The integrand has poles at h = 0, and h = e±i(J, but the contour only encloses the pole
at h = 0. However, since there is no singularity at h = 00, the boundary can be
distorted so that the result is the negative of the sum of the residues at h = e ± i(J. This
leads to

1 sin N8
CN- 1 (COS 8) = -.-8-'

SIn

which will be used in Appendix C.

Special Values (M = 0)

We can see directly from Eq. (A-2) that

(A-14)

(A-15)

This result also follows from the absence of all but the first term in the power series in h,
when m = °in Eq. (A-1). An alternate definition of CN

0 exists in the literature.

Special Values (x = 1)

If we put x = 1 in Eq. (A-1), the left side becomes (1 - h)-2M. From its expansion in
powers of h, one can show that

M (2M + N - 1)!
eN (1) = (2M _ 1)!N! .

Asymptotic Form for Small 8, Large N

It can be shown that

y = sin M 8 C~-M(COS 8)

satisfies the differential equation (see Ref. 6)

d
2
Y [2 M(M - 1)J

d82 + N - sin2 8 y = o.

For small values of 8, we can replace sin2 8 by 82
, obtaining

(A-16)

(A-17)

(A-18)
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d
2Y [2 M (M - I)J-

d8 2 + N - 8 2 y = 0,
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(A-19)

where we are neglecting terms of relative order M 2
/ N 2 which appear from the next

term in the expansion of sin 8 in powers of 8. Equation (A-19) is closely related to the
differential equation for the spherical Bessel function. Specifically

(A-20)

where A is to be determined by required agreement between Eqs. (A-I?) and (A-20) for
small 8. Using Eq. (A-16) and the known power series forjM-l(x) we can write

. M M (N + M - I)! ..
SIn 8CN - M (cos8) ~ (N _ M)!(M _ 1)!NM2M- 1 (N8)JM-l(N8) (A-21)

APPENDIX B

Let us use the integral representation in Eq. (A-2), in the alternate forms (the second
is obtained from the first by integrating by parts)

. I ~ du 2 .CJv-j(x) = -2. N+l_·(1 - 2ux + U )-J
'Ttl U J

I 2j l du(u - x)
= - 2rti· (N - j) J uN - j (1 - 2ux + U 2 )j+l< (B-1)

Here the path of integral in the complex plane is a circle around u = 0 which passes
inside the poles on the unit circle at u = x ± iJ1 - x 2

. We then can write for Eq. (45)

M

~(N, M) = L e-m(wr/2Q)[~(O, M - m)G(x, y) + sin Jlll(O, M - m)H(x, y)J. (B-2)
m=O

Here

where

x = cos 0)"[,

y = cos Jl,

1 ~ du I ~ dvG(x, y) = -2. ---;n+T -2· N+ 1 (1 - vy)K(u, v),
'Ttl u 'Ttl V

1 ~ du 1 ~ dvH(x, y) = -2. ---;n+T -2· N K(u, v),
'Ttl U 'Ttl V

(B-3)

(B-4)

(B-5)

(B-6)

K(u v) = 1 f [ 4~uv Jj
, 1 - 2vy + v2 j~O (1 - 2ux + u2 )(1 - 2vy + v2 )' (B-7)



148

and

R. L. GLUCKSTERN, R. K. COOPER, AND P. J. CHANNELL

~ = M12 R sin o)"r
4y . (B-8)

The sum overj can be performed (keeping lui and Ivl small compared with 1 at this point
to ensure convergence), to obtain

1
K(u, v) = 2 '

1 - 2vy + v - 2vJ(u)

where

2~u

J(u) = 1 2 2·- ux + u

Clearly K(u, v) has poles in the v plane located at

where

cosh cr(u) = y + J(u).

(B-9)

(B-10)

(B-11)

(B-12)

Since the contour in the v plane in Eqs. (B-5) and (B-6) only encloses the origin, and
since there is no pole at 00, the contour can be deformed to enclose the two poles in
Eqs. (B-9) instead, for which the residues are readily calculable. This leads to

1 t du [ J(U).]G(x, y) = -. -----=i=T cosh (N a(u)) + . h () smh (N a(u))
21tl urn SIn cr u

H(x, y) = -2~ tU:~l sinh (Na(u)).

If we now replace u by eiO we have

1 In . [ sinh Ncr]G(x,y) =-2 d8e- lrn8 coshNcr+J . h
1t -n SIn cr

H(x,y) = --2
i In d8e- irn8 sinh Ncr,
1t -n

where

~

J (8) = -co-s-e---c-o-s-(0-1

cosh cr(8) = J(8) + cos Jl,

(B-13)

(B-14)

(B-15)

(B-16)

(B-1?)

(B-18)
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and where the contour in the complex 8 plane must pass above the singularities at

149

8 = ±ro't, (B-19)

in order that lui remain inside the unit circle. Thus we have reduced our final expression
for the displacement to a sum over initial pulse displacements and angles and to a single
integral over 8.

APPENDIX C

The evaluation of Si can proceed as follows. The definition of Sk in Eq. (4) permits us to
write

Sk = e- k (w'C/2Q) sin kro't = e- k (w'C/2Q) sin ro't Cl- 1(cos ro't), (C-1)

where we have used the explicit form for Cl- 1 (cos ro't) in Eq. (A-14). From the matrix
form in Eq. (14) it is clear that

s = {Sp_q, p> q}.
pq 0, p :::; q

Since

(Si)MM' = L sM-asa-pSp-y··· S{)-M',
a,p,y, ...

we can use Eq. (C-l) to write

(S i) - -(M-M')w'C/2Q . i ~ C 1 C 1 C 1 ... C 1
MM' - e SIn ro't LJ M-a-1 a-p-1 p-y-1 {)-M' -1'

a,{3,y

Repeated application of Eq. (A-12) then gives

APPENDIX D

(C-2)

(C-3)

(C-4)

(C-5)

In order to proceed from Eq. (68) we shall evaluate ~(N,M) for large M, N by using a
saddle-point calculation. It is clear that only eN.JD has the potential to give a large
contribution to the integral over 8. For the exponent

f(8) = - iM8 + N )2J(8)

the three saddle points occur where

(D-l)

df . N dJ . N sin 8(2J)3/2
de = 0 = - zM + j2J de = - zM + 4L1 (0-2)

!2i = (4MLl )1/3 (e+ rci /6 e+ 5rci/6 e+ 3rci/ 2 ) (D-3)
V £..Js N sin 8 ' ,
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Clearly, the only saddle point of importance among the three identified in Eq. (D-3)
is that for which Re f(8 s) has the largest value. For the parameters of interest, L1 «
IJsl « 1, enabling us to write for Eq. (54)

L1
cos 8s - cos o)'! == -,

Js

and for Eq. (D-3)

L1
8s ~ COt - ---

Js sin COt
(D-4)

Using Eq. (D-4), we find

(D-5)

(D-6)

Thus we obtain a contribution in Eq. (68) for the first of the three values of f(8s ) in
Eq. (D-6), which is the one having the largest real part. Specifically, we find

where

~(N,M) !£
~ v D e-Mwr/2Q-iMwr+3E/2 + complex conjugate,

~o 2M~

(
4L1N

2
M)1/3 ./6 (M12 R 2 )1/3 ·/6E ==. em == -- N M em

SIn COt Y

(D-7)

(D-8)

The second term in Eq. (D-7) comes from the additional saddle points resulting from
changing 8s to - 8s in Eq. (D-4).

APPENDIX E

The generalization of the single-pulse exponent in Eq. (69) is somewhat more
complicated. Starting with Eqs. (16) and (17), and allowing Mij and R to have N
dependence, one can eliminate 8M

N to obtain

>: N+1 _ (MN + M~2YN MN-1) r- N + M~2YN r- N-l
'-:>M 11 M N - 1 22 '-:>M M N - 1 '-:>M

12 YN+1 12 YN+1

M N R M-1
_ 12 N ~ >: N
- i...J SM-l'-:>l .

YN+1 l=O

For small ~,M11 == M 22 == 1, and the left side of Eq. (82) can be written as

(E-l)
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which is equivalent to the differential operator

M12 a(y a~)---- ---
y aN M12 aN .

Thus Eq. (E-1) is approximately equivalent to the differential equation

151

(E-3)

(E-4)

If we now replace ~ by the complex function wsuch that ~ == (w + w*)/2 and write Sk in
Eq. (11) as i(rk - rk *)/2, where

(E-5)

we obtain

(E-6)

At this point we will assume that the primary dependence of W M
N on M is that of the

first term of Eq. (69), namely

(E-7)

Neglecting terms in Eq. (E-6) with rapidly oscillating phase permits us to write

which becomes, by virtue of Eq. (E-7)

~ ( ~ N) OR M 1_u y_~ ~~ f ZN

aN M12 aN - 2 1=0 l'

In analogy with Eq. (70), we shall now assume that ZM
N is of the form

N ~ f(N)Ml/3
ZM - e

(E-8)

(E-9)

(E-IO)

for large M, and convert the sum in Eq. (E-9) into an integral over x == 1 - (//M). The
dominant terms in Eq. (E-9) then become

_y_ M 2/3(0/ )2 ef (N)Ml/3 ~ iRNM II dxe f (N)Ml/3(1-x)1/3.

M 12 aN 2 0
(E-ll)
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Assuming that the primary contribution to the integral for large M comes from small x,
we can expand the right side of Eq. (E-ll) in powers of x, to obtain

(E-12)

where the M dependence has dropped out as expected. Equation (E-12) can clearly be
integrated to obtain

3 [f(M R)1/2 J2/3f(N) ~ 2. e1ti
/
6 ~ dN . (E-13)

Our final result for the exponent in the first term of Eq. (69), for a single pulse, is
therefore

Mffi! 3. [f(MI2 R)1/
2 J2/3e ~ - -- - iMffi! + - e1tl16 M 1

/
3 -- dN .

s.p. 2Q 2 y (E-14)

Note that Eq. (E-14) agrees with Eq. (69) for M12Rjy independent of N. Equation
(E-14) therefore suggests the replacement

(
M R )1/3 [f(M R)1/2 J2/3_1_2_ N2M ~ M1/3 _1_2_ dN

Y . Y
(E-15)

in Eq. (70) when y, M12 , R have N dependence. For the case of constant M12 and R, and
y depending linearly on N, one can show that the replacement in Eq. (E-15) is
equivalent to

(M12~N2MY/3 -4 (M
12

RN2M)1/3 (J{; ; ~) -2/3.

Thus y in Eq. (70) is to be replaced by the square of the average value of y1 /2.

APPENDIX F

Steady-State Solution for Modulated Displacement

(E-16)

It is also possible to obtain an analytic steady-state solution for a beam with
modulated displacement and angle. Specifically, if we start with Eq. (49) and set

~(o, I) == Re(~o eiliin
) ,

11(0, I) == Re(fioei1wr
),

we can rewrite Eq. (49) in the form

(F-l)
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Here ~o and 110 are complex, allowing for the phase of the modulations which are at
frequency ro/2n.

Equation (F-2) represents a solution where ~(N, CIJ) is modulated at frequency ro/2TC
with a steady-state amplitude given by

(F-4)

Clearly 8 can be obtained from the steady-state solution in Eq. (57) by replacing ro/2Q
by ro/2Q + iro and taking the absolute value. Thus

1

- -- sinh Ncr 1
8 = ~ocoshNcr + (J~o + 110sinJl) . h - ,

SIn cr

where

cosh cr = cos Jl + J
- M 12 R
J =~ p(un, rot) (F-5)

and

(F-6)
sIn 0)1

p(ro1, ro1) = [( _) . ] [( _) . J'. ro - ro l roT . ro + ro l ro1
sIn -2- 1 + 4Q sIn -2- 1 - 4Q

If cr has a positive real part, we obtain exponential growth with the exponent

eo = NRecr ~ NRe(2J)1/2, (F-7)

where the last form is valid for J.l = 0 and IJI « 1. In this limit equation (F-6) exhibits
resonant behavior for

rot = (21 + 1)1t ± (rot - 2~ - 1t)' 1 = 0, 1, 2, . .. . (F-8)

with resonant value

(F-9)

This is to be compared with Eq. (63b) and is clearly the same order of magnitude unless
ro1 is small compared with 2TC. For IJI « 1, one finally obtains

(

- ) t"o.I (3}3 M 12 RQ)1/2
eo max - N 8 .

y0)1
(F-10)




