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We propose a lumped-parameter equivalent circuit for a TM,, multicell standing-wave accelerating
structure with full end cells. With the suggested model, we can compute the amount of end-cell frequency
compensation needed to achieve field flatness in the highest mode of the structure. We also show that the
same compensation works as well for structures with beam tubes, provided its length is at least twice its
radius. An application to a five-cell superconducting structure is reported.

1. INTRODUCTION

A multicell TM,, structure is often operated in the highest TM,,; band-pass resonant
mode, which is the most efficient one for accelerating devices since it has the highest
shunt impedance.! But, if all the cells of the structure are equal to each other, field
flatness cannot be obtained in this mode in a real accelerating structure with beam
tubes in the end cells. That is to say, we cannot achieve equal peak intensity of the axial
electric field in each cell. Now if we can get field flatness by slight geometrical
corrections of some cells, several advantages follow: a) efficiency is still improved by a
higher shunt impedance; b) peak surface fields are lowered, thus increasing the
accelerating field achievable in superconducting structures before electron loading or
superconductivity breakdown takes place, and c) field asymmetry in cavities, which
may cause multipacting,? is reduced.

In the present paper, which extends a previous internal report,® we develop a method
to compute the end-cell correction needed to compensate unflatness in the highest
TM,, mode of a multicell structure. The amount of correction can be calculated
knowing only the 0 and n mode frequencies of a single cell of the structure, which are
readily found by using computer codes like LALA or SUPERFISH.*® The aforesaid
method is founded on a model which coincides with that proposed by E. Haebel and
J. Tuckmantel® for tuning of multicell structures.

t Work supported in part by CERN.
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2. EQUIVALENT CIRCUIT

Many papers’ !° deal with lumped-constant equivalent circuits for multicell
structure, but only a few ***° report about models with full end cells; most of the authors
in fact treat only the problem of a structure with half end cells. Those papers in which a
model for structures with full end cells is reported are, in our opinion, unsatisfactory
since the solution of the model equations is carried out only for one type of boundary
conditions at the irises of the end cells.

The model shown in Fig. 1, corresponding to the lumped circuit of a TM
waveguide,'! is suggested by us as an equivalent circuit of a structure with an infinite
number of equal cells coupled through the E-field, each cell being represented by an LC
resonator and the coupling by a capacitor Cg. Taking the Fourier transform of the
differential equation for the m-th resonator, we get
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from which we obtain the dispersion relation of this infinite structure model as
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where @ is the phase shift of the current between contiguous resonators.

Now let us consider a section of N coupled resonators of the infinite chain in the
proposed model (Fig. 1, resonators from 1 to N). This section can be regarded as
independent from the rest of the chain provided there is no coupling between
resonators 0, 1 and resonators N, N + 1. With this assumption, we will find the normal
modes frequencies of the above-mentioned section.

Assuming no coupling between resonators 0 and 1, only the following relations
connecting together the currents iy and i, are allowed

(a) io = Iy 3)
(b) ip = —i (4)

The equation for i; becomes
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FIGURE 1 Lumped-constant model of an infinite structure.
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by condition (4).

A similar argument holds at the other end of the section.
Thus the linear algebraic system solving the problem of finding normal modes with
conditions like (3) at both ends is

r
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whereas for conditions like (4) we have
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These linear systems, written in matrix form, become respectively
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where
Ck 5

a=2+?—mLC,(=ZCos<D (11)

Thus we have reduced the problem to one of computing the eigenvalues of a matrix.
By solving the characteristic equations, we obtain the roots corresponding to the
phase shift per resonator

K -1
D = N " K=1,...,N (12)
from (9) and
K
<I)=N7t K=1,...,N (13)
from (10).

The eigenvector belonging to an eigenvalue is the resonator current in the
corresponding mode.

With the lowest eigenvalue of (9), we find equal currents in all the resonators, whilst
with the highest eigenvalue of (10), we find currents of equal intensity but with sign
changing from one resonator to the next.

Our results (12) agree with those obtained by W. Bauer'® using a different model but
with conditions equivalent to (3).

For the sake of completeness, by imposing the conditions

g = i o1 = INs1s (14)

we fit our model to a structure with an electric mirror in the centers of the first and last
cells in a way similar to that proposed by Bauer for his model. The corresponding
system is

a/2 -1 0 O : : : : iy

-1 a -1 0 : : : iz

0 -1 o -1 -0 (15)
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The eigenvalues found by solving the characteristic equation correspond to the
modes with phase shift per resonator

K -1

b =
N -1

n K=1,...,N (16)

3. FIELD DISTRIBUTION IN THE CELLS OF THE STRUCTURE

The solution of the eigenvalue problem for the lumped-constant equivalent circuit also
gives some useful information on the field distribution in the structure.

In fact the eigenvector giving, as already mentioned, the resonator currents in the
model, also gives the relative amplitude of the electric field in the different cells of the
structure. Thus, starting from a given multicell structure and its boundary conditions, it
is possible to predict the field unflatness in the different modes and the amount of
correction required to achieve the goal of field flatness in the highest mode. In the
following example, we restrict ourselves to deal with a 3-cell structure.

If we impose electric-mirror conditions at the irises of the end cells (corresponding
for the lumped model to conditions like (3)) we get in the highest mode of the structure
(the 2n/3 mode) the eigenvector (1, —2, 1). Thus, in the 21/3 mode, the intensity of the
electric field in the central cell of the structure is twice that in any end cell.

If we impose in the lumped model conditions like (4) (i.e. magnetic mirror at the irises
of the end cells of the structure), we get in the highest mode of the structure (the T mode)
a thoroughly flat field distribution, the eigenvector being (1, — 1, 1).

4. END CELLS COMPENSATION OF A STRUCTURE WITH FULL
END CELLS TERMINATED BY METAL PLATES

We now discuss a method to achieve field flatness in a finite multicell standing-wave
structure with full end cells terminated by metal plates. Such a structure, of course,
cannot be used as an accelerating device; nevertheless the method of compensation
developed for it will turn out to work also for structures with beam tubes; as we propose
to show in section 5.

In a finite multicell standing-wave structure, magnetic mirror boundary conditions
on the irises of the end cells are not allowed and it is only possible to have electric-
mirror conditions when the first and last irises are closed by metal plates.

For this reason, if all the cells of the structure are identical, it is impossible to achieve
field flatness in the highest mode. A certain amount of compensation is needed in the
structure to achieve the goal of a field with equal amplitude in each cell. The way to
compute this amount of compensation is straightforward and comes out by inspection
of the lumped-constant models of the conditions (3) and (4) shown in Fig. 2.

To establish the correctness of these models, we observe that the condition (3) is
equivalent to replace the coupling capacitor Ck between the 0 and 1 resonators of the
infinite chain (see Fig. 1) by a short-circuit, while the condition (4) is equivalent to
splitting the capacitor in two equal parts between the two contiguous resonators taking
into account, for the 1 resonator, the i; current only. We also remark that the difference
between the models for the boundary conditions is only the C/2 capacitor.

Now if in a multicell structure the end cells are modified in such a way that they have
the slightly different resonant frequency resulting by adding in the model a Cy/2 series
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FIGURE 2 Lumped-constant model of: (a) condition (3); (b) condition (4).

capacitor in each end resonator, the field flatness needed can be achieved. As a matter
of fact, for a multicell structure with electric-mirror boundary conditions at the end
cells, but with the end-cell compensation explained above, the model is identical to the
one for the same structure with magnetic-mirror boundary conditions and no end-cell
compensation.

Thus we get, of course, the same equations and the same solutions for both cases and
so, in the highest mode of the compensated structure, we have the required field
flatness.

Given a multicell structure, the values of L, C and Cy in the corresponding model are
not known and, for compensating the end cells, some computations are needed to
express them as a function of the known parameters of the structure.

From the dispersion relation (2) we get

4
_ 2 . 17
O‘)n 0“)O LCK’ ( )
the coupling coefficient K (or fractional bandwidth) is by definition
K=2 ©Or = @0 (18)
®, + O

From Egs. (17) and (18) it is straightforward to obtain, by some amount of algebra, the
ratio C/Cy as a function of K. In fact for coupling coefficients of a few percent, we can
approximate o, by ®, and write

®,2 — > 0.2 — m,°
K = 2 Ll 0 >~ 2 L 0 N 19
0, 07 =7 4oy’ (1)
now substituting (17) and
5 1
0 =— (20)
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(again obtained from Eq. (2)) in Eq. (19), we find

4
K ~ 2 LGk 1)
4
LC
from which
C K
— ~ 22
c. 2 (22)

We can now compute the frequency of the compensated cell. By inspection of the
model, the new frequency of the first cell must be

1 1 1 2C
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where

Wy = 75 = O (25)

is the frequency of the uncompensated cell. This result again agrees with the
corresponding one reported by Bauer.'?

It should be noted that Eq. (24) expresses the frequency-correction factor for the end
cell only in terms of the fractional bandwidth of the corresponding infinite structure, which
can be easily calculated by a simulation code for resonant cavity like LALA* or
SUPERFISH.? To compute K, we must substitute in (18) the 0 mode and n mode
frequencies of the infinite structure as obtained by simulating a single cell of the
structure with Neumann and Dirichelet boundary conditions, respectively, on the iris
planes.

Incidentally, we remark that also the dispersion relation (2) can be rewritten in terms
of these same frequencies as

1
We? = ®y2 + E((n,t2 — ®p2) (1 — cos @) (26)

and used, together with (12) and (13), for calculating the resonant frequencies of a finite
structure.
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TABLE I

Highest mode resonant frequencies of some three-cell structures obtained by (a) the proposed model
and (b) numerical simulation

lumped-constant model LALAGE

frequency® currents frequency
(MHz) (MHz)
Uncompensated with electric mirror 4242.86 (1, =2,1) 4249.42
Uncompensated with magnetic mirror 4260.69 (1, -11) 425747
Compensated with electric mirror 4260.69 (1, =1,1) 4259.00

2 From (26) with wy? = 6.9273 102° sec™2 and 0,% = 7.1667 102° sec~ 2 obtained by LALAGE in single-
cell simulation.

To check the predictions relying upon our simple model, we used the LALAGE
code!?13 to compute the highest-mode field distribution and resonant frequency of a
three-cell TM,, structure. The boundary conditions at the irises of the end cells were
Neumann conditions, or electric mirror, corresponding in the lumped-constant model
to conditions like (3).

The frequency so obtained agrees within 0.1% with the 2n/3 mode frequency
calculated from the dispersion relation (26) (see Table I). Moreover from Fig. 3,

A
|E l N
z N
/N
! \
j \ A uncompensated magnetic
] : mirror
i \ O uncompensated electric
H \ mirror
! i (=] compensated electric

mirror

FIGURE 3 Highest mode electric field on axis (absolute value) for some three-cell structures terminated by
metal plates as computed by LALAGE.



FLATNESS IN MULTICELL STRUCTURES 193

showing the electric field distribution as computed by the LALAGE code, and Table I it
can be seen that the peak fields in the different cells are in the same ratio as the 2m/3
mode currents in corresponding resonators of the lumped-parameter equivalent circuit
(see also section 3).

Next equations (18) and (24) were used for calculating the amount of compensation
needed to achieve the field flatness in the highest mode; we found that the end cells
of the structure must be 0.86% higher in frequency than the central cell. This
compensation leads to a 0.24-mm reduction of the end-cell radius, from Ar/r ~ Aw/o.

To simulate a compensated structure with the same boundary conditions as above,
we again ran the LALAGE program, obtaining a 4259-MHz highest-mode resonant
frequency and a field distribution, by inspection of which it can be readily seen that the
goal of field flatness is achieved (see Fig. 3).

As a last check, we again simulated the uncompensated structure but with magnetic-
mirror boundary conditions at the irises; we obtained, as expected, a thoroughly flat
field distribution and a resonant frequency in good agreement with: (a) the one
previously found for the compensated structure and (b) the mode frequency computed
from (26) (see Fig. 3 and Table I).

These results confirm the accuracy of our assumptions for the end-cell compensation
of a structure terminated by metal plates in the highest mode of the TM, band-pass.

5. END-CELL COMPENSATION OF AN ACCELERATING
STRUCTURE WITH BEAM TUBES

In a real standing-wave accelerating structure, the situation of an end cell does not
correspond to either conditions (3) or (4) since it is perturbed by a tube, starting at the
iris plane, for beam injection or extraction. We can simulate this beam tube in the
lumped-constant model by a shunt capacitor of unknown value Cjy (see Fig. 4) such
that

925 < Cp < 0, 27)

the lowest value being used when the beam tube has zero length and the infinite value
when the tube has infinite length. This assumption is reasonable in our opinion, since
when the tube has zero length the lines of the electric field end on the iris with a field
layout very similar to the magnetic-mirror boundary conditions and when the tube has
infinite length, they intersect the iris plane almost perpendicularly as when electric-
mirror boundary conditions are imposed. Indeed the suggested model for end cells with
beam tubes leads to resonant frequencies of the whole structure that lie between the

L C L c
T ‘e T ¥ g{f‘"

FIGURE 4 Lumped-constant model of an end cell with beam tube.
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extreme values ®, and ®,. In particular, when

Cx
=—— 28
CB 2 5 ( )
the highest mode frequency is equal to @, and when
Cp = o, 29

the lowest frequency is equal to .

But when dealing with a practical superconducting structure, the beam tubes must
be long enough to prevent excessive power loss in their normal sections. Now, since a
beam tube is a circular waveguide operated below the cutoff frequency, the ratio
between its length d and its radius a must be about 3 to obtain a 60-db attenuation
(a reasonable one).

Our measurements and computer simulations show that already for lower ratios d/a,
the electric-field distributions agree fairly well with those of an identical structure with
beam tubes replaced by metal plates closing the irises. In Figs. 5 and 6, we show as an
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FIGURE 5 Computed axial electric field (absolute value) in a three-cell structure with beam tubes
(d/a = 2.25) and with metal disk: (a) 0 mode, (b) /3 mode, (c) 2n/3 mode (for the graphs concerning the
metal disk case the |E,| axis is reversed).
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A O mode
® /43 mode
m 2o mode

Fig.6
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FIGURE 6 Measured axial electric field (absolute value) in a three-cell structure with beam tubes
(d/a = 2.25):0, /3, 2rn/3 modes.

example these results for the same three-cell structure as in section 4 but with beam
tubes (d/a = 2.25). In consideration of all the above, the approximation Cz; = o0 is a
good one for a practical superconducting structure. Thence the theory of the previous
section approximately holds and can still be used.

Thisis shown in a particular case by Fig. 7, which shows the electric-field distribution
obtained by computer simulation of our three-cell structure with beam tubes
compensated following the method of section 4.

It is not worthwhile to look for a better approximation of Cg, since in most cases the
residual unflatness after compensation is not worse in structures with beam tubes than
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FIGURE 7 Computed axial electric field (absolute value) in the highest mode of a compensated three-cell
structure with beam tubes (d/a = 2.25).

it is in structures terminated by metal plates and is comparable with the accuracy of
LALAGE code.?

Since the working frequency of a practical structure may range from a few hundreds
of megahertz (storage rings) to a few gigahertz (linacs) with a coupling coefficient of a
few percent, the correction to the end cells range from a few tenths of millimeters to a
few millimeters. The lower limit of this range is just the mechanical tolerance
achievable by forming a niobium sheet against a die and then electron-beam welding
together the resulting half cells, which is the standard procedure for superconducting
structures. Thus it is worthwhile to use different cavities for end cells only for low-
frequency structures. On the contrary, when dealing with higher-frequency structures it
is better to make equal cells and carry out the compensation as a part of the tuning of
the structure.

6. A PRACTICAL APPLICATION

The method developed in previous section has been successfully tested on a 4.5-GHz
five-cell superconducting structure designed by us to be used as an accelerating device
suitable for electrons of ultra-relativistic energy. Details on the design procedure of its
elementary cell together with final shape and size can be found in a previous paper.!*

Since computations by our method gave a 0.65% frequency compensation
achievable by a 0.19-mm radius variation, we decided to build the structure with five
equal cavities and to carry out compensation, together with tuning, by selective etching
of the cells. Building of beam tubes was such that d/a = 3.76. Measurements on the
uncompensated structure performed at room temperature by perturbation methed!?
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FIGURE 8 Measured axial electric field (absolute value) in the highest mode of the five-cell structure of

Ref. 14 uncompensated.

€|

Z[em]

Fig.9

FIGURE 9 Measured axial electric field (absolute value) in the highest mode of the five-cell structure of

Ref. 14 compensated.
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TABLE II
Frequency corrections applied to each cell of the structure of Ref. 14 to obtain field flatness

Cell Total Predicted Residual
number correction® correction correction
Afif - Aflf = Afrlf
1 -3. % 0. -3.%

2 —6.5% —6.5% 0.
3 —8.5% —6.5% -2.%
4 -9. % —6.5% —2.5%

5 0. 0. 0.

LAY + Afs + Afy,  Af; + A
’Noticethat;( L 3f3 ‘£ 5 f2) _ —6.5%

gave the axial electric field distribution shown in Fig. 8. From the peak intensities of the
axial field we got, by a tuning method,'® the total frequency corrections required for
field flatness. After these corrections were made by individual etching of each cell, we
again measured the axial electric field; the results are shown in Fig. 9 from which it can
be seen that field flatness in the highest mode is achieved.

From Table II, showing the total corrections made to each cell, we can see that the
difference between the average correction to the three central cells and the average
correction to the two end cells is just the compensation which follows from our method.
Moreover, if we subtract from the total corrections those predicted by the model the
residual corrections can be explained, as expected, by fabrication tolerances, since a
radius variation of 0.1 mm in our cavities causes a relative frequency shift of about

3.4%.
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