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It is shown that with the assumption of zero chromaticity, zero dispersion and symmetry between x and y, head
on collisions of bunched beams produce a beam-beam interaction that can be reduced to a one-dimensional
weak-strong interaction. The KAM theorem ensures that for small values of the strong beam, the motion is bounded
by stable trajectories. There can therefore be no Arnol'd diffusion in these circumstances.

I. INTRODUCTION

It is often stated 1 that a non-autonomous system
with two degrees of freedom is affected by
Arnol'd diffusion, an instability arising from in
tersection of nonlinear resonances in four-di
mensional phase space. The purpose of this paper
is to show that under certain assumptions, the
system admits an integral of the motion, a can
onical angular momentum Pe. It is therefore pos
sible to eliminate e as an ignorable coordinate
and reduce the number of degrees of freedom to
one. The KAM theorem2 then ensures that for
small values of the beam-beam perturbation the
motion is bounded by stable trajectories and does
not exhibit Arnol'd diffusion.

II. ASSUMPTIONS

We shall consider here only the so-called
"weak-strong" case where a test particle in a
~ ~weak" beam crosses periodically a ~ ~ strong"
beam. The motion of the particles in the strong
beam is not affected by the presence of the weak
beam; therefore their charge distribution can be
assumed to be constant in time.

The equations of motion of a test particle in
the weak beam are3

(1)
y" + Ky(s)y = ~yFy(x, y)op(s),

where x and yare the displacements of the par
ticle motion from a reference orbit (x, y = 0), K x
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and Ky are the lattice focusing functions and ~xFx,

~yFy represent the interaction with the strong
beam, with op a periodic delta-function of period
C.

Equations (1) describe the motion of a particle,
for instance in the proton-antiproton colliding
beam system at Fermilab,4 if the following pre
cautions are taken:

(i) The two unperturbed betatron tunes Vx and
V y do not depend on the particle momentum. This
requires chromaticity cancellation in both planes
over a reasonable momentum range.

(ii) The lattice parameters at the cross point
(a*, B*, ~*) do not depend on the particle mo
mentum, again over some appreciable range.
This might require even higher order corrections
than those required to flatten the chromaticity.

(iii) The dispersion at the crossing point van
ishes over the same momentum range. No con
dition, though is required on the derivative of the
dispersion.

(iv) Both beams are bunched but the interac
tion is exactly head-on.

(v) The bunch length in the strong beam is
small compared with B*. In this case it is possible
to represent the interaction by a lumped kick.
That is the interaction has infinitesimally small
duration which justifies the periodic delta func
tion on the right-hand side of Eqs. (1).

With these assumptions, which are not too dif
ficult to meet in practice, the interaction between
the two beams is independent of the particle mo
mentum and therefore of the phase oscillations.
In this case one only requires the integration of
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III. THE THEOREM

If the following conditions

V x = V y and cxx* = cxy* (2)

are satisfied, then there exists an infinite variety
of strong-beam charge distributions for which the
equations of motion (1) admit at least one integral
of motion.

Proof: The interaction force can be derived
from a potential function

X' n = - ~13~* {ax*cos(nJ-Lx + 8x) (7)

+ sin(nf.Lx + 8x)}

(x, X'; Y, y') ~ (r, pr,o 8, Pe), (8)

with

x = Vr~x* cos 8 and y == Vr~y* sin e (9)

The generating function for this transformation
is

and similarly for Yn and Yn'. In Eqs. (7), Ex and
8x are constants of motion. The first, Ex, measures
the amplitude of the motion. We carry out the
variable transformation

tically between crossings. In the limit ~x = ~y

= 0 the position and angle of the test particle
after the n-th crossing are given by

Xn = VEx~x* cos(nf.Lx + 8x)

av
ax~Fx(x, y) =

the system of Eqs. (1) to calculate the motion of
a test particle in the weak beam.

Our approach is static. That is, we are neglect
ing all sources of noise that would cause the in
teraction to fluctuate (gas scattering, intrabeam
scattering, power-supply noise, etc .. etc ..).

P 2 + P 2 K x 2 + K y2H= x y + x y

2 2 (11 )

(10)

as
ar

== x'Vr~x* cos 8

+ y' Vr~y* sin 8,

as
pe == - - and pr ==ae

from which we derive the new momenta

(3)and

av
ay

Then Eqs. (1) can be obtained from the Ham
iltonian3

+ Vex, y)8p (s). (4)

Let f.Lx = 21TVx and f.Ly == 21TVy be the betatron
phase advances in the two planes between two
consecutive crossings. Whether there is only one
or more interactions per revolution is here im
material, provided that the lattice repeats iden-

This is a non-autonomous system with two de
grees of freedom. The independent variable is s;
the canonically conjugate variables are

x, Px = x' and y, py = y'. (5)

According to Maxwell's equations, the poten
tial V is related to the charge distribution p(x, y)
in the strong beam Laplace's equation

(12)

We can estimate Pe at the interaction point after
n crossings in the limit ~ == ~y == O. By inserting
Eqs. (7) and similar equations for y, y' in Eqs.
(12) we obtain

Pen == VExEy sin(8y - 8x ) (13)

which is a constant of the motion.
Let us see now the effect of the kick with ~x

pe == x' Vr~x* sin e - y' Vr~y* cos e

In particular from the first, which is an angular
momentum,

(6)\/2U(X, y) == p(x, y).
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and ~y =-1= 0 From (9) we obtain

+ 2(_1_ + _1_) dU (14)
f3x* f3y* dr

If V is a function only of this variable, then we
have from Eq. (6) that all the charge distributions
satisfying the equation

Lixn = 0

Lixn' = ~Fx(xn, Yn)

We have

lf3x* (au)-y f3y* Yn ax n

~f3x* (au)+ -x -
f3y* n ay n

with an arbitrary V = V(r) , also satisfy the re
quirements of the theorem.

In particular, if f3x* = f3v * and the strong beam
is "round", as it is approximately true for the fJp
project at Fermilab,4 then a Gaussian charge dis
tribution in the strong beam is consistent with
the assumptions of the theorem.

When the transformation (9) is applied,

U = U(x, y) ~ U(r, e),

and it is obvious that if aUlae = 0, i.e., the po
tential depends only on the "radial" coordinate
r,

av = dVar = 2~ dV
ax dr ax f3x* dr

av = dvar = 2 L dV
ay dr ay f3y* dr

then LiPen = 0, that is Pe remains a constant of
motion even with beam-beam interaction.
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