
Particle Accelerators
1982 Vol. 12 pp.27-37
0031-2460/82/1201-0027$06.50/0

© Gordon and Breach, Science Publishers, Inc.
Printed in the United States of America

COLLIDING BEAMS COHERENT INSTABILITY
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Beam-beam effects can cause resonant coherent instability of colliding beams when the working point (vx , v z ) is
tuned to a machine resonance. The rise time of this instability is proportional to the beam cross-sectional area and
increases as a power of the multipole number. The instability can be cured, first, by detuning the frequencies (vx ,

vz ) from machine resonances and second, by using beams with the same density but different transverse dimensions.

INTRODUCTION

The luminosity of colliding-beams facilities can
be limited by the beam-beam interaction. The
nature of this limitation has been studied for more
than 15 years. Nevertheless, up to now there is
no satisfactory theory to describe the mutual in­
fluence of colliding beams. Because of the diffi­
culty of solving the self-consistent problem, this
subject has been primarily studied in the frame
of the "weak-strong beam" approximation. In
this approximation, the motion of a particle be­
longing to the weak beam is traced under distor­
tions from the field of the strong beam. The mo­
tion of the strong beam is assumed to be given.
As a rule, computer simulation is used to get
concrete results. But even this very simple
method of calculation is limited by the capabili­
ties of computers. To simplify the calculations,
one often uses approximate expressions for the
beam field. In large number of iterations, this can
cause propagation of errors and distortion of
physical patterns. Investigations of the last years
with this model have been directed to study sto­
chasticity at the beam-beam interaction.

Computer simulation of the mutual influence
in collisions seems to be a more difficult problem,
because it requires exact calculation of the fields
corresponding to the instantaneous distributions
of particles in beams. As the first approximation
to solution of the self-consistent beam-beam
problem, we consider the problem of collective
instability of configuration of beams that would
be stationary without collisons. In this approach,
the interaction is obviously self-consistent. This
allows· us to calculate the spectrum of collective
oscillations and to give definite instructions to
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choose the working point at the storage ring.
Besides, the calculations of linear theory can be
used for construction of a nonlinear theory of the
beam-beam interaction (when writing kinetic
equations or in computer simulations of strong­
strong interaction). The well-known disadvan­
tage of linear theory is that it allows one to cal­
culate only stability thresholds and initial insta­
bility growth rates.

Apparently for the first time the problem of
coherent instability due to beam-beam effects
was studied in Ref. 1 in the context of collective
instability of compensated colliding beams. 2 The
authors of Ref. 3 tried to describe the instabilities
of colliding beams as a two-stream instability in
plasma. They did not, however, take into account
the basic properties of particle motion in storage
rings.

For collective motion, it is very important that
particles in the storage ring move close to the
closed orbit (with revolution frequency wo) and
make small oscillations around this orbit with fre­
quencies WOVx , WOVz , WOVc. Thus, without per­
turbations the normal collective oscillations are
described by distribution-function harmonics over
phases of particles oscillations

f m exp (imxtVx + imztVz + imctVc). (1)

The integer numbers mx , mz and m c determine
the multipolarity of the coherent motion.

The distortion of particle motions by collective
fields leads to frequency shift in the unperturbed
spectrum w ::::::: Wo (mxvx + mzvz + mcvc). If this
shift is small in comparison with the distance
between frequencies in the unperturbed spec­
trum, the oscillations of Eq. (1) remain stable.4
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(1.2)

(1.1)f O ,2) = fOO ,2) (I),

Ps drT ve
PT = R

o
de' ilp = p - Ps -;; cos !\Jc,

Here P =M'Yv is the momentum of the particle,
8 is its azimuth, the subscript s denotes values
on synchronous orbit, vx , v z ' V c are the tunes,
27rRo is the path length, and (X is the momentum
compaction factor. In this paper, for simplicity,
we assume zero dispersion at interaction points.
Non-zero dispersion at interaction points can am­
plify instability of some synchrobetatron modes.
Very close collision effects can give a small rel­
ative displacement of the beams at interaction.
Investigation of both these effects will be done
in another paper. For this reason, we omit in Eq.
(1.2) contributions of terms that are proportional
to the dispersion function.

The coherent oscillations of beams .are de-,
scribed by small non-stationary additions to
f 0(1,2)

Ps ( 2)Ix,z = 2R
o

va X,z

x, z = ax,z COStVx,z, 81,2 = ± wst + <p sintVe,

f o ,2) = f0(1,2) (I) + 8f(1,2) (I, tV, t).

The spectrum of small coherent oscillations can
be found by solving the linearized Vlasov equa­
tions for the functions 8fO ,2). In action-phase
variables, these equations have the form

where the superscripts 1 and 2 denote the beams
and I means Ix, Iz , Ie. In this paper, we shall
suppose that the canonical transformation from
(r, p) variables to action-phase variables (I, tV)
is given by the equations

ordinary methods of the linear theory of collec­
tive oscillations.4,5 Here we shall consider the
simplest situation when two bunches make head­
on collisions at two interaction points.

If the motion of particles near the closed orbit
is described by action 10. = Io.(r, p, t) and phase
tVo. = tVo. (r, p, t) variables, then the distribution
functions of the beams unperturbed by collective
fields do not depend on the phase variables

Resonances of this kind were discussed in Ref.
1. The specific feature of this resonance is the
dependence of stability conditions on the detun­
ing sign. Namely, for counter-charged colliding
beams, oscillations will be stable if the working
point is placed above the resonance of Eq. (3).
Such dependence of stability conditions is spe­
cific for two-stream instabilities in plasma.7 Here
Eq. (3) also corresponds to interaction at two
streams with velocities e and - e (e = mv - n)
in the space of the phases {tV}. For this reason
we name this "the resonance two-stream insta­
bility. "

(mxvx + mzvz + meVe)I

- (mxvx + mzvz + meVeJ2 = 2n. (2)

Qualitatively, the behavior of collective motion
here is very close to that due to beam interaction
with resonant elements of the vacuum chamber. 6

Instability occurs for sum resonances when the
detuning from resonance is smaller than the co­
herent tune shift. The stability conditions do not
depend on the sign of detuning. The value of the
coherent tune shift is proportional to the linear
tune shift due to beam-beam effects. It is nec­
essary to point out that for given detuning, Eq.
(2) is' valid for any pair of oscillations with ap­
propriate multipole numbers'{mI} and {m2}.

The second kind of resonance takes place when
the frequencies {v} are tuned to a machine res­
onance (for simplicity we put {VI} = {V2})

1. Basic Equations

The coherent stability of colliding beams due
to beam-beam effects can be investigated using

The aim of this paper is to study coherent inst­
abilities of colliding beams due to beam-beam
interaction. The methods of linear theory of col­
lective oscillations4

,5 used here allow us to study
in the same way the stability of modes with ar­
bitrary multipolarity (betatron, synchrobetatron
and others).

Because the beam interaction is conservative,
it can lead to dynamical instabilities only when
the oscillation frequencies obey some resonant
condition. Investigation has shown that for col­
liding beams there are two kinds of resonances.
The first takes place when a normal oscillation
of one beam is in resonance with some normal
oscillation of the counterrotating beam
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(~ + V~) 8f(1)
ass atlJ

aL2,1 afo(2)
+--·--=0

atlJ aI '

(1.3)

. 2el e2 afo(l)
=l--m--

1TVs aI

e - i2nSs

X L -2-Jmc(ZI4JI)
n 1T

X Jdrz e -Z2<p2sin<!J,2 Km (112) oPZ)

(1.5)

where

a a a a
v-=v -+v -+v-

atlJ x atVx z atVz c atVc'

Ss = wsf and L 1,2 (respectively L 2 ,1) is the La­
grangian describing interaction of particles be­
longing to beam 1 with the field induced by beam
2. Neglecting radiation effects,

and an analogous equation for f m(2) (I, Ss). We
define

Jd2k
K m (1/2) = k2

x {exp(ik·r(I))}mT exp( - ik·r(2)),

dVT
Z = mT'VT + n + m T·-

dl
.

n Wo

and for the ultrarelativistic case ('Y ~ 1) we may
write for L 1,2

(1.7)for beam 2

for beam 1

(1.6)

where N is the number of particles in a bunch
and (J is the transverse dimension of a bunch.

For orbit stability, Llvo should have a small
value (Llvo ~ 1). Besides, in Ref. 1 it was shown
that Llvo ~ 1 corresponds to dynamic collective
instability of colliding beams, so we shall take
Llvo ~ 1. Because the interaction of the beams
is conservative, instability arises from resonant
interaction of particular collective modes. The
unperturbed frequencies of collective oscillations
(Llvo~ 0) fm""" exp(-iLl'Ss ) are

Equation (1.5) shows that f m ( 1
,2) changes pro­

portionally to the linear beam-beam tune shift

(1.4)

Here k'r = kxrx + kzzz , elf is the phase-space
volume element, Ib is the bunch length, and IT is
the typical transversal dimension of the vacuum
chamber.

Using Fourier 'transformation of 8f(1,2) over
phases,

x exp ( - ik'r(2)) 8f(2).

L 12 = _ 2e1e2 Jd2k
, 1TVs K 2

· exp (ik'r(l» Jdrzo

X (<Pl sintVcl - <P2 sintVcz - 2ws t)

m Comparison of Eqs (1.7) and (1.5) gives the
resonant condition

we get from Eq. (1.3) equations for the Fourier
amplitudes f m(1,2) (I, Ss) (1.8)
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If for simplicity the bunch length is not too small, In this model normal oscillations are azimuthal
harmonics of 8fo ,Z)4

and fo(/z , Ie) can be factorized. Thus

Then for the resonant modes of Eq. (1.8), Eq.
(1.5) can be rewritten as

f,nO,Z) = <P,nT(IT)p(/c·)Jmc (Z<p)

x exp ( - iLl·e s )

n= - 00

One can see from Eq. (1.5) that the integral equa­
tions for resonant modes <Pmt,n and <PmZ,n coin­
cides withEq. (1.10), if one takes the factors
qc,;,~?) to be unity. This is quite obvious: for V e

~ Llvo, we may omit in the l.h.s. of Eq. (1.10)
terms proportional to mevc . Summation over me
in the r.h.s. of Eq. (1.10) gives

" q(l,2) = 1.£.J me .
me

The equations for <Pmt,n are a little simpler than
Eq. (1.10), so we consider first the model with
"rigid" azimuthal distribution.

2. One-Dimension Betatron Modes

We can trace the basic features of the spectrum
for the resonances of Eq. (1.8) in a simple model
where

1) particles in beams oscillate with the same
tunes {v}t == {v}z;

2) the stationary distribution functions over
betatron amplitudes are identical and equal to

io = (2'IT~:V:(j2 8(/z) exp (~), (2.1)

where 10 = pVx(jZjRo and (jz is the mean-square
radial dimension of the beam;

3) the resonance is one-dimensional

(mt - mz) Vx = 2n.

In this model, the integral equations for
<Pmt,n and <Pm2,n become

A I'h ( ) -III JOO dk
J.J.m'¥m 1 = -2m 18e 0 -00 mJm1

(00 dlz
x (kat)J

o
10 Jm2 (kaz)·<Pm(2)

(1.11)

aF(Z)f
x air dr1TK(211)<I>m,(l),

(1.10)

The system of homogeneous integral equations
(1.10) determines the spectrum of eigenfrequen­
cies for both betatron (me = 0) and synchrobe­
tatron (m c =1= 0) collective oscillations of colliding
beams. This system vanishes for fast instabilities,
when the increment (inverse rise time) (--- Llvo) is
much larger than the synchrotron tune shift v e •

In this case, particles cannot displace noticeably
in phase 4Jc and one may use a model in which
the bunch has a "rigid" azimuthal distribution

where

(2.2)
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We define If we introduce an operator notation

and

8 = Nele2Ro
21TpVa 2Vx •

(2.2.a)

and

(2.3)

(2.8)

(2.7)

Here ~l = Iml I ~, ~2 = I m2 I ~, where ~ is the
cooling rate for oscillations. In particular, for
colliding electrons and protons (~l· ~2 = 0), the
criterion (2.8) will be valid for all sum modes
mlm2 < O. For e + e -, e - e - colliding beams,
friction can stabilize sum modes with high mul-

e2

4 < - ml m2 (28A)2.

The first of Eqs. (2.7) means that for instability,
oscillations of colliding beams should be in sum
resonance. The second gives the width of the
resonance.

Analogous dispersion equations and stability
criteria were obtained in Ref. 6, when investi­
gating the collective stability of a beam interact­
ing with a high-Q-element of the vacuum cham­
ber. Therefore some results of 6 are valid for
resonance instabilities of colliding beams. For
instance, damping of particle oscillations can lead
to dissipative instability when

Xr,2 == Jdk X 1,2(k)XI,2(k) ,

we find that
A 2 A 2

2 _ X l ·K2·Xl + X 2·KlX 2
A - Xr+X~

are positive numbers because K) and K2 are pos­
itive-definite operators.

Then Eq. (2.5) gives for a

dl,2 = ~ ± ((~r + mtm2 (28A)2) 1/2 (2.6)

Instability occurs when

(2.4a)

(OO dI 1
Xm(k) = J

o
1

0
Jm(ka)<pm(J) 7Tkl

with different parity (Xm( - k) = (- l)mXm(k))
Let now I ml I + I m2 I be even. Using the

definition (2.3) we transform Eq. (2.2) into

AX2 = roo~ e -(kZ+k)Z)/2
Jo Vkk;

x Imz(kkl)Xl(kl).

dmXg~(k) = -2m
1
8 roc _1_ e -(kZ+k)Z)/2

Jo VkJ

x Im)(kkl)Xmz(kl)

2 ~ f 00 dk l - (kZ+ k)Z)/2- m2U --e
o Vkk;

X Imz(kk l )Xm)(k l ).

(2.4)

Here Im(x) is the modified Bessel function of
order m.

Because of mathematical difficulties, we can­
not give a direct solution of Eqs. (2.4). Never­
theless, using general properties of these equa­
tions, one can find the stability conditions. We
note that the roots of the dispersion equation

am(am - e) - 4ml m2A282 = 0 (2.5)

are determined by the squared eigenvalues of the
integral equations

AXl = roo~ e -(kZ+k)Z)/2
Jo VkJ

x Im)(kkl )X2(k l )

One can see that the kernels of the integral
equations (2.2) vanish if I ml I + I m2 I is odd, so
that the oscillations of this type are uncoupled
and thus stable. This stability is caused by the
orthogonality of the momenta
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tipole numbers, i.e.,

2
2 E 2

A. + ( Iml I + Im2 I )2 > (28A). (2.9)

In constrast with instabilities due to resonance
interactions of a beam with its surroundings, the
instability rate due to beam-beam effect depends
linearly on the beam current

To evaluate the dependence of Am m on mul­
tipole numbers, we shall consider the I s~lution of
Eq. (2.4) in the short wave length limit k ~ m
= max(m1' m2). In the asymptotic region

(
2 ) 1/2

Im(kkd = 'TTkk
l

ekk
" k ~ m < 1,

the main contribution to the integrals of Eq. (2.4)
is from the region I k - k1 I < 1 ~ k. Then

1
AX1 === k2 X2 (k)

1
AX2 === k2Xl (k), k ~ m ~ 1. k ~ m ~ 1.

This yields A = A(k) === l/k2
• Extrapolation of A(k)

into the region k -.; m gives

1
Am === -2' m = max (m1, m2) > 1. (2.11)

m

Let us write the value at the maximum instability
rate. Using Eqs. (2.6), (2.2a) and (2.11), we find

Im2 I < Im2 I· (2.12)

3. One-Dimensional Excitations But Different
Beam Sizes

In practice there can be a more important sit­
uation when beams with approximately the same
densities have different transverse dimensions.
Let the distribution function be determined by
Eq. (2.1), but let the numbers of particles and
transverse dimensions of bunches be respec­
tively N 1 , N 2 and 0"1, 0"2. For definiteness we
take 0"1 ~ 0"2. Then Eqs. (2.4) can be rewritten
as

(
k12 + k

2
2)

X exp - 2 0"1

X 1m ) (kk10"1 2)Xm2 (k1)

(
k2 + k 2 )

X exp - 2 I fJ'22

(3.1)

where 81,2 can be obtained from 8 by replacing
(N/0"2) by (N/0"2) 1,2. Because of 0"1 ~ 0"2, the
functions X m ) and X m2 have quite different scales
in k. In the region

~~k>lm21
0"1 0"2 '

the function X m ) in the second of ~qs. (3.1) is
approximately constant and we can write

X (k) = 2m2fJ'2 Xm,(k). k > Im2 I (3.2)
m2 ~m - E k20"22 '0"2 .

Then the first of Eqs. (3.1), after obvious trans­
formations, can be rewritten as

The smallest m1 and m2 that have the same parity,
are m2 ~ 1 and m1 = - 3. For these numbers,
Eq. (2.12) gives

(2.13)

Here ~ is the betatron function at the interaction
point.

(00 dk1 (k
2 + k 12 )

X Jo (k1k)3/2 exp - 2 .

(3.3)
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If we take

(4.4)

(4.5)

Notice, that the coherent tune shift in Eq. (4.2)
is reduced (a lla2)2 ~ 1 times. The difference from
Eq. (3.3) is caused by the fact that the fields
responsible for the instability of the beam with
distributions (2.1) arise from space charge dis­
tributed along a line.

a 2m - 2

Ima ~ N [(m _ 1) !]2'

Imx I, Imz I > 1. (4.6)

Equation (4.2) shows that instability occurs when

It is necessary to point out a special attribute
of instabilities due to beam-beam effects. The
increments are determined by the beam density
(Nla2) and decrease as a power of the multipole
numbers. This behaviour is caused by the fact
that the fIelds responsible for the instability de­
pend on the beam size a. l,8 In contrast, the in­
crements of instabilities due to interaction with
surrounding electrodes decrease with multipole
number with an exponential law4

,5

where m· 0 = mx 8x + mz8z , and the positive
numbers A~l ,m2 are eigenvalues of the integral
equation

2 2 Jd
2
k l

F

A X ml =:;;: k2 k
1
2

The dependence of Amtm2 on multipole num­
bers can be evaluated extrapolating the solution
of Eq. (4.3) from the short wavelength region
( I kx I~ Imx I, Ikz I~ Imz I)

1 1
A==I I 2 2'nxmz (mx + mz )

and

(3.5)

I m2 I < I ml I (3.4)

For the lowest modes, this yields

ele2' ~
Ima = M 2 2 3/3 /N l N 2 •'IT"! c a2

This equation shows that when beams with dif­
ference transverse sizes collide, the instability
threshold densities of the beams increase (a2lal)
times. This result arises from the fact that fields
acting on particles of the I beam are formed by
particles of the II beam placed inside the linear
size a, (and vice versa).

The value of the maximum increment can be
evaluated using

Ima== ele2~ ._1(I mm2l INlN2)1/2
'IT,,!Mc2a22 ml

- 2n = E < I8 I. (4.1)

1J .Xm(k) = k df<l>m (exp(lk·r))m*

(mx2 - mxl )vx + (mz2 - mzl) Vx

4. Two-Dimensional Betatron Excitations

Now we want to evaluate the excitational spec­
trum for two-dimensional resonance

We shall consider collisions of round beams with
Gaussian distributions in betatron amplitudes.

Repeating calculations of the preceding section
with momenta

it is easy to find that the eigenfrequencies satisfy
the dispersion equation (al ~ (2)

Eq. (3.5) gives

Ima = N le le2 (a l )3/2 l
'IT,,!Mc2a l

2
a2 3/3 (3.6)

= (::) 3/2 Ima(<Tl = <T2),

where Ima(al = (2) is determined by Eq. (2.13).

5. Resonance Two-Stream Instability

One more kind of collective instability due to
beam-beam effects can be caused by tuning of
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and

X(k) = ~ L f df f m(l,Z)p(<!»
m

x e-in<f>(e-kOr)m*

XI = ~ L m,B f dZk l q
11' m,n Ll - (m·v + n) kkt m

x (5.3)

x (kx I kx1)gmz(kz I kzt )X2 (k1)

X - 2 ~ m ·0 f d
2
k t

2--L.J --g
11' m,n Ll - (m·v - n) kkt m

x

x (kx I kxt )gmz(kz I kzt )Xt (k1).

(5.7)

(5.5)

e·(m·o) < 0

I e 1< 2Am I (m·o) I. (5.8)

2 fd
2
kAmX(k) = -; kk
l

gmx(kx I kxl )

x gmz(kx I kxt ) X(k t ),

and

Analogous to Eq. (4.6), Am can be evaluated as

1
Am:::::::: . ---------

(mx·mz) mx2(ITx/ITx) + m z
2(ITx/ITz)'

Exactly in the resonance e = 0 oscillations are
stable (there is no modulation of the relative
phase for modes with m and - m).

Let us consider the stability conditions (5.7)
and (5.8) for the principal modes of oscillations
(i.e., for modes with smallest m). We take 8x and
8z to be positive, as for e + e - , pp and e - p col­
liding beams. The betatron tunes vx and V z will
be taken to be in the region

Imx I, Imz I > 1, (5.9)

This means that oscillations will be unstable if

which are positive numbers because of positive
definiteness of the kernel. Equations (5.4) and
(5.5) coincide with that obtained and studied in
Ref. 1. Note also the coincidence of Eq.(5.4)
with the dispersion equation for two-stream in­
stability in plasma physics.

The roots of Eq. (5.4) can be written as

Ll = ± je2 + 2Am e(m·o). (5.6)

Because of the condition (5~ 1), we can omit non­
resonance terms in Eq. (5.3). This yields the dis­
persion equation

1 = Am(m.o) (_1 1_), (5.4)
Ll-e Ll+e

with e = m·v + n; the Am are the eigenvalues
of the integral equation

For simplicity, we consider identical unperturbed
beams. The kernels gm(k I k t ) are

(
k

2
+ k t2

)gm(k Ikd = exp 2 llml (k·kd.

(5.1)

(5.2)

m·v:::::::: n

the working point to machine resonances

f O ) -mn -

f~~ = _ 2eleZ mz(afo(2»laI
11'Vs Ll - (m·v - n)

x f dfle~in4>lpl(<!>I)f(l)K(21l)·
As formerly, we put I8 I ~ vc; here p(<p) is the
phase distribution in the beams, and <Pt,2 =6
± wst.

If the beams are short enough (n<pb ~ 1, p(<p) I

~ 8(<p)) and assuming Gaussian distributions in
betatron amplitudes, we can transform Eq. (5.2)
into equations for the momenta

In this case, even if the coherent tune shift is
smaller than the spread in the unperturbed spec­
trum, the interaction couples modes with (mt n)
and ( - mt - n). Provided Eq. (5.1) is valid, these
modes became sum resonances, which can cause
the instability to appear. In another interpreta­
tion, one can say that this instability is due to
interaction of two counter-moving streams (with
relative velocity 2e, E = mv - n) in the space
of betatron phases. Therefore we can call this
instability the resonance two-stream instability.

Note that instability of this kind is not specific
for colliding beams. Provided Eq. (5.1) is valid
interaction of the beam with any surroundings
can lead to such two-stream instability.

Let us find the integral equation for collective
modes near machine resonances. Taking into ac­
count Eqs. (1.5) and (1.6), we have

2et e2 mt (afo(l))/aI
---.------

11'Vs Ll - (m·v + n)

x f dfze- imP2 pz(<!>z)f(2)K(l!2)
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The broadest are the resonances V x + V z = nand
V z = V x :

where ax and a z are the radial and vertical beam
sizes respectively.

In the plane (vx , v t ), the conditions (5.7) and
(5.8) determine bands where oscillations are un­
stable. These bands lie below lines of machine
resonances. The widths of one-dimensional re­
sonances decrease as 11m 2

; i.e., for m x = 1, Eo

= 280 ; mx = 2, Eo = 2co/4; mx = 3, Eo = 2c09.
The relative importance of two-dimensional

resonances (mxm z =1= 0) depends on beam param­
eters. For a ribbon beam (ax ~ a z and Cz ~ cx),
the widths are

.5

........
. -,.", -

o

v. 1 .,..---------..-r-r--------.-~

FIGURE 2 The same for round beam <Tx = <Tz , dVx = dVz
= 0.05.

(5.10)

(5.11)

(
a z ) 1

Eo :::::= 2cz - I I 2 .
ax mx mz

6. Synchrobetatron Modes

The spectrum of synchrobetatron modes is de­
termined by Eq. (1.10). With zero dispersion at

For real parameters, the condition (5.10) is prob­
ably valid for oscillations with high m.

This instability can be weakened by difference
in parameters of colliding beams. One of these
possibilities was discussed in Sections 3 and 4
and is caused by collisions of the beams with the
same density but different lateral sizes. In prin­
ciple, detuning of frequencies for one beam from
machine resonances can increase the thresholds
in (5.8) in (vic) ~ 1 times. This can, however,
increase the influence of the resonances (1.8).

When beam currents are increased, the lower
borders of stopbands move down mC1:chine reso­
nances. For round beams, and ~x = ~z at the
interaction point, the working point moves par­
allel to the resonance V z = V x ' This can make the
region close to V z = Vx preferable for the working
point.

For flat beams ax ~ a z , the working point
moves mainly along V z • This time, placing of the
working point as close as possible to the axis V z
allows one to avoid the dangerous resonances Vx

= vz ' Vx + V z = nand V z = 2vx (see Fig 1).
Cooling of beams can in principle stabilize the

two-stream instability

(5.12)1m· A I > Am 1m·0 I·

FIGURE 1 The position of instability bands for resonancies
with multipole numbers less than 3. Flat beam <Tx ~ <Tz • The
value dvzo..(N/<Tx<Tz) is equal dvz = 0.05.
-- • working point VEPP-2M,
--A SPEAR,
- + DCI.

The instability bands for a ribbon beam and mul­
tipole numbers below 3 are shown in Fig. 1.

For round beams ax = a z and Cx = cz , and it
can be seen from Eqs. (5.4) and (5.6) that there
is no instability along V z = Vx and the most dan­
gerous two-dimensional resonance is V z + V x
= n (see Fig. 2).
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interaction points, Eq. (1.10) differs from the
equations studied in Sections 2-5 by factors

Therefore the increments and stability criteria for
synchrobetatron modes can be obtained from
appropriate equations of Sections 2-5 by the re­
placements

Taking into account Eq. (4.5), this can be written
as

where Eo is the distance to the dangerous reso­
nance, '0 == e2 /Mc 2

, and ~ is the betatron func­
tion at the interaction point.

For the parameters of UNK[9] and N 2 == 1012 ,

Eo == 10- 2 , we get

L ~ 3 . 1031 cm- 2 sec- 1 ,
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