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Abstract

Large-scale, complex engineering systems, as for automotive manufacturing, often require
significant capital investment and resources for systems configuration. Furthermore, these
systems operate in environments that are constantly changing due to shifts in macroeconomic,
market demand and regulations, which can significantly influence systems' performance. It is
often very difficult or prohibitively expensive to change these engineering systems once they
are in place. Thus, a critical question is how to design engineering systems so they can perform
well under uncertainty. Conventional engineering practice often focuses on the expected value
of future uncertainties, thus leaving the value of flexible designs unexplored.

This research develops a new framework to design and plan large-scale and complex
manufacturing systems for uncertainty. It couples a screening model to identify promising
candidate solutions with an evaluation model to more extensively quantify the performance of
identified solutions. The screening model adaptively explores a large decision space that is
otherwise computationally intractable for conventional optimization approach. It integrates
strategic and operational flexibility in a system to allow systematic consideration of multiple
sources of flexibility with uncertainty. It provides a means to search the space for system's
improvement by integrating the adaptive one-factor-at-a-time (OFAT) method with a Response
Surface method and simulation-based linear optimization. The identified solution is then
examined with Value at Risk and Gain chart and a statistics table.

Two cases are studied in this thesis. The first case is a simple hypothetical case with two
products and two plants. It considers product to plant allocation, plant capacity, and overtime
operation decisions that affect manufacturing flexibility. It demonstrates the value of
considering demand uncertainty and overtime operational flexibility in making manufacturing
planning decisions and the interactions between multiple sources of flexibility. The second case
explores these manufacturing planning decisions for Body-In-White assembly systems in the
automotive industry by applying the developed screening model. It shows that the screening



model leads to system design with about 40% improvement in expected net present value,
reduced downside risks and increased upside gains as compared to a traditional optimization
approach.
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1 Introduction

1.1 Motivation

Scale and complexity are inescapable characteristics of many modern engineering systems.

Automotive manufacturing systems provide a notable example of a system for which scale and

complexity amplify the challenges associated with system design and management. In response

to market dynamics, these characteristics are expected to intensify. In 1955, six models

accounted for 80% of all cars sold in the US. Since the 1970s, the automotive market has

become highly competitive and, as a result, there is much more product variety now than in the

past. In the United States and Europe, the industry is rapidly approaching 400 models, up from

fewer than 300 in the mid-1990s - a 25% increase in ten years (Taub et al. 2007). Thus, each

company has to offer more product types to the market in order to compete effectively, which

requires more manufacturing facilities. One major automaker, General Motors, now has more

than 20 plants in North America alone and offers approximately 60 product variants for the

North American market each year (GM 2009), not to mention other markets.

Another dramatic change during the last few decades in automotive manufacturing systems (as

well as other manufacturing systems) is that they have become much more capital intensive

due to the wide application of computer integrated equipment. Since robots were introduced

into automotive plants in the 1970s, they have replaced a significant number of manual

assembly workers to achieve the high volumes requested by markets. As a result, today's

manufacturing system is highly capital intensive. A typical assembly plant consists of about 700

robots, mainly used for joining, but also for moving materials into place (Taub et al. 2007).

Along with robotic equipment, there are tools used to hold the parts in position that require

about the same level of investment as equipment. The capital expenditure for building one new

assembly plant can easily reach a billion dollars.



Furthermore, once the automotive manufacturing system is built, it is very difficult to make

changes without incurring significant expense, both in terms of resources and time. As an

example, the vehicle assembly process (the case focus of this thesis) is highly customized to

specific product designs and to a given production capacity. Thus, increasing its net output

(even for the product it was designed for) may require redesign and reconfiguration of the

whole line. This cannot be done within a short period of time, i.e. in days or weeks. By

extension, models that were not designed for a specific assembly process cannot be produced

on that process without significant change to one or the other. Although the application of

computer integrated machines allows robots to be used for different models with only a

redesign of the software, a large number of tests and pilot runs is still required to make sure

the lines are running correctly. Also hardware changes are inevitable since tools would have to

be replaced or added. Thus, an addition of any new product to a line causes the whole

production line to be stopped or significantly slowed down. The resulting loss of production

volume for the existing models running on the process leads to large economic losses.

The combination of capital intensiveness and difficulty of change make the planning and

designing of automotive manufacturing systems critical. Their scale and scope make this

planning challenging. In this context, planning decisions are further confounded by the

presence of variation, and the uncertainty it engenders. On one hand, because it takes a long

time to construct the system, i.e. 2-4 years, manufacturing planning and design decisions have

to be made several years before production when market demand is unknown. On the other

hand, market uncertainty continues to evolve even after the system is built. As is well known,

demand variation and uncertainty can have a major impact on the performance of

manufacturing systems. Thus, uncertainty must become a central consideration in planning and

designing of manufacturing systems.

The research presented in this thesis is an effort to address the challenges of planning and

designing for uncertainty for large-scale and complex manufacturing systems. The central



question that is studied in this research is how to plan and design manufacturing systems so

that they can perform well under demand uncertainty.

1.2 Demand uncertainty

Demand uncertainty is one of the uncertainties to which manufacturing systems are often

exposed. It can be due to many reasons. Financial crisis, economic downturn and fuel price

changes are typical examples of sources of market uncertainties. Since the onset in 2007 of the

current financial crisis, the Dow Jones Index has plunged from more than 14,000 points to

between 7000-8000 points today with extreme volatility in the short term, as shown in Figure 1.

Such changes have a great impact on market demands for many products, including

automobiles. As indicated by Figure 2, sales for both cars and light trucks in the US market have

significantly decreased from 2007 to 2009.

Dow 3ones Industrial Average
D- DowJons

Figure 1 Graph of the DJIA from May 2004 to May 2009. Source: Factiva database



Sales of cars and light trucks in the U.S. retail
market; in millions of units at seasonally
adjusted annual rate.

SCars a Lgt trucks
12.00

9.00

6.00

2007 2008 2009

Figure 2 Cars and light trucks sales in the U.S. retail market from 2007 to 2009 in millions of units at
seasonally adjusted annual rate. Source: Wall Street Journal online market data center 1

Figure 3 shows the volatility of the U.S. regular gasoline price from 1970's to 2009, which is

another factor that can affect demand uncertainty. As a recent example, the price has fallen

back to around $1.5 per gallon in early 2009 after soaring towards $4 per gallon in 2007,

representing 166% change within two years. The change in gasoline prices clearly has impact on

consumer preferences on automobiles. Comparing Figure 3 and Figure 4, one can see that the

declining period of gasoline price decline corresponds to the steady increase period of market

share for SUV around 1980-2000, which comes with the decline of market share for cars. Since

then, price of gasoline has been increasing rapidly while the increase of market share for SUV

has lost its momentum and started to show some decrease around 2007.

1 (http://online.wsi.com/mdc/public/page/2 3022-autosales.html#autosalesB), Accessed on May 21,2009



Regular Gasoline Price in Today's Dollars (1/12/2808)
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Figure 3 Regular gasoline price volatility from 1970 to 2009. Price is F.O.B cost for imports in nominal

dollars. Source: EIA history
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Figure 4 Market shares by size for the

1996 1999 2002 2005 2008

US market. Source: Transportation energy data book2 and

WARD's Yearbook

Even without uncertainties in the economy or fuel prices, predicting future demand for

products is not easy since it is hard to tell how consumers will react to new products. For

2 (http://cta.omrnl.gov/data/tedb27/Spreadsheets/Table4 09.xls )



example, the Pontiac Solstice, as shown in Figure 5, is a small sports car that GM introduced to

the US market in mid 2005. The forecasted sales were 20,000 a year with the first year

production capacity at 7,000. However, there were 7,000 orders during the first 10 days and

another 6,000 before the end of the first year.

Figure 5 Picture of the Pontiac Solstice, a small sports car that General Motors launched in 2005

Figure 6 shows a study of the degree of volatility in market demand in the automotive industry

(Jordan 1989). The horizontal axis is the time in quarters before start of production. The vertical

axis is the percent of difference between the actual production volume and the planned volume.

The analysis here is done at nameplate carline level. It shows that the multi-year forecasts (2+

years) of sales for individual vehicles typically have large forecast errors with standard

deviations of 40% and these errors can get significantly larger for niche vehicles and for forecast

horizons approaching five years (Jordan and Graves 1995).
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Figure 6 Demand forecast variation during the manufacturing planning stage, adopted from (Jordan

1989).

Market demand uncertainty can have a significant impact on the economic performance of

manufacturing systems. On one hand, market uncertainty creates the risk of economic loss for

manufacturing systems. Manufacturing systems require large capital expenditures for

construction and operations. This includes costs such as equipment, real estate, purchase of

raw materials, human resources hiring, etc. Some costs are incurred before any revenue from

sales is generated. If sales revenue is insufficient to recoup those costs, those expenditures will

lead to net economic losses. However, on the other hand, it is also possible for market

uncertainty to create opportunities to increase economic value beyond expectations if the

market turns out to be better than expected and companies have the resources (and have

configured their operations) to take advantage of favorable circumstances.

Given the impact of market uncertainty on manufacturing systems, it is very important to build

a flexible manufacturing system so that it can achieve better performance under uncertainty.



The next section discusses flexibility in a manufacturing system and sources of flexibility that

may be used to respond to uncertainties.

1.3 Multiple sources of flexibility in manufacturing systems

The definition of manufacturing flexibility will be discussed in detail in Section 2.1. Here in this

research, similar to definitions in the literature, manufacturing flexibility is defined as "the

ability of a manufacturing system to change or respond to customer demand with reduced

penalty in time, cost, effort and performance". Manufacturing flexibility has emerged as a

competitive advantage for some manufacturing companies. "Manufacturing managers in a

broad array of industries agree that achieving lower cost and higher quality is no longer enough

to guarantee success. In the face of fierce, low cost competition, and an army of high-quality

suppliers, companies are increasingly concentrating on flexibility as a way to achieve new forms

of competitive advantage. "(Upton 1995)

Manufacturing flexibility can emerge from many aspects of the systems. Figure 7 provides

examples of such aspects that can affect manufacturing flexibility in assembly systems. These

examples are divided into three categories: system architecture, technology, and operations.

The following sections provide a detailed discussion to explain each of these and how they

affect manufacturing flexibility in assembly systems. Note that they are by no means exhaustive,

but just some examples commonly seen in manufacturing systems; there are many more means

that flexibility can be enabled or impacted in practice.
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Figure 7 Multiple sources of manufacturing flexibility

1.3.1 Flexibility from system architecture

Examples of decisions pertaining to system architecture in assembly systems that affect

manufacturing flexibility include product to plant allocation decisions and capacity decisions.

Products to plant allocation decisions address which products should be produced at which

plants. Product to plant allocation decisions determine process flexibility in the sense that a

manufacturing plant and process that can produce multiple products provides more flexibility

than a system that can only produce one product. Process flexibility has been studied

extensively in the literature and deemed a very important strategy for manufacturing flexibility

in practice for companies that offer multiple products to different markets. Many automotive

companies have invested heavily in transforming plants to be flexible. For example, the Chrysler

Group has invested in the Sterling Heights Assembly Plant to make them capable of producing

multiple products. In 2004, Nissan's Canton facility was able to produce a sedan (Altima), a

minivan (Quest), a full-size pickup (Titan), and two full-size SUVs (Pathfinder Armada & QX56).



GM's Lansing Grand River assembly plant is capable of producing five different products on a

single line. A Ford Motor Co. plant in Oakville, Ontario, makes three different vehicles, and

many plants can produce slightly different styles based on one car or truck design. Honda has

gained a reputation for "being the most flexible" by having the capability to produce very

different vehicles on the same assembly line. Its plant in East Liberty in Ohio is able to produce

120 Civic compacts and CR-V crossover with just five minutes to switch the line between

vehicles. This enables it to match consumer demand faster than its rivals (Linebaugh 2008).

Automakers' transforming to flexible plants helps to mitigate the impact of market

segmentation on their profitability. More product varieties and decreased volume per product

on average have put downward pressure on automaker profit margins that have already been

squeezed by fierce competition. If automakers build dedicated plants for each product, the

lower production volumes do not allow them to enjoy economies of scale typically associated

with higher capacity production. However, flexible plants allow the automakers to operate

large plants producing multiple vehicles to capture the benefits of economies of scale while also

providing them with a means to better manage demand uncertainty. Furthermore, in an

environment where profit margins are thin, having flexible plants can be a decisive capability

for competing in the automotive market. For example, skyrocketing fuel prices have softened

demand for Sport Utility Vehicles, leading to a shift to small cars with higher fuel efficiency.

Under this situation, a company with a flexible manufacturing system that is able to quickly

switch the production capacity from SUVs to small cars will not only reduce losses from the

declining market for SUVs, but will also capture more profits from the increasing market for

smaller cars. In contrast, a firm with an inflexible manufacturing system will have to leave the

capacity for SUVs idle and will require additional investment to increase capacity for small cars

in order to respond to the changing market demand, leading to high investment costs and low

overall capacity utilization.



Another important decision that affects the manufacturing flexibility of a system concerns the

capacity of the plant. Capacity decisions at the manufacturing planning stage determine the

configuration of the manufacturing process, which then determine purchasing or retrofitting

requirements for equipment, tools and buildings. Because these resources require a long time

to be built and delivered, (i.e., making tools takes between one and two years, typically),

capacity decisions have to be made during the early planning stage. Once the capacity decision

is made and executed, it can be costly to change during operation of the manufacturing process.

Planning in slack capacity is often used as a way to respond to future demand uncertainty in

cases where demand is higher than forecast. In this way, capacity decisions not only provide a

critical boundary for the systems' capability to meet market demand, but also affect systems'

flexibility to respond to uncertainty.

1.3.2 Flexibility from technologies

Flexibility can also be affected by technologies selected for the manufacturing processes. For

example, in order for assembly workers or robots to weld or join parts, tools are often needed

to hold parts in position. Traditional tooling technology is dedicated to only one part with a

specific geometry and as such cannot be broadly applied to other vehicles. Over years, some

flexible tooling technologies have been developed to extend the tooling capability to be able to

handle parts with different geometries. One approach has been the use of indexing or sliders in

tools so that they can be manipulated with holders that move into place when the particular

style arrives at the station. In cases where the tools cannot be manipulated to handle multiple

styles because the variations between parts is too large, multiple single style tools are placed

on a single "carrier." Carriers may be turntables that spin to put the correct fixture in place, or

shuttles that slide the fixtures back and forth, depending on which style is next to arriving at the

station. More recent years, GM has developed a flexible tooling technology called C-FLEX, as

shown in Figure 8. It is "a servo-driven, programmable tooling system that can adjust to the

contours and size of various automotive models and body components moving down a

production line" (Iversen 2004). This flexible tooling technology further reduces the need to



have model specific tooling for automotive manufacturing. This technology improves GM's

ability to build different vehicles on the same assembly line and thus save both money and

manufacturing floor space. According to (Iversen 2004), "along with other manufacturing

improvements, this technology will reduce GM's cost of introducing new products into a body

shop by about $100 million, while saving up to 150,000 square feet in body shop floor space.

"Another advantage of this new tooling technology over older technologies is that it has a

greater flexibility in changeover of products. When new products are to be produced on an

assembly line, older technologies require rebuilding of tools customized to new product while

C-FLEX only needs to be reprogrammed, and thus saves a lot of times, cost and efforts.

Figure 8 Station comprised of several C-FLEX units surrounded by robots, adopted from (Povelaites
2005)

Other than tooling technology, equipment technology can also affect flexibility of an assembly

system. An assembly line composed of highly automated equipment can be less flexible than a

manual line since changes may require reorganization, or at a minimum reprogramming, of the

line, while workers can more easily be issued a new set of instructions.



1.3.3 Flexibility from operations

Although the examples above indicate different means of enabling manufacturing flexibility,

they have one common characteristic that all of these require implementation prior to the

beginning of actual production. Thus, these are referred to as strategic planning decisions and

the flexibility of the system that emerges from these decisions is defined as strategic flexibility.

However, even when there is no flexibility offered by these or other decisions made during the

planning stage, there can still be flexibility during the operation of the manufacturing systems.

Inventory, overtime and shift schedules are common examples of ways in which firms can react

to changes in demand.

Shifts selection refers to the operational option that a manager of a manufacturing system has

to select the number of shifts during production. Normally companies can run one, two or three

shifts depending on the capacity of the manufacturing process and market demand. Operations

can be scheduled for one shift, typically 8 hours of production during daytime, two shifts,

typically using two sets of workers for 8 hours each for a total of 16 hours of production, or

even three shifts, which typically runs a bit less than 8 hours per shift to allow some time for

machine maintenance. Decisions about the number of shifts are usually made months in

advance in order to coordinate hiring practices. If more short term flexibility is needed,

overtime operations can be used to meet upward swings in market demand. Inventory can act

as a buffer between a manufacturing system and the market to maintain an inventory of

products that are not needed immediately after being produced in case demand is higher than

expected in the future.

Decisions about the use of flexibility enablers are complex given the inherent trade-off between

the costs of these flexibility enablers and the potential advantages they provide. Moreover,

because some of these decisions must be made during the early planning stages, and set the

boundaries for the system's future capability to respond to uncertainty, while others are



available at the time of production, do these issues need to be considered together in a

systematic way, or is it sufficient to treat strategic decisions without consideration of

operational opportunities? This thesis will explore the interactions among these decisions, first,

to determine the benefits of considering operational opportunities when making strategic

manufacturing planning decisions, and second to address how to systematically consider all of

the issues together, if these benefits are substantial. Before exploring this question, let us first

look at the manufacturing planning process in practice to see how these decisions are currently

considered.

1.4 Manufacturing planning process in practice

Figure 9 provides a schematic view of the manufacturing planning process in the automotive

industry. In this figure, circles refer to responsibilities handled within particular departments

while squares refer to information flows between departments as suggested by directional

arrows.

1-- - - - - - - - - - - -- -
Product Portfolio Pla
Product Portfolio Plan

Figure 9 Schematic view of the automotive manufacturing planning process.



The product development cycle starts with the interaction between market product research

and product design. Market research investigates consumer needs and market trends so that

the company can develop concepts for future products. The interaction between market

research and product design produces a product portfolio plan. In addition to product

characteristics such as product style and architecture, the product portfolio plan also includes

information about the time to launch production and projected market demand each year.

The product portfolio plan is given to the manufacturing planning department, which evaluates

the financial feasibility of the manufacturing plan based on information about production

resources. Two important decisions are considered during the evaluation. (1) To which plants

should these products be allocated? This is associated with process flexibility of plants, e.g.,

how many different products can be built on a single assembly process. (2) What is the capacity

for each plant? These are determined by the amount and type of equipment and tools required

for the process, which determines investment, and by personnel operation plans such as shift

structure and overtime.

The manufacturing planning department generates feasible plans for product to plant

allocation and capacities of plants based on a large number of factors, including product life

cycle demand, launch time, plants' capacity availability, labor union contracts, and tax policies,

just to name a few. The capacities for plants are decided based on the forecasted demand. If a

manager believes that demand for the products allocated to that plant is likely to exceed the

forecast, a safety stock capacity is included.

These decisions, including process flexibility and capacity, are written into a manufacturing

requirement document that is given to engineers. The engineers then will conceive possible

design alternatives for the manufacturing process of each plant that meets the production

requirements. The process design with the lowest investment requirement will be selected.

This lowest investment, combined with other financial estimations such as material purchasing



costs, future revenue and engineering development costs, among others, is used to evaluate

the financial viability of producing products in the portfolio plan.

1.5 Research question in manufacturing planning decision making

While the manufacturing planning process described above may appear to be simple, issues

such as the high degree of product complexity, the large number of possible approaches to

manufacturing, and the large number of decision makers in the organization result in a highly

complex, iterative process. Further complicating the process are the need to simultaneously

consider multiple products, the uncertain demand environment along with the corresponding

desire for flexibility and the multiple approaches to manufacturing flexibility. Several of these

issues are discussed in more detail below.

(1) Consideration of demand uncertainty

In the current manufacturing planning process, all decisions are made based on

deterministic forecasts of demand. The implicit assumption is that the company is able

to produce a realistic demand forecast. Under this assumption, choosing a plan that

incurs minimal investment seems to be a reasonable strategy for maximal profitability

given that revenues from all investment plans are identical, calculated by multiplying

the unit price and the quantity sold, the forecasted demand. However, in reality,

demand is uncertain and unpredictable (see discussion in Section 1.2). Thus, the

revenue from different investment plans can indeed be different. Some plans requiring

more investment may be more flexible, and as such can capture upside swings in

demand resulting in higher revenues. Thus, decisions made looking only at required

investment levels assuming deterministic market demand may underestimate the value

of some alternatives resulting in sub-optimal choices.

(2) Consideration of operational flexibility



There are many manufacturing approaches that provide firms with a degree of flexibility

in response to demand uncertainty. Some are determined at the strategic planning

stage while others are determined during operational stage after the system is

configured. While it may be natural to consider the strategic approaches at strategic

planning stage, it is not clear whether the operational approaches should be considered

at the strategic planning stage and what is the impact of considering them at strategic

planning stage on strategic decisions and performance of the system under uncertainty.

Furthermore, is there any interaction between operational approaches and strategic

approaches in responding to demand uncertainty?

(3) Evaluation of the value of flexibility during strategic manufacturing planning stage

There are many manufacturing approaches that provide automakers with a degree of

flexibility in response to demand uncertainty. Some are determined at strategic

planning stage while others are determined during operational stage. However, by

assuming deterministic market demand forecast, the current approach to evaluate

strategic decision alternatives is not able to appreciate the value of flexibility that some

decision alternative may provide, nor can it comprehend the interactions among

multiple sources of flexibility in the system, which may provide a great value for the

system by reducing risks and allowing the firm to take advantage of opportunities that

arise from market uncertainty. More sophisticated approaches which can address issues

related to market uncertainty are needed.

(4) Effective exploration of the decision space during the planning stage

As engineering systems grow in scale and complexity, more and more components are

incorporated into the system, and their interactions become more complex. As a result,

the decision space for planning and designing the systems grows increasingly large, and

it is very difficult to identify good decision candidates. This becomes even more

challenging when uncertainty is incorporated into the decision making process. In short



order, possible future scenarios make the decision space scale exponentially so that it

becomes computationally intractable. Therefore, how to effectively explore a decision

space that is computationally intractable is a very important issue to be addressed for

large-scale and complex engineering systems.

This research is an attempt to address these issues. It develops a systematic approach that

considers multiple sources of flexibility and explicitly incorporates market uncertainty. This

approach is composed of an integrated screening model that uses methods in Design of

Experiments, including Adaptive one-factor-at-a-time (OFAT) and Response Surface

Methodology (RSM), and Simulated-based Linear Programming (SLP), to adaptively search in

the strategic planning decision space to identify good decision candidates and an evaluation

model. The approach is based on simulation and a Value at Risk and Gain chart that examine

identified decision candidates and provide a comprehensive means to evaluate the value of

flexibility in decision candidates under market uncertainty. Instead of trying to take all

decisions that may affect flexibility of manufacturing systems, this research develops the

approach based on three decisions as shown in Figure 10: the product to plant allocation

decisions, the plant capacity decisions and the overtime operation decisions. The reasons for

choosing these three decisions are:

(1) Attempting to incorporate all possible manufacturing decisions that might impact firms'

performance in response to demand uncertainty is not only unrealistic, but also can be

distracting in finding answers to the questions of the interest.

(2) These three decisions are selected because they are among the most common issues

faced by manufacturing firms. Most companies that have multiple products and multiple

plants must make both product to plant allocation and capacity decisions, and these

decisions must be made during planning stages. Furthermore, these decisions need to

be made every time new products are launched into the market. By contrast, while the



selection of specific tooling technologies or different levels of equipment automation

levels can affect manufacturing flexibility, they may not have to be decided for every

project. At the operational level, although there are many ways to respond to demand

uncertainty, overtime operation is a very common approach, one that requires very

little lead time or additional planning and thus is represents decisions can that be made

as demand develops. Other operational approaches to flexibility, such as switching to a

different shift pattern, may require more planning and higher lead times to due

constraints in hiring and training the additional workers required. As such, the use of

overtime operations provides an excellent contrast with the strategic levels decisions

which must be made very early in the manufacturing planning process.

(3) These three decisions are also frequently studied in the literature and thus provide an

excellent basis for understanding the different approaches to these decisions. Chapter 2

will discuss in details the literature that has studied these decisions.

0 System architecture
> Product to plant allocation

> Capacity

> Technology
> Tooling Technology

> Equipment automation

> Operation
> Shifts selection

> Overtime operation
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Strategic Planning Decisions

(Strategic Flexibility)

Operational Decisions

(Operational Flexibility)

Figure 10 Decisions studied in this thesis



1.6 Thesis outline

This thesis is organized as follows. Chapter 2 provides a review of relevant literature

concerning manufacturing planning decision making. It emphasizes how manufacturing

flexibility and uncertainty are considered. Based on the reviewed literature, research

opportunities are identified. Chapter 3 reviews and discusses methodologies for decision

making under uncertainties and evaluation of flexibility. Different methods are introduced and

their advantages and disadvantages are compared. Challenges and limitations of methods when

applied to uncertainty and flexibility related problems in complex engineering systems are

discussed. In Chapter 4, a simple case study is presented to demonstrate the value of a

systematic approach during planning stages and to explore the interactions among decisions at

different stages and their effect on systems flexibility. Chapter 5 proposes a framework for

exploring large decision space for large-scale and complex engineering systems. It includes an

integrated screening model for exploring manufacturing planning decision making that

considers multiple sources of flexibility in manufacturing systems under uncertainty, and an

evaluation method to allow decision makers to evaluate decision alternatives more extensively.

Chapter 6 applies the screening model in the context of the automotive industry to study

manufacturing planning decisions under demand uncertainty. In Chapter 7, the screening

model is evaluated in terms of its computational effectiveness and efficiency. Finally, Chapter 8

summarizes the conclusion and contributions of this work and limitations that future work

should address.



2 Literature review

This chapter reviews the literature that is relevant to decisions makings in manufacturing

systems, based on which research opportunities are identified. Because manufacturing

flexibility is a key concept in this research, this chapter starts with a brief review of the

literature on the definition and classification of manufacturing flexibility; then it focuses on the

quantitative modeling work that concerns the decisions that are of the interest to this research

as discussed above, including capacity decision and product to plant allocation decision at

strategic level and decisions at operational level. In the discussion of these researches, special

attention is given to whether market demand uncertainty is considered and how manufacturing

flexibility is considered. Then a gap analysis is conducted to identify research opportunities and

indicate the potential contribution of the research presented here.

2.1 Definition and classification of manufacturing flexibility

A review of manufacturing flexibility has been extensively conducted in the literature, including

the work by Sethi and Sethi (1990), Gerwin (1993), Toni and Tonchia (1998), Koste and

Malhotra (1999), and De Toni and Tonchia (2005). While many have examined the definition of

manufacturing flexibility, there is no uniformly accepted definition. However, most of these

definitions of manufacturing flexibility are very similar. In general, manufacturing flexibility is

referred to as the ability of a manufacturing system to respond to changes in the environment

with little penalty in time, effort, cost and quality (Upton 1994).

Classification of manufacturing flexibility is another area that has been widely explored by many

researchers, including Falkner (1986), Sethi and Sethi (1990) and Gerwin (1993). This is an

important area because it is difficult to address the flexibility issue if one does not know what

type of flexibility is required. However, the numerous classification of manufacturing flexibility

found in the literature appears to confirm that "flexibility is a complex, multi-dimensional and

hard-to-capture concept"(Sethi and Sethi 1990).



A flexibility classification often cited in the literature is that by Browne et al. (1984), who

considers eight different types or dimensions of manufacturing flexibility: machine flexibility,

product flexibility, process flexibility, operation flexibility, routing flexibility, volume flexibility,

expansion flexibility, production flexibility. Based on this work, Sethi and Sethi (1990)

distinguish eleven types of flexibility, adding material handling flexibility (after machine

flexibility), program flexibility (after expansion flexibility) and market flexibility (after

production flexibility). As shown in Figure 11, this classification is based on a vertical logic from

basic component flexibility to system flexibility and aggregate flexibility.

COMPONENT OR BASIC

FLEXIBILITIES

SYSTEM

FLEXIBILITIES

AGGREGATE

FLEXIBILITIES

ORGANIZATIONAL STRUCTURE

MICROPROCESSOR TECHNOLGGY

Figure 11 Classification of manufacturing flexibility by Sethi and Sethi (1990)

Gerwin (1993) classifies manufacturing flexibility according to seven types of uncertainty: mix

flexibility, changeover flexibility, modification flexibility, volume flexibility, rerouting flexibility,

material flexibility, flexibility responsiveness as shown in Figure 12.



Table 2 Dimensions of Flexibility

Flexibility

Type of Uncertainty Strategic Objective Dimension

Market acceptance of kinds Diverse product line Mix
of products

Length of product life cycles Product innovation Changeover
Specific product Responsiveness to Modification

characteristics customers' specs
Aggregate product demand Market share Volume
Machine downtime Customers' due dates Rerouting
Characteristics of materials Product quality Material
Changes in the above Strategic adaptability Flexibility

uncertainties responsiveness

Figure 12 Classification of manufacturing flexibility by Gerwin (1993)

The definitions of all types of manufacturing flexibility discussed in the literature are not

repeated here given that it is not the intention of this research. However, the definitions for

volume flexibility and process flexibility are discussed here because of their relevance to this

research:

Volume flexibility According to Sethi and Sethi (1990), volume flexibility of a manufacturing

system is defined as "its ability to be operated profitably at different overall output levels". The

purpose of volume flexibility is to address the uncertainty in the level of demand. As shown in

Figure 11, it is defined as a system level of flexibility. Similarly, Gerwin (1993) defines it as a

flexibility required by the uncertainty in the amount of customer demand. Volume flexibility

permits increases or decreases in the aggregate production level in response to changes in

demand levels.

Process flexibility Browne et al. (1984) and Sethi and Sethi (1990) define process flexibility as a

capability relating to the set of part types that the system can produce without major setups.

This type of flexibility is also referred to as "mix flexibility" in the literature. It "satisfies the



strategic needs of simultaneously be able to offer to customers a range of product lines"(Sethi

and Sethi 1990). This definition is applicable for various types of manufacturing systems, such

as part fabrication processes and assembly processes. For example, Hauser and de Weck (2007)

studied six different part fabrication processes ranging from punching to laser cutting and

evaluated the flexibility of these processes under market uncertainty. Some of these processes,

such as traditional metal stamping require customized, part specific tools, while others, such as

laser cutting, can be used to manufacture different parts without making any physical change of

equipment. For assembly processes, a flexible system is one which can be used to assemble

different groups, where the difference can be the number of parts in the group, the geometry

of those parts or of the entire group, and the types of joining methods used or the number of

operations required. For example, Povelaites (2005) studied automotive assembly lines with

different tooling technologies where tools are used to hold parts in position for robots or

assembly workers to make joints. While traditional dedicated tooling systems cannot

accommodate different part geometries, flexible tooling technologies, such as those with

adjustable pins or reprogrammable robots, such as C-FLEX, can be used to hold parts with

different shapes, thus enabling an assembly line with process flexibility. The degree to which

these systems can handle variation in part geometry varies further defining the flexibility

enabled by each.

The definitions of these two types of flexibility are applicable in this research. However, one

thing needs to be noted: Although both process flexibility and volume flexibility are the system

level of flexibility that addresses different type of demand uncertainty, they are not exclusive to

each other. In particular, although process flexibility is directly related to the uncertainty

regarding different product varieties, it can also be used to respond to demand uncertainty

with volume variations. In this regard, process flexibility in this research is more referred to as

one enabler for volume flexibility. Together with other enablers, such as overtime operational

flexibility, it contributes to the ability of the firm to react to demand uncertainty in volume

variations.



2.2 Review of manufacturing systems decision making literature

As the focus of this research is concerned with the impact of considering demand uncertainty

and operational flexibility on strategic planning decision making, in particular, capacity decision

and product to plant allocation decision, this section will review literature addressing

quantitative modeling work in the areas of (1) capacity decision making (2) product to plant

allocation decision making, (3) operational decisions making and (4) strategic decision making

with consideration of operational decisions.

2.2.1 Research studying capacity decisions under demand uncertainty

For a company that needs to produce multiple products, one question that often needs to be

answered at strategic planning decision stage concerns the capacity of the manufacturing

facility considering the demand uncertainty. Furthermore, when manufacturing resources differ

in terms of their flexibility to produce different products, this question then becomes how

much of this capacity should be flexible and therefore able to produce multiple products and

how much can remain dedicated to a single product. However, there is a trade-off since flexible

manufacturing systems typically require higher levels of investment than their dedicated

counterparts. In studying this question, Fine and Freund (1990) develop a single-period, two-

stage stochastic program to determine in a firm's capacity levels of multiple dedicated

resources and one flexible resource that is capable of producing all products. At the first stage,

the company chooses the capacity levels of multiple dedicated resources and one flexible

resource such that all products can be produced considering uncertain demand. At the second

stage, the firm determines production quantities after demand realization. Their work

characterizes the sufficient and necessary conditions for a firm to invest in a flexible resource in

order to protect efficiently against uncertainty in demand. They also explored the sensitivity of

the optimal capacity decisions to the difference in investment required by the flexible and

dedicated systems, as well as sensitivity to demand correlation and variability. Van Mieghem

(1998) also studied the optimal investment for flexible manufacturing capacity as a function of



product prices (margins), investment costs and multivariate demand uncertainty. This work

considers a firm that produces two products and can invest in dedicated and/or flexible

capacity. The analysis shows how cost differential, price differential and correlation of demand

affects optimal investment decisions for flexible capacity and finds that flexible capacity may

even be beneficial under perfectly positively correlated demand if one product is more

profitable than the other. In similar work done by Netessine et al. (2002), impacts of demand

correlation on flexibility investment are also analyzed, and show that for the case of two

products, increasing correlation causes a shift from flexible to dedicated resources in the

investment decision. For the case of three or more products, the changes in the investment

decision follow an alternating pattern. Bish and Wang (2004) studied the optimal resource

investment decision faced by a two-product, price-setting firm that has the option to invest in

dedicated resources and/or a more expensive, flexible resource that can satisfy both products.

The study shows the conditions under which investment in flexible resources can be optimal,

depending on the profitability of the two products and demand correlation.

In summary, the literature discussed above provides great analytical insights on the trade-off

between costs and benefits of flexible resources and how the optimal capacity is sensitive to

demand uncertainty. However, as Jordan and Graves (1995) pointed out, their application is

limited by one common assumption, which is that they all assume the flexible resource is

completely flexible, meaning that it can produce any kind of product. Why this assumption

limits the usefulness of the work discussed above is further discussed in the next section.

2.2.2 Research studying allocation decisions under demand uncertainty

By assuming the flexible resource is completely flexible, meaning that it can produce any kind of

product, the work discussed in the preceding section focuses on the question as to whether and

how much to invest in dedicated capacity versus the completely flexible capacity. As such,

product to plant allocation decision is bound together with the capacity investment decision.

Once the capacity of the flexible resource is determined, it implies that all products can be



produced using this resource to the limit of its capacity. This may be appropriate in some

industries or for limited product varieties, but is not realistic in some industries. For example,

an automotive company may have many products and many plants. It is neither technically

feasible nor economically viable to build a plant that can produce all of their products. Under

this situation, the product to plant allocation and capacity investment decision has to be

addressed separately. Jordan and his collaborators have pioneered the research on partial

flexibility under demand volume uncertainty. Jordan and Gonsalvez (1990) developed a model

called CAPPLAN, which evaluates the flexibility of a given product to plant allocation and

capacity decision. They found that a high percentage of the benefits of total flexibility can be

achieved by a small amount of flexibility. Based on this work, Jordan and Graves (1995)

provided the well-known chaining theory as principles for allocating products to plants. They

define a chain as "... a group of products and plants which are all connected, directly or

indirectly, by product assignment decisions". They emphasize the fact that chaining

configuration provides virtually the same benefits as a fully flexible configuration and

demonstrate that the benefits decrease as the number of chains increase. This idea is

illustrated in Figure 13:

a b c
Two Chains One Complete Chain Total Flexibility

product plant product plant product plant

Figure 13 Illustration of chaining theory in Jordan and Graves (1995), adopted from (Francas et al.
2007)



This very insightful principle has been applied and verified by many other researches. Based on

the chaining theory, Inman and Gonsalvez (2001) developed a model for allocating products to

plants by minimizing the lost sales, balancing the utilization of capacities among plants, and

maximizing the number of plants chained together. However, in this model, product demand is

assumed to be deterministic. Francas et al. (2007) developed a mixed integer stochastic

programming model that is able to determine the optimal flexibility configuration facing

uncertain and dynamic demand along the product lifecycles. Through a case study in the

context of the automotive industry, this paper shows that consideration of product lifecycles

has a big impact on evaluation of strategic process flexibility.

However, all models described above concern only product to plant allocation decisions and

take the capacity investment decision as a given. Furthermore, operational flexibility is not

considered in these models.

2.2.3 Research studying operational decisions under demand uncertainty

Operational decisions concern the operation of manufacturing systems which are configured

based on capital investment decisions made during strategic planning stage. Research

addressing the use of operational decisions to cope with demand uncertainty resides in the

literature of production planning or aggregate planning. This is effectively a problem

concerning the "acquisition and allocation of limited resources to production activities so as to

satisfy customer demand over a specified time horizon"(Graves 2002). Note that "production

planning" or "aggregate planning" here, in spite of also containing planning activities, is an

activity that happens after the strategic planning stage. Strategic planning decisions typically

address capital resource acquisition while "production planning" or "aggregate planning"

decisions are more concerned with resources such as workforce size, inventory planning,

subcontracting and overtime scheduling. For example, the model presented by Wild and

Schneeweiss (1993) is used for planning the regular workforce and the use of flexible labor

instruments such as temporary workers, overtime, and cross trained workers when demand is



uncertain. It demonstrates the importance of the interplay between long-term capacity

decisions and the availability of flexible labor instruments (i.e. temporary workers) for short

term decisions. Similarly, Askar and Zimmermann (2006) present a model that considers

multiple flexibility instruments that allow for adjusting production levels in automotive plants,

including changing the cycle time, number of shifts, and operation time per shift (overtime),

among others. However, these models do not consider capacity investment or product to plant

allocation decisions. The reason, as pointed out by Van Miehem (2003), is that "while nothing

precludes the inclusion of capital equipment adjustments in aggregate planning models, the

planning horizon typically is short-to-medium, i.e. days, weeks or months, such that capital

equipment is fixed but its utilization and allocations to products over time is variable".

2.2.4 Research studying strategic decisions and operational decisions

There are models that include both strategic decisions and operational decisions in

manufacturing systems. Fleischmann et al. (2006) developed a strategic planning model to

optimize BMW's global product to plant allocation and capacity expansion over multiple

periods by minimizing the sum of the supply chain cost, the investment and the production cost.

The supply chain cost includes the cost of acquiring materials as well as distribution of finished

cars to global markets. Investment pertains to three production departments, body assembly,

paint shop and final assembly. The production cost consists of costs during both normal

production time and during overtime. It is a very inclusive model in incorporating various costs

associated with an allocation plan; however, it is a deterministic model in that the model

assumes that "the revenue is fixed" (Fleischmann et al. 2006). Consequently, minimizing

investment and costs will be sufficient to evaluate allocation plans. Bradley and Arntzen (1999)

present a mixed-integer program to maximize returns on assets and then apply it to two firms

to illustrate the capacity-inventory tradeoff. Rajagopalan and Swaminathan (2001) explore the

interaction between production planning and capacity acquisition decisions in environments

with demand growth. However, in these models, the demand is assumed to be known and



therefore, the analysis is based on a deterministic approach. Thus, the effects of uncertainty on

optimal capacity plan cannot be appreciated in these models.

The model developed by Chandra et al. (2005) evaluates enterprise-level of benefits of

manufacturing flexibility, which are characterized by the expected net present value under

uncertainty. Flexibility enablers considered include flexible assembly plants capacity, part

commonality, and supply base flexibility as well as overtime flexibility. Demand uncertainty is

explicitly incorporated in the model. Costs for setting up plant capacity, supply base capacity,

part production, and overtime are included. Revenue is a function of uncertain demand and the

capacity decisions. The model can be used to determine the optimal capacities of plants for a

given allocation decision. However, it does not incorporate the cost of the allocation decision

(Chandra et al. 2005) and thus is insufficient to select the optimal product to plant allocation.

2.3 Research Gap Analysis

A key question for any research project is what gap in knowledge it addresses and what

contribution it is able to make. Based on the review of the manufacturing planning decision

making literature, in particular the aspects related to manufacturing flexibility, the following

gaps are identified:

(1) In the current literature, multiple sources of flexibility to respond to demand

uncertainty have been recognized (Jack and Raturi 2002 ). These include decisions

made at different planning stages ranging from early planning decisions to those

occurring during production. However, few quantitative models have considered

multiple sources of flexibility in making strategic manufacturing planning decisions.

Specifically, the strategic manufacturing planning decisions included in this thesis are

the product to plant allocation and capacity investment decisions. This thesis also

addresses operational flexibility, specifically decision during production concerning

the use of overtime operations. Table 1 gives a summary of the literature reviewed



in this chapter and the decisions and flexibility types considered by each. Previous

research either takes a deterministic approach and thus the value of flexibility under

uncertainty is not appreciated (Bradley and Arntzen 1999; Inman and Gonsalvez

2001; Rajagopalan and Swaminathan 2001; Fleischmann et al. 2006) or only includes

one or two of types of flexibility decisions when uncertainty is incorporated (Jordan

and Gonsalvez 1990; Chandra et al. 2005; Francas et al. 2007). This thesis is an effort

to take a more systematic approach in making strategic planning decisions by

considering both the allocation and the capacity decisions, as well as the overtime

operational decision for manufacturing systems. The interdependency between

these decisions under demand uncertainty and the impact of taking a systematic

approach are explored.

Table 1 Comparison between this research and closely related researches

Allocation Capacity Overtime Uncertainty
decision/process decision flexibility incorporation
flexibility

(Bradley and V/
Arntzen 1999)
(Rajagopalan and V/
Swaminathan
2001)
(Inman and
Gonsalvez 2001)
(Fleischmann et V/ V V
al. 2006)
(Jordan and V
Gonsalvez 1990)
(Chandra et al. V/ V/
2005)
(Francas et al. V
2007)
This research / V/ V V



(2) The second gap relates to the computational challenge associated with using

optimization methods for allocation, capacity and overtime production decisions,

particularly when explicit consideration of demand uncertainty is included. When

uncertainty is considered, stochastic optimization is often an approach used to

identify optimal decisions in a large decision space. However, it becomes

computationally challenging to solve the problem studied in this research. Several

of the studies in Table 1 that make use of stochastic optimization are presented in

Table 2. Aside from the specific strategic planning decisions and operational

decisions considered in each study, characteristics of the stochastic optimization

formulations, the size of the case studied and the computation time for each study

are also listed. The model by Jordan and Gonsalvez (1990) evaluates the

performance of a given allocation and capacity decision under demand uncertainty

with overtime considered in operational decisions. This model is a linear stochastic

optimization and takes only 45s to be solved for a problem with 7 products, 6 plants

and 2 periods. However, it is not able to be used to search in the allocation and

capacity decision space. Then in (Chandra et al. 2005), capacity decisions are

included. The resulting model is also a linear stochastic optimization and is applied in

a case with 8 products, 14 plants and 8 periods, which takes 15 hours to be finished.

The product to plant allocation is given and thus cannot be solved with the model.

Francas et al. (2007) considers product to plant allocation decisions with demand

uncertainty, which makes the problem a mixed integer stochastic program. The

authors studied a case with 4 plants, 4 products and 6 periods, commenting that "for

larger problem instances, it is almost computationally intractable", and yet, the

capacity decision is exogenous to this model. Although these studies may vary in

terms of their specific formulations, parameters and constraints, which may affect

the ease of solving the optimization problem, adding capacity and allocation

decisions as variables into these problems causes major increases in computational

time. This is discussed in details in Section 3.2. In practice, both allocation and



capacity decisions are unknown at the beginning of the planning stage and therefore

need to be included in the problem formulation. This poses a computational

challenge for searching for the optimal decision under demand uncertainty using

stochastic optimization methods. In addressing this challenge, this research develops

a method that is able to search large decision spaces that are otherwise

computationally intractable in order to identify good strategic decision candidates.



Table 2 Computational challenge of using stochastic optimization for strategic planning decision makings under demand uncertainty

Components in Stochastic Optimization Characteristics and size of Stochastic Optimization

Computational
Study # of # of # of time

Allocation Capacity Overtime Uncertainty Linear Integer products plants periods

Jordan

and 7 6 2 45s

Gonsalvez

(1990)
Chandar

et al. V 8 14 8 "tens of hours"

(2005)
"for larger

problem instances
Francas et V 4 4 6 computationally

al. (2007) almost

intractable"



3 Methods for decision making under uncertainty

This chapter discusses quantitative methods that can be used for decision making under

uncertainty. Specifically, three groups of methods are reviewed: one group is the real options

analysis method, which is used to examine and to evaluate decision alternatives under

uncertainty; the second group and the third group are the optimization method and the Design

of Experiments method respectively, both of which can be used to explore decision spaces and

to select among decision alternatives. In each group, several quantitative methods and tools

are reviewed with brief background introduction and discussion about the advantages and

limitations of their applications to large complex engineering systems.

3.1 Real options analysis: evaluating decision alternatives under

uncertainty

In planning and designing phase of a project, decision alternatives ought to be evaluated based

on many criteria, such as economic impact, technical feasibility, etc., to make a decision. This

thesis emphasizes on the evaluation of economic impact of decision alternatives. When a

decision alternative's economic impact is evaluated, DCF (Discounted Cash Flow) analysis is the

traditional approach widely accepted. It is calculated by summing up cash flow for every period

of the project at a certain discount rate that accounts for the time value of money. However,

when there exists uncertainty in the environment, DCF analysis has been criticized since it

assumes uncertain factors to be constant and thus is not able to evaluate the value of flexibility

in decisions (Kaplan 1986; Deaves and Krinsky 1998).

Real options analysis has been developed to address this issue. It explicitly considers

uncertainty involved in a project, recognizes the value of flexibility that may exist in decision

alternatives and provides a way to quantify it. Applying real options analysis helps people

manage risks and uncertainties actively, not merely passively by perceiving the value of

flexibility vaguely. Before we start a detailed discussion, let us define real options first.



3.1.1 What is "real options"

MIT professor Steward Myers (1984) first coined the term "real options":

"Strategic planning needs finance. Present value calculations are needed as a check on strategic

analysis and vice versa. However, standard discounted cash flow techniques will tend to

understate the option value attached to growing profitable lines of business. Corporate finance

theory requires extension to deal with real options." (pp.136)

"Real options" has its root in financial derivatives, where an option is defined as a right, but not

an obligation, to buy or sell an asset, at a pre-determined price, within a specified period of

time. For example, one buys a call (European) option on a stock at a strike price of $50 within

the expiration date of three months. The stock price at that time is $45. If the price after three

months goes up to $60, then the owner can exercise this option by buying the stock at $50, $10

less than the market price. Then the owner can sell the stock at the market price $60. As such,

he makes $10 on that stock from selling it the stock. If instead, after three months, the stock

price is less than $50, the owner of this call option does not want and does not have to exercise

this option.

Analogous to financial option, a real option is defined as: "the right, but not an obligation to do

something at a certain cost within some specific time period". As compared to the definition of

option, the difference here is that financial option is restricted to buying or selling an

underlying asset while real option is something that is embedded in a real investment

opportunity.

3.1.2 Real options "on" project and real options "in" project

Real options have been classified into two categories by de Neufville (2002) and Wang (2005).

The distinction comes from the way that the technical design of an engineering system is



treated during the analysis. Real options "on" projects mostly evaluate the management

flexibility/options in investment while treating the engineering design as a black box. Trigeorgis

(1993) provided some examples of real options "on" projects:

* The option to wait: Suppose a company can lease land and wait to see if the market

price of real estate can justify to develop it or not.

* The option to abandon: if market conditions decline, the management can have the

option to abandon current operations.

* The option to switch: management can switch to product that is favored by market by

having a flexible production facility.

A number of books are dedicated to the exposition of this real options approach, including the

ones by Amram and Kulatilaka (1999), Copeland and Antikarov (2001), Trigeorgis (1998), and

Mun (2006). In the real options application in manufacturing systems, Nalin Kulatilaka is among

the early researchers to use real options to analyze manufacturing flexibility. In (Kulatilaka

1988), he recognized the analogues between the operating flexibility of a flexible

manufacturing system and the nested compounded financial option and presents a stochastic

programming model which can capture the value of flexibility of a flexible manufacturing

system. This method allows the incorporation of decisions on investment timing or the decision

to temporarily shut down or to abandon the project entirely. In addition, Karsak and Ozogul

(2002) developed a methodology based on the option approach for valuing expansion flexibility

of flexible manufacturing systems. In all these analyses of real options "on" projects, the

technical design of the system is not studied and changed.

However, real options "in" projects concern embedding flexibility into the design of the

engineering systems. Real options "in" projects are of interest for engineering systems

designers because it can provide a great value in addressing the intrinsic uncertainties that

these systems operate in. Lin (2009) and Wang (2005) summarized some examples of real



options "in" projects, including the parking garage (de Neufville et al. 2006), satellite systems

(de Weck et al. 2004), water resource systems (Wang and de Neufville 2006), and petroleum

exploration and production systems (Lin 2009). These examples are not be discussed in detail

here, but as a summary, in all examples, real options analysis is applied to evaluate technical

designs of large complex engineering systems and real options "in" projects leading to different

technical design that greatly enhances the systems' capability to deal with uncertainty.

Various valuation techniques have been developed to evaluate different options. But because

of the distinctions between financial options, real options "on" project and real options "in"

project, some valuation techniques may only apply for some types of options but not for the

other. Thus, it is important to understand the assumptions that a valuation technique is based

on and the advantages and limitations of each technique before applying them. Thus, the next

section is going to discuss several valuation methods. Specifically, three valuation methods are

discussed: Black-Scholes formula, binomial lattice model and simulation.

3.1.3 Black-Scholes model

The Black-Scholes model is discussed here because it is the cornerstone for option pricing

theory and the foundation for other option valuation methods. It is a mathematical model of

the market for an equity, in which the equity's price is a stochastic process. The option price

derived from Black-Scholes model is given by a closed form formula:

C(S, t) = SN(d) - Ke- r N (d 2) (1)

Where N(x) denotes the standard normal cumulative distribution function for a variable that is

normally distributed with a mean of 0 and standard deviation of 1.

In(S / K)+(r + U
2 / 2)(T - t)

d - - t 
(2)



d2, = d - 7T(3)

S is the price of the stock, K is the strike price of the option, r is the risk-free interest rate, T is

the time to expire, V is the annual drift rate of the price of the stock, and a is the volatility of

the stock.

However, there are important assumptions behind this formula: firstly, there must be a market

in which the arbitrage can be made by buying or selling options and the replicating portfolios.

Secondly, it is possible to create a portfolio which can replicate the payoff of the option. Thirdly,

the uncertainty of the underlying assets is a Geometric Brownian Motion (GBM) process. If any

of these assumptions is not met, this closed form formula cannot be applied. Unfortunately in

the engineering world, these assumptions often do not hold. For example, there may not be a

market for some technologies to be traded, so the arbitrage and the replication portfolio

assumption are not valid. The GBM is commonly used to model the evolution of a stock price,

but for uncertainties in engineering world, this stochastic process may not be the best model to

fit the data. Thus, the application of Black-Scholes formula is very limited in real options "on"

projects and real options "in" projects.

3.1.4 Binomial lattice model

The binomial lattice model is a discrete representation of the evolution of the underlying asset

value. It was developed by Cox and Ross (1979). It models the uncertainty by using a lattice

where each node represents a state of the underlying asset at a particular point of time. For

each node, there are two states, up and down, with some probabilities at each stage. As Figure

14 shows, by recombination of states, the number of states increases linearly with the number

of periods. Thus, this method reduces the size of the tree and therefore has the appealing

feature of avoiding the "curse of dimensionality".
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Figure 14 State evolution simulated by the binomial lattice model

After the uncertainty of the underlying asset is modeled by a lattice model, the valuation

process is applied by starting at each final node, and then working backwards through the tree

to the first node (valuation date), where the calculated result is the value of the option. Lattice

model is flexible in that it can be combined with some efficient method such as dynamic

programming to value the underlying real options.

However, there are also limitations of a binomial lattice model. Firstly, it assumes path

independence, which means that the value at each node is only determined by its state, not by

the path it used to arrive at the node. When there is path dependency, it is not appropriate to

apply it. Secondly, usually binomial lattice model is applied for only one source of uncertainty.

When there is more than one source of uncertainty, then the dimension of binomial lattice

model has to increase also. For example, for two sources of uncertainty, it results in a trinomial

lattice model. But when the number of sources of uncertainty grows, the computational appeal

of this method disappears.

3.1.5 Simulation

Given the development of computer and computational techniques, another method for real

options analysis, simulation, is increasingly used. Simulation generates thousands of possible



paths of the evolution of the underlying system or asset over time given the specified

parameters for the evolution process. With options exercise decision rules embedded in each of

the paths, it computes values of each possible path. With commercial software such as Crystal

Ball", the generation of possible paths can be easily done within seconds.

The first advantage of simulation is that the uncertainties are not limited to a certain form of

process, such as the GBM. The second advantage is that as with the binomial lattice model, it

can be combined with other methods, such as optimization, to evaluate the value of real

options. Another important advantage is that it can directly display many possible outcomes

under uncertain environment. This is a very important aspect that distinguishes simulation from

other valuation methods. While there is nothing preventing binomial lattice models from

producing similar distributions, the details and resolutions that simulation can provide is much

better than lattice models. The results from simulation can also be further summarized in

various forms, such as probability distribution chart, that reveals more comprehensive

information. Section 3.1.6 introduces one way to summarize and display results from

simulation methods.

The early application of simulation to evaluate real options in manufacturing systems can be

seen in Suresh's work. Suresh (1990) applied SIMSCRIPT 11.5 to build a risk analysis simulation

model of demand and compared the cumulative distributions of NPVs of system candidates

with different flexibility. Jordan and Gonsalvez (1990) developed a CAPPLAN method based on

simulation to analyze how uncertainty in product demand interacts with capacity and product

assignment decisions to affect future sales and capacity utilization. Hauser and de Weck (2007)

also present a framework to evaluate flexibility in component manufacturing systems by using a

discrete time simulation. All of these works show that simulation is a helpful tool for analysis

the problem related to uncertainty, such as flexibility.



However, there are also disadvantages with the simulation method. It can be computationally

expensive to run, especially when decision space is large and many decision alternatives are

available.

3.1.6 Value at Risk and Gain chart

As mentioned in previous section, results from simulation model can be summarized in various

forms. This section introduces one way to summary results from simulation methods, which is

the Value at Risk and Gain chart as an effective way to display the value of real options. The

concept of Value at Risk has been originated and widely applied in financial industry. Value at

Risk (VaR) is a measure of the risk of loss on a specific portfolio of financial assets. For a given

portfolio, probability and time horizon, VaR is defined as a threshold value such that the

probability that the loss on the portfolio over the given time horizon exceeds this value is the

given probability level. For example, if a portfolio of stocks has a one-day 5% VaR of $1 million,

there is a 5% probability that the portfolio will fall in value by more than $1 million over a one

day period, assuming markets are normal and there is no trading.

Value-at-Risk has also been applied in areas beyond finance. One of these areas is flexibility in

engineering systems. There it can be used as a way to measure the value of flexibility. For

example, Hassan et al. (2005) presented a VaR-based real options analysis of satellite fleet

design under demand uncertainty. VaR chart is applied to show the distribution of financial

results of design alternatives, through which the value of flexibility was shown in that design

alternatives with imbedded flexibility can reduce Value at Risk, and thus mitigate risks. Building

on the concept of Value at Risk, Cardin and de Neufville (2007) constructed a counterpart

concept, Value at Gain, to represent the upside potential of a project. It emphasizes that

possible upside gain should also be a way to evaluate designs in engineering systems. Similar to

VaR, Value at Gain (VaG) can be defined as a threshold value such that the probability that the

gain of a system exceeds this value is the given probability level. By introducing the concept of

VaG, the emphasis is to show the distribution of possible outcomes decisions makers can look



at the whole spectrum of the results, including both the downside risk and upside risk and that

the ultimate purpose of flexibility is to limit downside risk and to increase upside gain. Lin (2009)

applied the Value at Risk and Gain chart in exploring flexibility in petroleum exploration and

production systems. In the same stream, this research uses this chart as a way to display

possible results of decision alternatives under demand uncertainty to comprehend the value of

flexible system designs.

Figure 15 shows an example of VaRG chart with the cumulative distribution of NPVs of a project.

The 5% VaR is -$110million and 5% VaG is $210 millions. It means that there is 5% probability

that the loss of the project can be more than $110 million and there is 5% probability that the

gain of the project can be more than $210 million. Other than VaR and VaG, this chart can

provide other information to evaluate results of decision alternatives, such as expected value of

NPV, minimum NPV and maximum NPV. It is also possible to calculate standard deviation of

NPVs. Basically it provides the distribution of the outcomes with which a set of comprehensive

information can be obtained, such as expected value, standard deviation, minimum, maximum,

etc.

Value at Risk and Gain Chart

Net Present Valuel I I Mllons

VaR@5% Expected NPV VaG@5% Max NPV

Figure 15 Illustration of the Value at Risk and Gain chart



This chart is also complemented by a table that summarizes key statistics of VaRG chart and

other results of investment decisions, such as investment required of decision alternatives,

Expected production and capacity utilization. These are important metrics that can influence

investment decision makings.

3.1.7 Summary

Four methods are reviewed in this section, which provide tools and methods for evaluate the

value of real options under uncertain environment. If used properly, it can provide great value

and insights on real options evaluation. However, these methods all suffer from one drawback,

which is that although it might be easy to calculate the value of each decision alternative, it is

difficult to determine the optimal decision given the information available at the time the

decisions are made. This may not be a big issue if the number of alternatives that can be

evaluated is small. However, when the design space is very large, it is impossible to evaluate all

possible decision alternatives for their values under uncertainty. Therefore, methods are

needed to help explore the decision space and identify good options. The next two sections

review two groups of methods in this regard. One is optimization; the other is Design of

Experiments.

3.2 Optimization method: explore decision space under uncertainty

Optimization refers to the study of problems in which one seeks to minimize or maximize a real

function by systematically choosing the values of real or integer variables from within an

allowed set. Its extensive application was during World War II for military operations, but now

has been extended to virtually all industries. It is a method widely applied in exploring decision

spaces and helps in decision making. A wide range of methods and algorithms has been

developed over time that can intelligently search a decision space.

Optimization has the following general form:



Max or Min f(x)
x x

subject to :

G, (x)= 0 i = 1,..., me

G,(x)<O i= me +1,...,m

where x is a decision variable, f(x) is the objective function, which returns a scalar value, and

the vector function G(x) returns a vector of length m containing the values of the equality and

inequality constraints evaluated at x.

Depending on particular forms of f(x) and G(x), there are many subfields in optimization, such

as linear optimization, the most basic one with the f(x) and G(x) being linear, nonlinear

optimization, which has f(x) and/or G(x) being nonlinear, and integer optimization, where

decision variables x can only take integer values. Among many categories of optimization

problems, stochastic optimization is a class of optimization that deals with decision making

under uncertainty, which is the problem considered in this research. Thus, this section focuses

on introducing and discussing stochastic optimization.

3.2.1 Introduction to stochastic optimization with recourse

Stochastic optimization, a.k.a. stochastic programming, deals with optimization problems in

which some of data are uncertain. The uncertain data will be represented as random variables

for which a probabilistic description is assumed available, under the form of probability

distributions, densities, or, more generally, probability measures (Birge and Louveaux 1997). If

some decisions can be taken after uncertainty is disclosed in a problem, it is referred as

stochastic optimization with recourse.

Stochastic optimization with recourse typically incorporates two types of decisions: here-and-

now and wait-and-see. Here-and-now decisions mean that decision makers have to make

decisions before, or at least without the knowledge of, realizations of uncertainty. These



decisions are called "first stage decisions"; in contrast, "wait-and-see" decisions mean decision-

makers are assumed to be able to wait for the realization of the random variables. These

decisions are called "second stage decisions".

If first stage decisions are represented by a vector x and second stage decisions are represented

by vector y, a general formulation of a two-stage stochastic optimization with recourse is:

Minx f(x)+ Q(x, ~) s.t. g(x) < 0 (4)

Where

Q(x, ) = Miny q(w, y) s.t. h(c, y) 0 (5)

Where w is random variable representing uncertainty and 5 = (W), which represents the

vector after w is realized.

3.2.2 Application of stochastic optimization in manufacturing systems

Stochastic optimization has been widely used in exploring questions in manufacturing systems

such as line design, production planning, capacity planning, technology selection, etc. The

objective is to optimize the allocation of scarce resources and to efficiently contend with

exogenous uncertain events. This section reviews the literature in this regard.

Kira et al. (1997) considers a production planning problem with multiple periods and multiple

products while demands are uncertain. Decisions to be made for each period are the number of

units of products to be produced, the number of units of products to be subcontracted, the

number of units of inventory products, and regular and overtime hours. Demand is considered

uncertain and modeled by a scenario based probabilistic distribution approach, in which

typically less than five scenarios are assumed to represent uncertainty realization. The objective

is to minimize total cost of production while meeting demand requirements. Overproduction

and underproduction are penalized by being associated with penalty costs, which are included

in the objective function. The model is a stochastic linear programming with simple recourse. A



case study with 4 products, 3 periods and 4 scenarios probability distribution is illustrated,

which shows superiority of the proposed model compared to deterministic approach with

approximately 3% cost savings. Since all costs associated with production decisions are

assumed to be linear, the problem remains computationally tractable.

Chen et al. (2002) applied stochastic programming in addressing the issue of technology and

capacity planning in an environment characterized by multiple products, stochastic demands

and technology alternatives distinguished by investment and operating costs. Technologies

considered here are either "dedicated" so that only one type of product can be produced, or

"flexible" to produce any type of product. This paper presented a generic model in which the

objective is to minimize the total investment and operational costs comprising production and

inventory carrying costs over the planning horizon. The Investment cost function is rather

generic and allows incorporation of economies of scale. Capacities for technologies are

determined during the beginning of each period for each product as demand is realized. The

model is very generic so that it can have wide applications. A simplified version of the general

model is applied on a new product introduction problem in the pharmaceutical industry based

on the Eli Lilly case (Pisano and Rossi 1994).

Stochastic programming is also applied in (Chandra et al. 2005), which present a work closely

related to the research in this thesis as mentioned in Chapter 2. A stochastic optimization

model is developed that maximizes expected value of profits as a function of vehicle sales

under demand uncertainty and expenses due to capacity investment and maintenances. This

research takes a simulation-based approach to modeling demand uncertainty with samples

generated by using Latin-hypercube methods. Genetic algorithm is used to optimize capacity

planning decision based on expected value of profits of simulated demand samples for a given

capacity planning decision.



Francas et al. (2007) studied benefits of strategic process flexibility in manufacturing systems

with consideration of life cycle of products by using a stochastic optimization model. Product

demand is assumed to be uncertain and normally distributed. The model considers product to

plant allocation as the first stage decision and production decision in plants as the second stage

decision. Since product to plant allocation decisions are modeled as a binary integer while

production decision is a continuous variable, the model is a mixed integer linear program.

3.2.3 Computational challenge of stochastic optimization

The above section reviewed representative literature on application of stochastic optimization

in planning and designing issues in manufacturing systems. However, although stochastic

optimization has been widely applied, it has been indicated in various literature that it has

become computationally challenging to solve large-scale problems efficiently:

In (Chen et al. 2002), although the generic model is formulated to explore technology selection

decisions and capacity planning while allowing economies of scale in the investment function,

as the authors pointed out, this results in "a large scale stochastic programming...even with a

linear cost function, the resulting problems are not easy to solve using standard optimization

packages". Particularly, the presence of nonanticipativity constraints prevents traditional

method for large scale stochastic optimization models such as Dantzig-Wolfe (DW)

decomposition from being applied effectively. In this paper, an algorithm is developed for

problems with linear investment cost function, which is applied to cases with 2-3 products and

2 types of technology (flexible vs. dedicated) for periods between 5 and 8. For problems with

concave costs and/or larger size, "optimal solution algorithms are likely to be time consuming,

and heuristic procedures may have to be developed." (Chen et al. 2002).

The computational challenge is also mentioned by Chandra et al. (2005). The formulated

stochastic optimization problem is a linear model with all variables being continuous. For the

case presented in this paper with 8 plants and 14 vehicles, it takes 15 hours to run the model.



Their model does not consider economies of scale and production to plant allocation decision

as this research attempts to address. The same challenge is mentioned in (Francas et al. 2007).

The challenges that are encountered in the literature are explained by Philpott (Philpott), who

said that, in general, linear stochastic programming, when there are few random parameters

and decision variables, can be solved quickly by use of some well-developed tools and theories

in mathematical programming, such as duality theory and convexity analysis. For large scale

linear stochastic programming, some decomposition methods have been developed to improve

the computational efficiency. Then nonlinear stochastic programming adds complexity into the

problem, but if the problem is still convex, decomposition techniques can still be applied to

address large-scale nonlinear programming (Shastri and Diwekar 2006). However, when it

comes to stochastic integer programming, where decision variables have to take integer values,

problems arise in the loss of convexity, which makes the application of decomposition methods

problematic. The size of the problem grows exponentially with the number of periods and the

number of uncertainty sources. Especially when problems encompass integrality and

nonlinearity, even the deterministic version of the problems is difficult to solve, let alone the

stochastic optimization.

3.3 Design of Experiments methods

Design of Experiments (DOE), is another group of method that can be used to explore decision

spaces and seek improvement of systems' performance. In general, it refers to the process of

planning, designing and analyzing the experiment so that valid and objective conclusions can be

drawn efficiently and effectively. (Antony 2003). The purpose is to understand an unknown

system in terms of the relationship of variables and/or to seek an improvement on the system.

This is contrasted with the optimization method. Optimization method requires the clear

specification and formulation of the problem before any algorithm is applied and a solution is

derived. Among many methods in Design of Experiments: two methods are used in this

research and thus reviewed in this section. One method is Adaptive One-factor-at-a-time, which



is reviewed in Section 3.3.1; the other is Response surface Methodology, which is reviewed in

Section 3.3.2.

3.3.1 Adaptive one-factor-at-a-time (OFAT)

Adaptive one-factor-at-a-time (OFAT) is one of the adaptive Design of Experiment methods to

explore the experimental space in seeking the improvement of the system. This section will first

use a simple example to illustrate the idea about this method since it often is also a very

informative and simple way for introduction. Then discussions in the literature about this

method are reviewed.

The example is a system with three factors, each with two levels, -1 and +1. Figure 16 provides

a schematic chart to illustrate the OFAT process as well.

First, an experiment is conducted at some baseline point in the design space. In Figure 16 this

baseline point is A=-1, B=+1, C=+1.

Next, one of the factors is varied. For example, the factor A is varied from -1 to +1. Then

another experiment is run based on the current system setting, which is A=+1, B=+1, and C=+1.

If this setting leads to an improvement, then the change is retained.

Since there are only two levels for each factor, the exploration of the factor A is finished. Then,

the next factor is changed. For example, the level of the factor C is changed from +1 to -1.

Another experiment is conducted under the resulted new setting, which is A=+1, B=+1, and C=-

1. Assume that this change does not lead to an improvement of the system's performance, this

change is not retained so that the system's setting returns to A=+1, B=+1, and C=+1.

Then change the level of the factor B from +1 to -1, resulting the system's setting as A=+1, B=-1,

and C=+1. Do the experiment under this setting. Assume that this change leads to a better

performance, this changed is retained.



Since all factors are explored in the process, the OFAT process stops. As a result, the identified

system setting is A=+1, B=-1 and C=+1.

If there is an improvement,
Do an Experiment retain the change

Change ONE Factor

If response gets worse,
go back to previous state

B
+ , Stop after evey factQr has

been changed onc

A +

Figure 16 Illustration of the adaptive OFAT process applied to a system with three two-level factors
adapted from (Wang 2007)

For more formal mathematically description of this method, the reader is referred to (Wang

2007). In brief, this process is conducted in the following two features:

(1) Each time only the level of one factor in the system is changed while the levels for all

other factors are static;

(2) Whether to retain the change or not depends on the system's performance after this

change as compared to before this change. If the system's performance after this

change is better than the one before this change, then the change is retained.

This method had been criticized for several reasons, such as: it requires more runs for the same

precision in effect estimation; it cannot estimate some interactions; and it can miss optimal

settings of factors (Wang 2007). Although these cautions are valid, some statisticians also

articulated a role for this method. Especially, some recent work by Frey and Wang (2006)

provided a theoretical examination showing that when the experiment errors are small relative

to main effects or when the interactions between factors in a system is strong relative to main



effects, adaptive OFAT can perform better than Fractional Factorial Design with the same

number of experiments.

Although the discussion regarding to the OFAT method remains an open topic, this method has

several advantages that are more appealing than other methods for this research:

(1) Compared to Full Factorial Design, one advantage of the OFAT method is that it scales

only linearly with the number of factors in a system, thus requiring shorter

computational times. For example, for a system with m factors, each having 2 levels, a

Full Factorial Design requires 2' experiments while the OFAT method only requires

m + 1 experiments. The difference in the number of experiments between these two

methods gets large when m gets large.

(2) As far as computational time or resource is concerned, the Fractional Factorial Design

method is another alternative to seek systems' improvement. But the OFAT method has

another advantage that makes it selected in this research: Instead of completely

replacing optimization method, it can work with it in exploring a decision space. In this

research, the optimization method is used to specify a starting point for the OFAT

method, upon which the OFAT method can adaptively improve in searching the decision

space. This will be further explained in this chapter and demonstrated in Chapter 6.

3.3.2 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is another experimental design scheme. It is a collection

of mathematical and statistical techniques developed for modeling and analyzing problems of

determining optimum operating points through a sequence of experiments. Pioneered by Box

and Wilson (1951) in the field of experimental design and analysis, the RSM has been vastly

studied and implemented in a wide range of fields, including robust parametric design and

process optimization.



In the RSM, a group of design alternatives is first sampled based on some experimental design

methods. Central Composite Design (CCD) is one such method often used and is also selected in

this research. It consists of three distinct sets of experimental runs:

(1) A factorial (perhaps fractional) design in the factors studied, each having two levels3 (-1,

+1);

(2) A set of center points, experimental runs whose values of each factor are the medians of

the values used in the factorial portion. So if the two levels of each factor in the factorial

design are -1 and +1, the center points take the value of 0 for each factor. This point is

often replicated in order to improve the precision of the experiment.

(3) A set of axial points, experimental runs identical to the center points except for one

factor, which will take on values both below and above the median of the two factorial

levels, and typically both outside their range. So if the two levels of each factor in the

factorial design is -1 and +1, the axial points take the level of either -a or +a for one

factor while keeping the value of the other factor as 0. Here a is determined by the

following formula:

a = [number of factorial runs]"/ 4

As a result, the CCD design requires five levels for each factor. Figure 17 shows an example of

central composite design for a system with 2 factors.

3 Note that "level" here represents the relative value of each factor. It does not have actual physical meaning. In
applying designed experiments to real problems, one needs to convert the levels to the actual quantity of factors
according to specific contexts.
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Figure 17 Example of Central Composite Design for a system with 2 factors.

Table 3 shows the resulting design of experiments:

Table 3 Experiments for a system with 2 factors with CCD method

No. of experiments Factor 1 Factor 2

1 -1 -1

2 -1 1

3 1 -1

4 1 1

5 0

6 0

7 0 -r

8 0 _

9 0 0

After experiments are designed, next step is to conduct all experiments designed and to get the

responses. The response results are then regressed against some regression model, typically by

least squares minimization. The regression model can be a simple function such as linear,

............. a

I



quadratic function or sometimes cubic function depending on the property of the system under

study. Equation (6) shows an example of a linear function for a system with 2 factors:

F = A +y 1 +2 + (6)

where As are coefficients that are obtained after the regression while y represents the design

variables in the system that need to be optimized. E is the error term that represents the

distance from the true response to the estimated response by the regression model.

Optimization of the regression model with regard to y will lead to optimal response value at

some design variables values. Since the regression model is mathematically tractable and is

easy to be optimized, total computation cost can therefore be reduced. However, a model fit

error E has to be accepted.

The RSM is selected to explore the capacity decision space in this research because it is able to

search in a continuous space with reduced computational cost. Capacity decision space is

regarded as a continuous space with the range between zero and maximum of a plant's

capacity. Methods such as the Factorial Design or the OFAT are not appropriate in exploring this

space since the space must be discretized into levels first before experiments are conducted. If

the intervals between levels are big, which leads to a low resolution of the exploration,

completing all experiments will still leave a large space unexplored. If intervals between levels

are small, the cost of conducting experiments will then become very expensive. On the contrary,

for the RSM, although during experiment design phase, the decision space have to be

discretized to get structured samples in the space, during the second phase optimization of

regression model is conducted over the entire space without being constrained in the discrete

space. Since the optimization is conducted upon some mathematically simple regression model,

it takes less computational time than optimization on the original formulation. An issue though

is that optimization is done with a model for which the coefficients are estimated, not known.

Thus, an optimum value may only look optimal for the estimated response model, but be far

from the truth because of variability in the coefficients. Nevertheless, when it is not feasible to



find an optimal value with a complicated function, RSM provides a way of improving the

response with reduced computational cost.

3.4 Summary

This chapter reviews relevant methods that can be used for decision making under uncertainty.

Specifically, real options analysis is introduced as a group of methods to evaluate decision

alternatives under uncertain environment. Four evaluation methods/tools in this group are

discussed, including Black-Scholes model, binomial lattice model, simulation and Value at Risk

and Gain chart. The advantages and disadvantages of each method are compared. Then in the

group of optimization method, stochastic optimization method is reviewed as a method that

can be used to search decision space under uncertain environment. Its computational challenge

is discussed. Lastly, two methods in Design of Experiments field, including adaptive OFAT and

Response Surface Methodology, are reviewed as another approach to explore decision space,

which are used in this research for manufacturing planning decision making. The details of how

they are applied in this research are described in Chapter 5.



4 Case study 1: A simple hypothetical case

This chapter, through a simple hypothetical case, investigates how strategic planning decisions

should be explored. It focuses on addressing two questions posed in this research about

strategic planning decision making for manufacturing systems: (1) What is the value of

considering demand uncertainty on the strategic planning decision making and performances of

manufacturing systems? (2) What is the value of considering operational flexibility on the

strategic planning decision making and performances of manufacturing systems?

First, a general description of the case is provided, including the specific decisions considered

and the assumptions taken in this study. Then a comparative analysis approach is used to

demonstrate the impact of both uncertainty and operational flexibility on the early planning

decision making stage. Specifically, four different decision approaches are taken to explore the

strategic planning decision space, including (1) no consideration of demand uncertainty or

operational flexibility, (2,3) consideration of only one of these and (4) simultaneous

consideration of both concepts. The optimal decisions based on these four decision approaches

are determined. Next, the performances of these decisions are evaluated and compared. The

results are discussed and the benefits of considering uncertainty and operational flexibility are

demonstrated based on the results. Then sensitivity analyses are performed to explore how the

decisions are impacted by changes in some parameters. Finally, interactions between process

flexibility and overtime flexibility are explored.

4.1 Case description

This simple case looks at a manufacturing planning problem that involves two products,

denoted by A and B, and two available plants for production, denoted by plant 1 and plant 2.

Variations in demand for each product are assumed to follow normal distributions

characterized by a mean d and a standard deviation a. The mean of annual demand for each

product is assumed to be 200,000 units per year for five years. The standard deviation in the



annual demand for each product is assumed to be 50,000 units. The variation in demand for the

two products may be correlated, either positively or negatively or may exhibit not correlation at

all. This correlation is represented by p, and is assumed to be 0 (no correlation) in the base

case.

In order to produce these two products, the firm needs to make two strategic decisions one

year prior to the production because it takes one year to acquire the required resources, such

as equipment and tools, and to build the manufacturing system. These two strategic decisions

are:

(1) Product to plant allocation decision

Which product should be produced at which plant? There are many possible ways to

allocate products to plants. Depending on the allocation decision, plants are designed

and constructed differently. For example, each plant can be dedicated to a single

product, both plants can be built to be flexible and able to make either product, or one

plant can be flexible and able to produce both products while the other plant is

dedicated to a single product. A flexible plant gives one the flexibility to adjust

production between products that are allocated in that plant depending on the actual

demands, but comes with a cost because it requires flexible tools that are more

expensive than dedicated tools.

(2) Plant capacity decision

The capacity, assuming no use of overtime, for each plant needs to be determined. This

can be translated into the amount of equipment and tools and the expense for buildings

that need to be acquired for each facility, which then determines the investment

needed to purchase these resources. It is assumed that the plant's capacity cannot be

downsized or expanded during the five years production period.



After these decisions are made, equipment and tools are invested and systems are built based

on these decisions in a year. Then plants start production. During production, plant managers

can decide production levels in each period depending on the actual demand for each product.

If the demand exceeds the production quantities that can be produced during normal operating

time, they can run overtime. However, there is a limit on the amount of overtime operation

depending on the shift structure in a plant. In this case, it is assumed that the maximal ratio

between overtime operation capacity to the normal time operation capacity is 0.15.

Furthermore, the overall annual capacity of a plant cannot exceed 300,000, which is

exogenously determined for technical reasons.

Variable costs are the only cost considered during production in this case. Furthermore,

operation during overtime incurs higher variable cost than during normal operating time. No

inventory cost is considered. This is reasonable given that each time period is one year so that

production can be altered within the time period in order to satisfy as closely as possible the

demand that is actually realized.

Manufactured products are then sold onto the market. Furthermore, the firm is a price taker in

the market; all products are sold on the market at a specified price. Products that are more

than market demand are not sold so that there is no incentive to produce more than market

demands. On the other hand, unmet market demands are lost sales that lead to no revenue.

There are competing interests that complicate the decision makings regarding to the product to

plant allocation and plant capacity at the planning stage. On the one hand, there is a desire to

always be able to produce enough to fully capture demand even in cases with upswings in

demand. On the other hand, building enough capacity to be able to satisfy demand even in

extreme conditions is costly and can lead to very poor financial performance if demand is lower

than anticipated. Further complicating the situation is the potential to need higher capacities

for only one product thus creating an incentive to build flexible manufacturing facilities, but



these also come with a cost of flexible tooling. What is also unclear is whether overtime

flexibility during operational stage should be considered or not, since how much it is going to be

used depends on how demands are realized and thus is unknown at this stage. In a word, the

optimal decisions for plant capacities and product allocation should be impacted by the relative

costs of each approach, the levels of demand and the anticipated variation, and the availability

of operational flexibility in the form of overtime operations.

What this case study is going to show is how the optimal decision is impacted by decision

approach taken during the early planning stage. Before the different decision approaches are

explained, the next section will show the model used to calculate the economic impact of a

given decision alternative.

4.2 Economic calculation model

First of all, the investment for building plants under a strategic decision alternative, including

the product to plant allocation and plant capacity decision, needs to be calculated. The product

to plant allocation decision is represented by a matrix X; the element in the matrix xij represents

whether a product i is allocated to a plantj. In this case, this matrix is a 2 by 2 binary matrix.

This decision determines the process flexibility of a plant. If only one product is allocated to a

plant, then the plant is a dedicated plant; if both products are allocated to a plant, then the

plant is a flexible plant. In the example shown in Figure 18, the matrix on the left corresponds

to the allocation decision on the right. Under this allocation decision, the plant 1 is a dedicated

plant since only product A is allocated to this plant while plant 2 represents a flexible plant

since both product A and product B are allocated to this plant. A flexible plant requires flexible

tooling with an upcharge cost 13 as compared to dedicated tooling.



Allocation matrix (X)

Plantl Plant2

ProductA 1 1

0 1 Product B 0 1

Figure 18 An example of the product to plant allocation decision

The capacity for a plant is denoted by yj. Then the investment cost of a decision alternative is

calculated as:

INV= F + Fx + p ) Fi(10000 000 (7)

Where INV represents investment, i is an index for product and j is an index for plant. Fe is the

equipment cost per 100k unit production capacity. Ft is the tool cost per 100k unit production

capacity for a dedicated process. Fb is the building cost per 100k unit production capacity. The

values of these parameters are shown in Table 4.a represents economy of scale regarding to

capacity, with 1 meaning there is no economy of scale. It is assumed to be 0.7 in this case. Pj

represents upcharge cost of tools in a plantj. Its value depends on the allocation decision. If a

plant is dedicated to only 1 product or does not produce any product, its value is 0; If a plant is

flexible to produce both products, its value is 3o, which is bigger than 0. In this case, 3o is

assumed to be 20%.

0 - x <2

/J = o x=2, =2 (8)

Then the economic model also includes variable costs occurred during production and the

revenue from selling products, both of which are discounted to the time when strategic

decision is made. The mathematical formulation is:

PV = x p, Zw,, + z(,,9)) + v
t (I+ r)' Y (9)



Where r is the discount rate; t is the index for time periods. pi is price of product i. VC,,i is the

variable cost of producing product i during normal production time; VCoi is the variable cost of

producing product i during overtime production time. Variable costs are assumed to be $100

during normal operation time and $200 during overtime. Prices for both products are assumed

to be $600 each.

wijt is the production of product i in plantj during normal production time at time t; zijt is the

production of product i in plantj during overtime production time at time t. These production

decisions are made in each period with the objective to maximize the economic returns by best

utilizing the available resources in response to demands in each period. In general, this process

can be formulated as a linear optimization problem:

Max PV
W,7 (10)

s.t. w:! H x x, Vi, j, t

z <Hx Vi, j,t (12)(12)

S+z,3 ) y CAP V]j,t (16)

In Constraint (11) and Constraint (12), H is a big number that is used to specify the

relationships for normal production and overtime production with allocation decision,

meaning that if a product is not allocated to a plant, there cannot be a production in

that plant for that product. This is a typically called the "Big M" technique. In

Constraint(13), dit is the demand for product i at time t; so Constraint (13) specifies that



the total production for a product during normal time and overtime does not exceed the

demand for this product. Constraint (14) indicates normal time production of all

products in a plant cannot exceed the plant's normal time capacity. In Constraint(15), 6

is a constant that represents the ratio of overtime production to the normal time

production; so Constraint (15) indicates the overtime production of all products cannot

exceed 6 proportion of the normal time capacity. 6 is assumed to be 0.15 in this case

and is the same for both plants. In Constraint(16), CAPj is the maximum of the overall

capacity of a plant that may be imposed exogenously for technical reasons; so

Constraint (16) specifies that the total production in a plant cannot exceed that maximal

capacity. CAP is 300,000 for both plants in this case study.

Note that embedded in these decisions are two types of flexibility that is linked to the strategic

allocation decision and the overtime flexibility at the operational level. If a plant is configured

flexibly to be able to produce multiple products, then there exist operational flexibility options

to balance production among products at a plant. Similarly, if a product can be produced at

more than one plant, there exist operational options to balance productions between plants for

a product. Having these types of flexibility during the operation stage require investing upfront

on flexible processes in plants with a cost premium. Therefore, it is essentially like a real option

that gives one the right, but not obligation to do something in the future. In addition, what is

also embedded in the operation decisions is the overtime flexibility. It is independent of the

allocation in that it does not require process to be flexible, but may be interacting with the

process flexibility, which will be studied in this chapter.

Finally, the economic performance of a strategic decision alternative, represented by allocation

decision X and capacity decision y, is measured by Equation (17) as follows:

NP V (X, y) = arg max PV (X, y, d)- INV (X, y) (17)



Table 4 Summary of values of the parameters in the simple case

4.3 Different decision approaches to explore the decision space

As mentioned before, a comparative analysis approach is used to demonstrate the value of

considering demand uncertainty and operational flexibility during the early planning stage.

Strategic planning decisions can be made under four different decision approaches as listed

below in terms of whether demand uncertainty is considered and whether operational

flexibility is considered during early planning stage. It should be noted that while uncertainty

and operational flexibility are not considered in some of these decision making approaches,

they still exist and are considered when evaluating the resulting decisions.

Symbol Meaning Value

dExpected value of annual demands for both products 200,000

o Standard deviation of annual demands for both products 50,000

Fe Equipment cost per 100k unit of capacity $80 million

Ft Dedicated tool cost per 100k unit of capacity $50 million

Fb Building cost per 100k unit of capacity $20 million

a Economy of scale 0.7

30 Tool upcharge in a plant 20%

r Discount rate 12%

VCn Variable cost during normal operating time $100

VC0 Variable cost during over time $200

0.15Maximum Proportion of overtime capacity to normal

time capacity

Maximum overall capacity of a plant, including normal 300,000

time and over time capacity



Decision Approach I (DA1): Under this approach, planning decisions are based on the demand

forecasts, the expected value of demand for each product. Overtime operational flexibility is

not considered at the planning stage.

Decision Approach 2 (DA2): Decisions are still made based on the demand forecasts, but

overtime operational flexibility is considered at the planning stage.

Decision Approach 3 (DA3): Decision makers recognize that the future demand is uncertain,

and therefore consider a distribution of possible demands for each product when making

decisions. Overtime flexibility is not considered at this stage.

Decision Approach 4 (DA4): Decision makers recognize both the uncertainty of the future

demand and the opportunities to use overtime flexibility in the form of overtime production.

Demand Uncertainty
No Yes

Overtime
Flexibility

Yes

Figure 19 Schematic view of the four decision approaches

Both DA1 and DA2 do not consider demand uncertainty at the strategic planning stage. The

difference between DA1 and DA2 is the way that overtime flexibility is taken into account. DA1

represents a "decoupled" view that leaves the overtime flexibility out of the strategic decision

making process. DA2 represents a coupled view between strategic and operational levels of

flexibility by considering the potential to run overtime production when making the capacity

and allocation decisions. Thus, through comparison of results from these two approaches, one



can see the impact of the consideration of overtime flexibility on strategic decision making and

the resulting performance of the system assuming demand uncertainty is not considered.

On the other hand, both DA3 and DA4 consider demand uncertainty at strategic planning stage.

Again these approaches differ in the way that overtime flexibility is taken into account, and are

precisely parallel with approaches DA1 and DA2 in this regard. As such, the difference between

decision approaches DA3 and DA4 reflects the impact of consideration of overtime flexibility on

strategic decision making and the resulting performance of the system when uncertain demand

is considered.

To reflect these different decision approaches, variants of the metric indicated in Formula (17)

to measure economic performance of a strategic decision alternative are developed, which are

then compared to select the "optimal" decision alternatives under decision approaches

respectively. These variants are:

Under DA1 and DA2, for a given strategic decision set with an allocation decision X and a

capacity decision y, since no demand uncertainty is considered, the metric is NPV:

NPV (X, y) = arg max PV (X, y, d)- INV (X, y) (18)

Where d is a vector that represents the expected values of the product demands over

periods. argmaxPV(d) represents the present value of the future cash flows under

the best operation decision with the expected values of demands. The best operation

plan is determined by solving the linear programming problem formulated in

Formulation (10)- (16) with the dit in Constraint (13) being changed to be dit, which

means the expected value of demand for product i at time t.

In addition, since no overtime flexibility is considered under DA1, the variable z is fixed



as 0 while only w is optimized to obtain the best PV while both w and z are variable

under DA2 due to the consideration of overtime flexibility.

Under DA3 and DA4, to implement demand uncertainty, Monte Carlo simulation is used to

simulate the uncertain demand, and ENPV is used to as the metric to measure strategic

alternatives as follows:

ENPV (X, y) = E (arg max PV (X, y,d,))- INV (X, y) (19)

Where ds represents one scenario of products demands over t periods and

argmaxPV(d,) represents the present value of the future cash flows under the best

operation decision under the demand scenario s. The best operational decision here is

determined by the linear programming problem formulated in Formulation (10)- (16)

except that the dit in Constraint (13) is changed to be dist, which is a simulated demand

scenario s for product i at time t.

As for the overtime flexibility, since DA3 does not consider overtime flexibility, z is fixed

at 0 while both w and z are decision variables to be optimized under DA4.

The next section will introduce how these decision approaches are applied and will identify the

"optimal" allocation and capacity decisions under each decision approach. Note that each

"optimal" decision is only optimal for the corresponding decision approach. Whether it is

actually the optimal decision or how it compares with other decisions will be discussed in detail

in Section 4.5, where all "optimal" decisions are evaluated and compared.

4.4 Decisions under different decision approaches

No matter which decision approach is considered, the objective is to find the optimal strategic

decision in the decision space that gives the best performance. Although many different ways

can be used to find the optimal strategic decision, this case study uses an exhaustive search



method to find the optimal strategic decision in the decision space. This is feasible because the

size of the decision space is relatively small as the system only includes 2 products and 2 plants.

By the exhaustively search method, 16 allocation decisions are explored for a system with 2

products and 2 plants. Then to explore the plant capacity decision space under each allocation

decision, the exhaustive search method theoretically is not feasible because the capacity of a

plant is continuous and can be any number from 0 to 300,000. But it can be simplified by

discretizing the capacity decision space with a specified interval, thus allowing the use of the

exhaustive search method to search the space. More specifically, a gridded exhaustive search is

used in this case study, which is illustrated in Figure 20:
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Figure 20 Illustration of the gridded capacity decision space

Each point on this gridded space represents an alternative for plants' capacity

decision. Each point contains capacities for two plants. The interval between two

points can be expressed as:

UBj - LBj

N
(20)
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Where UBj represents the upper bound for a plant j's capacity, LBj represents the lower bound

of a plant j's capacity; 6j is the interval between two capacity levels under examination. N

represents the total number of capacity levels examined for a plant.

In this case, a coarse-to-fine gridded search approach is taken, which is described as follows:

Step 1: UBi=UB 2=300,000, LBi=LB2=0, N=10. As a result, 61=62=30,000.

Then the NPV or ENPV, depending on different decision approaches, of the points

defined by this grid are calculated and compared. The one that gives the highest NPV or

ENPV is identified as the optimal point for this step;

Step 2: After an optimal point is found based on the grid defined by Step 1, denoted by Cj1

Then UBj= Cj1+50000, LBj= MAX (Cjl-50000, 0), N=10. As a result, 61=62=10,000. Similar

to Step 1, the optimal point on the grid defined by this step is obtained;

Step 3: After an optimal point is found based on the grid defined by Step 2, denoted by Cj2

Then UBj= Ci2+10000, LBj= MAX (Cj2 -10000, 0), N=10. As a result, 61=62=2,000. Finally,

the optimal point is found based on the grid defined by Step 3, denoted by Cj.

Note that this gridded search method is sensitive to the granularity used in defining the grids.

However, computational experiments indicate that a grid interval of 2000 provides a result with

reasonable fidelity. Employing a smaller interval with greater granularity only leads to about a

0.5% difference in ENPV, which is much smaller than the difference between the decisions

under different approaches.

As a result of the gridded exhaustive search, the following "optimal" decisions under four

decision approaches are derived. They are also shown in Table 5.

Decision under DAl (Sl): Two dedicated plants are built for each product. Plant capacities are

set 200,000 for both plants, corresponding exactly to the expected demand of each product.

This decision alternative is denoted as 2 dedicated-200k in the last column in Table 5.



Decision under DA 2(S2): Two dedicated plants are built for each product. But decision makers

take a more conservative view on investments and build plants with capacities of 174,000 each.

This is because operational flexibility in the form of overtime production can be used to make

up the difference with the expected value of demand. This decision alternative is denoted as 2

dedicated-174k in Table 5.

Decision under DA 3(S3): One flexible plant is built to produce both products. The capacity is

set at the maximum 300,000 units a year. This decision alternative is denoted as 1 flexible-300k

in Table 5.

Decision under DA 4(S4): One flexible plant is built to produce both products. The capacity is

set smaller than DA3, at 262,000 units a year. This decision alternative is denoted as 1 flexible-

262k in Table 5.

Considers Considers
Decision Allocation Capacity

Demand Overtime Decision Characteristics
Approach Uncertainty? Flexibility? Decision Decision

Product A Plant 1 k

No Yes ProductA 174k 2:(2 Dedicated-174k)
Product B 174k

Yes No Product A Plant 1 300k S3:(1 Flexible-300k)

Product B Plant 2

Yes Yes ProductA Plant 1 262k S4:(1 Flexible-262k)

Product B- Plant 2

Table 5 Four decision candidates identified by four different decision approaches



4.5 Evaluation of decision alternatives

In this section, the identified decision candidates are evaluated. Firstly, they are evaluated

under deterministic demands, which are the expected values of the product demands. Then

they are evaluated under uncertain demands. The difference between these two evaluation

ways also demonstrates the value of using the evaluation model proposed in this research.

4.5.1 Results under deterministic demands

Table 6 shows the results of the four "optimal" decisions under deterministic

demands at the assumed expected values. Most items under evaluation in columns

are self-explaining while the calculations for Average Capacity Utilization and for

Returns on Investment are shown below:

Total Production/oal Periods
Average Capacity Utilization = Total Periods

Total Capacity (21)

NPV or ENPV
Returns on Investment = NPV or ENPV

Investment (22)

Here Average Capacity Utilization is the capacity utilization of the system, consisting two or one

plant depending on what the strategic planning decision is, over production periods. It does not

include overtime capacity.

One can see that, under deterministic demands, the decision under DA2, which is to build two

plants at capacity of 174,000 units each, has the highest NPV among all decisions. Furthermore,

it has the lowest lost sales, 0, and very high Average Capacity Utilization 114%. Although it

requires more investment than two other decision alternatives, its high NPV, high capital

utilization and zero lost sales seem to provide good justifications for it.



Table 6 Evaluation results under deterministic demands

Total
Total

Considers Considers INV. NPV Average lost
Decision Returns on prod.

alternatives demand overtime (million (million Capacity sales
alternatives Investment (million

uncertainty? flexibility? $) $) Utilization (million
unitsunits))

DA1

(2(2 No No 487 233 47.8% 100% 2 0
Dedicated-
200k)

DA2
(2 No Yes 442 260 58.8% 114% 2 0
Dedicated-
174k)
DA3
(1 Flexible- Yes No 345 195 56.5% 100% 1.5 0.5

300k)
DA4
(1 Flexible- Yes Yes 314 213 67.8% 115% 1.5 0.5

262k)

4.5.2 Results under uncertain demands

Then this section evaluates the performance of the four "optimal" decisions shown in Table 5

under uncertain demands. The evaluation model shown in Figure 21 is used. In this model,

Monte Carlo simulation method is used to simulate demand uncertainty and the linear

programming model is used to mimic the operational decision making in respond to realized

demand scenarios. Both methods are indifferent from the ones used under DA4. However,

instead of getting the expected values of all NPVs, this evaluation model summarizes all the

NPVs in the Value at Risk and Gain Chart, which is described in Section 3.1.6, to allow more

extensive examination of the decision alternatives.



Enabled by strategic
process flexibility

Switch Production of
products?

Run Overtime?

Enabled by overtime
flexibility

Figure 21 Logic flow chart for the evaluation model

Figure 22 shows the VaRG chart for results of these decisions and Table 7 provides the

summary table for key statistics of the results as a complementary.

4.5.2.1 The flaw of averages

First of all, if one compares the NPV under deterministic demands in Table 6, and the expected

value of NPVs under uncertain demands in Table 7, it can be found that they are not equal; in

fact, for all decisions:

Expected NPVs< NPV under expected demands

) Probability distributions & Outcomes
Value At Risk& Gain Chart

> Economic outputs statistics table

(Expected NPV, Standard deviation,
Investment, MIN NPV, MAX NPV, etc.)



Value at Risk and Gain Chart
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Table 7 Summary table for decision alternatives under uncertain demands

NPV Expected
Expected

Considers Considers Returns on Average Lost
Investment MIN MAX SD aR@5% aG@5% Production

Decisions demand overtime ENPV Investment Capacity Sales
(Million $) (million (million (million (million (million (million

uncertainty?flexibility? (million $) Utilization (million
$) $) $) $) $) units)

units)

DA1
No No 487 194 20 311 42 122 252 39.8% 96% 1.91 0.09

(2 dedicated-200k)

DA2
No Yes 442 195 34 260 32 136 238 44.1% 104% 1.8 0.2

(2 dedicated-174k)

DA3
Yes No 345 191 122 195 10 169 195 55.4% 99% 1.49 0.51

(1 flexible-300k)

DA4
Yes Yes 314 208 145 213 9 190 213 66.2% 113% 1.48 0.51

(1 flexible-262k)



Table 8 lists the specific results for a better contrast:

Table 8 Comparison of NPV under expected value of demands and expected value of NPVs

NPV under Expected demands Expected value of NPVs
Decisions (Million $) (Million $)

DA1(2 dedicated-200k) 233 194
DA2(2 dedicated-174k) 260 195
DA3(1 flexible-300k) 195 191

DA4(1 flexible-260k) 213 208

This is known as the "the flaw of averages" (Savage 2009). Figure 23 explains how this concept

is embodied in the context of the case studied here. The red solid line is the simulated demand

for a product with expected value of 200,000 and standard deviation of 50,000. The upper red

dotted line represents expected value of demand. Blue solid line represents production if this

product is produced at a plant with capacity 200,000 and blue dotted line represents expected

value of productions at the planned plant capacity 200,000. If results are evaluated under

expected value of demands, when capacity is at the same level of expected value of demand

200,000, then the production is expected to be at 200,000. However, when demands are

uncertain, for situations when the demand actually is lower than expected value, the

production is the actual demand; and for situations when the demand is higher than expected

value, the production is capped by the capacity. As a result, the expected value of productions

is lower than the expected value of demands, which finally leads to a lower expected value of

NPVs than the NPV under expected value of demands.



Expected NPV < NPV under expected demand

280 Expected demand= 200k Cap city=200k
q 260

240

220

200

180

160

140

120 Expected production= 185k
100

80

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Scenarios
- Demand ......... Expected demand -- Production ......... Expected production

Figure 23 the flaw of averages: Expected value of NPVs is not equal to NPV under expected demand

4.5.2.2 Discussion of results under uncertain demands

Then one can see that, VaRG chart provided in Figure 22 reveals more and critical information

about performances of decisions as compared to Table 6. Instead of a single NPV, it allows one

to see the whole spectrum of possible NPVs under simulated demand uncertainty, For example,

NPV of the decision under DA1, which neither considers demand uncertainty nor operational

flexibility during early planning stage, is $233 million if evaluated at expected value of demands

as shown in Table 6. However, when examined with demand uncertainty, its performance can

have very big variations: it could have profit as big as $311 million, or could only be $20 million.

This piece of information can be very important to influence firms' decision making because it

informs one the potential risks associated with decisions under demand uncertainty.

From the VaRG chart and the summary table, one can see that the superiority of decisions has

changed from what's shown in Table 6. Instead of the decision under DA2, the decision under

DA4 now outperforms other decisions in many aspects. It has the highest ENPV, the highest



minimal NPV, the highest average capacity utilization and the smallest standard deviation. All of

these mean that the decision under DA4 has a much more stable and better performance than

the other decisions under uncertain demands. Furthermore, all of these gains do not require

additional investment. Instead, the investment is the least one. Thus, it has the highest Returns

on Investment. In a word, the DA4 leads to a system design with reduced investment, improved

upside gain and reduced downside risks.

This change of optimal decision is due to the following reasons: (1) the consideration of

demand uncertainty allows one to recognize the value of process flexibility that would not have

been recognized under deterministic demands. (2) Building one big flexible plant as supposed

to two smaller plants allows the system to take advantage of the economies of scale. (3)

Instead of building one plant at 300k annual capacity, which is the decision under DA3, the

decision under DA4 builds a smaller plant at 262k annual capacity because of the consideration

of overtime flexibility, which further saves the required upfront investment. This indicates that

considering overtime flexibility further enhanced the value of process flexibility. Overall, the

result has clearly demonstrated the value of considering demand uncertainty and operational

flexibility during strategic planning stage.

However, this decision does not win in all aspects. In fact, one can see that both the decisions

under DA3 and DA4 lead to a narrower range of cash flow outcomes (with a range the does not

become negative), but also consistently lead to lower expected unit production and more

expected lost sales than the decisions under DA1 and DA2. This implies that although this kind

of risk containment can be very valuable, it requires accepting that there will be lower average

production of products, which may compromise other components of firm strategy, but these

are outside the scope of this analysis. The notion is that firms must be prepared to accept

strategies that sacrifice maximizing expected production and sales in exchange for a more

stable cash flow.



4.6 Sensitivity analysis

This section is going to discuss the results of two sensitivity analyses. The first is how the

product to plant allocation decision is sensitive to the process flexibility upcharge, and the

second is how the capacity decision is sensitive to the overtime upcharge.

4.6.1 Sensitivity to process flexibility upcharge

Table 9 shows the sensitivity of the optimal product to plant allocation decision to process

flexibility upcharge in terms of ENPV. First of all, the second column shows that if one makes

the strategic planning decisions under deterministic demands, the best decision is always going

to be building two dedicated plants no matter how much the process flexibility upcharge is.

However, if demand uncertainty is considered, then the production to plant allocation decision

becomes sensitive to the process flexibility upcharge. The base case, which is analyzed

previously in this chapter, is the case with process flexibility upcharge 20%. The decision is to

build one flexible plant, indicated by Italianized and blue font in the table. Under the same

demand uncertainty, this decision of flexible process is unchanged with less expensive flexibility

upcharge. This is reasonable because as process flexibility costs less, the flexible plant becomes

more favorable. But when the process flexibility upcharge increases to 35%, then building two

dedicated plants will have better ENPV. This shows the trade-off between the benefit and cost

of the flexible process.

It should be noted that the result here only shows the comparison of ENPVs between different

levels of process flexibility. For more effective decision making, other criteria such as the ones

discussed in the previous section should be considered all together.

Table 9 Sensitivity of the product to plant allocation decision to process flexibility upcharge



20% Dedicated Flexible(base case)

25% Dedicated Flexible

30% Dedicated Flexible

35% Dedicated Dedicated

40% Dedicated Dedicated

45% Dedicated Dedicated

4.6.2 Sensitivity to overtime upcharge

This section shows another sensitivity analysis, which is how the optimal capacity decision is

sensitive to the overtime upcharge. The overtime upcharge here means the extra cost to

produce a product during overtime as compared to during normal time. Table 10 shows the

results. It can be seen that as the overtime flexibility gets more expensive, the optimal decision

is to build a larger plant. This demonstrates the trade-off between building a bigger capacity

and using overtime flexibility, to deal with demand uncertainty.

Table 10 Sensitivity analysis of the plant capacity decision to overtime upcharge

Overtime upcharge Capacity for plant 1Capacity for plant 2
$50 262,000 0

$100 (base case) 262,000 0

$200 262,000 0

$340 286,000 0

$350 300,000 0

4.7 Interactions between process flexibility and operational flexibility

One interesting question is how each type of flexibility contributes to the system's ability to

respond to demand uncertainty and whether they have interactions with each other. This

section is going to analyze the interaction between process flexibility and operational flexibility

through a comparison between two alternatives: one is a flexible plant at annual capacity of

260k, the other is 2 dedicated plants at annual capacity of 130k each. So the total capacity of
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the dedicated plants is 260k, which is equal to the flexible plant. In this way, the value of these

two types of flexibility can be studied without being affected by different capacities. For these

two alternatives, there are two scenarios to be contrasted: one is to assume that there is no

overtime flexibility available to the system; the other is to allow overtime flexibility available to

the system. Expected production is calculated for each decision under each scenario, which

generates four results as shown in Table 11.

Table 11 Values of process and overtime flexibility, and their synergies

The value of overtime flexibility

Expected Expected Difference etween
Production Production (with overtime) and (w/o
without with overtime overtime)
overtime (Million units) (Million units)
(Million units)

ProductA Plant1 @Capacity 130k 1.28 1.45 0.17
Product B Plant 2 @Capacity 130k

ProductA Plant 1 @Capacity260k
1.30 1.48 0.18

Product B Plant 2 (No production)

Difference between dedicated
process and flexible process 0.02 0.03

The value of process flexibility Synergy between process and
overtime flexibility

Firstly, looking at the table row-wise, one can get the answer to the question about the value of

overtime flexibility for each process by the difference of the expected productions between

with overtime and without overtime. For the 2 dedicated plants case, the value of overtime

flexibility is 0.17 million units. For the 1 flexible plant case, the value of overtime flexibility is

0.18 million units.
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Secondly, looking at the table column-wise, one can get the answer to the question about value

of process flexibility for the with-overtime scenario and the without-overtime scenario. When

there is no overtime available, the value of process flexibility is 0.02 million; when there is

overtime available, the value of process flexibility is 0.03 million.

Thus, an interesting result is derived from the above results: when the process is flexible, the

value of overtime flexibility, measured by the increase of expected production, is more than the

one when process is dedicated. Similarly, when there is overtime available, the value of process

flexibility, measured by the increase of expected production, is more than the one when there

is no overtime available. Clearly this indicates that there is a synergy between process flexibility

and overtime flexibility, which is that the value of one type of flexibility is more when the other

type of flexibility is at present.

Notably, this synergy will be affected by other parameters in the system. Among all the

parameters, two specific parameters are of the interest here and are explored by sensitivity

analysis. One is to demand correlation; the other is to standard deviation of demand

uncertainty.

Figure 24 shows the sensitivity of the synergy between process flexibility and overtime

flexibility to demand correlation. It indicates that the synergy becomes stronger when the

demand correlation is more negative and weaker when the demand correlation is more positive.

When the demand is perfectly correlated, there is no synergy. This is reasonable because

process flexibility is at best addressing the demand correlation. When demand is more

positively correlated, the value of process flexibility is reduced. But what's unintuitive and is

often missed is that, even under positively correlated demands, there is still a synergy between

process flexibility and overtime flexibility; it is just that synergy is less than the one under more

negative correlation.
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Figure 24 Sensitivity of the synergy between overtime flexibility and process flexibility to demand

correlation

Figure 25 shows the sensitivity of the synergy between overtime flexibility and process

flexibility to standard deviation. It shows that the synergy is stronger when the demands are

more uncertain. There is no synergy when there is no demand uncertainty. This can be

explained by the reason that overtime flexibility is at best to address the demand variation.

When demand is less uncertain, the value of overtime flexibility is reduced, thus the synergy

becomes less.

Synergy between overtime flexibility and process
flexibility (Sensitivity to standard deviation)

) 60 80

Standard deviation

100 120

Thousands

Figure 25 Sensitivity of the synergy between overtime flexibility and process flexibility to standard

deviation
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4.8 Summary

In this chapter, a simple and hypothetical case with 2 products and 2 plants is used to

demonstrate the value of considering demand uncertainty and operational flexibility in

improving strategic decision making. To achieve this purpose, a comparative analysis approach

is taken in that: the problem in the case is solved by different decision approaches in terms of

whether uncertainty is considered and whether operational flexibility is considered. Solving all

four formulated problems lead to four different "optimal" decisions. These strategic decision

alternatives are evaluated under the developed evaluation model.

Based on the evaluation result, it has been shown that: (1) Consideration of demand

uncertainty allows one to recognize the value of flexible process design as compared to a

deterministic approach. (2) Consideration of overtime flexibility enhances the value of strategic

process flexibility by reducing investment cost, reducing downside risks and improving upside

gain. Then sensitivity analyses are done to test how strategic decisions change regarding to

process flexibility upcharge and overtime flexibility upcharge. As process flexibility upcharge

goes up, the more dedicated process leads to higher expected value of NPV. As overtime

flexibility upcharge increases, plant capacities increases, which reflects the trade-off between

using bigger capacity to respond to demand uncertainty and using overtime operational

flexibility. Finally, the interaction between process flexibility and overtime flexibility is studied.

The results show that there is a synergy between overtime flexibility and process flexibility,

even under positive demand correlation. The synergy is stronger under more negative

correlation and higher standard deviation of demand uncertainty.
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5 Proposed framework

The preceding chapter presents a simple and hypothetical problem to demonstrate the value of

considering demand uncertainty and operational flexibility during the strategic planning stage.

Although analytically interesting, it is not very realistic because the real problem in practice is

normally larger than that as more products and more plants need to be considered in a

manufacturing system, which constitutes a large decision space that is computational

intractable for the exhaustive search method to identify the best decision candidate with

considering demand uncertainty and operational flexibility. Stochastic optimization is another

method that is often used to identify optimal decision under demand uncertainty. However, as

discussed in Chapter 3 and will be shown in Chapter 7, it also becomes computationally

challenging for problems with even moderately larger sizes. As such, this research develops a

new method to address this computational challenge. It is a computationally practical way to

explore large decision spaces and to identify good decision alternatives. Then it is coupled with

an evaluation model that provides a means to more comprehensively evaluate decision

alternatives. Overall, the framework that consists of both parts is illustrated in Figure 26 and

further explained as follows:

(1) A screening model that efficiently explores the decision space to identify good

candidates.

Designing and operating complex engineering systems involves making many decisions

over long time periods, which constitutes a large decision space. The existence of

uncertainties further impedes an efficient search in this large decision space. While the

computational cost of using optimization approach to obtain a globally optimal decision

in such a large and complex decision space can be prohibitively high, an alternative

approach is to identify not necessarily the best decision, but good ones that are

promising to provide plausible performance. The screening model developed in this

research is one way of achieving this: It identifies good decision candidates by using an
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candidate(s)
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comprehensively
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Figure 26 The proposed framework: a screening model that adaptively explores the decision space to
identify good candidates and an evaluation model that evaluates results of candidates more
comprehensively

adaptive process to search the decision space. It is a simplified model of the system and

the decision space in two aspects:

* Instead of exhaustively searching all possible points in the decision space, it

selects search paths in the decision space and adaptively searches for continued

improvement.

* It forms a simplified representation of the decision space, within which it is

easier to find good decision candidates than in the original decision space.

This screening model is composed of two methods in the field of Design of Experiments:

the Adaptive one-factor-at-a-time (OFAT) to explore the product to plant allocation

decisions space and the Response Surface Methodology (RSM) to explore the capacity

decision space, and the method of Simulation-based Linear Programming (SLP) to

explore the operation decision space. The details are elaborated in the next section.
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(2) An evaluation model that helps to evaluate results of candidates more comprehensively.

The purpose of an evaluation model is to examine, characterize and display results of

identified decision candidates. Such results provide decision makers with more

comprehensive information than what screening models can provide. Especially with

regard to uncertainty, it displays the distribution of all possible outcomes for a decision

candidate under assumed uncertainty. Furthermore, it is complemented by a summary

table which summarizes key statistics of the distributions, such as expected value,

standard deviation and other metrics that may be of interest of decision makers, such as

investment, return on investment, production, etc. In the evaluation model, a

simulation method is used to simulate demand uncertainty. Under each simulated

demand scenario, a decision candidate, which includes a set of strategic decisions, is

executed and decisions at the operational level are made in response to the realized

demand scenario. Performances of the system will be obtained under different demand

scenarios for a given decision alternative, which are plotted on a Value at Risk and Gain

(VaRG) chart.

Since the evaluation model is the same as what is used in case study 1, it is not explained again

here. The rest of this chapter will focus on describing the screening model that is developed in

this research. Firstly, the concept of screening model and the relevant research in the literature

are reviewed in Section 5.1; then the screening model developed in this research is introduced

in Section 5.2 and Section 5.3. Section 5.2 focuses on the general structure of the screening

model and Section 5.3 focuses on the detailed mathematical description of the methods in the

screening model.

5.1 The concept of screening model

The concept of screening model has long been used in system design and analysis. Jacoby and

Loucks (1972) first proposed the idea of a "screening model" in water resource planning. More

applications in this area were done by Chaturvedi and Srivastava (1985), Karamouz et al.(1992)
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and Srivastava and Patel (1992). Wang and de Neufville (2004; 2006) extended the use of

screening model in flexibility of systems design. Lin et al. (2009) provide a recent work that uses

screening model to examine multi-levels of flexibility in offshore petroleum exploration and

production systems. In these researches, a screening model is developed as an approach to

identifying promising design alternatives in the designing and planning of large-scale complex

engineering systems. It is a step to identify, or to screen, the set of possible plans that are

worthy of more comprehensive exploration, as illustrated in Figure 27.

Universe Define Select
of top the best

Possible Configurations designs design

Screening Phase Detailed Design Phase

STIME

Figure 27 Screening models help define top designs for detailed analysis and design, adopted from
(de Neufville et al. 2009)

The following discusses some examples in literature with the purpose to show how screening

models are developed and applied in addressing various problems in engineering systems

designing and planning:

Jacoby and Loucks (1972) considers a system that includes 35 reservoirs, 9 run-of-rivers, 12

variable head hydroelectric sites, and 5 major water supply areas in the Delaware river basin.

The stream flow horizon under planning consideration is 50 years of monthly stream flow data.

For a system with this scale and this time duration, it is not practical to either build an
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optimization model to obtain an optimal solution, or to use a simulation model to explore every

possible design alternative to find optimal solution. Therefore, in the screening process, the

problem is simplified by reducing time frequency and possible stream flow scenarios and

linearizing of cost functions. After the simplification, a stochastic linear optimization model is

developed and solved to obtain design candidates that are further examined in the simulation

model.

Wang (2005) applies the concept of screening model and extends the use of it to flexibility of

engineering systems. It used a screening model to identify options "in" projects, after which the

value of these options are evaluated. With simplified low-fidelity cost functions, shortened time

periods and no uncertainty, the screening model, which is a deterministic mixed integer

program, can be efficiently solved to get an optimal solution. Solving the model with changed

value of parameters that are uncertain results in different solutions, which are then evaluated

by the simulation model.

Lin (2009) presents another screening model that can be used to explore flexible strategies in

offshore oilfield production systems. A model is developed to integrate physical, logical, and

financial relationships for offshore petroleum exploration and production systems at mid-level

detail. It is not an optimization model, but the simplification of the relationships made it

possible to be run very efficiently so that it can be combined with simulation model to examine

some design alternatives.

In summary, common characteristics of screening models include:

(1) It is a simplification of the system in some way. Complexity of large-scale systems results

in a computationally intractable space, which makes infeasible to find the optimal

solution through optimization approach. Thus, a screening model has to simplify the real

system in some way to become practical. Table 12 summarizes the simplifications made

in screening models in the literature mentioned above and in this research.
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Table 12 Summary of screening models in the literature

Title Domain Simplifications Characteristics of
screening model

(Jacoby and Combined Use of River basin Linearization of static and
Loucks 1972): Optimization and cost dynamic

simulation model functions ;Reduced stochastic linear
in River Basin time frequency optimization
Planning each year; limited approach

scenarios of
possible stream
flow for each
period at each gage
site

(Wang 2005) Real Options "in" River basin Simplified deterministic
projects and economic optimization
systems design- relationships; approach
identification of Reduced time
options and duration; Simplified
solutions for path uncertainty to be
dependency deterministic

(Lin et al. 2009) Exploring Flexible Offshore Simplify physical, not an
Strategies in petroleum logical, and optimization
Engineering exploration and financial approach, but is
Systems Using production system relationships; an integrated,
Screening Models: simplified and
Applications to flexible model
Offshore that can perform
Petroleum Projects a quick survey of

alternative
designs

This research Exploring Automotive Simplify not optimization
manufacturing manufacturing relationships approach, but an
planning decisions system between adaptive
in consideration of components; searching method
multi-level Simulate response in use of Design of
flexibility in surface; reduce Experiments
automotive combinatorial methods
industry space
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(2) It must be computationally efficient to run screening models to examine decision

alternatives. A screening model is used to screen out inferior alternatives and to identify

good ones as a preliminary step. The purpose is to reduce the space for more

comprehensive examination. Thus, it needs to be computationally feasible to run for

large systems.

(3) Its results need to be further examined more comprehensively. Because a screening

model has to make simplifications, after decision candidates are identified, it may not

provide the true or the complete result of decision candidates. Thus, it is necessary to

examine them in a more comprehensive way.

5.2 General description of the screening model developed in this research

The screening model developed in this research is a variant of the screening model described

above. What is novel about the screening model developed in this research is that it applies a

new set of methodologies to explore the decision space. Furthermore, the application of DOE

methods does not prevent one from using traditional optimization method as part of screening

model. It can be combined with traditional optimization method to identify good decision

candidates. This section describes the screening model developed in this research at the

structural level. Details and mathematical representation of the screening model are discussed

in the next section.

The screening model is composed of three methods: Adaptive one-factor-at-a-time (OFAT),

Response Surface Methodology (RSM), and Simulation-based Linear Programming (SLP). Each is

used to explore one dimension in the decision space. OFAT explores the product to plant

allocation decision space, RSM explores the plant capacity decision space, and SLP is used to

explore the operation decision space. These three methods are integrated together to search

the decision space and to identify promising decision candidates.
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Figure 28 General view of the integrated screening model to explore the decision space

5.2.1 Adaptive One-factor-at-a-time (OFAT): the allocation decision space

In this research, OFAT is selected as a method to explore the product to plant allocation

decision space. The product to plant allocation decision space is a discrete space with decision

variable values being either 0 or 1. Values of decision variables are considered as two levels for

each factor in the OFAT process. If we denote n products as A, B, ..., N, and m plants as 1,2,..., M,

the allocation decision can be denoted by a matrix X as follows:

XA1 XB 1  ... XN1

X= XA2 XB2 XN 2

XAM XBM X NM _xm

X Ve (0,1)
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xij represents the decision of allocating product i to plant j or not. It can take the value of 0 or 1.

1 means that product i is allocated to plant j while 1 means that it is not. Each row represents

allocations of a given product to plants while each column represents allocations of products to

a given plant.

Factors in the OFAT experiment are elements in this allocation matrix while levels are the

values of the elements, taking the value of either 0 or 1. In conducting experiments in the OFAT

process, one experiment means one alternative to allocate all products to all plants,

characterized by the elements in the matrix X taking value of either 0 or 1. The allocation

decision space is explored by changing one factor, which is one element in the allocation matrix,

at a time. For a problem with n products and m plants, total number of elements in the matrix

is n x m, which is also the number of factors to be explored in the OFAT process. Since each

factor has two levels, 0 and 1, the total number of experiments conducted in the OFAT process

is 2nm+1. As a comparison, if a full factorial design is used, the total number of experiments is

2 (n*m) . The larger n and m, the more computational cost the OFAT method saves.

When applied in this research, the OFAT process starts with a specified allocation plan input by

users. The specification of starting point is very flexible. It can be a random guess, or can be

based on expertise and knowledge about the system, or can be derived from other methods

that can give a viable solution.

With a starting point, the OFAT process can be initiated. Each time a factor is changed, if it leads

to an improvement of the system's response, the change is retained. Otherwise, the change is

not retained and the process starts to explore the next factor. The process of applying the OFAT

process in exploring the allocation decision space is described in detail in Section 5.3.1.

However, there is one question that remains unexplained in the above descriptions, which is

how to get response for an allocation plan with which the OFAT process can compare. This is

explained in the next section.
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Product to Plant Allocation Decision Space

So S

Figure 29 Schematic view of using the OFAT method to explore the product to plant allocation
decision space

5.2.2 Response Surface Methodology (RSM): the plant capacity decision space

The response of a manufacturing system does not only depend on the product to plant

allocation decision, but also depends on the plant capacity decision. Thus, even under the same

allocation plan, there can still be many different responses. However, the OFAT process

requires defining one response that is compared between two experiments. One natural way to

resolve this issue is to get the optimal response among all possible capacity decisions. But for a

large-scale and complex system, it can still be computationally challenging to find the optimal

capacity decision under an allocation plan. Thus, in the screening model developed in this

research, Response Surface Methodology (RSM) is used to as a method to efficiently explore

the plant capacity decision space with reduced computational cost.

In applying the RSM in this research, the Central Composite Design (CCD) method is used to

generate designs of experiments. Factors in design of experiments refer to plant capacities and
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levels correspond to different capacity values for a plant. Each experiment specifies the values

of capacities for all plants in the system. Together with the allocation plan specified in the OFAT

process, a strategic planning decision, including product to plant allocation decision and plant

capacity decision, is conceived. Then one can do the experiment and obtain the response of the

system by using the Simulation-based Linear Programming (SLP) model, which is introduced in

Section 5.2.3.

After obtaining the responses for all the experiments designed by the CCD method, they can be

regressed against some regression model. Instead of a linear function, a quadratic function is

used in this research for the regression model as shown in Equation(23):

k k k

F= + y,1  +: L<2 (23)
=1 1=1 i<j=2

Coefficients As are derived as a result of the regression. y represents plant capacity. F is the

response of the system. E is the error terms.

The model includes, from left to right, an intercept, linear terms, quadratic interaction terms,

and squared terms. As such, it is able to explore the interactions between plant capacities. This

regression model is then optimized with regard to plant capacity. As a result, the optimal plant

capacities and the optimal corresponding response for this regression model are obtained.

However, this regression model has a model fit error, which means that the optimal decision

and response may not be the true optimal for the real system. This leads to an additional step

before passing the response to the OFAT process. The step is to compare the obtained optimal

response for the regression model with the responses that are obtained when conducting

experiments designed under the CCD method and get the best one as the response to be

passed to the OFAT process. Doing this step does not add additional computational cost

because all the responses are already available, but it helps to identify better response for the

OFAT process.
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5.2.3 Simulation-based Linear Programming (SLP): the operational decision space

In the RSM model, each experiment implies a strategic plan that includes a plant capacity

decision and a product to plant allocation decision that is carried from the OFAT process. The

SLP model is developed in this research to get the best expected net present value for this

strategic plan under demand uncertainty by exploring the operational decision space.

There are several different approaches to dealing with operation decisions under uncertainty.

Wang (2005) used Decision Tree Analysis to deploy contingency plans in satellite

communication systems. Decision Tree Analysis has been a standard system analysis and

scenario planning tool under uncertainty. In general, uncertainties are discretized into several

scenarios and contingency plans are provided as operation strategies to be selected to respond

to uncertainty. Lin (2009) employed a simulation based approach to exploring operation

strategies. Multiple sources of uncertainties are simulated in various simulation models by a

large number of scenarios. Then decision rules are prescribed that specify what actions are to

be taken as certain conditions are encountered. Although this approach is different from

Decision Tree Analysis in Wang (2005), what is common in both is that decision rules or

contingency plans are predefined before uncertainties unfold as options to respond to

uncertainties. They are not necessarily the optimal operation strategies that can lead to optimal

performance of the system. However, given complexity and uncertainties in large-scale

engineering systems, it is very difficult to find the optimal operations strategy, especially when

there is path dependency existing between decisions made over periods. Thus the approach of

"decision rules" provides an alternative to tackle the problem. In Lin's work, this is remedied by

fine tuning decision rules with some trial-and-error experiments and sensitivity analysis.

Operation decisions considered in this research during each period of production are concerned

about the production quantities of products in plants under consideration. More specifically,

each plant manager needs to decide how much the plant should produce a given product

during normal production time and during overtime. If realized demands of products in a plant
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are less than the normal time capacity of the plant, normal production time will have to be

reduced; if realized demands of products in a plant exceed total capacity of normal production

time at a plant, the plant can run overtime by having workers work for longer durations.

Such operation decisions are complicated given the complexity of a production system network.

Particularly it is difficult to predefine a set of decision rules before uncertainty is realized and

before product to plant allocation decisions are made. Fortunately, since there is no significant

fixed cost involved in making these decisions and there are only variable costs associated with

them, operation decisions over periods are path independent. Furthermore, it is reasonable to

model these decisions as continuous variables. Analysis of the structure and characteristics of

the problem leads to the use of a linear optimization method to deal with the operation

decision space. By formulating the operation decisions as a linear optimization problem, the

large decision space can then be efficiently explored.

In addition, simulation is taken as an approach to simulating demand uncertainty. Specifically,

Monte Carlo simulation is employed. Under each simulated demand scenario, linear

optimization is used to optimize normal time production and overtime production decisions.

Details are presented in Section 5.2.3.

5.3 Mathematical description of the screening model

A screening model integrates methods discussed above, the OFAT, the RSM and the Simulation-

based LP, to achieve the purpose of identifying promising decision alternatives. This section

mathematically describes how this is implemented in this research. Figure 30 provides an

overview of the flow chart of the screening model.
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Integrated Screening Model

Allocation Decision Space Capacity Decision Space Operation Decision Space

I II Adaptive OFAT Response Surface Methodology Simulation-based LP
(OFAT Model) (RSM Model) (SLP Model)

--------------------------------

Figure 30 General overview of the screening model
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5.3.1 The OFAT model to explore the allocation decision space

The screening model starts with a product to plant allocation decision, which needs to be

specified by users. It can be a randomly selected allocation decision plan if users have no good

knowledge about the system, or an educated guess if users know the systems. Since the OFAT

process makes improvement based on this point, it is preferred that the starting point have

good response.

> OFATSTEP 1: User specifies the starting point.

The starting point at least should be an allocation plan. If users also have a reason for which

capacity plan under the specified allocation plan is preferred, he or she can specify the capacity

plan as well. Otherwise, simply specifying an allocation plan is enough for the screening model

to get initiated.

Assume the specified input allocation plan

Al

(oX(o)
X _ A2

(0)-

-AM

is represented by matrix X(o) .4

(0)
B1

(0)
B2

(0)
XBM

(o)X N1

(0)

.... N2

X NM
Inxm

n is the number of products and m is the number of plants.

> OFATSTEP2: Obtain response for an allocation plan

4 Denotation rules in description of the screening model: subscription in bracket indices an allocation plan explored
in the OFAT model; superscription indices an experiment in RSM model that contains a set of capacity plans for
plants; subscription without bracket indices a plant's capacity.
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The response under the allocation plan X(o), denoted by F(o), is then obtained by using

Response Surface Methodology (RSM) model, which is described in 5.3.2. What is also obtained

from RSM model is the capacity decision that leads to I(o), denoted by y(o). Use I(*) to represent

the lower bound of response during the search process and X(*) and y(*) to represent the

corresponding allocation plan and capacity decision through OFAT process, then let:

r(*)=(o);

X(*)=X(0);

Y(*)=Y().

The lower bound r(*),together with X(*) and y(*), is updated later on in the search process once

there is a new allocation plan that leads to a better response.

> OFATStep 3: Change one element at time in the allocation matrix.

There can be many paths in which the element can be changed in the allocation matrix. For

example, the elements can be changed from the first row to the second, and so on, and from

the left to the right. It can also be changed from the first column to the second column, and so

on, and from the top to the bottom. Section 6.5 describes some examples of paths and

examines how different paths can lead to identification of different decision candidates.

No matter what path is taken, in the OFAT process, only one element is changed at a time.

Since each element in the allocation matrix X can only take two values, either 0 or 1, the change

will be toggling an element from 0 to 1 or from 1 to 0. Then go back to OFAT step 2 with the

new allocation plan and repeat the same process to obtain the response for this new allocation

plan. If the new allocation plan leads to a better response than X(*), then the change is retained.

The corresponding response replaces the value of r(*) as the benchmark that next allocation

plan is compared with. Otherwise, the next element is changed. The process repeats until all

elements are explored.
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Figure 31 Logic flow chart of the OFAT model that explores the allocation decision space
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Figure 31 schematically shows how this process is operationalized with one kind search path,

which is to change factors starting from the upper left corner to the lower right corner in a row

by row order. This process can also be described by the loop as follows:

OFATStep 1: input an allocation plan and/or a capacity decision

k=O

For i=1 to n

For j=O to m

Denote the matrix as X(k);

OFATStep 2: Use the RSM model to obtain response for X(k), record F(k) and y(k);

If F(k)> r(*)

Update F(*)with F(k): F(*)=F(k);

Update X(*) with X(k): X(*)=X(k);

Update y(*) with y(k): Y(*)=Y(k);

End if

k=k+l

j=j+l

OFATStep 3: Change the element X(i,j) in X(*) (if it is 0, change it to 1; if it is 1,

change it to 0);

End

i=i+l

End

As a result, X(*),and y(*) at the end of this process are identified as strategy set, including

product to plant allocation decision and capacity decision, that is further examined and

characterized in the evaluation model.
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5.3.2 The RSM model to explore the plant capacity decision space

As discussed before, the objective of Response Surface Methodology model is to obtain a

response under an allocation plan. However, there can still be many possibilities for capacity

decisions under an allocation plan, all of which have different responses. It is not trivial to find

the optimal response among all capacity decisions under a given allocation plan because of the

nonlinearity of the investment function and scaling problem caused by demand uncertainty.

This problem is addressed in this research by using Response Surface Methodology. Based on

some structure samples, this method generates a response surface that can be easily optimized;

in this way, the computational cost to search for good responses and decisions is greatly

reduced. The implementation is explained in detail as follows.

* RSM Step 1: generate design of experiments

Use Central Composite Design to generate experiments in exploring capacity decision space.

This can be generated by using the defined MATLAB function ccdesign. Note that in the classic

Central Composite Design, the center points are replicated to estimate the experiment error in

the system. When applied in this research, the experiment error can be regarded as very small.

This is because the response is the expected net present value, which is the average of a large

number of scenarios, the variation between ENPV for different runs is relatively small. Thus, the

center runs are not replicated. For each generated experiment in design matrix DM, capacities

for plants are denoted by using a vector y' where q represents the No. of experiment and the

element in this vector is yjq representing the capacity for a plant j.

DM = [y, y2,..., y ]T

yq =[yJy ,..., ]

There are five levels involved in each factor/plant, two levels are for factorial designs, two

levels are for axial designs, and one level is central points. Denoted these five levels as:

11,12,13,14,15 and 1 >2 3 >4 5>
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To run these designed experiments, one needs to translate different levels to values of factors

in a system. Since the axial designs require factor settings to be outside the range of the factors

in the factorial designs, factor normalization needs to ensure that each coded factor

corresponds to feasible (reasonable) levels before starting a factorial experiment. This is done

in this research by using the following formula:

y, Q')= (CAP, + 0). x 1,( 2 11 (24)

where 9 represents levels of factors in design matrix. This formula guarantees that (1) the

minimum level is always corresponding to the minimal capacity of a plant, which is 0, and thus,

does not go to negative, which will be meaningless for the problem here. (2) the maximal level

is always corresponding to the maximal capacity of a plant, which will also be meaningless

otherwise.

* RSM Step 2: Conduct all the experiments and obtain responses for the experiments.

Each experiment designed in The RSM Step 1 is a strategy set that contains a plan for plant

capacities under an allocation plan that is carried from OFAT model. Then responses for all of

these experiments can be obtained by using Simulation-based Linear Program (SLP) model that

optimizes the operational decision for realized demands over periods. The detail is discussed in

the next section.

* RSM Step 3: Obtain regression model for the response surface
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Generate designed experiments in
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"1 I
, the SLP model ,
L _-------------

Output to the OFAT model: r(X(K)), Y(k)

Figure 32 Logic flow chart of the RSM model that explores the capacity decision space
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Denote the responses for experiments obtained from the SLP model F X(k),y q ), q=1...Q,

where Q is the total number of designed experiments. Then fit the values yq and F (X(k), yq) to

a quadratic linear regression model as shown in Equation (25) by doing least square regression

between yq and F (X(k),y q ) . As a result, estimators for coefficients As in the regression model

are obtained:

k k k

F= + _AZy, + .y 2  , y,y, +e
i=1 1=1 i<j=2 (25)

RSM Step 4: Optimize the obtained response surface model:

k k k

max F = ' + ,y, L , Ly72 L+ (26)
i=1 1=1 /<j=2

I

s.t. y < H x x,' (27)

Then the optimal capacity for this regression model is obtained, denoted as y'(k), as well as an

optimal objective function at this capacity. However, because the regression model may have

regression error, the true response may not be the same as the optimal objective function in

Formula (26). Thus, the response at y'(k) is obtained by running the SLP model in the same way

as the experiments in the design matrix are conducted. This response is denoted as F'(k).

* RSM Step 5: Obtain the response for the allocation plan and the capacity decision.

As discussed in Section 5.2.2, although solving the problem in the RSM Step 4 leads to an

optimal solution and an optimal capacity decision for the regression model(25), it may not

necessarily be the true optimal solution. Thus, this step compares all the points in the capacity

decision space that have responses available and get the best response as the final response for
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an allocation plan in the OFAT process. These points include the "optimal" point identified by

optimizing the regression model, all the points in the design matrix of experiments, and if any,

user-specified points. The best response and the corresponding capacity plan among all the

points is denoted as F(k) and y(k) respectively and are output to the OFAT model as the response

for an allocation plan.

5.3.3 The SLP model to explore the operational decision space

This section explains how the response is obtained for an experiment specified in the RSM Step

2. Under the specified capacity and allocation plan, the system is then put into production. As a

response to realized demands for products, operational decisions are made in an attempt to

optimize the net present value with the available resources. Then the expected value of the

NPVs of simulated demand scenarios is used to characterize the performance of the system

under uncertain demands. This is illustrated in Figure 33 and described as follows:

o SLP Step 1: Generate demand scenarios based on demand uncertainty distributions and

parameters. Demand realizations are modeled by Monte Carlo simulation, which is

implemented by using Crystal Ball® as an add-in to Microsoft Excel®. Each demand

scenario includes a demand realization for all products in the system over the periods

under consideration.

o SLP Step 2: Obtain the response of the system defined by the allocation and capacity

decision under the simulated demand scenarioF(X(k), yq,d). The response is

characterized by NPV and comprised of two parts: One part is the investment cost

determined by the allocation decision X(k) and capacity decision yq at the strategic

planning stage, which is denoted as INV. The other part is the future revenue and

expense incurred over production periods, which is discounted to the time that strategic

decisions are made, denoted as PV (Present Value). Revenue is the income from selling

produced products and expense is the operating cost or incoming materials associated
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with producing products. Both revenue and expense depend on the actual production

quantities during the operational stage, which are decided with the objective to best

utilize the available resources in response to the realized demand scenario, including

exercising the strategic process flexibility and using overtime flexibility if necessary. This

is formulated as follows:

Max PV(X(), yq,d,)
w,Z (28)

s.t. w,,~ H x ) Vi, j,t (29)

S<Hxx) Vijt (30)

% Vijt (31)

zt y Vijt (32)

2 j,t (34)

The meanings of these symbols are similar to the ones in Equation (10)-(16) and

therefore are not repeated here. The only exception is dt in Constraint (13) is changed

to bedzst, which is a simulated demand scenario s for product i at time t.

Hence, F(X(),yq,d,) = -INV(X(,,,yq)+argmaxPV(X(,,,y, d,) (35)

where argmaxPV(X(k), yq,d s ) represent the present value of future revenue minus

expense based on the optimal production plan in response to the realized demand

scenario ds under the given allocation decision X(k) and capacity decision yq.
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Input from the RSM
model X(K), Yq

Output to the RSM model: r(X(K), yq)

Figure 33 Logic flow chart of the SLP model that explores the operational decision space

o SLP Step 3: Take the expected value of optimal NPVs as the response for an experiment

in the RSM Step 2, denoted as F(X(k), y = EF(X(k), y,ds).

5.4 Illustration of the screening model in the simple case

This section will illustrate how the screening model can be applied to explore the decision space

by applying it on the simple case presented in the preceding chapter. It should be noted that

the screening model is developed to address the computational challenge that is encounter for

large-scale complex systems, so it is not necessary to use the screening model to explore the
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decision space for the simple case, which can be explored by the exhaustive search method as

described in that chapter to find the optimal decision within a reasonable amount of time. But

since the case is small, it is clear to see the whole process of the screening model and to

visualize the decision space, so it is used as an example only for illustration purpose. Chapter 6

presents a bigger case where the screening model is really needed and brings value to.

The process of using the screening model in this simple case is as follows:

> OFATStep 1: First, input a random initial allocation variable matrix for the OFAT model as:

(0) 0 1

OFAT Step 2: Under this allocation matrix, run the RSM model to obtain the response value

for X(o):

* RSM Step 1: Generate design of experiments by using the CCD method. In the case of 2

plants, the designed experiments are:

Table 13 Designed experiments under Central Composite Design method for 2 factors

No. of experiments F1 F2
1 -1 -1
2 -1 1
3 1 -1
4 1 1

5 -

6 _2 0

7 0

8 0 V
9 0 0

Graphically, it is shown in Figure 34. The first 4 designs are two level factorial designs, which are

followed by a 4 axial designs and 1 center runs. F1 and F2 represent factors in this design, which

correspond to plants. In this case, /1=Vr, 12=1, 13=0,14 =-1,15=-V2
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Figure 34 Graphic view of sample points determined by Central Composite Design

RSM Step 2: Conduct experiments and obtain the following results.

First, this requires converting the input levels to capacities of plants: Based on formula

(24), the corresponding capacities of plants in experiments are:

S(11) =150,000x 1+ = 300,000

(300,000+0) x 12 1 . .
y, (12) 1+2 =150,00x 1+ 1 256,000

23000 ) 1 ( 7 25

S(13) 000 1+0 =150,000x 1+ = 150,000

(302 0+ )x )

S(14) 1+ =150,000x 1+ V 44,000

(300,000+0) x 11 =150000x 1 =0y, (l)= 2 1 =150,00 +

131



Thus the design matrix becomes:

Table 14 Central Composite Design of experiments for a system with 2 products and 2 plants

No. of experiments F1 F2 Yi Y2
1 -1 -1 44,000 44,000
2 -1 1 44,000 256,000

3 1 -1 256,000 44,000
4 1 1 256,000 256,000

5 - - 0 0 150,000
6 -2 0 300,000 150,000
7 0 - 150,000 0

8 0 V2 150,000 300,000

9 0 0 150,000 150,000

Then each experiment is conducted with the specified plant capacities. The response

under each experiment is obtained through the SLP model. The Experiment 8 is taken as

an example to demonstrate how this is done:

o SLP Step 1: generate demand scenarios. In this case, 500 demand scenarios are

generated to simulate demand uncertainty. For conciseness, not all 500

scenarios will be listed here except for the first one:

Table 15 One scenario generated by Monte Carlo simulation

Yearl Year2 Year3 Year4 Year5

A 186,372 263,047 196,520 122,686 251,695
B 229,284 224,640 260,959 197,639 108,673

o SLP Step 2: Obtain response of the system under this scenario. The linear

optimization problem formulated in Equation (28)- (34) is solved, which leads to

the following contingency plan:

Table 16 Normal time production decision made under one demand scenario

Year4 I Year5
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production

A 1 w_ l 150,000 150,000 150,000 122,686 150,000

A 2 w12 0 0 0 0 0

B 1 w21 0 0 0 0 0

B 2 w22 229,284 224,640 260,959 197,639 108,673

Table 17 Overtime production decision made under one demand scenario

Over time Yearl Year2 Year3 Year4 Year5
production

z11 22,500 22,500 22,500 0 22,500

z12  0 0 0 0 0

z21 0 0 0 0 0

Z22 0 0 0 0 0

The same step is repeated for all the 500 scenarios. For different scenarios,

production decisions will be different, which lead to different NPVs.

o SLP Step 3: Then the expected value of the 500 NPVs is calculated. In this case, it

is equal to $124,170,432, which is the result forF(X(), y8) in Table 14.

Other experiments are carried out in the same manner. Thus, the following result is

obtained:

Table 18 Results for all designed experiments

Exp. No. F1  F2  Y1 Y2 -(X(k),yq)

1 -- 2 0 0 150,000 $88,867,215

2 -1 -1 44,000 44,000 $8,606,739

3 -1 1 44,000 256,000 $72,907,903

4 0 -V- 150,000 0 $88,237,523

5 0 0 150,000 150,000 $177,104,739

6 0 150,000 300,000 $124,170,432

7 1 -1 256,000 44,000 $72,117,437

8 1 1 256,000 256,000 $136,418,602

9 V2 0 300,000 150,000 $123,981,966
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RSM Step 3: Fit the results to the quadratic linear regression model (25) and get the

values of coefficient Xs:

A0 = -0.61x 10'

2 = 1.3760 x108

A2 =1.3821x10 8

, =0

k2 = -0.3892 x10 8

012 = -0.3902 x10
8

Thus, the regression model is:

F = 108 x (-0.61+1.3760y +1.3821y 2 -0.3892y2- 0.3902yly 2 )

R2=0.80, which indicates that the regression model fits pretty well with the experimental

data. The response surface determined by this regression model is shown in Figure 35.

In this figure, red dots represent the sample points in capacity decision space and dark

dots represent response obtained for the sample points.

T Response Surface
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* RSM Step 4: Optimize the regressed model to get the optimal response value for X(o):

y'(o)=[ 176746, 177093], F'(o)=$195,970,046

* RSM Step 5: Obtain the response for the allocation decision in the OFAT process

By comparing the optimal response for the regression model and the responses in Table

18, the best one is the one by the regression model. Thus,

Y(o)=[ 176746, 177093], F(o)=$195,970,046

OFATStep 3: Then do the next round of OFAT by changing only the first factor in the

allocation matrix such that the allocation matrix will be:

[010
(1) Lo0 1

Go back to OFAT Step 2 and repreat RSM Step 1 through 5 and get the following results:

y(1)=[0, 178792], F(1)=$98,414,126

Since F(1)< I(o), thus X(o) is retained and the next OFAT allocation input level changes the

second variable in X(o). Thus, the third OFAT allocation input is:

(2) 0 1

Similarly, the result is:

y(2)=[98564, 269545], F(2)= $201,954,148

Since r(2)> F(o), thus X(2) is retained and the next OFAT allocation input level changes the third

variable in X(2). Thus, the third OFAT allocation input is:

X 3)=

The result is:

y(3)=[44000, 256000], r(3)= $192,441,934
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Since F(3)< F(2), thus X(2) is retained and the next OFAT allocation input level changes the

fourth variable in X(2). Thus, the fourth OFAT allocation input is:

X(4) [ 0
The result is:

y(4)=[0, 0], r(4)=$0

> Since F(4)< F(2), thus X(2) is retained. Since all the variables in the input matrix are explored,

the OFAT process ends here. The final result of the OFAT process is thus:

[1 11(OFA) 1

YOFAT=[98564, 269545], FOFAT=$201,954,148

Thus, the identified design alternative is to allocate product A to plant 1 and plant 2 and to

allocate product B to plant 2 only.

If we compare the planning decision identified by the screening model and the one identified

by the exhaustive search method, we can see that these two decisions are not the same. The

strategic planning decision identified by the exhaustive search method is to build 1 plant at an

annual capacity of 262k. This is not unexpected because the screening model only explores part

of the allocation decision space and using response surface methodology to explore the

capacity decision space has regression error. These two reasons can cause the screening model

not necessarily to obtain the true optimum. However, this does not mean that the screening

model has no value. The screening model is valuable when it is computational too expensive or

intractable to use other methods, such as the exhaustive search method and stochastic

optimization method, to search the decision space. In that case, the screening model can search

in the decision space and lead to improvement as compared to the deterministic approach. As

shown in this case, it leads to 8 million of improvement in ENPV ($202 million versus $194

million). This value of the screening model is further demonstrated in Case study 2 in Chapter 6.
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6 Case study 2: Automotive body shop assembly system planning

This chapter is going to demonstrate how the screening model developed in this research can

be applied in a manufacturing planning problem in the context of automotive industry and its

value. Manufacturing systems concerned here is automotive body shop assembly system. The

same as the simple case, this case considers product to plant allocation decision and plants'

capacity decision at strategic planning stage and normal time production and overtime

production as the operational decisions. But it extends to a larger size of a problem with 6

products and 3 plants. While in practice, the size of the problem that firms need to deal with is

likely to be bigger, the intention here is to demonstrate the value of the screening model, not

its computational efficiency, which will be studied in Chapter 7. Furthermore, as will be shown

in Chapter 7, the problem with this size has already constituted a large and complex decision

space that is computationally expensive or intractable for the exhaustive search method and

stochastic optimization method. But the screening model provides a means to explore this

space and leads to improvement of the system's performance under demand uncertainty.

Other than having a problem with bigger size than the simple case, this case study also links to

product platform strategy which adds another complexity as compared to the simple case.

Product platform strategy is a widely used as product development strategy in automotive

industry. It affects the investment cost and process flexibility upcharge in automotive

manufacturing systems. Section 6.1 will introduce this strategy in the automotive industry and

discuss how it adds the complexity to the problem. Section 6.2 describes the case studied in this

chapter, including the assumptions taken in the study. Then Section 6.3 demonstrates how the

screening model is applied to identify good decision is demonstrated for one of the decision

approaches. Section 6.4 discusses the results to show the value of the screening model. Lastly

Section 6.5 discusses the convergence of the screening model for different exploration paths.
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6.1 Product platform strategy in the automotive industry

Product platform strategy, combined with the flexible manufacturing strategy, is developed in

many industries in response to more profit proliferations and shorter product life cycle. It refers

to "the set of common components, modules, or parts from which a stream of derivative

products can be efficiently developed and launched" (Meyer and Lehnerd 1997). In the case of

automotive industry, an automotive platform normally includes underbody and suspensions

(with axles), where the underbody is made of front floor, underfloor, engine compartment and

frame (reinforcement of underbody)(Muffatto 1999). Figure 36 provides a picture of a vehicle

platform.

Figure 36 Picture of a vehicle platform

From product development point of view, platform strategy reduces product development

costs; from manufacturing point of view, it can lead to cost reduction by reducing changeover

times, improving responsiveness to market, and exploiting economies of scale with sharing

components and production processes across a platform of products. However, product

platform can lead to loss of product variant performance and distinctiveness due to component

sharing, which could potentially lead to a loss of market share. In this aspect, flexible
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manufacturing strategy is complementary with platform strategy to retain product

differentiation that otherwise will be too costly.

Since product platforms determine commonality between products, they affect cost of

producing different products on the same process. Vehicles with similar platforms require less

flexibility upcharge in tools as compared to vehicles with different platforms. A such, the

flexibility upcharge for a flexible process that produces multiple different products depends not

only on the number of types of vehicles produced one the process, but also on how the number

of types of platforms on the process, as well as the difference between the platforms. How this

relationship is captured in this case study is further discussed in Section 6.2.2. As product

platforms affect tool investment costs on manufacturing processes, it ultimately influences

product to plant allocation decision since if it is too costly to produce products on the same

process in a plant, it may be better to produce them on the separated processes of plants.

6.2 Case description

In this case study, 6 different vehicles and 3 plants are under consideration. These six vehicles

are designed based on three platforms: Delta, Epsilon and Theta. Epsilon represents a platform

for compact cars, Epsilon represents a platform for mid-size car and Theta represents a

platform for crossover SUV. Each platform has two variances or styles, labeled as Small 1, Small

2, Middle 1, Middle 2, SUV 1 and SUV 2, respectively, as shown in Figure 37.

Manufacturing these vehicles involves many steps. Generally it includes part production,

chassis production, body shop assembly, general assembly, and paint shop. Body shop assembly

system is the assembly system that assembles car body sheet metal (including doors, hoods,

and deck lids) has been assembled or designed but before the components (chassis, motor) and

trim (windshields, seats, upholstery, electronics, etc.) have been added, which is done in

General assembly. The product of body shop assembly system is referred as body in white

(BIW).
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Mid-size Car

Middlel Platform: Epsilon Middle2

Small size Car Crossover SUV

Platform: Delta Platform: Theta
SUVl

SmallV

Figure 37 Case study 2: 6 vehicles and 3 plants.

Typically, body shop assembly, general assembly and paint shop are included in one assembly

plant and a product goes through the three steps in the plant before put onto the market.

Manufacturing planning decisions are based on a complete system with these three processes.

However, this requires information about all three processes, such as investments cost of

processes, variable costs of processes, and technical constraints. Obtaining the information

requires a significant amount of time, efforts, and resources, which are not available at the time

of this research. However, previous work in Materials Systems Laboratory at MIT has

accumulated the information and knowledge regarding to the BIW assembly system. Thus, this

research is going to focus on only the body shop assembly system. Nevertheless, Body shop

assembly system is the most interesting system for manufacturing flexibility question during

manufacturing planning stage. First of all, body shop assembly system plays a very important

role in manufacturing planning decisions because it is very capital intensive. In North America,

the investment for a dedicated body shop assembly process is well above two hundreds of

millions dollars. Secondly, process flexibility in body shop assembly system has big impact on
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capital investment as compared to other parts of the manufacturing system. Body shop

assembly line employs a large amount of robots and automated equipment. Thus, making a

flexible body shop line will entail a great level of engineering changes on equipments and tools

in the system. As a comparison, general assembly is more labor intensive and thus building a

flexible line does not have as much extra cost as body shop assembly system does. In addition,

the framework developed in this research is readily applicable to more extended systems such

as general assembly and paint shop.

6.2.1 Assumption about vehicle demands

Demands for vehicles are assumed to follow the normal distribution characterized by expected

values and standard deviations. The evolution of the demand over periods and the relationship

among products demands are characterized as follows:

d,t - N (d,,,) where d, = d,-1*(1- v,t)

a,, = o,_,*(l + 77,t)

p, =corr(d,,d,)

By which, expected values of vehicle demands are assumed to be decreasing at a rate v each

year as compared to the previous year. This is consistent with general market trend for a

vehicle model in reality that new models are more popular than subsequent ones. Assumptions

about the first year demands are shown in Table 19. Annual decreasing rate v is assumed to be

4% each year. In addition, standard deviations for demands are assumed to be increasing over

years at a rate rl, reflecting the fact that uncertainty grows overtime. rl is assumed to be 5%

each year. The first year standard deviations for all vehicles are assumed to be 17%. Finally, it is

assumed that demands of products have a certain correlation, represented by p, which value is

indicated in Table 22. In general, it is assumed SUVs have negative correlation with compact car
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and mid-size car, possibly due to the impact of fuel prices; the correlation between compact car

and mid-size car and the one within market segments are more positively correlated.5

Table 19 Expected values of product demands in the starting year

Table 20 Demand decrease rates over years

Year 1 Year2 Year3 Year4 Year 5

0 4% 8% 12% 16%

Table 21 Ratios between standard deviations to expected values of demands over years

Year 1 Year 2 Year 3 Year 4 Year 5

17% 23% 29% 35% 40%

Table 22 Demand correlation between products

Product Small 1 Small 2 Middle 1 Middle 2 SUV 1 SUV 2

Platform Delta Delta Epsilon Epsilon Theta Theta

Small 1 1 0.8 0.84 0.84 -0.11 -0.11

Small 2 N/A 1 0 0.84 -0.11 -0.11

Middle 1 N/A N/A 1 0.8 -0.15 -0.15

Middle 2 N/A N/A N/A 1 -0.15 -0.15

SUV 1 N/A N/A N/A N/A 1 0.8

SUV 2 N/A N/A N/A N/A N/A 1

5 These values are developed based on the combination of the market uncertainty model result in Cirincione, R. J.
(2008). A Study of Optimal Automotive Materials Choice Given Market and Regulatory Uncertainty. Engineering
Systems Division. MIT, M.S.: 185, Cambridge, MA., actual market data and intuition. This may be improved by
further modeling and analysis with more market data, which is not the focus of this research.
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Product Small 1 Small 2 Middle 1 Middle 2 SUV 1 SUV 2

Platform Delta Delta Epsilon Epsilon Theta Theta

Demand 260,000 200,000 150,000 200,000 140,000 130,000



6.2.2 Body shop assembly investment cost

It is assumed that investment decision has to be made at one year before production and it

takes one year to implement the decision to build the plant and process. Investment includes

the investment on equipment, tools and buildings. The investment function is:

INV= e(iF 200, 000 (36)

a represents the effect of economy of scale, Fe is the investment cost for equipment per 200k

unit of capacity, Ft is the investment cost for tools per 200k unit of capacity, and Fb is the

investment for building per 200k unit of capacity.

pj is the flexibility upcharge for tools for a plant j. As discussed in 6.1, due to the product

platform strategy, the value of this upcharge is very scenario dependent. Equation (37) shows

the formula used in this research to capture the relationship between the upcharge P and three

factors that affects it: the number of styles produced on a line, the number of platforms

produced on a line and the difference/similarity between platforms.

p = o x (# of styles -1) + A x (# of platforms -1)+ 2 x (difference between platforms) (37)

Po is the basic flexibility upcharge of a flexible process with 1 platform and 2 styles. P1

represents the additional upcharge for having a different platform to the upcharge of an

additional style. P2 represents the additional upcharge for difference between platforms. The

values of the parameters in Formula (36) and Formula (37) and are derived by regressing results

from a Process-based cost model that Material Systems Laboratory at MIT that was developed

by the author, as shown in Table 23.

Table 23 Values of the investment parameters in Case 2

Symbol Meaning Value

Fe Equipment cost per 200k unit of capacity $30 million
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Ft  Tool cost per 200k unit of capacity $66 million

Fb Building cost per 200k unit of capacity $20 million

a Economies of scale 0.6

130o Base flexible tool upcharge per additional style in a plant 0.2

131 Flexibility tool upcharge per additional platform in a plant 0.02

02 Flexibility upcharge for tools for difference between platforms 0.11

6.2.3 Body shop assembly variable cost

Variable cost for a BIW includes parts cost and various costs during assembly process that are

paid over time, including materials, energy, maintenance, labor cost, and overhead cost. The

values of these parameters are also derived based on Process-Based Cost Model that is

developed by Material Systems Lab at MIT and relevant research that was done based on this

model (Kelcar 2001). In addition, the same as the simple case, the maximum of the plant

capacities are assumed to be 300,000 units and the maximum proportion of overtime capacity

to normal time capacity is assumed to be 0.15.

Table 24 Variable costs during production (Units: $)

Product Small 1 Small 2 Middle 1 Middle 2 SUV 1 SUV 2

Platform Delta Delta Epsilon Epsilon Theta Theta

Purchased parts unit cost 600 610 830 800 1,760 1,860

Assembly variable cost
during normal time 200 200 220 220 400 400
Total variable cost

during normal time (VCn) 800 810 1,050 1,020 2,160 2,260

Assembly variable cost
during over time 300 300 320 320 500 500

Total variable cost
during over time(VCo) 900 910 1,150 1,120 2,160 2,360
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Lastly, Table 25 shows assumptions about prices of products, which is BIW in this case

(obviously they are less than typical sale prices of products). Revenue from selling vehicles is

discounted at a rate r to the time that the strategic decision is made, which is assumed to be

one year before production. The discount rate is assumed to be 10% in this case.

Table 25 Prices of products (Units: $)

The present value of the future revenue and expense is calculated in the same way as in the

case study 1:

t (1+ r)t  w ± (38)

Where the meanings of the symbols are the same as in case study 1, so are not

repeated here.

6.3 Application of the screening model

The case described above is computationally very challenging to find the optimal decision by

the exhaustive search method and stochastic optimization method, as will be shown in Chapter

7. In particular, the following four aspects make stochastic optimization limited to solve the

problem in this case:

(1) Demand uncertainty. Incorporation of demand uncertainty makes the computational

time of optimization scale quickly with the size of the problem. Especially many

products considered in the system constitute many sources of uncertainty so that the

size of the stochastic optimization problem grows exponentially.
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Product Small 1 Small 2 Middle 1 Middle 2 SUV 1 SUV 2

Platform Delta Delta Epsilon Epsilon Theta Theta

Price(p) 955 980 1,255 1,205 2,385 2,495



(2) Integerality of allocation decision variable. Allocation decision variable is modeled as a

binary integer. This makes the problem lose the property of convexity and thus prevents

efficient algorithms to be applied to solve this large scale stochastic optimization

problem.

(3) Scenario-dependence of flexibility upcharge 3. As indicated by Equation(37), it depends

on three factors: the number of styles, the number of platforms and the difference

between platforms. This makes the problem very hard to be formulated into an

objective function. Although some form of treatment might be possible to convert this

relationship, there is no readily available technique that can be used.

(4) Economy of scale. Investment in body shop assembly system has the effect of economy

of scale, which means a is bigger than 0 and smaller than 1. This adds nonlinearity to the

optimization problem so that it increases the computational time to solve it.

The development of the screening model in this research is an effort to address this

computational challenge. This section describes how the screening model developed in this

research is applied in this case.

6.3.1 Specification of a starting point

To apply the screening model, an allocation plan needs to be specified as a starting point for

the OFAT process. It can be a random assigned decision, an educated guess based on expertise

and experience of the system, or derived by using some formal method. In this case study, a

model based on optimization method is used to identify the starting point for two reasons. One

reason is that it will give one a better starting point than a random guess. The other reason is

that it can provide a base point so that one can see the improvement of the screening model

upon the traditional optimization approach.

To make optimization problem solvable within a reasonable amount of time, several

simplifications are made for the optimization model:
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(1) No demand uncertainty.

Because incorporation of demand uncertainty makes the computational time of

optimization scale quickly with the size of the problem, the optimization method used

to identify starting point is based on deterministic demand, which is the expected value

of demand.

(2) Simplified flexibility upcharge relationship.

The scenario-dependence of flexibility upcharge makes the problem very hard to be

formulated into an objective function. As such, in this case study, this relationship is

simplified to be:

=/ 0 x(# of styles-1) (39)

This equation implies that the difference between platforms and styles is not considered

so that the additional investment cost for producing multiple styles is the same as the

one for multiple platforms. In this regard, the process flexibility cost is underestimated

for the case of multiple platforms.

(3) No economies of scale.

Economies of scale add nonlinearity to the optimization problem so that it increases the

computational time to solve it. Thus, this is assumed to be 1 in the optimization model

used to identify a starting point.

Based on these simplifications, the problem is formulated into an optimization problem as

shown in Appendix A. The allocation and plant capacity decision obtained by solving this

optimization problem is selected as the starting point for the screening model. Note that even

with these simplifications, it still takes 3 hours to solve the optimization problem.

Figure 38 shows the solution given by the two deterministic decision approaches. Under DA1,

both Small1 and Small2 are not produced. For the other four vehicles, the allocation decision is
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to allocate Middlel to plant 1 at a capacity of 176k, to allocate SUV1 and SUV2 plant 2 at a

capacity of 231k, making plant 2 with 1 platform and 2 styles; and to allocate Middle2 to plant 3

at a capacity of 132k. Under DA4, allocation decisions are the same, but the capacities for all

plants are smaller: plant 1 is at a capacity of 160k, plant 2 is at a capacity of 215k, and plant 3 is

at a capacity of 125k.

Demand
Uncertainty
Operational No

flexibility

Demand No

Uncertainty

Operational Yes
flexibility

Smallsize car Mid-size car SUV

Figure 38 Solutions from deterministic and simplified optimization model under DA1 and DA2, which

serves as the starting point for the screening model

6.3.2 Running the screening model

Then with the solution of the optimization model described in the preceding section as the

starting point, the screening model is run based on DA3 and DA4 respectively. DA3 is to only

consider demand uncertainty during early planning stage, but not the overtime flexibility over

periods while DA4 is to consider both demand uncertainty and overtime flexibility. For
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conciseness purpose, only the process for DA4 is shown here since the process is identical for

DA3, but the results for both decision approaches are shown in the end of this section.

Note that when running the screening model under one decision approach, even with the same

allocation plan as the starting point, there are many different paths to explore the allocation

decision space in OFAT. In this case study, among many other paths that can be used, four

different paths are explored. However, this section will only show the result of using the

screening model to explore decision space with the path that led to the identification of the

best decision candidate under both decision approaches while the different results from

different paths are shown and discussed in Section 6.5. This path is illustrated in Figure 39:

0° "  0 0
0 0 0
0 0 1

b b

0 1 0

I 1 0

Figure 39 The path that leads to the best decision candidate among four paths explored in the case
study 2

This path refers to the path that the elements are changed from the lower right corner of the

allocation matrix to upper left corner in a column-wise direction. The exploration under this

path, together with other intermediate results of running the screening model, is illustrated as

follows.

OFATStep 1: Starting with the starting point, which is the allocation plan determined by

simplified deterministic optimization model, as shown in Figure 38 above. It is represented

by the following matrix X(o):
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XO =

OFATStep 2: get response for this allocation plan by using the RSM model:

* RSM Step 1: Generate design of experiments:

Table 26 Design of experiments for case study 2

Experiment Plant 1 Plant 2 Plant 3
1 0 150,000 150,000
2 61,000 61,000 61,000
3 61,000 61,000 240,000
4 61,000 240,000 61,000
5 61,000 240,000 240,000
6 150,000 0 150,000
7 150,000 150,000 0
8 150,000 150,000 150,000
9 150,000 150,000 300,000

10 150,000 300,000 150,000
11 240,000 61,000 61,000
12 240,000 61,000 240,000
13 240,000 240,000 61,000
14 240,000 240,000 240,000
15 300,000 150,000 150,000

* RSM Step 2: Conduct all the experiments to obtain responses

For Experiment No.1: yl=[0 150,000 150,000], which means capacity for plant 1 is 0,

capacity for plant 2 is 150,000, and capacity for plant 3 is 150,000.
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o SLP Step 1: Generate demand scenarios. In this case, 500 demand scenarios

are generated. Table 27 shows an example of one generated demand

scenario.

Table 27 Example of a generated demand scenario

Yearl Year2 Year3 Year4 Year5

Small 1 206,619 202,143 181,296 240,377 219,740

Small 2 180,146 180,155 151,499 221,966 74,514

Middle 1 130,772 128,394 144,861 143,875 118,232

Middle 2 190,706 173,999 182,385 216,512 83,305

SUV 1 127,138 146,413 83,141 79,276 194,262

SUV 2 118,552 139,473 59,656 85,242 210,168

o SLP Step 2: Solve optimization problem Equation (28)- (34) and get response

under this demand scenario:

F(Xo, y',1) = $36,222,518

The optimal production plans with this realized demand scenario over years

are shown in from Table 28 to Table 32:

Table 28 Production plan for Year 1 under demand scenario 1

Plant 1 Plant 2 Plant 3

Capacity: 0 Capacity: 150,000 Capacity: 150,000

Normal Over Normal Over Normal Over

time time time time time time

Small 1 - -

Small 2 - -

Middle 1 - - - - 131,077 0

Middle 2

SUV 1 - - 31,448 22,500

SUV 2 - - 118,552 0

Table 29 Production plan for Year 2 under demand scenario 1
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Plant 1 Plant 2 Plant 3

Capacity: 0 Capacity: 150,000 Capacity: 150,000

Normal Over Norma Over Normal Over
time time I time time time time

Small 1 - -

Small 2 -

Middle 1 - - 128,394 0

Middle 2 -

SUV 1 - - 10,527 22,500

SUV 2 - - 139,473 0 -

Table 30 Production plan for Year 3 under demand scenario 1

Plant 1 Plant 2 Plant 3

Capacity: 0 Capacity: 150,000 Capacity: 150,000

Normal Over Norma Over Normal Over
time time I time time time time

Small 1 - -

Small 2 - -

Middle 1 - - - - 144,861 0

Middle 2 - -

SUV 1 - - 83,141 0

SUV 2 - - 59,656 0 -

Table 31 Production plan for Year 4 under demand scenario 1

Plant 1 Plant 2 Plant 3

Capacity: 0 Capacity: 150,000 Capacity: 150,000

Normal Over Norma Over Normal Over
time time I time time time time

Small 1 - - -

Small 2

Middle 1 - - - - 143,875 0

Middle 2

SUV 1 - - 65,758 15,000

SUV 2 - 85,242 0
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Table 32 Production plan for Year 5 under demand scenario 1

Plant 1 Plant 2 Plant 3

Capacity: 0 Capacity: 150,000 Capacity: 150,000

Normal Over Norma Over Normal Over

time time I time time time time

Small 1 -

Small 2 - -

Middle 1 - - - 118,232 0

Middle 2

SUV1 - - 0 0

SUV 2 - - 150,000 23,000

Repeat SLP step 1&2 until the number of scenarios is reached; in this case, the

number of simulated demand scenarios is set as 500.

o SLP Step 3: Take the expected value of the NPVs above as the response for

experiment 1:

F(X(O), y) = 5x0 F(X(,), y',s)= $35,695,291

Repeat SLP Step I through 3 for other experiments in Table 26, the following results

are obtained:

Table 33 Results of designed experiments

Experiment Plant 1 Plant 2 Plant 3 Response(F(X(k))

1 0 150,000 150,000 $ 35,695,291

2 61,000 61,000 61,000 $ (22,691,443)

3 61,000 61,000 240,000 $ (37,072,273)

4 61,000 240,000 61,000 $ 35,142,276

5 61,000 240,000 240,000 $ 20,761,446

6 150,000 0 150,000 $ 12,128,503

7 150,000 150,000 0 $ 37,649,663

8 150,000 150,000 150,000 $ 42,736,729

9 150,000 150,000 300,000 $ (2,043,183)
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11 240,000 61,000 61,000 $ (11,713,801)

12 240,000 61,000 240,000 $ (26,094,632)

13 240,000 240,000 61,000 $ 46,119,918

14 240,000 240,000 240,000 $ 31,739,087

15 300,000 150,000 150,000 $ 17,815,088

* RSM Step 3: Obtain the regression model

F(X()) = 107 x (-7.35 + 4.3 3y, + 5.70y 2 + 4.39y3 -1.4 1yy 2 -1.06y 2y 3 -1.80yy 3)

In this case, the R-Square is 0.78, which indicates the regression model fits pretty well

with the experimental data.

* RSM Step 4: Optimize the regression model to obtain the optimal capacity

The optimal capacity is y'(o)=[15 4 ,040 268,690 121,720]; run the SLP Step 1 through 3 to

obtain the true response under the identified optimal capacity F'(0)

=$65,355,537.

* RSM Step 5: Compare this response with responses with other points available under

this allocation plan and get the best one. Other points include all the tested points in

RSM experiments and the starting point. In this case, the best response is the starting

point specified from the deterministic and linearization optimization model, which is

$68,430,666, so the lower bound for OFAT process is now:

F(o)= F(*) =$68,430,666

y(o)= Y(*)= [175,643 237,118 131,732]

0 0 0
0 0 0

X =X 0 0 1(0) (*)
1 0 0

0 1 0

0 1 0
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OFATStep 3: Change one factor in allocation matrix. This case demonstrates a row-wise

exploration path from the lower right corner to upper left corner. So change the X(6, 3)

from 0 to 1 and thus the allocation matrix becomes:

0 0 0
0o 0 0

(1) 0 0 1
1 0 0
o 1 0
0 1 1

Then repeat the same process in the OFAT Step 2 with only slight difference in the RSM

Step 4. The difference is because the starting point is the solution of the simplified

deterministic optimization model, so it is specified with allocation plan and capacity

decision, with which response can be calculated. For other allocation plan explored in the

process, only allocation plan is specified, thus the optimal response will be the response

with the regressed optimal capacity, without being compared with other point in the space.

The response for this allocation plan is:

F(1)= $55,278,695

y(l)=[ 154,146 181,450 154,763]

Since F(i)< F(*), this change of factor is not retained. Then the next allocation plan to be

explored is

0 0 0
0 0 0

X 0 0 1
1 0 0

0 1 0

0 0 0100

010

011
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Repeat the same process in The OFAT Step 3 until all factors in allocation matrix is explored.

The process is abbreviated due to the repetition of the process, but the evolution of allocation

plans explored in the OFAT model is shown in Appendix C.

The same process can be repeated for DA3. As a result, two decision candidates are identified

for DA3 and DA4 respectively as shown in Figure 40. Under DA3, instead of three plants, the

decision is to build two plants. One plant is to produce 2 platforms with 3 styles, including Small

2, SUV 1 and SUV 2, at a capacity of 300,000; the other plant is to produce 1 platform with 2

styles, including Middle 1 and Middle 2 at a capacity of 300k. Under DA4, the allocation decision

is the same, but the capacity for plant 2 is 260,000 instead of 300,000. Comparing these two

decisions with decisions made under deterministic approaches, one can see that one big

difference is that less, but more flexible plants are required. The financial impact of the change

of strategic decisions are shown and discussed in the next section.

Demand Demand Yes

Uncertainty Uncertainty

Operational No Operational Yes
flexibility flexibility

Planti Plant2 Plant3 Plant1i Plant2 Plant3i-:-
2P3 1P2S2P3S 1P2S

300K 300K - 300k 260k

Sma sSma ll

Figure 40 Solutions under DA3 and DA4 with the screening model
= Small size car Mid-sizecar SUV
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6.4 Result discussion

Figure 41 shows the VaRG curve for the four decisions under different decision approaches and

Table 34 summarizes the key statistics. One can see that the decisions identified by the

screening model under DA3 and DA4 outperform the decisions made under deterministic

approaches DA1 and DA2. The expected NPV is improved from around $65-$68 million to $91-

$94 million, representing almost 40% improvement. The minimal NPV is reduced from loss of

$4-10 millions to around $20 million, and the maximal NPV is increased to be $120 million or so

from $102-117 million. VaR@ 5% is increased from $25 million to $60 million or so, and VaG@5%

is increased from $95 million or so to $115 million or so. The Returns on Investment is also

higher than the ones by the optimization method. Overall, the decisions identified by the

screening model achieve more stable and better performances than the decisions identified by

deterministic approaches in that they have improved ENPV, reduced downside risks, and

increased upside gains. This is similar to the result in Case study 1. What is different is that this

case also leads to increased expected production because it allows 1 more product to be

produced.

Then compare DA3 and DA4, we have similar conclusion to the conclusion in simple case, which

is that considering operational flexibility further enhanced the value of process flexibility and

thus improves the strategic planning decision making. The ENPV is further improved from $91

million to $93 million and the downside risk is reduced with minimal NPV increasing from $20

million to $26 million; furthermore, these do not come at the expense of investment increase.

The required investment is reduced from $359 to $346 by having a small plant. The result

clearly shows the value of the proposed systematic framework for making strategic planning

decisions and the value of the screening model for identifying good decision candidates that

improve the system's performance.
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Figure 41 VaRG chart for different decisions under different decision approaches
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Table 34 Summary table for four decisions under four decision approaches
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NPV Expected
Considers Considers Average

Decision Investment Returns on Production
demand overtime ENPV MIN MAX SD VaR@5% VaG@5% Capacity

Approaches (Million $) Investment (million
uncertainty? flexibility? (million $) (million $) (million $) (million $) (million $) (million $) Utilization

units)

DA1 No No 340 68.4 (10.3) 117 22 28 98 20.1% 98% 26.49

DA2 No Yes 324 64.8 (4) 102 19 27 92 20% 101% 25.35

DA3 Yes No 359 91.3 20 120 17 60 115 25.4% 95% 28.55

DA4 Yes Yes 346 93.8 26 118 15 64 114 27.1% 102% 28.52



6.5 Convergence of the screening model

As discussed before, even with the same starting point, there are many different paths to

explore the allocation decision space in the OFAT process. The preceding section has shown the

result of one path, which is the path that has led to the best result among four paths explored

in this case. This section will show the results for other three paths and discuss the convergence

of the screening model under different exploration paths in allocation decision space.

Specifically, four different paths that are explored in this case study are shown in Figure 42.

Path 1:
Row-wise, from upper left
corner to lower right corner

f0 0 0,

corner to upper left corner
-1----- 

-- 
b--------

X % 
-"

- - - --------------- ---

o1
1~--------

0, 1 - ,0 1 ----

Path 2:
Column-wise, from upper left
corner to lower right corner

O 0 0

1 0
0 1 0

0 1 0

Path 4:
Column-wise, from lower right
corner to upper left corner

0i0

0 O 1
S i 0

0: '

01 1 0
I I

i~o_! !_

Figure 42 Four different paths to explore the allocation decision space
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Path 1 represents a search path starting from the element on the upper left corner in the

allocation matrix. It changes one element at a time in a row-wise way and from the left to the

right. So the elements are changed in the following order:

x (1,1) - x(1, 2) - x (1, 3) -> x(2,1) - x (2,2) - x (2,3)... -- x(6,1) - x (6,2) -+ x (6,3)

Path 2 represents a search path starting also from the element on the upper left corner in the

matrix. It changes one element at a time in a column-wise way and from the left to the right. So

the elements are changed in the following order:

x (1,1) -> x(2,1)... -+ x (6,1) -+ x (1, 2) -+ x (2,2)... - x (6,2)... -- x (1, 3) -> x (2,3)... - x(6,3)

Path 3 represents a search path starting from the element on the lower right corner in the

matrix. It changes one element at a time in a row-wise way and from the right to the left. So the

elements are changed in the following order:

x(6,3) -- x(6,2) -- x(6,1) -- x(5,3) -+ x(5,2) -> x(5,1)... -- x(1,3) - x(1, 2) -+ x(1,1)

Path 4 represents a search path starting also from the element on the lower right corner in the

matrix. It changes one element at a time in a column-wise way and from the right to the left. So

the elements are changed in the following order:

x (6,3) -+ x (5,3)... -- x(1, 3) -> x(6,2) -> x (5,2)... --+ x (1, 2)... -- x (6,1) -- x (5,1)... -- x(1,1)

With the specified path and the starting point, the screening model can be run in the same

manner as shown in the preceding section. Finally, each path will finally identify its decision

candidate under a decision approach. This applies to both DA3 and DA4. Since the result for

DA3 has the similar pattern to the result for DA4, this section is only going to show the result

for DA4. The specific decisions identified under DA4 through these four paths are shown in

Figure 43 and their performances characterized by VaRG chart are shown in Figure 44.
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Path 1 Path 2

Planti PIant2 Plant3

2P2S 2P3S 1P2S

240k 240K 240K

Smal 11

SmaII2_

Middlel

Middle2

SUVI

SUV2

Path 3

Planti Plant2 PIant3

2P3S 1P2S

S 300k 260k

Plant1 Plant2 Plant3

2P2S 2P3S 1P2S

240k 240K 240K

Smalli

Small2

Middlel

Middle2

suvi

SUV2

Path 4

small

Smallsize car Mid-size car = SUV

Figure 43 Decisions identified by the screening model through different search paths under DA4

As a result, under DA4, Path 1 and Path 2 led to the same decision candidate while Path 3 and

Path 4 led to the same decision candidate. The decision identified through Path 1 and Path 2 is

to build three plants: one plant is to produce two vehicles, one small size car and one mid-size

car; the second plant is to produce three vehicles, one small size car, two SUVs; and the third

plant is to produce one mid-size car. All three plants have capacities of 240,000. One can see

that this decision is very different from the decision identified through Path 3 and Path 4, which

is to build two plants, one of which is to produce three vehicles, one small size car and two

SUVs while the other is to produce two mid-size vehicles.
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The performances of these decisions are also very different. From Figure 44, one can see that

the performances of the decision identified through Path 3 and Path 4, in general, performs

better than the decision identified through Path 1 and Path 2 by having the whole curve shifting

to the right with an improved ENPV and reduced downside risks.

Value at Risk and Gain Chart

El1

0.8

0.6

0.4

0.2

$150
Millions

DA4-Path 3&4DA4-Path 1&2

Figure 44 VaRG chart for decisions identified by the screening model through different paths

Table 35 Summary table for decisions identified through different exploration paths in the allocation
decision space

NPV(million $) Expected
Considers Considers NPV(million $) Average

Decision INV Prod.
demand overtime VaR VaG Capacity

Approaches (Million $) ENPV MIN MAX SD (million
uncertainty? flexibility? @5% @5% Utilization

units)

DA4-Path 1&2 Yes Yes 476 76.7 (-21) 117 21 34 103 108% 38.92

DA4-Path 3&4 Yes Yes 346 93.8 26 118 15 64 114 102% 28.52

Thus, the result indicates that although all of decisions identified by the screening model led to

improvement of decision-making upon deterministic approaches, exploration of the allocation
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decision space through different paths leads to the identification of different decisions with

different performances. On one hand, this suggests that when using the screening model, one

should use different paths to explore the allocation decision space to improve the chance of

identifying better decisions. Admittedly, this will increase the computational burden of the

method. However, this is less of a concern with the multi-processors systems, which allows for

parallel computing by different exploration paths. On the other hand, the result also indicates

that future research should look into this issue to see how the convergence can be improved.

6.6 Summary

This chapter presents a case study in automotive industry with 6 different vehicles and 3 plants.

Vehicle production to plant allocation decisions and plant capacities decisions are explored by

using the screening model. To demonstrate the value of the proposed framework and the

screening model, four decisions approaches to identifying decision alternatives are compared.

These four decision approaches lead to four different strategic decisions. The result shows that

using the screening model to identify decision candidate can lead to significant improvement of

strategic decision making in improved ENPV, reduced downside risks and increased upside gain.

In this case study, the application of screening model leads to about 40% of improvement for

Expected NPV as compared to a deterministic optimization approaches. Finally, this chapter

shows the convergence of the screening model from different exploration paths. It is found that

although all these decisions improve upon decisions under the deterministic approaches,

searching the allocation decision space through different paths leads to different decisions

identified by the screening model. This result suggests that when using the screening model,

exploring the allocation decision space through different paths will improve the chance of

identifying good decision candidate. Also future research can explore how to improve the

convergence of the solutions.
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7 Computational evaluation

This chapter examines the computational efficiency and effectiveness of the screening model.

In general, computational efficiency of a method can be measured by the computational time it

takes a method to solve a formulated problem. Computational time is a function of the size of

the problem to be solved. Normally, as the size of the problem gets larger, the computational

time increases. On the other hand, computational times for different methods may scale at

different rates. Thus, how quickly the computational time scales with the size of a problem is an

important factor to evaluate computational performance of a method. In this chapter, the

screening model is compared with two other methods: the exhaustive search method and the

stochastic optimization method, in terms of the computational times it takes to solve a problem

in the interest of this research.

Secondly, this chapter examines computational effectiveness of the screening model.

Computational effectiveness means the quality of the solution provided by a method. Ideally,

the method that provides better quality of solution will be preferred. However, this has to be

balanced with the computational cost it takes the method to achieve the quality. If it takes too

long time to get the best performance, the value of the method is reduced. As what will be

shown in this chapter, although the exhaustive search method and the stochastic optimization

method theoretically can lead to better performance than the screening model, the

computational cost scales very rapidly with the size of the problem so that even for a moderate

size of a problem, it is prohibitively high to get the optimal solution. Thus, it is not meaningful

to compare the solution from the screening model with the solutions from the exhaustive

search method and the stochastic optimization method. Instead, this thesis takes an alternative

approach to evaluating the computational effectiveness of the screening model. It is done by

measuring the improvement that the screening model can lead to upon the result from the

optimization method that solves a deterministic and simplified problem which can be solved

within a reasonable amount of time. Details are discussed in Section 7.2.
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7.1 Evaluation of computational efficiency

The evaluation of computational efficiencies of different methods is made based on the

computational times it takes different methods to solve a problem. The manufacturing planning

problem studied in Chapter 6 is taken as an example problem for the computational efficiency

evaluation while a simplified problem is taken as the example problem for the stochastic

optimization. The simplification is that with the scenario-dependency of upcharge cost of

flexible processes, it is hard to formulate the problem in the optimization framework, to the

author's best knowledge. Thus, here in this chapter to compare the computational efficiency of

the screening model to the stochastic optimization method, this is simplified by assuming the

flexibility upcharge only depends on the number of styles added to a plant as shown in Formula

(39). The resulted stochastic optimization formulation is provided in Appendix B.

For each method, the relationship between the computational time and the size of the problem

is derived from either empirical tests or theoretical inference. The size of the problem is

characterized by the number of input parameters. Based on the relationships, the scaling

properties of the computational times for these three methods are then compared as to two

inputs that are of the most interest in this research: the number of products and the number of

plants in a system. All the computational time results are tested on a laptop with 2GHZ duo CPU

and 2GB RAM.

7.1.1 Computational time for the exhaustive search method

The most direct way, which is also a "brute force" way, to solve the problem, is to exhaustively

search the strategic decision space and get the decision that leads to the best performance by

comparing all the decision alternatives. Because of the hierarchical structure of three levels of

decisions, namely the product to plant allocation decision, the plant capacity decision and the

operational production decision, the whole decision space can be exhaustively explored in a

hierarchical manner. That is, at the highest level, to examine results for all the possible
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allocation scenarios; at the middle level, to examine all the possible capacity scenarios under an

allocation scenario; at the low level, explore the operational decisions under a specific capacity

plan and allocation scenario. Since operation decision space can be efficiently examined by

linear optimization, only the allocation decision space and capacity decision space are

examined exhaustively.

Assume Nallocation is the total number allocation scenarios and Ncap is the total number of

capacity decision scenarios under any allocation plan, and Topr means the time needed to

explore operational decision space by the SLP model under a specified allocation and capacity

plan. Then total computational time can be represented by:

T =Nallocation x Ncap XTopr (40)

The following explains how these three numbers are derived for the exhaustive search method.

7.1.1.1 The number of allocation alternatives: Nanlocation

Generally, for a problem with n products and m plants, every product can have m plants to be

allocated. Then for every plant, there can be two options, 0 representing that a product is

assigned to a plant or 1 otherwise. Thus, for every product, the number of allocation

alternatives is

N product =2x2x ... x2 = 2'
product (41)

m

And there are n products, thus the total number of allocation alternatives is

N = 2m x 2m x ... x 2" = 2" x m

allocation 2 mx 2 mxx 2 2xm
n (42)

This shows that the total number of allocation plans grows exponentially with the product of

the number products and the number of plants. As can be seen in Table 36, even when the size

of the problem only grows slightly, the number of allocation scenarios grows substantially.
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Table 36 Numerical example for the total numbers of allocation alternatives as a function of the
number of products and the number of plants in a system

7.1.1.2 The number of capacity decision scenarios under an allocation plan: Ncap

To exhaustively explore the capacity decision space, it is discretized according to an interval 6.

Assume the upper bound for a plant's capacity is represented by UBC and the lower bound for a

plant capacity is LBC, then total number of capacity scenarios for a given plantj is

UBCJ - LBC

Assuming there are m plants in a system, the number of capacity scenarios under an allocation

plan is:

Ncap UBC - LBC (43)

(43)

Some numerical example is helpful to show the scalability of this relationship. Assume the

upper bound of a plant, UBC, is 300000 and lower bound, LBC, is 0, and the intervals between

two levels next to each other is 2000, 150 levels of capacities for each plant needs to be

examined. The number of capacities for a possible allocation plan is then:
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n m Nallocation

2 2 16

2 3 64

2 4 256

3 3 512

3 4 4096

3 5 32768



Table 37 Number of capacities to be examined for a possible allocation plan

Number of plants (m) Ncap

2 1502=22,500

3 1503 =3,375,000

4 1504=506,250,000

5 1505=75,937,500,000

Combining with the number of allocation plans, the following table shows the total number

strategic decisions to be examined:

total =Nallocation Ncap (44)

Table 38 Total numbers of strategic decision alternatives under the exhaustive search method

Number of products Number of plants Nallocation Ncap Ntotai

2 2 16 22500 360000

2 3 64 3375000 216000000

2 4 256 506250000 1.296E+11

3 2 64 22500 1440000

3 3 512 3375000 1728000000

3 4 4096 506250000 2.0736E+12

4 2 256 22500 5760000

4 3 4096 3375000 1.3824E+10

4 4 65536 506250000 3.3178E+13

5 2 1024 22500 23040000

5 3 32768 3375000 1.1059E+11

5 4 1048576 506250000 5.3084E+14

Thus, the computational time for the exhaustive search method can be expressed as:
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Te = 2n "m  UB - LBC x Topr (45)

This means that the linear optimization for operational decision space needs to be

r (F UBC - LBC]
run x| times.

Thus if the time it takes to run one linear optimization, Topr, is obtained, the total

computational time is known. The following subsection studies how Topr is obtained.

7.1.1.3 Computational time for operational decisions: Topr

In the exhaustive search method and the screening model, the operational decision space is

explored by solving the SLP model. The computational time to solve that model, denoted by Topr,

depends on the number of products, the number of plants, the number of periods and the

number of scenarios simulated for uncertainty. Assume that the computational time of solving

the SLP model is cast as a polynomial expression of the number of products and the number of

plants such that

Topr = Yo xnY XmY72 X 3 XsY4 (46)

Taking logrithm on both sides leads to the following relationshp:

Ig Top =g + n g m Ig2 y lg3 I S lg y 4  (47)

Then Full factorial design method is used to generate a set of experiments with the

factors and levels shown in Table 39. Conducting all these experiments lead to the

computatioal times for different sizes of the problem. The computational time

results are shown in Appendix D.

Table 39 Factors and levels for full factorial design of experiments in operational decision space

Factors levels

# of products (n) 2,3,4,5,6
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The computational times in is then regressed against the Equation (47) leads to the following

result:

Table 40 Regression result for computational time of the SLP model

Regression Statistics

Multiple R 0.934872

R Square 0.873985

Adjusted R Square0.863698

Standard Error 0.172892

Observations 54

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

IgYo -3.67831 0.278971 -13.1853 9.76E-18 -4.23892 -3.1177

Igy1  1.435307 0.227148 6.318829 7.53E-08 0.978837 1.891777

Igy2 0.446792 0.334156 1.337078 0.187372 -0.22472 1.118303

Igy3  0.844735 0.080677 10.4706 4.28E-14 0.682609 1.006861
Igy4  0.975415 0.095722 10.19003 1.07E-13 0.783053 1.167776

Converting the value of the coefficients in the regression results, the following

relatinship is obtained:

T = 0.00021 x n1' 54 m 1.75 t 84 X SO 98
opr

Then the total computational time needed for the exhaustive search method is:

Te= 2nxm x BC ( 0.00021 x n 154 X m 175 x t 0 84 X SO.98
9

(48)

(49)
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7.1.2 Computational time of the screening model

As described in Chapter 5, the screening model hierarchically explores the decision

space: the allocation decision space, the capacity decision space and the

operational decision space. So in this sense, the computational time can be

expressed in the same way as the exhaustive search method:

AT . AT ap 
(

1 p 1 allocation X cap opr (50)

However, different from the exhaustive search method, Design of Experiment methods are

used to generate experiment plans to explore allocation decision space and capacity decision

space, thus determining the number of experiments that need to be conducted at operational

level. Although generating experiment plans by DoE methods takes time, but the time is very

short (i.e. within seconds) and does not scale very much with the size of the problem, this time

is illegible compared to the time it takes to conduct each experiment.

Firstly, for a problem with n number of products and m number of plants, the number of

allocation scenarios required by the OFAT process is:

Naocation =nxm+1 (51)

Secondly, under a given allocation plan, the capacity decision space is searched by using Central

Composite Design. The number of experiments that needs to be conducted only depends on

the number of plants in the problem. The relationship is:

Ncap = 2m + 2m +1 (52)

Where 2m represents the number of full factorial designs, 2m represents the axis design, and

2m+1 represents the number of center runs.

T= (nxm+l)x(2m +2m + l)x Top (53)

Thus, the computational time for a problem with n products, m plants and t periods is derived

as follows:
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TP = (nx m +1)x(2m + 2m +1)x (0.00021 x n' 54 X m 17 5 
t

84 
X SO 98) (54)

7.1.3 Computational time for the stochastic optimization method

The stochastic optimization formulation of the example problem is presented in Appendix B.

Table 41 shows how the number of variables and the number of constraints of the stochastic

optimization formulation scale with the number of parameters, including the number of

products n and the number of plants m:

Table 41 Scaling issues of stochastic optimization formulation, assuming
scenarios for each product at each period

5 periods and 5 demand

# of integer # of nonlinear
variable variable

# of # of (allocation (capacity # of linear variable Total

product plant decision) decision) (operation decision) variables Total constraints

O(mn) O(m) O(tns n) O(tns n) O(tns n)

2 2 4 2 1,000 1,006 2,000

2 3 6 3 1,500 1,509 2,875

2 4 8 4 2,000 2,012 3,750

3 2 6 2 7,500 7,508 13,125

3 3 9 3 11,250 11,262 18,750

3 4 12 4 15,000 15,016 24,375

4 2 8 2 50,000 50,010 81,250

4 3 12 3 75,000 75,015 115,625

4 4 16 4 100,000 100,020 150,000

5 2 10 2 312,500 312,512 484,375

5 3 15 3 468,750 468,768 687,500

5 4 20 4 625,000 625,024 890,625

6 2 12 2 1,875,000 1,875,014 2,812,500

6 3 18 3 2,812,500 2,812,521 3,984,375

6 4 24 4 3,750,000 3,750,028 5,156,250

Table 41 is one way of characterizing the scaling property of a method with the size of the

problem. But they do not necessarily lead to computational challenge. The computational time
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can be very short if the problem has good mathematical property, such as linearity or convexity.

Thus, computational time is the ultimate measure for the computational effectiveness of a

method.

An experiment is designed to obtain relationship between computational time it takes and the

size of the problem, characterized by the number of products, the number of plants, the

number of periods and the number of scenarios. The model is solved by using a commercially

available software LINGO® 11.0 developed by the LINDO Systems, which has its own solvers for

nonlinear and integer problems. The result is shown in Table 42. Note that the number of these

parameters in the experiments in this table are relatively small, especially the number of

products and the number of plants. This is because it takes too long to solve a problem with

bigger size. For example, for a problem with 3 products, 3 plants, 5 periods and 5 scenarios for

each demand, the problem didn't get solved after 20 hours.

Table 42 Computational times for experiments with stochastic optimization
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Assume the relationship between computational time Tso and the parameters follows:

Tso = o x n 2 X
3 x s ;

(55)

Taking logrithm on both sides leads to the following formula:

IgT o = Ig o + n Ig 1 + m lg 2 + tlg 3+ S Ig 4 (56)

Then regressing the empirical results in Table 42 against Formula (56) leads to the following

relationship:

Regression Statistics

Multiple R 0.951384

R Square 0.905132

Adjusted R Square0.841887

Standard Error 0.6764

Observations 11

Coefficients

-9.1729

6.195504

5.51279

0.446224

3.52675

Standard
Error

2.689925

1.417461

1.136731

0.483679

0.837098

t Stat

-3.41009

4.370847

4.849689

0.922563

4.213068

P-value Lower 95%Upper 95%

0.014317 -15.7549 -2.59089

0.004715 2.727103 9.663906

0.002853 2.731311 8.29427

0.391823 -0.7373 1.629743

0.005604 1.478445 5.575055

Then this result is converted to the relationship as expressed in

the computational time for the stochastic optimization method

Tso =0.000104x n62xm 5 51 t0 45 X S 3 52

Formula (55) so that

is:

(57)

7.1.4 Comparison of computational times for the methods

Now with Formula(49), (54), (57) representing the relationship between the computational

times of different methods and the input parameters, computational efficiencies of methods

can be compared. With these relationships, one can compare how different methods scale with
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the number of inputs in the problem. Two inputs are in the interest of this research: one is the

number of products, the other is the number of plants. Therefore, the following is only going to

show the scalability of different methods to these two parameters. The number of periods is

assumed to be 5 and the number of simulated scenarios in SLP model is 500, and the number of

scenarios for the stochastic optimization is assumed to be 5. Now the computational times for

these three methods are shown in Formula (58), (59) and (60):

Te= 2nxm UBC - LBC x0.36 x n 54 x 1 
75 (58)

T = (nxm+1)x(2m + 2m + 1)x(0.36xn'54 75)  (59)

Tso = 0.06x n62 xm5 51  (60)

Error! Reference source not found. shows computational times for three methods based on

these relationships when m=3, meaning there are 3 plants in the manufacturing systems. It can

be seen that computational time for the exhaustive search method scales in the most rapid way

with the number of products. Because this scalability is in a different magnitude from stochastic

optimization method and screening model, it makes the computational times of stochastic

optimization and screening model almost indifferent. However, as Error! Reference source not

found. shows, there is a big difference on the scalability between these two methods as well.

Stochastic optimization takes much longer time than screening model method for larger size of

problem. For the case studied in Chapter 6, it takes the screening model 2.5 hours to have one

run. Even if the four paths are run successively instead of in parallel, it takes 10 hours to

identify the solution. However, according to Figure 46, the estimated time is 500 hours to have

the stochastic optimization problem solved. The same results are shown for a system with 4

plants in Appendix E.

Lastly, the computational time it takes for the screening model to solve a problem is shown in

Figure 47 to give a sense of running time of the screening model for different sizes of a problem.
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Different lines represent different numbers of plants in the manufacturing systems. Of course,

it depends on the computer power that is used. With more computer powers, the time is going

to be shorter.

Computational time (# of plants: 3)

40000000 -

E 35000000 - Stochastic optimization

E 30000000 - --- Screening model
25000000 - - Exhaustive search

o 20000000

15000000 -

E 10000000E
0
o 5000000 -

0-
2 1 of productk 8 10

Figure 45 Increase of computational times for three methods as the number of products increases in a

system with 3 plants.

Computational time (# of plants: 3)

3500

4E 3000 - 4-Screening model
S2500 - Stochastic optimization
S2000 -

o
'r 1500

1000
E 500

0

2 4 6 8 10

# of products

Figure 46 Increase of computational times for two methods as the number of products increases in a

system with 3 plants.
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Computational time of the screening model

25

S20 -

15

10 ..

----3 plants

E 5 4 plants

2 3 4 5 6 7 8

# of products

Figure 47 Computational time for the screening model

7.2 Evaluation of computational effectiveness

Computational effectiveness is to measure the quality of the results for a method. For the

problem studied in this problem, the quality is here measured by the ENPV of the solution led

to by a given method. Ideally, one would apply different methods on the same problem and

compare the financial results of solutions from different methods. However, it is not feasible to

compare the screening model to the exhaustive search method and the stochastic optimization

method by applying them on the same problem for two reasons. One reason is that the

exhaustive search method and stochastic optimization method scale too rapidly with the size of

the problem so that it takes too long to get the result from these two methods even for a

moderate size of the problem. The second reason is related only to stochastic optimization,

which is that it is very hard to formulate the problem in the stochastic optimization framework,

such as scenario-dependent process flexibility upcharge.
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Alternatively, this research compares the solution of the screening model to the solution of the

deterministic and simplified optimization approach, as was done in Case study 2 to specify the

starting point. Then the computational effectiveness of the screening model is evaluated by the

improvement of financial performance led by using the screening model as compared to the

starting point.

Figure 48 shows this result for some cases based on the example problem studied in case study

2. 3 plants are considered in the system. Values of all parameters are the same as in case study

2. Then the products are added sequentially as the number of products increases. For example,

the case with 3 products includes products A, B, and C; the case with 4 products includes

products A, B, C and D. We can see that screening model consistently led to improvement of

ENPV, at a range of 10 million to 40 million dollars as compared to the deterministic and

simplified optimization method.

Improvement of ENPV led by screening model (3 plants)

$100
. $80 -

$60-

$40

$20

$-

3 4 5 6 7

# of products

-- +-Deterministic optimization -UI-Screening model

Figure 48 Improvement of ENPV by the screening model upon solutions of deterministic and simplified

optimization approach for 3 plants.
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7.3 Summary

This chapter evaluates the screening model in terms of its computational efficiencies and

effectiveness. By examining the computational complexity of the screening model, exhaustive

method and stochastic optimization method, this chapter compares how quickly each method

scales with the size of the problem. It is shown that the screening model scales the least fast

with the increase of the size of the problem, which makes it computationally appealing to

explore large decision spaces. Then the computational effectiveness is examined based on

sample problems in case study 2. The result shows that the screening model can lead to big

improvement in terms of ENPV for the sample problem as compared to an optimization

approach that assumes deterministic future demand and simplifies the complexity in the Body-

In-White assembly systems.
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8 Conclusions and future work

8.1 Summary and conclusions

This thesis describes research concerning methods to improve the planning and design of

engineering systems that require large capital investment, involve many resources to be

developed, are difficult to change once in place, and, yet, operate in an uncertain

environment. The specific example of automotive manufacturing was selected as the case

focus of this work. Economically effective decision making for such systems, including for

automotive manufacturing systems, has been widely studied. Nevertheless, this thesis has

identified three gaps in the literature and in current practice with regard to this area:

(1) For most firms today, strategic manufacturing planning decisions are often made

based on deterministic demand forecasts. The implicit assumption is that decisions

optimized for expected demand outcomes will lead to the best overall expected

financial outcome. In most cases, this leads to implementation plans designed to

just meet forecasted demand (possibly with an arbitrary factor of safety in one

direction or the other) at lowest cost. However, because demands are uncertain and

variable, the decision with the lowest cost may not be the optimal solution -

foregoing revenue when demand is high and incurring undue cost when demand is

low. In light of this mismatch between common practice and improved decision-

making, this thesis has developed a computationally-tractable method to design and

plan manufacturing flexibility.

(2) There is extensive research in the literature describing methods to identify

appropriate forms and configurations of manufacturing flexibility during the early

planning stage. In that body of work, although it is widely recognized that

manufacturing flexibility can be improved through many mechanisms, few develop

quantitative methods that value the interdependent value of multiple sources of
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flexibility. More specifically, there has not been research that studies the following

three decisions that determine three sources of flexibility: i) product to plant

allocation, ii) capacity planning, and iii) overtime planning. To address this gap, this

research examined the interactions of these three sources of flexibility and, in so

doing, the impact of operational flexibility (overtime) on strategic decision-making

(allocation and capacity).

(3) For real-world problems, the decision space associated with designing and planning

manufacturing systems is immense. The consequential complexity poses a challenge

for traditional optimization approaches when applied to uncertain, multi-period

scenarios. Thus, this thesis presented a new method to efficiently explore a large

decision space for large-scale manufacturing system planning.

In light of these three gaps, this has posed and answered four specific questions:

(1) What is the impact of considering demand uncertainty on strategic decision making

for manufacturing systems?

(2) What is the impact of simultaneously considering operational flexibility on strategic

decision making for manufacturing systems?

(3) How to evaluate the value of flexibility at the strategic planning stage?

(4) How can one identify good design candidates in a large design space?

To address these questions, this research developed a framework that contains two major

components, as shown in Figure 49: the first is a screening model that adaptively explores a

decision space to identify promising design candidates and the second is an evaluation model

used to project the performance of candidates.
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r --------------------

Screening Model

Adaptively explores
decision space to
identify
good candidates

- - -- - - - - -- - - - -- - - - - --.....

Identified Evaluation modelcandidate(s)

Evaluates results of
candidates
comprehensively

L- --------------------- J

Figure 49 Graphic view of the framework developed in this research

The screening model provides a way to address the three pertinent decisions and demand

uncertainty simultaneously. This model integrates an adaptive OFAT, the Response Surface

Methodology, and a simulation-based linear optimization. Adaptive OFAT is used to explore the

product to plant allocation decision space. Response Surface Methodology is used to explore

the capacity decision space. Simulation based linear optimization is used to explore the

operations decision space. Finally, this thesis employs the simulation approach to develop VaRG

charts to characterize the performance of identified candidates.

Chapter 4 uses a simple case to demonstrate the value of considering uncertainty and

operational flexibility - the first two questions raised in this research. The case considers a

question about how to allocate two products to two plants and what capacity should each plant

have. Overtime production decisions were considered - a source of operational flexibility.

In this simple case study, it was shown that consideration of demand uncertainty resolves the

value of the flexible process design as compared to the deterministic approaches. Under the

deterministic approaches, the optimal decision is to build 2 dedicated plants. But when demand
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uncertainty is considered, the optimal decision is to build 1 flexible plant. As a result, the

flexible design leads to a much more stable cash flow than the dedicated design. Furthermore,

these improvements do not require more upfront investment, but less investment. Notably, the

flexible design consistently leads to lower expected production (or more expected lost sales),

which means that firms must be prepared to accept strategies that sacrifice maximizing

expected production and sales in exchange for a more stable cash flow.

In answering the second question as to the impact of considering operational flexibility, the

simple case demonstrated that consideration of operational flexibility impacts the capacity

planning decision and enhances the value of strategic process flexibility. When overtime

flexibility is considered, the plant capacity becomes smaller, which reduces the upfront

investment cost. Moreover, the expected net present value is improved, the downside risk is

reduced, and the upside gain is increased! Furthermore, there is a synergy between overtime

flexibility and process flexibility, even under positive demand correlation. This is embodied by

that result that the benefit of overtime flexibility, which is characterized by an increased

expected value, for a flexible process is more than the benefit for a dedicated process.

Sensitivity analysis shows that the synergy is stronger under more negative correlation and

higher standard deviation of demand uncertainty.

The third question is addressed by the evaluation model developed in this research. The

identified decision candidate is evaluated using a simulation approach to simulate demand

uncertainty. The results under the simulated scenarios are plotted in the VaRG chart

complemented by the summary table. This chart shows all the possible outcomes of the

simulated scenarios, and thus allowing one to evaluate the expected value, the downside risks,

and the upside gains associated with the decision candidate. The summary table can also

provide the key statistics of the VaRG chart, and other critical information that may affect

decision making, such as required investment, expected production and capacity utilization.

Hence, the VaRG chart and the complementary table provide a comprehensive way to evaluate
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the value of flexibility that some decision candidate may have, not only in terms of improving

expected values, but also in terms of reducing downside risks and increasing upside gains.

The development of the screening model addresses the fourth question. Case study 2,

presented in Chapter 6, demonstrates how the screening model can be used to explore

problems with a large decision space that would be computational challenging for traditional

optimization approaches. This case concerns the Body-In-White assembly system for the

automotive industry. The planning question is to allocate 6 different vehicle bodies to 3 plants

and to decide capacities for all plants. The six different vehicle bodies are distributed across

three different platforms, two per platform. The size and complexity of the allocation decision

space for this problem increases significantly so that it becomes computationally intractable for

traditional stochastic optimization approaches. The screening model is able to search in this

large decision space and identifies promising decision candidates with more flexible processing

and fewer plants as compared to a deterministic optimization approach. These differences lead

to about 40% improvement of expected net present value with reduced downside risks and

increased upside gain.

In Chapter 7, the computational efficiency and effectiveness of the screening model are

examined. To evaluate the computational efficiency, the screening model is compared with two

other methods: the exhaustive search method and the stochastic optimization with recourse.

Based on regressed computational time, it is shown that the screening model reduces the

computational time significantly relative to these two methods. Then computational

effectiveness is evaluated based on the improvement that the screening model can bring upon

the solution provided by a deterministic and simplified optimization approach that can be

solved computationally efficiently based on the assumptions of Case study 2. In this case, it is

shown that the screening model leads to a sizable improvement overall as compared to the

deterministic optimization approach.
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8.2 Contributions

This research has made the following academic and industrial contributions:

(1) Proposed a systematic framework for planning and designing manufacturing systems

with multiple products, multiple production facilities over multiple periods, which:

a. Considers demand uncertainty, thus allowing one to recognize the value of

flexibility in the manufacturing systems at the strategic planning stage;

b. Considers multiple sources of flexibility existing in manufacturing systems, which

allows one to study the interactions between these sources and improves the

decisions making at the strategic planning stage; and

c. Evaluates design alternatives by using VaRG charts complemented by a summary

table so that decisions makers examine the probabilistic economic

characteristics of design alternatives more comprehensively.

(2) Developed an integrated screening model approach to design and plan large-scale,

complex manufacturing systems, which:

a. Provides a computationally practical means to explore the large decision space

associated with multi-product, multi-facility, multi-source flexibility decision-

making;

b. Comprises Design of Experiments methods - Adaptive one-factor-at-a-time

(OFAT) to explore the product to plant allocation decision and Response Surface

Methodology to explore plant capacity decision - and a simulation based linear

optimization to explore operational decisions;

c. Realizes a flexible decision-making approach in that it can work with complexity

in manufacturing systems that may be challenging for traditional optimization

approaches to formulate, but that can be integrated with traditional
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optimization approaches.

(3) Applied the integrated screening model in a case study of the automotive industry,

demonstrating that this method can lead to significant financial performance

improvement as compared to a deterministic and simplified optimization approach.

8.3 Limitations and future work

There are several limitations associated with the method developed in this research and

the industrial application of this method. The following discusses these limitations and

suggests future work to address them:

(1) The cost model used in this work is at a mid-fidelity level. It is able to characterize the

complexity of the manufacturing system while allowing quick calculation. In the

evaluation model, the same cost model is used to evaluate identified candidates. It

will be desirable to use a high-fidelity cost model at this stage to verify the

consequence of decision candidates. Such a model has been developed separately by

the author which is a Flexible Process-Based Cost Model. Thus, the immediate step

continuing this work is to imbed the Flexible Process-Based Cost Model into the

evaluation model with simulation, which should provide more accuracy to evaluate

decision candidates.

(2) Although this research has incorporated the investment cost and production cost of

manufacturing flexibility, it does not consider other aspects of the costs that are

associated with the product to plant allocation decision. For example, the

transportation costs for materials and for final products are not currently

comprehended. Similarly, the different tax policies or rebates associated with specific

regions are not comprehended. While the method provided in this research can be a

valuable tool that helps decision making, it certainly needs to be combined with other
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factors to make the decision.

(3) This research has considered product to plant allocation, capacity and overtime

flexibility in addressing demand uncertainty. There are other sources of flexibility

existing in practice. For example, shift selection is another operational flexibility often

considered in practice to respond to demand uncertainty. Another example is that, if

longer periods are considered, capacity expansions and plant reconfigurations are

strategic options that are available to firms. The further examination of these factors

on the impact of strategic planning decision making will help to improve a system's

capability to respond to market uncertainty.

(4) This research assumes that firms make their production decisions based on make-to-

order instead of make-to-stock. This is more common practice in the US while make-

to-stock is more common in European manufacturing industries. It would be

interesting to implement the other alternative in the framework developed in this

research to see how that will affect decision making.

(5) This research assumes that not being able to meet a product's demand needed by the

market only affects firms' revenue on that product while not considering the effect

that this may have on long term profitability and consumer satisfaction. As Graves

(2002) suggests, "a firm might incur a loss of customer goodwill that would manifest

itself in terms of reduced future sales". However, this research also shows that

strategies that have reduced lost sales may have high financial risks. So it would be an

interesting research to look at how these tradeoffs should be considered in improving

firms' strategic decision makings.

(6) Although the screening model developed in this research can lead to improvement of

systems' performance, it has the following limitations: (1) It does not guarantee
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global optimality. OFAT method only explores a fraction of the allocation decision

space; RSM also introduces regression error to the model. For both reasons, the

solution from the screening model may not be the global optimal solution. (2) It does

not guarantee convergence of solutions. Starting from different initial solutions can

lead to different solutions; exploring the allocation decision space through different

paths can also lead to different solutions. (3)lts computational efficiency may be

further improved. The current exploration of product to plant the allocation decision

space by the OFAT method does not consider some special property that may exist in

the system. For example, there may be symmetry in the system if plants under

consideration are indifferent before products are assigned and capacities are decided.

In this case, the actual decision space that OFAT method needs to explore can be

reduced. Future work can look to addressing these limitations.

(7) Running the screening model on a multiple-processor system can help to further

improve its computational efficiency so as to allow access to larger problems, e.g. 20

products with 20 plants, which is a more realistic size for many companies. On the

other hand, multiple-processor system enables the screening model to explore a

decision space through different paths simultaneously, so it can also help to improve

the computational effectiveness or optimality of the solutions without significantly

increasing computational time.
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Appendix A Optimization problem to specify a starting point for the

screening model in case study 2

As discussed in Chapter 6.3.1, the optimization problem that is formulated and solved to specify

a starting point for the screening model has three simplifications:

(1) No demand uncertainty

(2) Simplification of the tool flexibility upcharge

(3) No economies of scale

The meanings of the symbols are the same as described in the thesis, and thus not repeated

here.

Max 0 )x(F, +Fxl+f,rx x - 1 +F~ 1 x p, w(, u,+zt)-(vc,,,wut +vco, zt)))
Max -WZ 200,000 ) e (I (+r)'

first stage decision second stage decision

(61)

where x E (O,1),y,w,z > 0

s.t. y, < H xxV V i, (62)

w,,t Hxx, Vi, j,t (63)

z,, < H x 2, Vi, j,t (64)

w, Y, Vi, j,t (65)

zt Oy V i,j,t (66)

(Wift +zi)t It Vit (67)

w +Z CAP vj (68)
i
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Appendix B Stochastic optimization formulation of the simplified

problem

The following stochastic optimization formulation is used in the evaluation of computational

efficiency. The computational time it takes this formulation to solve a problem is compared to

the computational times with the screening model and with the exhaustive search method. This

formulation simplifies the original problem in that the tool flexibility upcharge is assumed to

only depend on the number of product styles allocated to a plant.

Max 2 00  Jx F)Fx +,ox x- +FI)

first stage decision

1 i
+ x p x Ip wst + z,,t ) -(vcn wst + VCoZ1 zJ

ssecondt stage decision

second stage decision

(69)

where x e

y, :H x x,

w,t,, Hx

zst H x z

w2st y j

(0,1),y,

zst < Oy,

(Wit + z3 ) Cdist

Z ijst Zst ) a

w,z >O

V i, j

Vi, j,s, t

V i, j,s, t

Vi, j,s,t

Vi, j,s,t

Vi,s,t

Vj, s,t
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Appendix C Intermediate results for applying the screening model on

the case study 2

The following table shows the intermediate results for applying the screening model in the case

study 2. It shows the allocation plan that is explored during each step of the OFAT process (X(k)),

the response that is obtained through the RSM model and the SLP model (r(k)), and the

corresponding capacity decision (Y(k)).

It also shows the values of the regression coefficients in the RSM regression model. The values

are, in order, for the regression coefficients Xo, 1i, X2, X3, X11, A2 2 , X3 3 , A1 2 , A13, and A23, with which

the regression model is extended as:

r = A + "Y 1 
+± 2Y 2 + I 3y3 i +) 22  33Y 3 + 2 Y1Y2 

+ /
1 3Y1 3  23Y 2 3 +

(77)

The r-squares of the regression analyses are shown in the next column.

Finally, it shows whether the change of allocation plan is retained or not depending on whether

it leads to an improvement of the response as compared to the previous allocation plan.

Table 43 Intermediate results for applying the screening model in the case study 2
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Experiment Allocation Plan Response Capacity Regression R2  Change

No. X(k) F(k) coefficients retained
i or not
(*107)

0 7.3515

X $68,430,666 [175,643 4.3316 0.7800 N/A
(0) 5.6995
o 0 0 237,118 4.3913
o 0 0 0.0000
0 0 1 131,732]
1 0o 0.0000
0 1 0 0.0000
0 1 o 1.4060

1.0606



1.8039

9.8734

1 $55,278,695 [154,146 4.2244 0.6702 No
(1)- 7.4237
o o o 181,450 6.7915
o o 0
0 0 1 154,763] 0.0000
1 0 0 0.0000
0 1 0 1.9547

1.3703
1.2121
1.0483
7.2973

2 X(2) $26,090,289 [153,536 4.9337 0.6203 No
5.3264

o o o 124,278 4.9933o o 0o
o o I 124,550] 0.0000
1 0 0 0.0000
0 1 o 0.0000

1.6067

2.1429
2.0045

8.1037

3 X( 3) $59,683,438 [259,031 4.9237 0.7653 No
(3)- 6.4080
o o 0 139,958 4.3301o o 0o
0 0 1 121,396] 1.2593
1 0 0 0.0000
0 1 0 0.0000
1 1 0

0.6102
1.1239
1.7835

1.0330

4 X $55,455,782 [154,184 0.4187 0.6976 No
(4) 0.7838
o o o 176,684 0.6896
o 0 0
o o 1 161,261] 0.0000
1 0 0 0.0000
0 1 1 0.2047

0.1358
0.1284
0.1017
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6.8675

5 X= $26,841,170 [153,625 4.8156 0.6657 No
(s) 4.9742
o o 0 118,143 4.8753

0.0000
0 0 1 124,041] 0.0000
1 o o 0.0000
0 o 0 0.0000
o i1.5673

2.1051
1.9652
8.5245

6 X(6)= $59,034,642 [271,198 5.0198 0.7777 No
(6) 6.7813
o o 0 133,990 4.3204
o 0 0

0o 1 121,344] 1.3195
1 o o 0.0000
I 1 o 0.0000

0.5995
1.1952
1.7802
8.7591

7 X = $87,618,393 [0 4.5867 0.8309 Yes
(7) 5.1321
o o 0 294,451 5.9310
o 0 0

0.00000 0 1 257,719] 0.0000
1 0 11.7957
o 1 o 0.0000

0.9942
0.8715
1.1507
9.3062

8 X(8)= $79,036,370 [0 4.6806 0.8062 No
(8)- 4.2976
o 0 0 300,000 5.9050

0 o 1 228,418] 0.4040
1 1 I 1.6280
0o o 0.1819

0.9914
0.4401
1.1731
5.6478

9 X $84,244,851 [0 6.5827 0.9475 No
(9) 4.6003

300,000 2.2364
0.0000
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o 0 0 300,000] 0.0000
0 o 0 0.0000

o o 1I 0.7212
o 1 o 0.6942
o 1 0 0.0163

1.2804

10 X $44,795,984 [0 1.6014 0.9411 No
4.8582

o o o 300,000 1.6014
o o 0
o o o 0] 0.0000
1 0 1 1.3221
o 1 0 0.0000
o 1 o

0.0710
0.7802
0.0710

11 X( )= $78,068,602 [0 9.6426 0.8292 No
4.6049o o 0 300,000

0 o o 4.3455
o 1 I 220141] 6.2289
1 0 1 0.1837

0 1 o 1.8530
0.4988
0.9226
0.3446
1.0749

12 X(12)= $84,244,851 [300000 8.3553 0.8897 No
4.8656o 0 o 300000

0 0 o 4.6231
1 0 1 0] 4.8656
1 0 1 0.0000

o i o 2.7039
0.0000
0.6227
0.7018
0.6227

13 X(3)= $58,775,086.23 [239,191 7.1875 0.7914 No
3.7231o o 0 239,191

o o 1 5.0041
o o 1 239,191] 1.6186
1 0 1 0.0000

0 1 o 0.2739
0.0000
1.1275
0.8288
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0.0062

14 X4) $93,818,969 [0 8.6204 0.8566 Yes
4.5115

o o o 300,000
0 I o 2.5874
o 0 1 260,118] 5.8558
1 o 1 0.0000
o I 0
o i o 1.7957

0.0000
0.9692
0.0590
1.1256

15 X(1 s)= $59,458,191 [239,191 7.9934 0.8625 No
2.0185o o 0 239,191

I 1 o 2.8839
o o I 239,191] 3.5571
1 0 1 0.2182
o 1 0
o i o 0.9342

0.1290
0.1478
0.0671
0.1755

16 7.1154

X $61,455,386 [118,276 3.7111 0.8193 No
(16) =2.5002
o o 1 300,000 1.5492
o 1 0
0 0 1 300,000] 0.0000
1 o 1 0.3700
0o o 0.0000

1.0995
0.0880
0.0331
8.7777

17 X = $78,292,773 [0 4.5537 0.8212 No
X(17) 1.7073
o I o 300000 5.8980
o I 0
0 0 1 258,756] 0.0000
1 o 1 1.7957
o 1 o 0.0000

0.9833
0.1983
1.1397

[239,191 6.8753

18 X = $71,292,302 239,191 1.2159 0.8626 No
(18)- 2.2050

239,191] 3.0486
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1 o o 0.0000
o o 0 0.6864
1 0 1 0.0000
0 1 o 0.2181

S 1 0.1865
0.1666



Appendix D Computational times of the SLP model

Table 44 shows the computational time to solve the SLP model with different sizes, which are

characterized by the number of products, plants, periods and scenarios that simulates demand

uncertainty. The experiments are the result of Full Factorial Design. This result is used in

Section 7.1.1.3 to derive the relationship between the computational time of the exhaustive

search method and the screening model and the number of input parameters in order to

evaluate the computational efficiency of different methods.

Table 44 Computational times of the SLP model for the operational decision space

n(# of products) m(# of plants) t(# of periods) s(# of Scenarios) CPU time (s)

2 2 1 500 0.88

2 2 3 500 1.42

2 2 5 500 1.81

3 2 1 500 0.71

3 2 3 500 1.18

3 2 5 500 2.07

3 3 1 500 0.94

3 3 3 500 1.49

3 3 5 500 3.41

4 3 1 500 0.95

4 3 3 500 2.10

4 3 5 500 3.61

5 4 1 500 1.54

5 4 3 500 3.94

5 4 5 500 7.84

6 3 1 500 1.48

6 3 3 500 5.56

6 3 5 500 13.83

2 2 1 250 0.38

2 2 3 250 0.49

2 2 5 250 0.63

3 2 1 250 0.41

3 2 3 250 0.63
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3 2 5 250 0.92

3 3 1 250 0.44

3 3 3 250 0.84

3 3 5 250 1.16

4 3 1 250 0.50

4 3 3 250 0.94

4 3 5 250 1.37

5 4 1 250 0.82

5 4 3 250 1.63

5 4 5 250 3.22

6 3 1 250 0.66

6 3 3 250 2.09

6 3 5 250 4.84

2 2 1 1000 0.61

2 2 3 1000 1.33

2 2 5 1000 1.99

3 2 1 1000 0.79

3 2 3 1000 1.90

3 2 5 1000 2.90

3 3 1 1000 1.09

3 3 3 1000 2.94

3 3 5 1000 4.23

4 3 1 1000 1.30

4 3 3 1000 3.47

4 3 5 1000 5.56
5 4 1 1000 3.50

5 4 3 1000 11.27

5 4 5 1000 30.33

6 3 1 1000 3.40

6 3 3 1000 18.08

6 3 5 1000 45.78
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Appendix E Comparison of computational times for 4 plants

The following charts show how the computational time of different methods scales with the

number of products for a system with 4 plants.

Stochastic optimization

--- Screening model

-U-Exhaustive search

Computational time (# of plants:4)

E

0E

-o
u

1 2 3 #f produts 6 7 8

Figure 50 Increase of
system with 4 plants

computational times for three methods as the number of products increases in a

Computational time (# of plants: 4)
160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0 -

-4-Screening model

Stochasti optimization

2 4 6 8 10
2 4# of products6  8 10

Figure 51 Increase of computational times for two methods as the number of products increases in a

system with 4 plants
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Appendix F VBA code for the screening model

Sub DOEsolve()
Sheets("results"). Range("c25:h25").ClearContents
Sheets("results").Range("c26:c33").ClearContents

Sheets(" Input"). Range("b27:i27").Copy

Sheets("results").Select
Range("allocationproduct").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
:=False, Transpose:=True

Sheets("results"). Range("d 14:i14").Copy

Sheets("results").Select
Range("allocationplant").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
:=False, Transpose:=False

Dim a As Variant
Dim b As Variant
Dim c As Variant
Dim d As Variant
Dim e As Variant

a = Timer()

Dim nproduct As Integer
Dim nplant As Integer
Dim minlevel As Double
Dim medlevel As Double
Dim highlevel As Double
Dim M As Double
Dim ralpha As Double

minlevel = Range("min_level").Value
medlevel = Range("med_level").Value
highlevel = Range("high_level").Value
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nproduct = Range("nfproduct").Value
nplant = Range("nfplant").Value
M = Range("bigM").Value
ralpha = Range("ralpha").Value

"""'get the value for nplant and nproduct and generate allocation scenario. The current code
just picks up one scenario, which needs to
'be modified in a loop format.

MLEvalstring "clear all"
MLShowMatlabErrors "yes"

MLputvar "nprod", nproduct
MLputvar "nplant", nplant
MLputvar "min", minlevel
MLputvar "med", medlevel
MLputvar "high", highlevel
MLputvar "M", M
MLputvar "ralpha", ralpha

MLEvalstring "[X,design,capacitymat] = DOEtry(nplant,min,med,high)"
MLgetmatrix "capacitymat", Sheets("results").Range("Target2").Address
MatlabRequest

MLEvalstring "num_cap_expm = size(capacitymat,1)"
M Lgetmatrix "num_cap_expm", Sheets("results").Range("numcapexpm").Address
MatlabRequest

Dim profit As Variant
Dim optim_profit As Variant
optim_profit = -1000000000
Dim optim_optim_profit As Variant

Dim optim_x As Variant
Dim optim_allo As Variant

Dim x As Variant
Dim k As Integer

Dim i As Integer
Dim j As Integer
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Dim q As Integer

i=1

Dim expm As Double
expm = Range("numcapexpm").Value

MLputmatrix "allo", Sheets("results").Range("allocation")

"""""'The following line of code insures that, if this is what one wants, then start the point of
the optimal point for deterministic approach.

'Range("track_optallo").Value = Range("allocation").Value

Call startingpointDoE
optim_profit = Range("optim_profit").Value

'"Alter allocation values

Do While (i <= nproduct)

'MsgBox "goi" & i
j=1

Do While (j <= nplant)
q=1

'MsgBox "goj" &j
Sheets("results").Range("allocation").Value = Range("track_optallo").Value

If j > 0 Then

If Sheets("results").Range("Targetl").Offset(rowoffset:=i - 1, columnoffset:=j - 1).Value
= 0 Then

Sheets("results").Range("Targetl").Offset(rowoffset:=i - 1, columnoffset:=j - 1).Value =
1

Else
Sheets("results").Range("Targetl").Offset(rowoffset:=i - 1, columnoffset:=j - 1).Value =

0
End If
End If

MLputmatrix "allo", Range("allocation")
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"'"""'"""'"Simulate response surface
'MsgBox "go" & expm
Do While (q <= expm)

Sheets("results").Range("capacity").Value =

Sheets("results").Range("capplant").Offset(rowoffset:=q - 1, columnoffset:=0).Value

Range("finish").Value = 0
Application.DisplayAlerts = False
Call LINGOSolve
Application.DisplayAlerts = True
Do Until x = 1

If Range("finish").Value = Range("bigM").Value Then x = 1
DoEvents

Loop

Range("profitexpm").Offset(rowoffset:=q - 1, columnoffset:=0).Value =

Range(" profit").Value

q=q+1
Loop

MLputmatrix "Y", Range("profitall")
MLputmatrix "data", Range("capacitydata")
MLEvalstring "maxsampleind=find(Y == max(Y))"
MLEvalstring "maxsampleprofit=Y(maxsampleind(1))"
MLEvalstring "maxsamplecap=data(maxsampleind(1),:)"

MLgetmatrix "maxsampleprofit", Range("maxsampleprofit").Address
MatlabRequest

MLgetmatrix "maxsamplecap", Range("maxsamplecap").Address
MatlabRequest

MLgetmatrix "beta", Range("Target3").Address
MatlabRequest

"""""""""""""""'regression for response surface and optimize

MLEvalstring "stats=regstats(Y,data,'quadratic')"
MLEvalstring "beta =stats. beta"

MLgetmatrix "beta", Range("Target3").Address
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MatlabRequest

MLEvalstring "[x,fval]=optimrst(nprod,nplant,allo,beta,high,M)"
MLEvalStringWithErrBox ("[x,fval]=optimrst(nprod,nplant,allo,beta,high,M)")
MLgetmatrix "x", Range("Target4").Address
MatlabRequest
MLEvalstring "regprofit=beta(1)-fval"
MLgetmatrix "regprofit", Range("regprofit").Address
MatlabRequest

Range("optcapacity").Copy
Range("capacity").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks
:=False, Transpose:=True

Range("finish").Value = 0

Application.DisplayAlerts = False
Call LINGOSolve
Application.DisplayAlerts = True

Do Until x = 1
If Range("finish").Value = Range("bigM").Value Then x = 1
DoEvents

Loop

"'""'1 get optimal setting

If Range("profit").Value >= Range("maxsampleprofit").Value Then

If (optim_profit - Range("profit").Value) < 0.001 Then
optim_profit = Range("profit").Value
Range("optim_profit").Value = Range("profit").Value

Range("track_optcapacity").Value = Range("optcapacity").Value

Range("track_optallo").Value = Range("allocation").Value

MLEvalstring "optim_beta = beta"
MLputmatrix "optim_allo", Sheets("results").Range("track_optallo")

214



End If

Else

If (optim_profit - Range("maxsampleprofit").Value) < 0.001 Then

optim_profit = Range("maxsampleprofit").Value
Range("optim_profit").Value = Range("maxsampleprofit").Value
Range("maxsamplecap").Copy
Range("track_optcapacity").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks

:=False, Transpose:=True

MLEvalstring "optim_beta = 0"

Range("track_optallo").Value = Range("allocation").Value
MLputmatrix "optim_allo", Sheets("results"). Range("track_optallo")

End If

End If

'MsgBox "optim for this run is" & optim_profit

'd = Timer()
'e = d - a

'Sheets("results").Range("time").Value = e

j=j+1

Loop

i=i+1
Loop

Range("track_optcapacity").Copy
Range("capacity").Select
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks_

:=False, Transpose:=True

MLgetmatrix "optim_beta", Range("Target3").Address

MatlabRequest

MLgetmatrix "optim_allo", Range("allocation").Address

MatlabRequest
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MLputmatrix "allo", Sheets("results").Range("allocation")

Range("finish").Value = 0
Application.DisplayAlerts = False
Call LINGOSolve
Application.DisplayAlerts = True
Do Until x = 1

If Range("finish").Value = Range("bigM").Value Then x = 1
DoEvents

Loop

b = Timer()
c=b-a

Sheets("results").Range("time").Value = c
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