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OPTICAL KLYSTRONS
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"Optical klystrons" are free-electron lasers with separated functions: energy modulation, dispersive drift and
emission. Different proposals are reviewed, and the basic physics is discussed, showing in particular the difference
between devices based on "coherent" emission and on "stimulated" emission, and pointing out some possible
limitations.

I. INTRODUCTION

The ""free electron laser" (FEL) is an amplifier
or oscillator device based on stimulated syn
chrotron radiation from relativistic ("1 2 ~ 1) elec
trons in an undulator (periodic transverse mag
netic field, or transverse e.m. wave). In this
device, the electrons in the beam experience a
longitudinal force that is a periodic function of
position, and therefore a velocity modulation;
they then tend to bunch at distances X./2 (where
X. is the output wavelength), giving rise to co
herent synchrotron emission (which interferes
with the input wave). The effect decreases for
large electron energies 'Ymc2 because the disper
sion d~/d'Y (~c == velocity) for a free particle is
proportional to "I - 3 (see Refs. 1-4).

The bunching can be made more rapid by in
troducing a magnetic dispersive element (where
faster (slower) particles move on a shorter (longer)
path) or by producing the bunching with a high
power pulsed laser. In these proposals the func
tions of bunching and ""coherent" or ""stimu
lated" scattering are usually separated, so that
in analogy with the microwave klystron, such a
device is called an "" optical klystron" or ""trans
verse optical kl ystron " .:;

The idea of having a bunched beam emitting
""coherently" on harmonics was used in micro
wave tubes (TWT and klystrons) to produce mm
waves (see for example, Ref. 6). Csonka pro
posed7 the use of a FEL as an ""energy modu
lator" (with high-power laser input) to produce
electron bunches much smaller than the modu
lating wavelength, with the aim of producing
'"coherently" X-rays from, for example, a bend
ing magnet.
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Alferov, Bashmakov and Bessonov,8 from an
analysis of the bunching of the electron beam in
a FEL and of ""coherent" emission, arrived at
a proposal of an ""optical klystron" composed of
a FEL amplifier followed by an undulator as a
""radiator" on a harmonic.

The ""optical klystron" (OK) proposed by Vi
nokurov and Skrinskii,9.lo made of two undula
tors with a dispersive magnetic drift space in be
tween, is an amplifier-oscillator aimed at reducing
the length of a FEL in high-energy electron
beams. In this case the input wave interacts with
the electron beam also in the" "radiator".

The possibility of getting "coherent" radiation
from an electron beam modulated by a FEL is
also suggested by Brautti et aI., 11.12 and the use
of dispersion (positive or negative) to enhance
modulation is described by Boscolo et al. 13 In a
proposal of OK by de Martini and Madey l4.15 the
second undulator is a traveling wave and the
emission is on a very high harmonic.

A numerical treatment of the evolution of har
monics by the Vlasov equation has been made
by Stagno et aI., 16.17 and an equivalent one using
a Monte Carlo method by de Martini and Edigh
offer,15 An analytical solution for the electron
density in a FEL or OK has been found by Leo
et al. 18

A detailed energy-loss analysis of a device sim
ilar to that of Refs. 9,10 is given by Shih and
Yariv. 19 An ""energy separator" has been pro
posed by Csonka20 to reduce the limitations due
to the electron energy spread. Recently the OK
of Vinokurov and Skrinskii has been realized, its
spontaneous spectrum measured,21 and gain has
been observed. 22

We want now to give a rough description of an



246 R. COISSON

in this section the e. m.
wave Ei to be amplified
may be present or not

for ex. undulator
length L2' period A2 '

field B2

IF undulator is a TEM
wave, A2eq. = ~A2

B2eq."'2B2

produces
density modulation

en

e B1 Al
b1 =0(1 Y =---

21Tmc 2

FIGURE I General scheme of an OK and definition of symbols (cgs units).
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OK and clarify the physical mechanisms involved
and to give simple practical formulas for order
of-magnitude calculations and for the discussion
of possible limitations. The description will be in
two parts:

(i) Dynamics of electrons in the buncher (en
ergy modulator + drift): with a given
input, what will be the modulation index
(fundamental and harmonics) and how
many harmonics?

(ii) Emission: in the radiator with a given mod
ulation, calculate power (and ~v and ~n)

of the emitted radiation.

II. BUNCHING: ENERGY MODULATION
AND DISPERSION.

A. ENERGY MODULATION

The function of energy modulation in an OK is
performed by a FEL (= undulator + input wave)
(see Fig. I). The dynamics of the electron beam
in a FEL is well known,4 and we merely sum
marize it with Fig. 2. The incoming particles,
with a random longitudinal distribution (Fig. 2a),

There are essentially two different kinds of
devices, with different aims: small-signal ampli
fier-oscillators with the input wave present also
in the radiator, and strong-signal (pulsed-laser
input) frequency multipliers, and they will be
treated separately in Sec. 5 and 6.

We start with Fig. I. We use the approxima
tions "'1 2 ~ 1 and cx2 ~ I. The longitudinal velocity
~x depends on energy "'I and angle e with respect
to x; then

'Y - 'Yo 2
~x - ~o = --,- - Y2e , (I)

y

where ~o = ~x('Y = 'Yo, e = 0).

-_-_-_-_-_-_--!- x- '\)t

a)

b) c)

FIGURE 2 Longitudinal phase space (momentum P, - PrO
versus position x - Uot) electron density distribution: a) in
itially, b) energy-modulated but not yet bunched, c) bunched.
The continuous line indicates the distribution for !:ip, = 0
(or!:i"{ = 0, tie = 0) (ideal), or the maximum of the distribution
whose width is indicated by the dashed lines. The density is
the integral of this distribution over pr.
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To estimate the bunching within the FEL, we
remark that

and for a (sinusoidal) 3-pole "wiggler" with mag
netic field B l1 • == 2Trrhc2b l1 .1eLw (h w ~ I)

(6)

(5)

(4)
ds I
-d == 1 Ld '-y -y-

ds
d-y

In general this path difference will result in part
within the energy modulator, and in part in the
drift, the contribution of each depending on o-y
and on input power. For o-y ~ -yf4TrN all the dis
persion will have to be provided by the drift,
while for o-y ::::= -yf4TrN the radiator will be just at
the exit of the energy modulator.

To calculate the length of the drift or the mag
netic field of the "wiggler" to get the desired
path difference dsfd-y we renlark that in a free
space of length L d

aj + !!..- aj + dp aj == o.
at m ax dt ap

If the energy modulator is sufficiently short
(length ~ cf4 times the pendulum period so that
there is negligible bunching within the energy
modulator), the amplitue o-y of the energy mod
ulation can be easily calculated4 in the "impul
sive" approximation by the work done by the
incoming field Ei • Thus

e jL dx
o-y == - Eiv.L-

mc2
0 e

experience an increase or decrease of momentum
depending on the relative phase of the input wave
and the undulator (then on the position of the
electrons in the beam). Then the phase-space
distribution becomes a wavy line (or strip) (Fig.
2b). The different velocities of the particles w"ith
different Px distort Fig. 2b to something similar
to Fig. 2c. Within the FEL, this distortion is the
one corresponding to a pendulum potential (with
closed orbits for' 'trapped" particles) while in a
drift space they drift horizontally at a rate pro
portional to Px - PxO. This can be described quan
titatively by the Vlasov equation for the phase
space density distribution j(x, p) (J j(x, P)dp
p(x». In the electron average rest frame,

(2)

(3)

e 20
== -22 aLEi == - bLP 2

1/2
,

me -y

where in the last expression PL is the input power
in MWfmm2 and L is in meters.

B. DISPERSION

After the beam is energy-modulated, it must
travel a distance such that the faster particles
reach the slower ones to get bunching (Fig. 2b
to 2c). If ds/d-y is the change in effective length
travelled by two particles with energy difference
d-y, the maximum bunching will happen (if a-y
== 0) when the line describing the longitudinal
phase-space distribution will have a vertical tan
gent, i.e., let a-y =*= 0 when electrons with energy
-y + o-y + a-y will gain a distance 'A/2Tr

ds 'A
- (o-y + a-y) :::::-.
d-y 2Tr

C. LIMITATIONS

Ideally (electron energy spread a-y == 0 and elec
tron angular spread aa == 0) at the bunching point
the density of electrons in the equilibrium posi
tions would tend to 00, and the modulation index
I-1n == Pn/PO would be of the order of 50%, de
creasing slowly up to very high harmonics, but
it is limited in practice by the spreads a-y and a8
which give a spread as in path lengths s. Then
the ideal density distribution at the bunching
point must be convoluted by a point spread func
tion of width as depending on a-y and a8~ the
modulation spectrum is multiplied by the Fourier
transform of this function (for the convolution
theorem).

The distributions of -y and aare Gaussians. As
Vx == v cos a == == v( 1 - 1/2(2), the distribution
in Vx is exponential up to Vx == v, and == 0 for
Vx > v, then the two "transfer functions" for the
modulation spectrum are a Gaussian (for energy
spread) and a Lorentzian (for angular spread).
Then, generalizing the result of Vinokurov and
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(7)

Skrinskii, we can say that

pn 1 8"1
f..Ln == -:::::::: -----

po 2 (8"1 + ~'Y)

exp - V2 n2 ( ~'Y ) 2

0"1 + Ll'Y
x -=:-------------

[ (
"12~S2 ) 2J. )/2 .

1 + n2
TIN) ---

I + V2h)2

The Lorentzian factor expresses the qualitative
remark of Vinokurov and Skrinskii that the an
gular spread should not produce a delay of more
than A/27r at the end of the undulator. The har
monic number that can be reached, is then limited
~~ ~'Y and LlS, but there are other problems lim
Iting power and harmonic number.

As we have already seen [Eq. (3)] there is a
maximum input power

III. INCOHERENT, COHERENT, AND
STIMULATED EMISSION.

If a modulated electron beam enters an electro
magnetic structure (for example, a bending mag
net or an undulator or an e.m. wave), the emis
s-ion from it can be considered as the sum of two
parts: an "incoherent" one which is the sum of
the intensities of the radiation emitted by each
electron (with the same spectral and angular dis
tribution) as if the beam was not modulated; and
a "coherent" part which would be emitted by a
smooth (modulated, but continuous) current dis
tribution, with spectral and angular properties
depending on the modulation, and intensity pro
portional to f..L 2 (where f..L is the modulation index).

To compare the different kinds of emission, let
us take for simplicity an undulator with b2 ~ 1
(see Fig. 1). The results can be easily generalized.

(8)

which, for Eq. (7) means
A. INCOHERENT EMISSION

(9)n :::; "I
4TIN I Ll 'Y'

But the same problem (energy modulation 0"1,
then velocity modulation o~, now producing a
de~unching) ~rises in the radiator: if after a length
L 2 In the radIator, the n-th harmonic disappears
(o~ L 2 == A/27r) , it is useless to have a radiator
longer than

The power emitted is (from Lienard's formula)

dWinc(S == 0) _ 21Te 2 2 4

d d
- -lob2 N 2 "I, (13)

v "I C

where /0 is the average current, with relative
bandwidth

(14)

(10)

In particular, if the bunching is all in the drift
(PL ~ PLmax)

around a frequency

v == 2'Y2c/A2 (at S '== 0) (15)

(I I)

(17)

(16)

In the case b2 2: 1, there is also emission on
harmonics 112 of the radiator, where

1 ~2
~ == -- (I + V2b 2

2
),

112 2"12

and within a solid angle

(12)

1 s
L 2 :::;-----

n (I + 1/2h22) ,

where n =: A2/A) =: A/Ai and s is the effective
length of the drift, while if PL == PL

max

or

(12' )

where N 2 == L2/nAi (see also Sec. 3A). This re
duces further the possible power output on higher
harmonics.

and h2
2 becomes a more complex function

F
Il
(h).1.23 In case the emission is on a harmonic

112 of the radiator, in Eqs. 10 and 12, we must
understand ~2 ~ ~2/112 and N 2 ~ 112 N 2'
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B. COHERENT EMISSION

where Wine is the incoherent power, and M(v) is
1

the power spectrum of the current - let),
e

The power emitted can be obtained by integrating
Lienard's formula over the modulated (smooth)
current distribution: in general we can say24,16
that for a monoenergetic beam

(24)

(23)

If we have a thin beam (a < L'A), the power per
unit solid angle

dWeoh == ca2 (eh2PIL2~)2
dO 'A2

power emitted is approximately

C '") 1T (h 2 ) 2
Wcoh = 411" aR~ = I6 e -:; p IL2 ac. (22)

For a thick beam (a > L'A) this power is emitted
within a diffraction-limited angle

(17)
dWine (8 == 0) M 2 (v)

dOdv ! /0
e

dWeoh (8 == 0)

dOdv

(18)
is the same, but is emitted within an angle

~O .~ I/N~2. (25)

for an infinite beam. Then Ideally (PI constant) the bandwidth is

where ~ is the number of electrons in the coh
erence length N'A of the (incoherent) radiation.

From another, equivalent~25 point of view, the
coherent emission can be viewed as a reflection
of the wave equivalent (in the electron rest frame)
to the undulator on the modulated refractive
index

vi; == (1 _41Tpe
2

) 1/2 = 1_211"e
2

mw2 mw2

x (PO + PI cos :~ x)

(19)

(20)

(26)

where L h is the length of the electron beam pulse.
In case the electron beam has a non-negligible

energy and angular spread, incoherent emission
bandwidth and angle of emission will be broad
ened (convoluted) by these spreads, but coherent
emission spectrum and angular distribution de
pend on the macroscopic modulation and not on
the properties of individual electrons. In practice,
if the modulation is produced by a partially co
herent laser pulse, then the relative bandwidth
and solid angle will be the IivL/vL and IiflL of the
laser (if IivL/VL > Iiv/v and the coherence dis
tance < n times the beam diameter).

then (primed variables in electron rest frame,
neglecting e iw

!, and '0 == e2 /mc2 classical electron
radius) the reflected amplitude R' is

dR' 1 d~
·k'R' E'-d +1 == "r-d .

x 2 VE X

Then R' == 1/4 i'oPI'A'L'Eo'e-ik'x or, in the lab
oratory frame

c. STIMULATED EMISSION

If now, together with the reflected wave R, there
is an incident wave Ei of the same wavelength in
the same direction and phase <P with respect to
R, the intensity of the resulting wave is

I == (Ei + R)2 == E'? + R 2 + 2EiR cos <I>

(21 )

If the cross-sectional area of the beam is 0, the

The first term is the incoming wave, the second
the coherent emission (undulator-equivalentwave
reflected by density modulation Pn), present even
when E i is absenC and the third one is an inter-
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ference term between the external field Ei and
the coherent-emission field~ we will call this term
Hstimulated emission."

outgoing intensity is

J
L da

I = E? + Ei cos <I> 0 dx dx

D. REMARKS
(28)

As in free induction decay, we have here (Sec.
3B) coherent emission from a system prepared
in a Hcoherent" way, i.e., with nonvanishing
offdiagonal elements of the density matrix. In
fact, for a free electron beam, the presence of
off-diagonal elements of the density matrix is
equivalent to modulation of the beam.

If the electron is described by the Schrodinger
(or Klein-Gordon) equation and the e.m. field is
quantized, the physical origin of incoherent
(spontaneous) emission is the zeropoint fluctua
tions of the e.m. field. In a classical description
(Maxwell eqs. + point-like electrons) incoherent
(spontaneous) emission also exists (along with
coherent and stimulated emission), and its origin
is in the point-like nature of the electron. In a
semiclassical description (Schrodinger-Maxwell)
incoherent (spontaneous) radiation does not ap
pear.

This power is emitted by the electron beam:
correspondingly, the beam must lose energy:
what is the physical origin of the work performed
on the beam? For incoherent emission, the work
is done by the radiation reaction F == (2e 2I
3c2 )(d2 13Idt2 )(l3c == velocity), which is always
negative (as the phase shift between .f and ~ ~ is
TI). For coherent emission, the energy loss is the
(always negative) work done by the field R on
the modulated beam: f eR-u~p(jdx which is equal
to Wcoh • Conversely, the coherent amplitude R
can be obtained by an energy-loss calculation, by
equating this power to the power caR 2 /4TI of the
wave. For the stimulated emission, the work is
done by the external field E i , and can be positive
(absorption) or negative (emission) depending on
the phase shift <1>.

The discussion in Sec. 2 and 3 of energy mod
ulation, dispersion and coherent emission is of
course relevant also for a conventional FEL, i.e.,
when the three functions are not separated, and
bunching (and then emission) increases gradually
as the beam passes through the FEL. In that case
PI is proportional to .r2 (x == coordinate in the
FEL: 0 :::; x :::; LL and so is the coherent amplitude
per unit undulator length: then [see Eq. (27)] the

2L3
2 2 ao== Ei + Ei ropo -- cos <t>

"lAo

4L6
2 2 2 a

+ Ei Yo po 'Y2x.
o
2

If the electron energy is equal to the synchron
ous energy, 'Y == 'Y<h bunching exists, but <I> ==
TI/2. Then the second term is zero, and the only
contribution is the coherent one (third term: the
factor E? appears,26 but only because PI is pro
portional to Ei ). The finite gain for stimulated
emission comes from the fact that if'Y i= 'Yo, the
beam tends to bunch in a position displaced from
the equilibrium position and then <I> i= TI/2. In
the case of an OK, the condition of maximum
output is 'Y == 'Yo·

IV. THE STIMULATED-EMISSION
OPTICAL KLYSTRON (SOK)

In the work of Vinokurov and Skrinskii9
.
,o

(the
only OK realized so far) and of Shih and Yariv, 19
the input wave is present also in the radiator, and
the emission that is calculated is stimulated
emission on the fundamental, with a small-signal
(o'Y ~ d'Y) input. The aim is to produce an oscil
lator.

Neglecting angular spread [de ~ (1 + 1/2b2 )1
(N)1/2'YJ, from Eqs. (7) (n == 1, o'Y ~ d'Y) and (22)
one finds9

.21 a gain (with two equal undulators
of length L)

(29)

(IA == mc 31e ::::::: 17 kA, (f == effective cross-sec
tional area, including filling factor) then the ratio
of Gsok to the gain of a FEL of length equal to
the total length of the SOK (i.e. --- 2.5 L) is (N
== LIAo)

Gsok '"'-' 2 X 10- 2 N' A'Y",' (30)
Grel u 1



OPTICAL KLYSTRONS 251

Then such a device would be very useful for high
~ and the limited available length, if a good-qual
ity electron beam (low ~:y and Lie) is available.
The incoherent spectrum21 from such a device
is a series of closely spaced bands due to inter
ference of light emitted by an electron in both
undulators. As the gain is proportional to the
derivative with respect to ~ of the spectral bril
liance of the spontaneous radiation,27 the gain
can also calculated in that way.

Little can be said at present about saturation,
but from the preceding remark (the closely
spaced bands are easily washed out for a small
increase in Li~ and Lie), it can be foreseen that
it will be at a lower power than in a FEL. An
estimate has been made in Ref. 10.

The only OK that has been made is the one on
VEPP-3 where spontaneous spectrum21 and gain22

have been measured, and roughly agree with the
ory. The two (equal) undulators have N == 3, Ao
== 10 cm, ~o == 3 kG, A == 0.6 J.1m, ~mc2 == 350
MeV, Lie ~ 5 x 10- 5

, Li~/~ == 1.5 x 10- 4
, (J

~ l/2LA, I == 20.A (peak). The gain under these
conditions is expected to be approximately 30
times higher than a FEL of length 3L (total length
of the OK).

On the LELA undulator on ADONE28 ,29 (see
below for data), using 5 poles for dispersion
(NNSSSNN instead of NSNSNSN) and using
two undulators with N == 8, one could increase
the gain (if the dispersion is sufficient) approxi
mately 10 times with respect to the full N == 20
FEL.

V. THE COHERENT-EMISSION OPTICAL
KLYSTRON (COK)

In this kind of OK device, a pulsed laser gives
a strong input (8~ ~ Li~) producing a highly an
harmonic modulation, to get coherent emission
in the radiator on a harmonic of the laser fre
quency. Its aim is to produce short pulses of co
herent vacuum ultraviolet radiation with very
high spectral brilliance. This would be particu
larly useful because, for the lack of high reflec
tivity mirrors, it would be very difficult to make
oscillators in this part of the spectrum. An esti
mate of the coherent power on the n-th harmonic
with respect to the incoherent power, for (J 2::

L2 A, is

(I in amperes, (J in mm2 and A in J.1,n) where J.1n 2

(modulation index of n-th harmonic) is given by
Eq. 7. The highest harmonic number can be ob
tained with PL == PL max

2( Li~)2exp - n 411" N 1-

fL} = ~ ( 26: ) 2' (32)

1 + n
2

TIN. 1 : '!zb/

which is ~ 114 for small n, has a cutoff for n 2:

~/411"NILi~ and a rapid decrease for n 2: (1 +
1/2b22)/11"NI~2Lie2. For harmonics lower than these,
it is convenient to use a P L < P L max, as the useful
interaction length L 2 is longer [see Eq. (10)]. If
one wants to see what is the minimum power to
observe the 3rd or 5th harmonic, we can remark
that for 8~ < < Li~, we have from Eq. (7)

fLn
2 = 10 (~~~YPL C-

112

(33)

(PL in MW/mm2, L 1 in meters).
In some earlier proposals8,12 there are numer

ical estimates which are a bit optimistic for pres
ent accelerators. Let us consider a realistic ex
ample, the LELA undulator under construction
on Adone (lpeak == 10 A for 0.5 nsec, (J ~ 1 mm2,
Li~/~ ~ 2.3 x 10- 4

; ~Lie ~ 0.15 at ~ == 1194)
with Ao == 11.6 cm, No == 20, b == a~ == 4.83 (Bo
== 4.46 kG). Using 5 poles for dispersion and 8
periods for the energy modulator (as in the ex
ample above) maximum bunching could be ob
tainedwithPL == PL

max == 6.3 GW/mm2 (A == 0.5
J.1m, (J ~ 1 mm2, LiALIAL ~ 10- 6

, LiDL ~ 10- 6
)

producing a 43 rd harmonic with J.1~3 ~ 0.02 at A
== 120 Awith WcohlWinc ~ 1/100 but an increase
in spectral brilliance (with respect to the incoh
erent one) of the order of 103, but the effective
length L 2 of the radiator would be only approx
imately 2.5 cm. An increase of L 2 could be ob
tained with lower 8~, but with lower n. For ex.
L 2 ~ 35 cm on the 11 th harmonic (A == 450 A) at
PL == '/4PL max; then J.1I, ~ 0.1, Wcoh/Winc ~ 10
and coh/inc spectral brilliance ~ 106

. Third-har
monic generation could already be observed with
inputs of a few hundreds of kW.

VI. CONCLUSIONS

(31 ) Many experiments still have to be made to make
the OK a source of e.m. radiation (amplification,
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effects on electron-beam stability and momentum
spread, oscillation, saturation, production of har
monics in the electron-beam modulation by pulsed
lasers, ....) and it is probably too early to in
vestigate details. Many problems also depend on
developments in accelerator technology. Here
we have made some remarks about orders of
magnitude and pointed out some limitations
which have to be kept in mind for further devel
opment.

Limitations are mainly of two types, those due
to energy spread and angular spread of the elec
tron beam, and those due to the variation of
bunching both within the energy modulator and
the radiator, (due to the velocity modulation cor
responding to 0)'). For the first limitations, im
provements depend on the possibility of con
structing electron machines with a lower emittance
and lower energy spread, or of ~ ~modulating" the
electron density in phase space. An interesting
suggestion is due to Csonka,20 who proposes an
energy separator (electrons with different ener
gies are laterally separated before entering an
energy modulator with a transverse gradient) to
reduce the effect of energy spread and thus reach
higher harmonics. 30

For the second type, a solution could be to
make an energy demodulator (with a suitable
phase-shifted undulator) to reduce 0)' before the
beam bunching is complete.

If sufficient power can be obtained in a SOK
it would be possible to extract the coherent
emission on the 3'-d or 5th harnl0nic (for ex. using
a grating as a 2nd mirror). The FEL has also been
proposed as an accelerator;4a.11 the same can be
said of an OK, and also the preceding remarks
could be applied.
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