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A new computational method is proposed for optimal design of beam lines. The method is based on a dynamic-
programming recursive algorithm that minimizes an additively or multiplicatively expressed function of the desired

parameters.

A formidable amount of effort has been made to
create computer programs capable of optimizing
the number, length, position and strength of beam
optics elements (multipole lenses, bending mag-
nets, etc.) used in particle accelerators, storage
rings, beam-transport systems, etc., when var-
ious constraints are imposed on the beam de-
sign.'~* The available software is very powerful
in beam calculations with fixed parameters and
is also capable of finding local optima if the num-
ber of variable parameters and the number of
constraints are not too high. The initial values of
the parameters must be chosen from some ap-
proximate solutions or rough physical intuition.
If the starting values are too far from a local
optimum or the problem is over-constrained, no
solution can be found. An additional problem
arises in connection with the weighting factors
that can only be determined by experience and
strongly depend on the nature of the particular
problem. Totally different results may appear if
these factors are changed: they can therefore be
considered as additional unknown parameters.
The results usually also fluctuate strongly if the
order of variation of the parameters is changed.
The most important problem, however, is that
even if a local optimum is found, we have no
guarantee that there are not other much better
solutions.

This situtation is quite similar to that in the
field of low-energy beam optics, where there is
an additional complication that we are usually
also required to find electrode or pole-piece con-
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figurations that can be expected to have certain
predefined electron-optical properties. Electron-
optical synthesis was of a trial-and-error nature
in the past. The usual procedure was to change
the dimensions of electrodes or pole pieces until
the desired optical properties were obtained.

The author has proposed an entirely different
approach to electron optical synthesis.* The
novel computational method involves restricting
the possible electrostatic or magnetic field dis-
tributions to those connecting the intersection
points of a rectangular grid by straight lines and
gives a recursive algorithm for choosing distri-
butions that minimize a given combination of ab-
erration coefficients. This method was success-
fully applied to both magnetic’ and electrostatic®
lens synthesis.

The aim of this paper is to show that the above
method can also be applied to beam-optics design
for particle accelerators, at least for cases where
the requirements can be expressed in an additive
or multiplicative way. This is certainly the case
when some aberration must be minimized be-
cause the aberration coefficients can always be
expressed in the form of a definite integral. For
the sake of simplicity, however, we choose an
illustrative example.

Let us try to solve the following problem.
Given a long straight channel with definite di-
mensions and some spaces occupied by rf cavi-
ties, the task is to find a suitably situated system
of quadrupole lenses that minimizes the overall
sum of vertical (B,) and horizontal (B,) betatron
functions measured at the medium planes of each
quadrupole along the whole channel

G = min 2>, (Bvi + B,
X

()



214 M. SZILAGYI

where k is the ordinal number of a given quad-
rupole in the system.

The values of the quadrupole excitations are
naturally constrained by saturation and energy
considerations. Another constraint is imposed by
the fact that the cavities and quadrupoles cannot
overlap each other. Therefore, for the first try
one may suppose that the lengths and positions
of the quadrupoles are fixed. (Of course, this is
not a general requirement for the application of
the method.) If we accept these constraints, the
problem is reduced to that of finding a set of
excitation values A, in the given limits for the
quadrupoles placed along the channel at arbitrary
(not constant) distances from each other (Fig. 1).

As a further simplification, for illustrative pur-
poses one can use the thin-lens approximation,
so it is assumed in Fig. 1 that the lenses are con-
centrated in their mid-planes and therefore that

FIGURE | The arrangement of N quadrupoles along a chan-
nel (s is the axial coordinate, 4 is the excitation). The arrows
represent that we do not know anything a priori about the
values and signs of the excitations.

the betatron functions do not change inside the
lenses. The lens action is taken into account by
the changes in the values of the derivatives of
the betatron functions.

We do not know anything a priori about the
solution. Even the ‘‘signs’’ of the lenses are not
given. (We consider a lens ‘‘positive’” if it is fo-
cusing in the horizontal plane and defocusing in
the vertical one.)

The solution of this simple problem is quite
difficult. Indeed, let us suppose that we have N
lenses and every lens can have M different ex-
citation values. This is already a simplification
because the excitation is changed in a continuous
way by changing the currents in the coils, but if
M is large enough it is quite a practical assump-
tion. Then there are MN different possibilities
available. If we want to try all these, we must
calculate the vertical and horizontal betatron
functions and their derivatives (M + M? + M?
+ +-+ + M™) times for the lenses and do the same
amount of calculation for the drift spaces be-
tween them in order to get all the information
necessary to compare the results and choose the
best among them. If we have only 10 lenses and
suppose that M = 100 (which is not a very large
number to approximate a continuous variation of
the excitation between the negative and positive
saturation limits) we arrive at 10?° different pos-
sibilities and an even larger number of calcula-
tions and comparisons. It is.easy to agree that
this “‘brute-force’” approach is absolutely out of
the question. If we try to use some existing op-
timization software, we will certainly arrive at a
locally “‘optimal’’ solution but only if the number
of lenses is strongly limited. In case of N = 100,
for example, there is no hope at all.

But the hope is here! We shall try now to apply
our method to the solution of this problem. First,
we define a ‘‘domain of existence’’ of the prob-
lem. This means that the distances along the axis
are limited by the actual length of the channel
and the quadrupole excitations are limited by the
constraints. Then we design a rectangular ‘‘com-
putational grid’’ which will restrict the excita-
tions to M + 1 different values along the ordinate
(zero excitations must not be excluded) while fix-
ing the situations_of the quadrupoles along the
abscissa. The computational grid is shown in Fig.
2. Our problem is now reduced to that of finding
out the intersection points of this grid that de-
termine the optimum distribution of quadrupole
excitations h,,, where i is the value of the exci-
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FIGURE 2 The computational grid.

tation expressed in the elementary units Ah =
2hmax/M and £ is the ordinal number of the lens
under consideration. For any given value of A,
there are exactly M + 1 possible values in the
previous column of the grid. We shall denote the
actual value of the excitation of the previous lens
by hju—1, (see Fig. 2). Then we can assign a value

Fir = Bv e + B i (2)

to the linear segment connecting these two points
in the computational grid. It is quite clear that
the values of the betatron functions at the output
of the k-th lens must depend on the excitation i
of the given lens and also on the previous history
of the beam, i.e., the excitations of the preceding
lenses, which are taken into account by the single
index j. We are able to use this single index by
applying R. E. Bellman’s optimality principle’,
which can be formulated in the following way:
** The optimal procedure in a multistage decision
process has the property that, whatever the final
decision is, the prior decisions must constitute
an optimal procedure leading from the initial state
to the state preceding the final decision.”” This

very deep mathematical principle is widely used
in economics and control engineering but, un-
fortunately, almost unknown among physicists.

We shall express the optimality principle by
the recursion relation

Gu = min [Fy + Gjik-nl, (3)
g

where G, is the result of the optimal procedure
leading from the initial state to the k-th state,
G — 1 1s the result of the optimal procedure lead-
ing from the initial state to the (k — 1)-th state and
F« is the contribution of the &-th lens. Of course,
J is a variable and the aim of the procedure is to
find out that particular, optimal value of j for
which the value of the sum of Fj; + Gy is
minimal. The initial conditions G,, must be de-
termined from the given initial values of the be-
tatron functions and their derivatives. In our case
Gio = Bro + Bvo for every possible value of /.
It is evident that F;;, = 0 for any values of i and
J. Because in our case F; does not depend on
J, we can simply calculate the values of G;, for
every i and then begin the optimization procedure
by calculating F,;, for a fixed value of i, but for
every possible value of j (see Fig. 2). Varying the
value of j we find
G = m_irl (Fin + Gj), (4)
J
where, in general, the values of G;, are the same
as G;, at the first lens because the beginning of
the k-th region of the computational grid ob-
viously coincides with the end of the (kK — 1)-th
region (what was ‘*i"” before becomes **j’’ now).
In this simplified model we assume that the be-
tatron functions are calculated at the inputs of
the lenses, thus combining the drift space and
lens calculations into one step. We store the
value of G,» together with h;; and the correspond-
ing optimal value of h;, ... as well as the betatron
functions and their derivatives. All the other pos-
sibilities have no interest for us anymore (dotted
lines in Fig. 2). After evaluating M + 1 possi-
bilities, we choose the best of them and abandon
the others.

Now we change the value of i and find the
corresponding values of G;; and h;, ... Doing that
for every possible value of i, we shall have a set
of M + 1 data for each of the following param-
eters: hp, Gioy hji opes By, Buios aviz and oy
where a = —B'/2 (the prime represents differ-
entiation with respect to the axial coordinate s).
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A graph of M + 1 lines connecting the corre-
sponding points h;; and h;, ,,, for every possible
value of i will correspond to these sets of data
(see the first region of Fig. 3).

After completing the calculations at the second
lens, we move further to the third lens, repeating
the whole procedure. We must only remember
that the index *‘i”’ from the previous region al-
ways becomes ‘‘j’’ in the new region. Thus the
initial conditions for the third lens are those given
as final values after the second drift space. Pro-
ceeding in the same way, we shall have again a
set of M + 1 data for each of the parameters that
must be stored. Our graph can be continued (see
second region in Fig. 3).

Repeating this procedure N — 1 times, we ar-
rive at the end of our calculations. We have N
sets of the values of hic, G, ik~ 1yopts Bviks Briks
ayy and ayy (K = 1, 2, -+, N) and the whole
graph of all M + | possible optimal excitation
distributions can be completed. In Fig. 3 a simple
illustrative example is given for the case of M
= 8, N = 5. We can choose that particular value
of i at the end which is best suited to our special
needs or which corresponds to the smallest value
¢’ G. Then we follow the optimum-value distri-
bution in the graph starting from the given point
(i, N) and proceeding in the backward direction
step by step. The thick line in Fig. 3 represents

FIGURE 3 The completed optimum-value graph.

such an “‘optimal’* distribution if i = -2 is cho-
sen as the final excitation value. For the com-
pletion of the whole procedure, the betatron func-
tions and their derivatives must be evaluated only
M+ 1)+ M+ D>(N - 1) times, which makes
a big difference in comparison with the brute-
force approach. It means that the necessary com-
puter time increases with the number of elements
only linearly!

The advantages of the method are obvious. It
is a global search with a linear dependence on
the number of elements as far as computational
time is concerned. Any constraint that reduces
the number of possibilities at a particular stage
simplifies the computing procedure. (For exam-
ple, any of the quadrupoles can be forced to zero
excitation or a given excitation value). After
completing the calculations we automatically
also have solutions for many sub-problems with
a smaller number of elements. A system of lenses
with variable lengths can also be treated, as well
as many other combinations.

Practical problems can be formulated in quite
different ways. For example, it might be desirable
to obtain given values of the betatron functions
at some places and simultaneously fulfill some
more requirements at other steps, as is the case
when a low-beta insert has to be designed.® Then
it is convenient to formulate the requirement so
that the sum of differences between the actual
and desirable values must be minimized. We are
well aware of the fact that not all optimization
processes are like this, but our method certainly
can be applied to many practical problems of
beam-line optimization. We can minimize emit-
tance, momentum-compaction factor, phase ad-
vance, chromaticity, etc. There is also a possi-
bility to reduce the nonlinear effects of the
correcting sextupoles. The minimization of the
sum of betatron functions is important in rf-cavity
regions. It is desirable to reduce the aberrations
in beam-transport systems, etc.

Our aim in this short theoretical communica-
tion has been to present only the method. Its
practical application to cases where previous
methods proved to be very difficult to use has
begun now. The results will be reported sepa-
rately.

ACKNOWLEDGEMENTS

The author is indebted to Professor G.-A. Voss,
Dr. D. Degele and Dr. J. Rossbach for very in-
teresting discussions.



BEAM OPTICS DESIGN 217

REFERENCES

1. K. L. Brown et al., TRANSPORT—A Computer Program
for Designing Charged Particle Beam Transport Systems,
Fermi National Accelerator Laboratory Report NAL-91,
1974, and CERN 80-04, Geneva, 1980.

2. E. Keil, Y. Marti, B. W. Montague, and A. Sudboe,
AGS—The ISR Computer Program for Synchrotron De-
sign, Orbit Analysis and Insertion Matching, CERN 75-
13, Geneva, 1975.

3. F. James and M. Roos, MINUIT—A System for Function

~N N A

Minimization and Analysis of the Parameter Errors and
Correlations, CERN Computer Center, D 506 (1977).

. M. Szilagyi, Optik 48, 215 (1977).

. M. Szilagyi, Optik 49, 223 (1977).

. M. Szilagyi, Optik 50, 35 (1978).

. R. E. Bellman and S. E. Dreyfus, Applied Dynamic Pro-

gramming, Princeton University Press, Princeton, 1962.

. M. Szilagyi, Design Considerations for Low-Beta Straight

Sections at PETRA, DESY Internal Report, Hamburg,
1981.





