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A new code for calculation of axisymmetric cavities is developed. The mathematical basis of this code is the method
of inverse iterations with a shift, which is the most adequate for the problem of finding the eigenfrequencies and
fields for the cavities. This code has some advantages compared with SUPERFISH; it requires a smaller number
of operations necessary for calculations and it gives better resolution of resonance modes with close frequencies.

Eliminating one of the fields, E, from Eqs. (1),
one can get a wave equation for another com-

2. THE PROBLEM OF EIGENVALUES
AND EIGENFUNCTIONS. THE
METHOD OF INVERSE ITERATIONS.

Electromagnetic fields in a cavity are described
by Maxwell's equations, which in the case of
harmonic oscillations have the form

where 0 is a vector normal to the surface. An­
other kind of boundary conditions (Dirchlet
boundary), usually used on the symmetry plane
of a cavity, is

(2)

(1)

(3)

E x 0 = 0, H·o = 0

E·o = 0, H x 0 = 0

curl E = - iWfLH - Jm,

curl H = iweE + Je,

where J,n and Je are the densities of magnetic and
electric currents, respectively. In addition to
Eqs. (1), the fields E and H should also satisfy
the boundary conditions. Usually, in these cal­
culations, the boundary conditions are taken to
be ideal. The boundary conditions on the ideal
conducting surface (Neumann boundary) have
the form

I. INTRODUCTION

RF cavities are important components of linear
and cyclic particle accelerators, as well as of rf
generators and amplifiers. Naturally, the possi­
bility of using computers for calculations of the
resonance frequencies and electromagnetic fields
of cavities facilitates significantly the design and
production of cavities with optimized character­
istics. Of the known programs for calculations of
axisymmetric cavities, the most perfect is ap­
parently the program SUPERFISH.]

We have developed a new program LANS2 the
mathematical basis of which is the so-called
method of inverse iterations (with a shift) ,3 which
is the most adequate for the problem of finding
the eigenfrequencies and fields for the cavities.
This program has some advantages compared
with SUPERFISH; namely, it requires a smaller
number of operations for calculations; it also
gives better resolution of resonance modes with
close frequencies.

A mathematical formulation of the method of
inverse iterations (with a shift) in application to
the evaluation of electromagnetic fields in cavi­
ties is given in Section 2. In Section 3 an algo­
rithm is discussed for the calculation of the mag­
netic field and resonance frequencies. In Section
4 a direct noniterative method is described for
solution of a set of inhomogeneous linear equa­
tions. The main features of the program LANS
interesting for users are given in Section 5.
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ponent of the electromagnetic field

curl curl H - K 2H = curl Je - iK ~~ Jm

where K 2 = W
2

J.LE = w2/e 2

The right-hand side of this equation can be
written in a simpler way

curl curl H - K 2H = KJ, (4)

The fields H(m) and H(m + 1) can be expanded
into series over the eigenfunctions of Eq. (5)

H(m) = L A/m)Hi ; H(In + I) == L A/rn + I)Hi (9)
i i

Substitution of Eq. (9) into Eq. (8) will give

(10)

Solving the equation

J being a vector proportional to the magnetic cur­
rent density.

It is known that Eq. (4) with boundary condi­
tions (2) and (3) has a unique solution if K 2 does
not coincide with any of the eigenvalues K n

2 of
the homogeneous equation

curl curl H(I) - K~oH(1) == K~oH(O) (7)

we find the first iteration H(I). Since by assump­
tion, K~o is close to K n

2
, the field H(1) will be

close to the resonance field with a frequency W n •

For the (m + 1)-th iteration the equation has the
form

(12)Kn2
= (1 + ~J K~o

2 2
Kno K n K~+1 2

I • K
Location of the eigenvalues neighboring K n

2
•FIGURE 1

whence

Thus with this iteration process one can find all
necessary characteristics in addition to the ei­
genfunction Hn , i.e., the magnetic field and also
the value of the resonance frequency wn •

Discrete approximation of Eq. (4) is performed

An(rn + 1) K~o

A (rn) == '"'i == K 2 _ K 2 ' (11)
n n no

Let us assume that the approximation K~o is so
selected that in absolute value the difference K 2

2 . n
- K no IS the smallest among the differences of
the kind K i

2
- K~o. Such a choice is illustrated

by Fig. 1, which shows location of the eigenval­
ues neighbouring K n

2
• Then with each succeeding

iteration, the relative value of the factor An in­
creases compared with the remaining coefficients
of expansion. In other words, with the growth of
iteration number, the field H(rn) tends to its ei­
genfunction Hn • Since the absolute value of the
field H(rn) increases because of a resonant factor
'"'in == K~o/(Kn 2

- K~o), it is reasonable to nor­
malize the field to unity after each iteration.

The number of iterations necessary for ap­
proximation to Hn with a given accuracy de­
pends, first, on how close the chosen approxi­
mation K~o is to K n

2 and, second, on the zeroth
approximation of the field H(O).

Note, however, that K~o should not be too
close to K n

2 since, in this case, the method of
finding a solution for Eq. (8) becomes incorrect
due to approaching the resonance. After carrying
out the required number of iterations the eigen­
value K n

2 can easily be found from the relation

(6)

curl curl H - K 2H = 0 (5)

with the same boundary conditions.
Calculation for a cavity consists first of defin­

ing resonant frequencies wn
2 = c2K n

2 and eigen­
functions Hn i.e., the fields at resonance. Usu­
ally, one confines oneself to the solution of a
partial problem of eigenvalues, finding only some
of the eigenvalues and their corresponding ei­
genfunctions. For example, the design of accel­
erator cavities starts with the calculation of the
mode with the lowest resonant frequency. Often,
though, it is necessary to calculate in addition a
number of higher modes.

The program LANS is based on the use of an
inverse iteration method. 3 The essence of the
method is as follows. Instead of the homogeneous
Eq. (5) one solves the inhomogeneous Eq. (4)
with the boundary conditions (2) and (3). Let us
assume, that (with any arbitrary method) we have
obtained an approximation of the eigenvalues Kn

2

to be equal to K no
2 and also a zeroth approxi­

mation of the field H(O). In the right hand side of
Eq. (4), let us take the current to be
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th iteration we obtain

Substituting these expansions into Eq. (17), we
obtain

The vectors 'Je(m) and 'Je(m + I) in Eq. (17) can be
represented as expansions over eigenvectors of
the matrix B(K2

).

(18)

(19)
N

'Je(m) = L A/m + 0'Je;.
;=1

N

'Je(m) = L A/m)'Je;
;=1

(W - K~oV)'Je(m+l) = K~oV'Je(m). (17)

Let 'Je; be eigenvectors of the matrix B(K2
) and

let K;2 be its eigenvalues, i.e.,

b 0

L 'Je;p(w;p - K
2

v ,P ) = L KJ;qv;q, (14)
p=O q=O

where the coefficients Vip and w;p depend on the
coordinates of the triangular mesh.

by a method similar to that given in Ref. 1. It is
therefore not presented in this paper.

We should note that the only difference is that
here Eq. (4) has a right-hand side. Therefore after
integration of Eq. (4) over the internal area of a
dodecahedron (see Fig. 1) and use of the Stokes'
theorem, one obtains

f curl H<p de - K 2 f H<p dS = K f J<p dS (13)

And, finally, taking into account the linear de­
pendence on the coordinates inside every trian­
gle, one has

3. MAGNETIC FIELD AND RESONANT
FREQUENCY CALCULATION A ,.(m+1) = K~o A.(m) = -A.m

K .2 _ K 2 I ~l I •
I no

(20)

If Eq. (14) is written for all mesh points, one can
obtain the relation Let us assume that the vectors 'Je; are normalized

to unity, i.e.,

Substituting the vector 'Je(I) obtained from Eq.
(16) into the left-hand side of Eq. (15), one can
continue the process of iteration. For the (m + 1)-

where B(K2
) = W - K 2V, Wand V are matrices

formed of the coefficients wand v respectively,
~, J are column vectors formed of values of the
magnetic field and magnetic current densities in
the mesh points having dimension N = K max
x L max (the mesh contains K max points on the
z coordinate and L max points on the R coordi­
nate). A square matrix B(K2

) is a three-diagonal
matrix, the elements of which are small matrices
of dimension Lmax x Lmax . Small matrices on the
diagonal of the matrix B(K2

) have three nonzero
diagonals but each of the remaining small mat­
rices have two nonzero diagonals.

Let W n = KnC be an eigenfrequency of the re­
quired mode with number nand W no = KnoC as
its initial approximate value. Also, let the distri­
bution of magnetic currents with density J =
Kno'Je(O) be given in a cavity. Then from Eq. (15)
follows

(23)

with coefficients a;(m+ I) equal to

If the result of every iteration is normalized to
unity, for the normalized vector eat(m + I) we ob-
tain

N

'Je(m + 1) = L a/m + 1)eat;,
;=1

A·(m+1)
a (m + I) - I (22)

i - L~l (A/rn + ll?r/2

•

Substituting the latter equality into the expres­
sion (20) for A/m + 1) and squaring it, we obtain

[A/m)]2
[a/

m
+ 1)]2 = -N--(-K-2--K-2-)~2--- .

L ;2 - ;0 [A~ (m)]2
s=l K s -Kno

Assuming that normalization is carried out after
every iteration, in eq. (23) one can substitute a/m

)

(15)
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for A;(m) to find genvalue Kn 2

(Kn (1'11»2 = K~o (1 + _1_)
'Yn (1'11) •

(30)

the denominator in eq. (25) is then less than unity.
Thus

unless [an (In + I)] < 1. Consequently, under this
condition we have the inequality

(31)I (1'11) \. _"~_(m_+_I)_11
'Yn II ~(m) II '

To improve accuracy in the program LANS, the
coefficient 'Yn is evaluated with the aid of a norm

taking into account that II ~(,n + 1) II is determined
prior to normalizing ~(ln + I) to unity. The sign for
'Yn can be found from the equality (20).

Note that the accuracy of approximation of
the final iteration ~(m) to the eigenvector ~n does
not determine entirely the accuracy of approxi­
mation of the obtained solution to the true ei­
genfunction Un. Indeed, the vector ~n ap­
proaches the Un mode with an accuracy defined
by the degree of approximation of the differential
Eq. (4) by the set of difference Eqs. (15).

The result of the iteration process is a conven­
ient sequence of vectors ~(,n), the limit of which
are the vectors ~n. At the same time, a sequence
(Kn (In))2 can be obtained with the formula (30).
The convergence rate for sequence (Kn (In»2 is
higher than that for ~(ln) because small variations
of field do not affect the eigenvalues according
to their well-known property. Therefore, the cal­
culation of eigenvalues with desired accuracy re­
quires much smaller number of iterations than
that needed for calculation of a field.

The program LANS includes the completion
criterion for iterations which is based on ap­
proaching the limit over the field norm. The it­
eration process is considered to be completed
when the following inequality is satisfied

(27)

(24)

(25)

[
an (m+I)J

2

--(-)- > 1;
an I'll

~ 1

In particular, at i = n

[
an(m+ I)J2

an(m)

N

L [a s (m)]2 = 1,
s=1

Let us assume that the difference I Kn2
- K~o I

is less than any of the similar differences I K;2

- K~o I for i -:/= n. Since

i.e., after every iteration, the coefficient an (m + I)
increases in absolute value, remaining less than
unity. Hence, one can draw the conclusion that

where

e(m+1) <eo[l - 'Yl(m+1)], (32)

lim [an (1'11)]2 = 1
In~oo

lim [a/m
)]2 = 0 at i -:/= n.

,n~oo

(28)

(29)

Thus, making a certain number of iterations
one can, with sufficient accuracy, make the so­
lution close enough to the eigenvector ~n. After
that, from the equality (20), one can find an ei-
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o

IhKmax -1

1

x (~~~a.) = (P~~a.) (35)

where hj = dj -I CjPj = dj -IFj = dj -IGj ­

d; -l ejF j _ 1 , or otherwise

P j = fjG.i - gjPj - l ,

where fj = dj,-l, gj = fjej. Then ~Kmax =
P Kmax ; ~j = P j - hj Pj - 1 (1 ~j < K max ). Thus,
'JC is calculated through the matrices fj, hj , gj.

For finding these matrices, one should reverse
the matrices dj only once. These matrices can
replace matrices aj, bj , Cj in the computer mem­
ory and then be used for solution of Eq. (15) with
different right-hand sides. As can be seen, for
storing matrix B(n2

), a memory of (3Kmax -- 2)
x L~ax words is required.

5. CALCULATION OF ELECTRIC FIELD
AND INTEGRAL CHARACTERISTICS
OF CAVITIES

After the magnetic-field distribution is found and
resonance frequency of the desired mode is eval­
uated, one can determine in every triangle the
electric-field components (radial and axial) from
Maxwell's equations curl Hn = iwnEn by the as­
sumption that the magnetic field inside every tri­
angle depends linearly on the coordinates Rand
z. Electric fields at the mesh points are calculated
as the average over the adjacent triangles.

In addition to electromagnetic fields and ei­
genvalues, the program provides for calculation
of the following values, which characterize a cav­
ity:

a) overvoltage, i.e., the ratio of maximum
value of electric field on the cavity surface to the
effective value of accelerating field on the axis:

K max ); can be transformed into the form

where

where ai, bi, Ci are matrices of dimension L max
x L max and G = KVJ is the right-hand side of
Eq. (15). Following the Gaussian elimination al­
gorithm, one can transform Eq. (33) into the form

4. SOLUTION OF A SET OF LINEAR
EQUATIONS.

The iteration process described above provides
a repeated solution of an inhomogeneous set of
linear equations (15) with the matrix B(K2

) = W
- K 2V the same for all iterations and only the
right-hand sides of the equations changed. There­
fore, it seems more reasonable to transform the
matrix B(K2

) into a modified LU-form4 and then
use it in further calculation rather than to solve
the whole equation (15) many times.

Equation (15) can be written in the form

Summation is carried out over all the mesh
points. Usually, the value Eo is selected in the
range 10- 6 to 10- 7 •

or otherwise
(J' = E surf. max/Eeff ,

F;. = Gj - ejFj _ 1

(here ej = bj dj__1
1 , j varies within the limits 2 to

2 (L/2

Eeff = LJ
o

Ez(z) cos(Kz) dz
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D

where L is the length of accelerating gap and Ez(z)
is an axial component of electric field on the cav­
ity axis.

b) transit time factor for relativistic particles

l L/2 / (L/2

T = 0 Ez(z) cos(Kz)d Jo £z(z) dz

c) quality factor

Q = ~ Iv I H 1
2

dV / L1 H 1
2

ds,

where 8 is the skin-depth thickness.
d) characteristic impedance

I

(L/2 1
2

P = Jo E z(7) dz IwfJ. Iv 1 H 1
2 dV

e) shunt impedance

R sh = Qp

In the program LANS it is also possible to cal­
culate the resonance frequency variation with
small changes in shape, which is important for
design purposes. To achieve this, the program
LANS calculates the so-called influence factors
that indicate the variation of resonance frequency
due to unit wall deformation at a given point, the
unit deformation being the axisymmetric defor­
mation of a wall section with unit length (along
a cross section) by a shift of unit length in the
direction normal to the surface. The influence
factors are calculated through differences of mag­
netic and electric energy densities in the vicinity
of the surface.

6. ACCURACY AND OTHER
CHARACTERISTICS OF THE PROGRAM

Errors in calculation of electromagnetic fields
and eigenfrequencies for cavities depend on the
number of mesh points as a/N2

, where N is the
total number of points. The coefficient "a" de­
pends on the cavity geometry.

The more complex is the cavity geometry, the
larger is the number of mesh points that are re­
,quired for achieving the necessary accuracy. Ex­
perience shows that 500 to 2500 mesh points are
required for achieving errors of the level ~ 10- 4

in the calculation of the eigenfrequency for the
main mode. The error of magnetic-field evalua-

tion under this condition is greater and is about
10- 3

• For testing the program and checking the
accuracy of evaluation fields and resonance fre­
quencies, as well as integral characteristics of
cavities, calculations were performed for cylin­
drical and spherical cavities. The error in cal­
culation of frequencies for modes £0]0 and Eo]]
of a cylindrical resonator is about 10 - 4, the num­
ber of mesh points being equal to 400. The error
in calculation of magnetic fields is of order 10- 3.

For the £0]0 mode of a spherical cavity, the error
in calculation of frequency (at the same number
of mesh points) is 4 x 10- 4

, and that of magnetic
field is 2 x 10- 3 •

Time. consumption is square dependent on the
mesh-point number, but depends weakly on the
number of iterations, since the major part of the
time is spent in modifying the matrix B(K2

) to the
LU-form at a given approximate value K~o. It
requires o.N2 multiplicative operations. Every
iteration requires f3N 3

/
2(P < 0.) of such opera­

tions, i.e., at N ~ 1 a much smaller number than
required for transformation of the matrix B(K2

).

Note that the convergence rate of iterations is
that of a geometric progression with the denom­
inator (Kn

2
- K~o)/(K~+] - K~o, where K~+]

is the eigenvalue which is nearest to the eigen­
value K n

2 that is sought. If the eigenvalue K n 2 is
close to K~ +] then the denominator is close to
unity. In this case, the solution of a problem will
require a few tens of iterations, but, this leads to
a small increase in time of calculation. If the ei­
genvalues Kn

2 and K~ +] are well separated, then
calculations require less than ten iterations.

The properties of the program mentioned
above make the program LANS especially con­
venient for calculations of periodic accelerating
structures having several close resonance fre­
quencies due to coupling between neighbouring
cavities.

A C

I I
I I
I I
I I
I I
I I
I I
I I I
I I I

---l-- .--1- ---'--__.--l
B

FIGURE 2 The configuration of the biperiodical acceler­
ating structure.
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FIGURE 3 The cell of the accelerating structure.
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same signs, but for the 7T mode with opposite
signs.

Figure 2 shows schematically the configuration
of a biperiodic accelerating structure for a su­
perconducting accelerator which was calculated
with the program LANS. The structure has ac­
celerating and coupling cavities and it is designed
for operation on a standing wave of 7T/2 type. The
calculation comprises the evaluation of the fre­
quency of the 7T/2 mode and also the coupling
factor.

For determining the coupling factor it was nec­
essary to calculate the frequencies of the 0 and·
7T modes. For calculations of these frequencies,
the cell shown in Fig. 3 was cut on the symmetry
planes. Resonance frequencies were then cal­
culated with Neumann conditions (curlL H = 0)
being given on these planes of symmetry. Two
resonance frequencies were found under these
conditions, namely the frequencies of the 0 and
7T modes. For calculation of the 7T/2 mode fre­
quency, Dirichlet boundary conditions (H~ = 0)
were given on the plane AB and Neumann con­
ditions were given on the CD plane, as in the
previous case. Checking on symmetry of location
for frequencies of 0 and 7T modes with respect to
a frequency of the 7T/2 mode allows one to make
corrections for coupling cavity in such a way that
its resonance frequency should be equal to the
frequency of the accelerating cavity. The fre­
quencies calculated for this example differ by 1
to 3%. The program LANS enabled us to cal­
culate frequencies with an accuracy level of
10 - 4. The number of iterations used was not very
large due to an appropriate choice of initial ap­
proximation for the magnetic field c;jf(O). For ex­
ample, for calculation of the O-mode magnetic
fields in adjacent cavities are selected with the




