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ELECTRIC FOCUSING IN CYCLOTRONS WITH UNUSUAL DEES*
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Previous analyses of electric focusing are reviewed and found to be restricted to cyclotrons with 180° dees. For
dees with smaJler angular widths, an alternating-gradient type of focusing occurs because the ions generally enter
and exit each dee on opposite sides of the rf voltage peak. This AG focusing effect is analyzed and formulas are
derived for calculating the resultant change in V z • These formulas are applied first to the MSU superconducting
cyclotron, which has three 60° dees, and then to the Indiana cyclotron which has two 38° dees. We find in the first
case that electric focusing will be quite significant for certain harmonics, and in the second case that it may even
produce a small region of vertical instability through overfocusing. Next, the analysis of Dutto and Craddock is
generalized so as to apply to dees with spiral electric gaps like those designed for use in superconducting cyclotrons.
Formulas for the resultant change in both V r and V z are derived, and then applied to the MSU cyclotron with some
rather interesting results.

1.. INTRODUCTION

During electric gap-crossings, ions in the beam
experience vertical focusing forces produced by
the same rf field that is responsible for their ac­
celeration. This electric focusing plays an im­
portant role near the center of most cyclotrons
in a region where the magnetic focusing tends to
be very weak and where, simultaneously, the
defocusing associated with space-charge repul­
sion has its greatest strength.

The focusing effects produced by the rf electric
field in classical cyclotrons were analyzed first
by Rose 1 and Wilson, 2 and later with some re­
finements by Cohen. 3 Since then, this analysis
has been revised and extended to isochronous
cyclotrons by a number of authors. 4

.
5 As a result,

most aspects of the phenomena are now well
understood.

Before proceeding, it seems worthwhile to re-~

view briefly sonle important properties of electric
focusing. First, the time dependence of the forces
leads inevitably to a vertical acceptance for the
cyclotron that depends on the phase of the in­
jected ions (whether from an internal or external
source). Moreover, it turns out that this phase
dependence differs substantially from that of the
energy gain per turn.

These conflicting characteristics tend to limit

* This material is based on work supported by the National
Science Foundation under Grant No. Phy 78-22696.
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considerably the phase acceptance, as well as the
vertical acceptance of most cyclotrons. Within
these limitations, the ultimate performance can
nevertheless be significantly improved by means
of suitable design procedures, as pointed out by
several investigators. 6

To understand the basic phenomena, one should
first recognize the electric lenses which accel­
erate ions across a gap generally produce a fo­
cusing impulse as the ions enter the gap and a
defocusing one as they exit. These opposing im­
pulses result from the curvature of the electric
field lines, which is illustrated, for example, in
Fig. 1.

The primary focusing effect in cyclotrons,
called the ~~phase effect", is produced by the
time variation of the dee voltage. Here for ex­
ample, if the ion crosses the gap at a time when
the field strength is falling, then the focusing im­
pulse will exceed the defocusing one, and a net
focusing will result. Conversely, if the crossing
occurs when the field strength is rising, then a
net defocusing is produced. This phase effect
turns out to be inversely proportional to the turn
number, and moreover, the result is essentially
independent of the electric-field variation within
the gap.

The secondary focusing effects in cyclotrons
are almost exactly the same as those associated
with static electric lenses. These are the well­
known "acceleration" effect and the ~ ~thick­

lens" effect, which always yield a net focusing
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2. ENERGY GAIN

Before proceeding, we need to obtain a relation­
ship between the energy gain at a particular gap
crossing and the phase <p of an ion being accel­
erated in a cyclotron having a quite-general dee
configuration. In conformity with the precedent
established by Rose, I and followed thereafter by
most (but not all) cyclotron designers, we define
<p by

where h = Wrf/WO is the integral harmonic ratio
of the rf frequency to the (ideal) orbital fre­
quency. The constant K is determined by requir­
ing that the energy gain per turn be given by

IlT = f qE· ds = qVt cos <P , (2)

where VI is then the peak voltage gain per turn.
This definition of <p differs from that commonly

used in treatments of synchrotron oscillations,
which follow the convention originally adopted
by McMillan. 8 These two definitions are con­
nected by the relation

but it seems much less suitable for the narrower
dees considered here, where in general, the an­
gular width of the gaps as well as the dees is
nearly constant. To remedy this situation, we
present in Sec. 6 an analysis of electric focusing
using a polar-coordinate geometry.

Our approach is based on a modification of the
rather neat analysis developed by Dutto and
Craddock. 5 We include in our results a revised
version of their complementary relationship be­
tween radial and vertical focusing, and then apply
these results in Sec. 7 to the spiral electric gaps
now widely used in the design of superconducting
cyclotrons. As we shall show, the differential fo­
cusing effect produced by such gaps can either
decrease VI' and increase vz ' or vice versa, de­
pending on whether the ions are moving "against"
or "with" the curvature of the spiral gaps.

Our general aim here is to obtain simple ana­
lytical formulas that can be used first to estimate
electric-focusing effects during preliminary de-'
sign work, and can also be used later as a guide
to interpreting the numerical data from some so­
phisticated computer program.

(1)

(3)
7T

<Psyn = 2" - <Pcyc •

<p = Wrfl - he - K ,
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result for the complete lens. These effects gen­
erally fall off more rapidly with turn number than
the phase effect, and are therefore comparable
in significance only during the first turn or so.

The analyses mentioned in the second para­
graph above have all been carried out for cyclo­
trons having two gap-crossings per turn, which
corresponds to 1800 dees. But many cyclotrons
have now been designed with four, six, or even
eight gap-crossings per turn and with a wid,e va­
riety of dee angles. 1 In such cases, these ions that
gain the maximum energy per turn generally
enter and exit ,each dee on opposite sides of the
rf voltage peak, where they experience equal fo­
cusing and defocusing impulses. As one would
expect, the net result is a focusing effect, which
may therefore be called Halternating-gradient"
focusing.

After developing in Sec. 2 the necessary re­
lationship bet'ween energy gain and phase, we
proceed in Sec. 3 to analyze this alternating-gra­
dient effect and to obtain suitable formulas for
calculating the resultant V£ values. These for­
mulas are applied first in Sec. 4 to the 500-MeV
superconducting cyclotron nearing completion
here at MSU, and then in Sec. 5 to the low-energy
cyclotron ring used as an injector at Indiana.

All of the previous analyses have also assumed
a relatively simple model based on a Cartesian
geometry with the central-ray orbit moving in a
straight line directly across each gap. Such a
model is reasonably appropriate for 1800 dees,

FIGURE 1 Side view of central-ray orbit which, for sim­
plicity, has been unwound and laid out straight. Top drawing
shows one particle entering the dee at a time when the dee's
relative potential is - V. Bottom drawing shows same particle
about to exit this dee when its relative potential is + V. The
curved arrows indicate the electric-field lines within the two
gaps that bound the dee.
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which, as might be expected, simply requires that
as the ion circulates from one dee to the next,
the change in voltage phase must be h times the
angular distance ee covered by the ion.

The total energy gain per turn is then given by

It is interesting to note, however, that Kolomen­
sky and Lebedev9 use the same definition as in
Eqs. (1) and (2) above, and it seems likely that
they are following the lead of Veksler. 8

Suppose that the cyclotron is equipped with a
set of N d identical dees, and for the sake of sym­
metry, assume that these are uniformly spaced
with a constant interval

fore follows that k; must be given by

k; == ihee + K , (9)

(4) aT == 2Nd q Vo sin(hD/2) cos<p , (10)

Suppose further that the voltage on the ith dee
relative to its surroundings (dummy dee or liner)
is given by

with successive values of i == 1, 2, ... ,Nd being
in the order in which the ions traverse the dees.
Here Vo is the nominal dee voltage, and k; is the
rf phase of the ith dee.

Next, let D be the angular width of each dee
where, of course, D < Se, given in Eq. (4) above.
There are then 2Nd gap-crossings per turn, and
we can take their successive positions to be given
by

Su == iS e + (-I}iD/2, (6)

wherej == lor 2 specifies, respectively, whether
the ion is entering or exiting the ith dee.

In accordance with the picture in Fig. 1 and
the dee voltage given in Eq. (5), we then find that
the energy gained by the ion while entering or
exiting the ith dee is given by

oTu == (- l)-iqVo sin(<p + K + ih8 e

(7)
- k i + (- 1)-ihD/2) ,

and comparing with Eq. (2), it also follows that

V I == 2Nd Vo sin(hD/2) (11)

is the corresponding expression for the voltage
gain per turn. Since it is customary to treat both
VI and Vo as positive constants, we shall hence­
forth assume that (hD/2) is evaluated modulo 'IT.

Returning to the expression (7) for the energy
gained by the ion on entering or exiting the dee,
and making use of Eq. (9), we then find

0'ri == + qVo sin(!hD + (-l).i<?) , (12)

where the subscript i can now be dropped. Thus
when <p == 0, the ion gains the same energy at
both gaps, in accordance with an old rule-of­
thumb.

Excepting the case where D == 180°, this result
also shows that the ion crosses the gaps on the
~~sides" of the rf voltage peak and that when
<p i=- 0, it gains more energy from one gap than
from the other. Indeed, when the magnitude of
<p approaches 90°, the ion will actually lose
energy at one gap while gaining enough at the
other end to end up with a net energy gain.

Finally, we should note that for D == 180°, and
h odd, the above formula reduces to

where use has been made of the definition of <p
in Eq. (I) as well as Su in Eq. (6). Adding these
energies together, we then obtain

oTit + oTiZ == 2qVo sin(hD/2)

· cos(<p + K + ihee - ki ) ,

(8)

oTI == oTz == q Vo cos<p , (t 3)

which coincides with the old widely used formula
for a standard dee geometry.

3. ALTERNATING-GRADIENT FOCUSING
which is the total energy acquired by the ion in
traversing the ith dee.

It is clear from the symmetry that this energy
gain must be the same for all dees. Furthermore,
it must be proportional to cos <p in order to satisfy
the condition imposed by Eq. (2) for aT. It there-

In evaluating the electric focusing produced by
the dees, the problem can be greatly simplified
if we make use of the results obtained by Dutto
and Craddock. 5 We shall defer any detailed dis­
cussion of their analysis until Sec. 6, and simply
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8 h a
~=--(8n (14)
mwz 2Te a<t> '

quote here the part of their results that we need
for the present.

The vertical impulse 8pz that the ion receives
when it crosses one electric gap can be expressed
as

(20)

(17)

8(dz/dO) = ~j~i ,

where V z = v here is the frequency resulting from
whatever magnetic focusing is present.

If the ion enters the dee at eJ and exists at
82 = OJ + D, then the electric-focusing im­
pulses provide the following boundary condi­
tion at e = ~j

where ~j = (8pz)/mwz, as given in Eq. (14).
We now proceed to calculate the effect of these

impulses on the focusing frequency V z • To sim­
plify the calculation, we assume that between gap
crossings the vertical oscillations are described
by

-h .
l3i = 4nNd (sin<l> - (- 1).1 cot(hD/2) cos<1», (18)

where qV, is the peak energy gain per turn given
in Eq. (11). Of course, n is the actual turn number
only if <t> = O.

Since we have adopted a formulation based
exclusively on the phase effect, we cannot expect
our results to be valid within the first turn, that
is, for n < 1. On the other hand, the accuracy of
our results should improve continuously as the
value of n increases. In order to be specific, we
take n = 1 as our lower limit, using as justifi­
cation the fact that Dutto and Craddock found
that their results were still reasonably good down
to this limit.

In order to simplify our presentation, we shall
assume that i is negligible compared with 2nNd ,

or equivalently, that iq Vo ~ To. With these con­
siderations in mind and making use of Eqs. (15,
16, 17), we finally obtain

the energy variable To by the turn number n de­
fined by

(16)1'.i = To - iqVo cos(hD/2) sin<t>

+ iqVo( - l}i sin(hD/2) cos~ .

a . .
a<l> (oTi ) = (-n'qVocos(!hD + (-1)1<1»,

- qVo sin(hD/2) sin<t> (15)

+ (- l).iqVo cos(hD/2 cos<t> .

As we shall see, the first term here leads to or­
dinary focusing, while the second term produces
AG focusing.

If To is the average value of the energy before
and after the ion completely traverses the dee,
then the energy at the center of each gap is given
by

where Te is its kinetic energy at the center of the
gap. Of the various focusing effects mentioned
in the introduction, this expression corresponds
to the result obtained when only the ~~phase ef­
fect" is considered.

For our purposes, the supreme virtue of the
above expression lies in its independence of the
detailed form of the electric field or of its time
dependence, provided only that this field is a
function of Wrft, and that d<t> = Wrf dt when
de = O. The latter requirement is evidently ful­
filled by the definition of <t> in Eq. (1).

The energy gain 8T, and 8T2 at the two gap
crossings per dee is given by Eq. (12), and dif­
ferentiation then yields

The resultant T1 and T2 are the proper values to
substitute for Te in Eq. (14) when evaluating the
impulse at the two gaps.

Since Eq. (14) involves a ratio of quantities that
are linear in the kinetic energy, we should expect
that the resultant focusing will be independent of
the absolute value of qVo. To remove this pa­
rameter from further consideration, we replace

where ~j is given above. Although the general
solution of the differential equation including this
boundary condition can readily be obtained, we
omit the details for the sake of brevity.

It has become customary in electric-focusing
calculations to assume artificially that the focus­
ing forces are periodic with a period 8e = 27r/Nd ,

which then constitutes an electric ~ ~ sector. " This
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assumption makes it possible to construct a trans­
fer matrix for one such sector, and hence to in­
terpret the results directly in terms of a change
in V z • When this process is carried through, we
obtain the following result

~I + ~2 •
cos(vz8 e ) = cos(v8 e ) + 2v slnv8 e

quency. That is, our analysis has neglected com­
pletely the "acceleration" and "thick-lens" ef­
fects, which, as noted in the introduction, always
produce some additional focusing.

4. MSU SUPERCONDUCTING
CYCLOTRON

(21)
~1~2 • ( D)· D+ 2v2 Slnv 8e - Slnv,

where V z here represents the resultant focusing
frequency when the electric focusing is included.

If we take the limit where vee < 1 and
vz8e < 1, then the above expression simplifies
to

FIG URE 2 Schematic diagram of the median-plane layout
in the SOO-MeV superconducting cyclotron at MSU. The
curved lines coming out from the center indicate the spiral
electric gaps bounding the three dees which have a constant
angular width D = 60°. The broken circle (at r = 13 in.)
represents the orbit of an ion that. during its counterclockwise
rotation, experiences the electric force indicated by F at one
particular gap crossing. The two outer circles at r = 30 and
36 in. mark the boundaries of the superconducting coils that
encircle the poles. These circles serve to demonstrate the
compactness of this cyclotron.

As an application of the foregoing theory, we
consider the central region of the 500-MeV su­
perconducting cyclotron now under construction
at MSU. 10 This cyclotron is equipped with three
dees, each having an angular width D = 60°, as
shown schematically in Fig. 2. Here we have
8e = 2'Tr/3 for the period of one electric sector.

Although the rf system is designed to operate
on all harmonics, we restrict ourselves here to
those of greatest practical interest, namely,
h = 1 to 5. In each case, the relative importance
of AG focusing can be determined simply by ex­
amining the factor cot2 (hD/2) occurring in Eq.

(22)

(23)

aVZ
2 = - «~I + ~2)/8e)

- (~I ~2/ee2)(ee - D)D ,

where ~vz2 = v z
2 - v 2• Note that both the exact

and the approximate expressions contain one
term involving (~I + ~2) and a second involving
~ 1~2. The former corresponds to ordinary fo­
cusing, while the latter contains the AG focusing.

If we now insert the values of ~I and ~2 given
in Eq. (18) above, we then obtain

Av/ = (4~n) sin~ + (8~nr
(cot 2 (hD/2) cos2 <f> - sin2<f»(ee - D)D .

Here the first and second terms correspond to
the ordinary and AG focusing, respectively,
while the third term represents a thick-lens effect.

Except for <f> ::::::: 0, the first term becomes pre­
dominant as the turn number n increases. Inter­
estingly enough, this term is completely inde­
pendent of the dee geometry inasmuch as it
depends only on h/n.

As can be seen, the alternating-gradient term
will be important when h/n is not too small, or
when <f> ::::::: o. We should also point out that be­
cause of the cot2 (hD/2) factor, this term vanishes
when D = 180°, while for small D values it be­
comes most significant for those harmonics h
where the voltage-gain per turn VI in Eq. (11) has
its smallest values.

Finally, it should be noted that the above vz
value represents a lower limit to the focusing fre-
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the real values of V z are shown, since the defo­
cusing represented by imaginary values could not
be tolerated in practice. As can be seen, the val­
ues of V z generally increase with h, particularly
for <p > 10°. This behavior results from ~j in Eq.
(18) being proportional to h, except for the AG
focusing term.

The AG focusing effect becomes appreciable
only for <p < 10°, which explains the erratic de­
pendence of V z on h shown in this phase range.
In particular, for <p < 0, real values of V z can be
obtained only if the AG focusing is strong enough
to overcome the ordinary defocusing. This ex­
plains the behavior shown for <p == 0, where the
values found for h == 1 turn out to be larger than
those for h == 2, 3, or 4.

The curves in Fig. 3 have been terminated at
<p == 45° even though higher <t> values would pro­
duce larger V z values, and hence a greater vertical
acceptance. The reason for this termination orig­
inates in the cos<t> dependence of the energy gain
per turn. That is, for <p > 45° or thereabouts, the
ions would not gain enough energy on the first
turn to clear the ion source or inflector.

The decrease in Vz with increasing turn number
n is shown in Fig. 4 for a fixed phase <p == 15°.
To avoid clutter, we present curves only for
h == 1, 3, and 5, since those for h == 2 and 4
fall in their natural places and provide little addi­
tional information.

As shown in Fig. 4, the values of V z for h ==
5 remain close to a factor of two larger than those
for h == 1 for all n values. However, the ratios
of the h == 3 values to those for h == 1 generally
increase with n. This behavior can be understood
qualitatively by recognizing first that the AG fo­
cusing falls off faster with n than the ordinary
focusing, and, as noted above, the AG focusing
effect is strong for h == 1 and h == 5, but is com­
pletely absent for h == 3.

We turn next to consider a comparison of the
theory with some data that might be called "ex­
perimental." These data represent some very
preliminary results obtained with a new computer
program "3D-Cyclone", which is designed to
calculate three-dimensional orbits in the central
region of our superconducting cyclotron using
time-dependent electric fields derived from elec­
trolytic-tank measurements.]]

The following short table presents for com­
parison values of V z labelled "exp" and "thy"
which were obtained, respectively, from the
aforementioned data and from the theoretical for-

h=2

h=4

h=3

h=5

n=I

a.1

0.5

0.4

0.2

0.3

where D == ee - D == 'IT/3 in our case. Here we
used exact expressions for f31 and f32 in the com­
putations described below, rather than the ap­
proximate values shown in Eq. (18).

Figure 3 presents a plot of the calculated V z
values as a function of the phase <p for each h
value at the end of the first turn (n == 1). Only

o '------"'10---0...L------L10---2..L-a---..L3a---4.1-0~

1:> (deg)

FIGURE 3 Curves showing the theoretical values of V z as
a function of <l> obtained exclusively from the electric focusing
produced by three 60° dees, like those shown in Fig. 2. All
values correspond to conditions at the end of the first turn
(n = 1), with separate curves for h = 1 to 5 to show the
dependence on harmonic number. The effect of AG focusing
is most pronounced for h = 1 and 5 as evidenced by the V z
values for <l> < 10°.

(23) for ~vz2. As h ranges from h 1 to h == 5,
this factor takes on the values: 3, i, 0, i, 3. Thus
AG focusing is most important for h == 1 and 5,
and is completely absent for h == 3.

In order to reveal the strength of the electric
focusing most clearly, we start by assuming that
magnetic focusing is completely absent. Hence,
we let v ~ 0 in Eq. (21), and thereby obtain

cosvzee == 1 + i(f31 + f32)ee + !f31 f32(ee - D)D ,

(24)
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The agreement between the "exp" and "thy'"

values is fairly good, considering that the theory
provides only a lower limit to the Vz. values; as
noted at the 'end of the previous section. We
should also mention that the values of nand <P
in this table were determined from the orbits
computed with the 3D-Cyclone program, and that
these orbits also show that n = 4 corresponds
approximately to a radius r = 2 inch. Beyond
this radius, the magnetic focusing produced by
the spiral pole tips grows progressively stronger
while the electric focusing rapidly diminishes.

As a second example, we consider the Indiana
accelerator, which consists of two cyclotron
rings operating in succession, so that the low-en­
ergy ring serves as the injector for the high-en­
ergy one. Both cyclotrons have four magnet sec­
tors and two dees with D = 38° occupying
opposite valleys.

These cyclotrons are designed to operate over
a broad spectrum of harmonics, namely, h = 3
to 8, and h = II to 17. 12 Again, using the factor
cot2(hD/2) as a basis for judgment, we conclude
that the AG contribution to electric focusing will
be largest for h = 8, 1], and 17, and will be small­
est for h = 5 and 14.

Generally speaking, separated-sector cyclo­
trons are characterized by exceptionally strong
magnetic focusing and unusually high injection
energies. 13 One might therefore expect that elec­
tric focusing would play an insignificant role in
such cyclotrons. But this expectation appears to
be unjustified for the low-energy ring at Indiana,
which turns out to be very sensitive to small per­
turbations of the vertical oscillations.

This sensitivity is brought about by somewhat
insufficient magnetic focusing in the region just
beyond the injection radius, which causes V z to
move rather slowly up across the Vz. = I reso­
nance line. 14 As is well known, small vertical
forces having a cose dependence will induce co­
herent vertical oscillations in the beam during
passage through this resonance. Such oscillations
are routinely observed at Indiana, and appropri­
ate countermeasures are carried out to effectively
cancel their effects.

It should also be recognized that since V z = 1
coincides with the parametric resonance 2vz =
2, a perturbation of the focusing strength having

5. INDIANA CYCLOTRON

54

exp
0.20
0.17
0.17
0.16

thy
0.21
0.14
0.11
0.12

32

<P v
20° 0
18° 0.045
15° 0.065
12° 0.095

n
1
2
3
4

0'-----..1.0------...1....-----'-----
I

mulas. Here we can no longer assume that the
magnetic focusing is negligible and we therefore
include the focusing frequencies (labeled "v" in
the table) derived from measured magnetic-field
data using a standard equilibrium-orbit code.
These magnetic-focusing frequencies were then
combined with the corresponding electric values
obtained from our theoretical formulas to provide
the final V z values listed in the table under the
"thy" heading.

n
FIGURE 4 Curves showing the decrease in V z with increas­
ing turn number n for harmonics h = 1, 3, and 5, and for a
fixed phase <t> = 15°. These curves were obtained from cal­
culations assuming the same dee geometry as that used for
the curves in Fig. 3, and therefore represent an extension of
those curves.
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· cot2 (hD/2) sinv(1T - D) sinvD. (26)

I ( h )2
COS1TVz = COS1TV - 2 8nv

( h). .COS1TVz = COS1TV - 8nv Sln1TV slneP

where the given numbers are the ones cited
above.

Figure 5 shows a plot of the resultant (v - I)
values over the narrow range of turn numbers of
interest to us here, namely, from n = 4 to n =
12. As can be seen, the magnetic focusing fre­
quency passes through the resonance value
v = 1 close to n = 6, which is just two turns
after injection.

These data were then used in Eqs. (26) and
(27) above to compute, as a function of n, the
values of (vz - 1) or, within the stop-band, the
values of fl.. These quantities are also plotted in
Fig. 5.

As shown in this figure, the protons are in­
jected in the middle of the stop-band and remain
there from n = 4.0 to n = 8.6, where the value
of fl. drops to zero. Beyond this point, V z becomes
real, and as n increases further, we find that
the (v z - 1) curve rapidly approaches that for
(v - 1) as the strength of the electric focusing
falls off toward zeto.

As noted above, the amplitude of the vertical
oscillations tends to grow exponentially within
the stop band. Since fl. is evidently not constant
in our case, this growth can be estimated through
the formula

G = exp(f fLd8) = exp(f 21TfLdn) , (29)

where the integration extends from the initial turn
number (n = 4.0) to the final o'-ne (n = 8.6). Using
the numerical data depicted in Fig. 5, we finally

protons are injected at the radius '; = 9.36 in.
with an energy T; = 215 keY, and are extracted
finally at 'J = 40.4 in. with energy T.r = 2.83
MeV. In addition, the dee voltage is set at 28 kV
so that the voltage gain per turn is VI = 53 kV,
as determined from Eq. (11). As a result, the pro­
tons execute about fifty turns between injection
and extraction.

To complete our data requirements, we also
obtained a table of values for the frequency v as
a function of the orbit radius, appropriate to this
case. Since the formula for V z given above in­
volves the turn number n rather than" we related
these variables by recognizing that for an iso­
chronous cyclotron operating under non-relativ­
istic conditions, the energy and hence n are pro­
portional to ,2. Thus we write

(27)V z = I ± ifl. ,

where the resultant fl. value determines the
strength of the instability. For example, if fl. is
constant, then as e increases, the amplitude of
the oscillations will tend to grow exponentially
by the factor: expfl.8.

As a good example, we consider some data
supplied to us from Indiana regarding the oper­
ation of the low-energy ring on the harmonic
h = 8, which, as noted above, we expect to be
strongly affected by AG focusing. In this case,

I ( h )2- 2" 8nv (cot2(hD/2) cos2
c1> - sin2

c1»

. sinv(1T - D) sinvD, (25)

where we have set N d = 2, 8e = 1T, and where
D = 38° here. Once again we note that v is the
vertical-oscillation frequency produced exclu­
sively by the magnetic focusing, while V z is that
resulting from the combined effect of both elec­
tric and magnetic focusing.

For simplicity, we shall assume eP = 0, since
this value eliminates everything from the above
equation except the AG focusing term. In this
case, we have

Evidently, when v = 1, we obtain COS1TVz <
-1, and hence a complex value for vz ' which is
characteristic of a stopband.

The extent of this stopband depends on the
variation of v with turn number n in the neigh­
borhood of the resonance, as well as on h. Within
the stopband, we can set

a cos28 dependence can cause the beam to ac­
celerate through a stop-band region wherein the
amplitude of the vertical oscillations grows ex­
ponentially. It is just such a perturbation that is
produced by the electric-focusing forces.

In order to investigate this particular effect, it
proves most appropriate to combine the complete
expression (21) for V z with the approximate equa­
tion (18) for ~j' When this is done, we find
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(32)apz = f aFz dt ,
Z az

and

We now proceed to derive the Dutto-Craddock5

formula, following their general procedure ex­
cept for certain modifications. First, we use polar
rather than Cartesian coordinates, assuming that
the central ray moves along a circular arc across
the electric gap rather than a straight line. In ad­
dition, we do not restrict the time dependence of
the electric field to being sinusoidal, but rather
allow it to be any function of Wrft. We also include
the possibility that the electric field may not be
tangent to the central ray, since this is often the
case.

We start by considering one particular gap­
crossing. Writing F = qE(r, e, Z, t) for the electric
force, we then have

8pr = f Frdt , (30)

apx = f aFr dt (31)
x ar'

6. MODIFIED DUTTO-CRADDOCK
FORMULA

is even stronger in these cases. Unfortunately,
beam measurements suitable for testing the the­
ory are not yet available, but cyclotron operation
on these particular harmonics is indeed quite dif­
ficult, and although reliable beams have finally
been obtained for h = 8, only intermittent op­
eration is as yet possible for h = 11 and 17.*

12II10

v-I

98765

\
\ ,"
\ ,,'

\,'

0.10r------r----r----r--..,.--~-_r-____,r_____,

FIG URE 5 Behavior of the vertical-focusing frequency
within and beyond the stopband associated with the para­
metric resonance 2vz = 2, which is predicted to occur in the
low-energy ring at Indiana as a result of electric focusing.
These calculations apply specifically to operation of the cy­
clotron on harmonic h = 8 in a case where the protons are
injected with 215 keY (corresponding to turn n = 4), are ac­
celerated with 53 keY per turn, and finally extracted with 2.83
MeV. The solid curve shows a plot of (v - I) versus turn
number n, where v is the frequency produced exclusively by
the magnetic focusing. The broken curve shows a correspond­
ing plot of (vz - 1) versus n, where v;, is the frequency re­
sulting from the combined effect of both electric and magnetic
focusing. Within the stopband, which extends from n = 4 to
n = 8.6, only the value of J.L is plotted, where J.L is the ima­
ginary part of (vz - I). The values of J.L determine the rate
of growth within the stopband, and therefore measure the
strength of the instability generated by the electric focusing.

0.05

-O'05l..--_-L-_-I-_------L__.L.-._-L-_---l.-_-----1_~

4

obtain G = 4.8., which is a surprisingly large
growth factor considering that the stop band acts
only over the first 4.6 turns. Of course, after the
beam traverses the stop band, the exponential
growth ceases.

Since the foregoing calculations assume <p =
0, additional results were obtained using Eq. (25)
for different <p values. These results show that
G decreases rather slowly as <p increases. For
example, when <p goes from zero to 60°, G drops
from 4.8 down to 2.7, and although this is a def­
inite improvement, it comes at the cost of de­
creasing the energy gain per turn by a factor of
two.

Only the case with h = 8 has been treated here,
and we expect that the problem will be still
greater for h = 11 and 17, since the AG effect

where apr is the radial impulse imparted to the
central ray during the gap-crossing, while apx and
8pz are the additional impulses imparted to those
parallel rays having a small x and Z displacement,
respectively.

These integrals are evaluated along the central
ray for which r = const., and dt = de/we Com­
bining these integrals, we then obtain

apz + apx + apr = f (diVF _ ! aFe) de ,
Z x r r as W

= -=-! f aFe de (33)
v ae '

* We are indebted to R. Pollock, D. Friesel, and J. Dreis­
bach for providing the data used in this section, and for di­
cussing the relevant beam observations.
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(34)

since divF = q(divE) = 0 for the rf electric field
inside the gap, and since v = wr.

In order to evaluate the last integral, we need
to make use of the total derivative

dFe aFe aFe 1 aFe dr
de = as + at ~ + a;: de '

= aFe + h aFe

ae a<f> '

since (dr/de) = 0 for the central ray, and since
d<f> = wrfdt = hwdt when dO = O.

Next we integrate the last equation over 0,
choosing as our integration limits values that span
the particular gap under consideration. We thereby
obtain

the changes in the radial and vertical focusing,
as pointed out by Dutto and Craddock. 5 That is,
if the electrode structures defining the gap are
deformed in such a way as to increase the vertical
focusing, then they must necessarily decrease the
radial focusing at the same time.

This complementary relationship is revealed
more clearly in the limit where the electric fo­
cusing is sufficiently weak so that the method of
"averaging" can be applied. In this limit, the
change in V z

2 is given by

dV/ = -=-! L ( 8Pz
) , (38)

211' mwz·
J

where the sum here covers all the gaps in one
turn. Similarly, we also have

(35) dV/ = -=-! L (~) .
211' mwx.

J

(39)

where the left side vanishes since we may justi­
fiably take Fe = 0 before the orbit enters the gap
and after it exists. That is, we can choose the
integration limits midway between successive
gap-crossings.

Recognizing that Fe is the component along the
orbit, we therefore write the energy gained during
the gap crossing as

8T = r f Fade . (36)

We now combine this with Eqs. (33) and (35)
above to obtain finally

8pz + 8px + 8pr = ~~ (81), (37)
mwz mwx p 2Tc a<f>

where p = mwr and Tc = imv2 are evaluated at
the center of the gap.

This then is the modified Dutto-Craddock for­
mula, and we see that it reduces to Eq. (14) used
in Sec. 3 when 8px = 8pr = O. This situation
commonly occurs when the dee angle D and the
angular width of the gaps are all constants in­
dependent of r. In such cases, the median-plane
equipotential curves correspond to the radial
lines 0 = const., so that Ee is the only non-van­
ishing component of the field in the median plane.

As noted before, the right-hand side ofEq. (37)
does not depend on the details of the spatial var­
iation of the electric field within the gap. This
implies a complementary relationship between

Hence, summing Eq. (37) over all the gaps in one
turn, we finally obtain

-h a
dv 2 + dv 2 = -- - (dn

z r 411'To a<f>

where dT is the total energy gain per turn, and
where To here is the average kinetic energy dur­
ing the turn.

When the electric-gap lines have no spiral or
other curvature, as is true in most cases, the sum
on the right vanishes. The complementary rela­
tionship then reduces to

2 . 2 _ -h a
dvz + dVr - -4r - (dn . (41)

11' oa<V

This result also represents a generalization of a
similar equation obtained by Dutto and Crad­
dock.

We should emphasize once more that this re­
sult applies to any dee geometry because it does
not depend on the number of dees N d nor on their
angle D. Moreover, it can also be applied to rf
systems containing harmonics of the main fre­
quency, such as those which attempt to simulate
the effect of a square-wave voltage. 15

In the usual case where the energy gain per
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turn ~T is given by Eq. (2), this relationship re­
duces to

2 2 - ~ . (42)~vz + ~Vr - 4 sln<f> ,
7T'n

(50)

(47)

(49)

(48)2 (tana)LlV r = - 41Tn cos<f>.

For the special case of linear spiral, as in Eq.
(44) above, this result can be reduced to

8px 8T
-- = -tana,
mwx pv

In addition, inserting this result into Eq. (45)
above then leads to

where the final orbit radius rf = 26 in. is nearly
fixed, while the final turn number nf varies from
130 to 560 depending on operating conditions.

With tana = rlrs in our case, we then find that
Llvr2 in (48) falls off as llr, at least for r > 2.5 in.
Moreover, since the spiral effectively vanishes

a/v} = +2 (~;:) cos<!> = -2av/ ,

where Ll'vz
2 here represents the change in vz

2

when the ordinary electric focusing is omitted.
These two equations therefore describe the spe­
cific effect of the spiral gaps on the radial and
vertical focusing considered individually.

For the MSU cyclotron, the relation (28) be­
tween nand r can be rewritten most conveniently
as

This equation, which is the analogue of Eq. (42),
now represents the complementary relationship
between the radial and vertical focusing for the
case of spiral electric gaps.

We turn next to evaluate the effect on the radial
focusing by itself. Starting from Eq. (31) for 8px,
and using Eq. (30) for 8Pr, we then find

(8Px)lx = (alar)8pr = (8Tlv)(alar) tana. (46)

which, by comparison with (43), is evidently the
same as 8prlp.

For the spiral shown in Fig. 2, the quantities
a, 8pr, and 8px are all positive, and the spiral gaps
therefore produce radial defocusing. Clearly, if
the spiral direction were reversed, then radial
focusing would be produced.

Since the focusing here is weak, we can use
Eq. (39) to evaluate Llvr2 • Thus, following the
same steps that led to Eq. (45) above, we finally
obtain

(44)tan a = +rlrs '

with r s = 13 in. in our case.
But, this spiral tends to disappear at small

radii, and effectively vanishes for r < 2.5 in. In
addition, we have already seen that the electric
focusing strength falls off rapidly with increasing
r. As a result, we may justifiably treat the addi­
tional focusing effect of the spiral gaps as a weak
perturbation.

Inserting the above value of 8pr into Eq. (40).
and making use of the definitions for LlT and n
in Eqs. (2, 17), we finally obtain

Llvz
2 + ~vr2 = _1_ (h sin<f> + tana cos<f». (45)

41Tn

where the turn number n is again defined by Eq.
(17). As one would expect, when Llvr2 = 0, this
result reduces to the one given by the first term
in Eq. (23), which does indeed correspond to the
weak-focusing limit.

Dees with spiral electric gaps form an essential
part of the rf systems in superconducting cyclo­
trons like those being built at Chalk River16 and
at MSU. 10 The effect of such gaps on the varia­
tion of the phase <f> has been discussed in a pre­
vious paper17 and we now wish to examine how
these gaps modify the values of both V r and V z •

In addition to showing a sketch of the three
spiral dees in the MSU cyclotron, Fig. 2 also in­
dicates the direction of the electric force F at one
particular gap-crossing. If a is the angle between
this force and the direction of the ion's velocity,
then the radial impulse is given by

8pr = 8pe tana = (8Tlv) tana , (43)

where 8T is the energy gained by the ion at this
gap.

The dees are required to fit in the magnet val­
leys between the three spiral pole tips, and this
fixes the dee geometry. The spiral turns out to
be nearly linear, and can therefore be represented
as
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inside this radius, the maximum value of Llv,? will
occur at around r = 2.5 in.

Putting the numerical information together,
and setting <f> = 0 for simplicity, we then obtain

LlV,.2 = -0.013(130/n.r)(2.5/r), (51)

where nf > 130 and r > 2.5 in., as noted above.
For the MSU cyclotron, it has also been de­

termined that when only magnetic focusing is
considered, the resultant v,. values start out at
around 0.99, and then 'rise slowly through v,. =
1 at about r = 4 in. Thus, since v,. :::::= 1 for the
small r values of interest here, we may use a first­
order expansion to solve Eq. (48) and we thereby
obtain

v,.* = v,. - 0.0065(130/nf )(2.5/r), (52)

where v,.* is the resultant focusing frequency in­
cluding the effect of spiral gaps. We may there­
fore conclude that the main effect will be a slight
shift in the location of the v,. = 1 resonance, and
it seems quite unlikely that this shift will produce
any detectable consequences.

Returning now to the vertical focusing, and
substituting the given data into Eq. (49), we now
find

Ll'vz
2 = +0.026(130/nf )(2.5/r) cos<f>. (53)

Apparently, the change in V z produced by the
spiral gaps could be quite significant in certain
cases. For example, in the region between r =
2.5 and 5.0 in., we expect that V z would lie be­
tween 0.1 and 0.2 if the spiral-gap effect were
absent. But when this effect is included, we find
that the values of V z may be increased sufficiently
so as to lie between 0.19 and 0.26.

As mentioned above, reversing the direction
of the spiral gaps also reverses their focusing ef­
fect. In our case, this reversal would produce a
net increase in v,. and a net decrease in V z • Judging
from the above results, the direction of the
change in v,. would not matter much. However,

it should be quite evident that a decrease in Vz
of the magnitude indicated above could produce
very serious problems.

As is well known, magnetic focusing is com­
pletely independent of the direction of the spiral.
Moreover, since the focusing effect of the spiral
gaps was not considered during the design of the
MSU cyclotron, the final choice of the spiral di­
rection was based entirely on other considera­
tions. Fortunately, this choice (shown in Fig. 2)
turns out to be the correct one with respect to
focusing since it increases V z rather than decreas­
ing it.
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