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Electron beams whose density p changes (is modulated) rapidly as a function of position z along the orbit are generally
desirable for coherence and correlation experiments. When p(z) changes significantly within an optical wavelength or less,
and if the number of electrons within a z interval of this wavelength is n >> 1, the radiation emitted will differ importantly
from radiation emitted by more usual beams: the angular spread will decrease (brightness will increase), the total intensity
will increase by a factor of approximately # (including the x-ray region), certain wavelengths may be suppressed, and high
time-resolution measurements are facilitated. Applications suggest themselves to holography, x-ray lasers, free electron
lasers, etc. A method is described whereby high beam-density modulation can be induced in a storage ring with an optical
laser of modest power, and the energy spread of the circulating beam is further reduced by compensation.

I. INTRODUCTION

Electromagnetic radiation from electron storage
rings is usually produced in short bursts lasting
about 107° to 107'° seconds. This rapid time varia-
tion of the emitted radiation proves to be of great
value. Exploiting it, one can increase the signal-to-
noise ratio, improve the accuracy of decay time
measurements, and so forth.

The value of rapid intensity variation can be
traced to the fact that the intensity as a function of
time I(¢) is rich in Fourier components. Indeed, if the
radiation is emitted in bursts which last a time 7, I(¢)
has Fourier components F(w) with appreciable
amplitude up to circular frequencies w = 277, up
to about 10" to 10" sec™ for most electron storage
rings. The presence of rapidly time-varying Fourier
components in I(¢) is in turn caused by the richness
in Fourier components of the circulating electron
density, p, as a function of z, where z measures the
position along the trajectory: The radiation intensity
depends on the density of electrons passing before
the port at the moment of emission. Since all
electrons travel with velocity v = ¢, presence of a
Fourier component in p, which varies as exp[i2mz/
A,.J, will cause the appearance of a Fourier compo-
nent in I(¢), with o = 2mc/\,,. We refer to A, as the
electron-density ‘“‘modulation wavelength”. For
most storage rings p(z) contains Fourier compo-
nents with appreciable amplitude for A, ~ 3 cm-30
cm.

Not surprisingly, whole new classes of experi-
ments would become feasible if one could further
enrich I(t) in Fourier components, i.e., if a p(z)
could be produced which contains significant
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amounts of Fourier components with A, even lower
than usual. The improvement in storage-ring cap-
ability would become truly spectacular about when
the modulation is so high that A,, < 10~ cm (for high
enough p).

The fact that richness of Fourier components
leads to a richness of experimental results has been
well understood after the Heisenberg uncertainty
principle became known. It led to the construction of
higher and higher energy particle beams to reach
higher frequencies and shorter wavelengths. But
these beams are usually used in experiments where
correlations between particles in the same beam are
of little importance. The experimental result can be
obtained by simply summing over the result pro-
duced by each beam particle alone. On the other
hand, in more complex experiments the correlation
between beam particles becomes important, and can
generate experimental consequences that are not
reproducible by adding the results which would be
obtained by each beam particle acting alone. Broad-
ly speaking, the phenomena generated by corre-
lations become richer when the correlations be-
tween beam particles are richer in Fourier compo-
nents, analogously to how higher momentum and
energy enrich the observable single-particle pheno-
mena. In this sense, high-modulation beams have
the same importance in many-particle (correlation,
coherence) experiments, as high-energy beams do in
single-particie experiments.

Next we briefly survey certain characteristics of
high-modulation beams, and recall some of their
possible applications. Finally we describe a method
whereby such beams can be produced using a laser
of moderate power.
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II. CHARACTERISTICS OF HIGH-
MODULATION BEAMS

The density of ideal circulating electrons as a
function of z (the position along the design orbit) can
be written as a sum of Fourier components

i2nz/Apy

p(z) = }\f a,e , (n

m=AM

where L, is the circumference of the design orbit,
and a,, = a*_,, because p(z) is real.

L. Rapidly Varying I(t)

As noted earlier, for a high-modulation beam the
photon intensity I(¢) as a function of time will have
high-frequency Fourier components. When A,, <
107%cm, w2 1.9 -+ 10" sec™.

2. High Radiated Intensity

To simplify discussion, we will assume for the
moment that p(z) contains only one Fourier compo-
nent with wavelength A, i.€., @m = 8m.m. (The more
general case is a straightforward extension of this
simple one.) We also assume that the number »n of
electrons located within a z interval of length Ay, is

>‘m
= _[ p(z)dz > 1. (2)

For densities high enough to satisfy condition (2),
the intensity of the electromagnetic radiation emit-
ted by a high-modulation beam can be much higher
than for a usual beam (i.e., one with more slowly
varying densitP/ distribution). More precisely, it can
be shown that"? for a radiation wavelength A = A,
the radiated intensity may be of the order of n times
higher than for usual beams. In particular, we shall
see that using an optical laser, one can set up a high-
modulation electron beam in which A, is of the
order 107 to 10™ cm or even shorter, and which can,
therefore, radiate orders of magnitude more pho-
tons in the microwave, optical and x-ray regions
than usual beams would.

3. High Brightness. Compressed Radiated
Angular Distribution.

Assume that p(z) contains several Fourier com-
ponents that combine to produce a density distribu-
tion shown by the solid line in Fig. 1. To simplify
discussion, we idealize this type of density distribu-
tion by a step function-like distribution, shown by
the dashed line. For the idealized distribution, the
electron beam would have a bunch structure as
shown in Fig. 2. The rectangular slabs shown in the
figure are uniformly filled with electrons; the space
between slabs is empty.

In the instantaneous rest frame of the beam, the
slabs are at rest, although the electrons inside them
oscillate and thus emit radiation. The radiation may
consist of several Fourier components. Let us
concentrate our attention on one of these, that which
has wavelength (A)'. (The prime outside the paren-
theses means that the quantity is measured in the
instantaneous restframe of the beam.) If the thick-
ness of each slab, (Az), satisfies (Az) < (\)/8, then
for radiation of wavelength (A\) impinging on it,
each slab will radiate essentially as a plane mirror of
width (Ax) and height (Ay), i.e., as a rectangular
slit with these same dimensions.” Most of the radia-
tion will be contained within the first interference
maximum, its horizontal and vertical angular-half
widths near the forward direction are

Kasy =%
1B(Afy)' =—(Z‘y);, : (3)

Actually, Egs. (3) hold only if the electron density
within each slab is uniformly smeared out. Real
electron distributions are not like that, but Egs. (3)
are still approximately valid, provided that the
electron distribution is approximately uniform and
that there is at least one electron for each [(An) /4]
area of the (x,y) surface of each slab, i.e., provided
that the number of electrons in a slab-shaped bunch
satisfies

N Z (Ax) - (Ap)/(Ng). (4)
Viewed from the laboratory frame, the angles are

Lorentz contracted, so that (unprimed quantities
refer to the laboratory frame) with y = (1 — v¥/c?)',
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Real Idealized
distribution distribution

e |

FIGURE 1. The electron density p as a function of z (the position along the design orbit) is shown by the
solid line. This distribution is approximated by the step-function-like (unrealistic) distribution curve
illustrated by the dashed curve. A prime on a quantity in brackets [e.g., (z)’] means that the quantity is
measured in the beam rest frame.
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FIGURE2. Theelectrondensity (p) is assumed to have a step-function-like dependence on (z)' (as shown
by the dashed line in Fig. 1) and alsoon (x)" and (v)’. Viewed from the rest frame of the electron beam, such an
idealized electron beam consists of a series of slabs, each uniformly filled up with electrons, and with no
electrons between the slabs. Quantities measured in the beam restframe are denoted as in Fig. 1.

) A oW1 In Egs. (5), we have used the fact that for photons

7aA0; = Ax =¥ Ax vy’ emitted near the forward direction in the beam rest
frame A = (A)'/2y.

BAG = _}‘k ~ V. (A i (5) Single electrons (or several incoherently acting

4 Ay : Ay v electrons) emit synchrotron radiation within the

K
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typical angle % A, ~ y~'. Equations (5) show that
as a result of the assumed beam structure, the
emitted electromagnetic radiation (including syn-
chrotron radiation) is confined to angles of order
A/ Axand A/ Ay times less in the horizontal and ver-
tical planes, respectively. Thus the brightness of the
emitted radlatlon will increase’ by a factor of Ay/A,
or Ax-Ay/\’, even if the total radiation intensity is
unchanged. For example when Ax- Ay > 102\, in
pr1nc1ple3 one can increase brightness by a factor
10* even without and beyond that which results
from the increase of total intensity described in the
previous section.

Furthermore, for this reason, one can increase the
cross section of a high-modulation beam (and per-
haps put more electrons in a bunch) without a
proportional deterioration of photon focusability.

4. Modifying the Energy Spectrum \

The idealized beam structure depicted in Fig. 2
resembles a crystal in that here too, the radiating
electrons are confined to regularly spaced parallel
surfaces. Consider again that Fourier component of
the radiation which has wavelength (A) and is
emitted at an angle (6x), (6,)’ (measured in the beam
restframe). If (Az) << (M), then each electron
bunch of length (Az)’, can be considered to be ap-
proximately a single plane. One can then use the
Bragg conditions to calculate which frequencies will
be suppressed and which will be enhanced for any
given , and 6. Since the planes are far from infinite
in extension along x and y, higher interference
orders have to be considered. The phenomenon
becomes particularly simple‘ when (Ax)', (Ay) <<
(\).

Experiments where the above characteristics
would be important include the following:

High-accuracy (decay) time measurements, by
means of phase-shift observation on a Fourier
component of I(¢). A.P. Sabersky and I.H. Munro’
were the first to perform such measurements on a
storage ring. An experiment is now in progress’ at
SPEAR where the Fourier component used is the
thirty-fifth harmonic of the revolution frequency to
achieve 3-psec time resolution. In this kind of
experiment, the accuracy generally increases as the
frequency of the used Fourier component increases.
Folr5 hlgh -modulation beams, one could have w = 2+

10" sec™

X-ray holography. Pumping x-ray lasers
with synchrotron radiation.

Both of the above require high instantaneous
brightness, which could be provided by high-modu-
lation beams.

X-ray lasers can themselves be utilized to “boot-
strap” the beam modulation wavelength to lower
values. This will be explained below.

Free-electron lasers. When high-modulation
beams are sent into the laser, the lasing threshold
can be lowered, and the power output increased.
The energy separator described in the next section
makes it possible to raise the power output beyond
what is considered at present to be its theoretical
upper limit.” The method of compensation also de-
scribed, further improves performance.

In all such experiments it is the high modulation
of the beam which yields the high radiation inten-
sity, whatever may be the nature of forces which ac-
celerate the electron bunches at the moment of
photon emission. Those forces can be magneto
static (as in a bending magnet or static wiggler) elec-
tromagnetic (e.g. a travelling wave in an undulator
or free electron laser), etc.

The desirable features of high modulation beams
(intensity, brightness, spectrum, time structure) and
the variety of experiments which could utilize them
suggest that in future storage rings intended wholly
or partly for photon generation, the option to pro-
duce high modulation beams should be available.
The devices (to be described below) which can pro-
duce such beams should be kept in mind in the
design work, and, at the least, space should be pro-
vided where they can be installed.

III. PRODUCTION OF HIGH-MODULATION
BEAMS

We describe a method in which high beam modula-
tion is achieved in four steps.”®

First, the angular spread of the beam is decreased.
Second, a strong correlation is induced between the
circulating electron energy and one of the transverse
coordinates (say x) by a device referred to as the
“energy separator.” Third, the electron energies are
altered by the ‘“‘energy modulator”; and finally,
fourth, beam-density modulation is produced in the
“beam buncher.”

We begin by describing the last two steps, and
then return to the first two.
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FIGURE 3. Intheenergy modulator, the electrons travel along a path resembling a sine wave (solid line).
The curve is periodic with a wavelength A., its amplitude is A.. The slope of the path at zis tg a (z), a (2), et is
shown for one particular z = z’value. A plane electromagnetic wave of wavelength A travels parallel to the
[x,z] plane (A can be << A.and is not shown). The momentum k of the wave makes an angle  with the
zaxis. The electric and magnetic fields associated with the wave, E and B respectively, are illustrated for three
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z values. The electric and magnetic force exerted on an electron at some point z by the wave, Fg(z) and Fs(z)
respectively, is shown at one point. The total electromagnetic force F = Fr + Fghas component Igland F,

parallel and perpendicular to the electron path. For better visibility, BFHand 3F | (rather than F an

shown for three values of z.

In certain cases some of the following four addi-
tional steps may also be desirable: refocusing, de-
focusing, beam debunching, beam demodulation.
These four steps will be discussed last.

Energy Modulator. Assume for the time being
that all electrons move along the design orbit, i.e.,
their energy and momentum spreads are zero. We
will later consider the effect of finite AE and Ap.

In the energy modulator, the electrons move along
a sinusoidal path. During their motion they interact
with a plane electromagnetic wave. The mechanism
that modulates the electron energy is essentially that
which is employed for microwave generation in
undulators’ (see Fig. 3). Note that in the device to be
described here, the axis of the curve along which the
electrons move (the z axis) may not be parallel to the
line along which the electromagnetic wave propa-
gates.

Let the electrons move along a curve which
resembles a sine wave of wavelength A\, and ampli-
tude A4, (see Fig. 3). The amplitude 4, depends on
the electron energy E,, while A, is independent of E,
to a very good approximation. In practice it is easier

F)are

to achieve electron paths that are not sinusoidal, but
for which every period of the curve is formed by a
sequence of two smoothly joined circular arcs. The
deviation of such a path from a true sine curve will be
of the order (4,/A,)°, small when 4, << A,. Curves
consisting of a sequence of circular arcs can be
realized by letting the electrons traverse a section-
wise-constant magnetic field in which the field has
equal magnitude in all sections but switches sign at
each boundary between sections. In the following
we assume that the electrons follow a sinusoidal
path to an adequate approximation.

The electron path lies in the (x,z) plane; the z axis
is parallel to the axis of the sine curve. The x and z
coordinates of the electron are given at any time ¢ by

2
x(t) = 4, sin —;— 2(1), (6a)
2(t) =z + v; (t — 1) (6b)

Let v, and v be the x and z components of the
electron velocity v,, and V. the average (over ¢) of v..
The electron velocity makes an angle a with the z
axis at time ¢. That is



50 PAUL L. CSONKA

v, = (v — v} (6¢)
v, dx
«a = arctg —— = ———
v, dz
_ 2mA, 2T
= A, cos —)\e z(t). (6d)
The maximum of « is
av = 27A,/\,. (7

When 24, << A,, one can write [v, | < (2n4,/
\)v,, so that

v, =~ v, + 0[(274,/\)*], (8)
and v: = v, up to second order in aum.

The electrons interact with an electromagnetic
plane wave of wavelength A. The plane wave travels
in vacuum (except for the electrons with which it
interacts); thus its angular frequency is w = 2mc/A.
The momentum of the plane wave is parallel to the
(x,z) plane and makes an angle ¢ with the z axis (see
Fig. 3). The electric field associated with the wave
points along an axis that is obtained by rotating the x
axis by ¥ around z X x. The value of the electric field
at point x, y at time 7 is (independent of y)

2
E = Eocos{wt — TH_ [z(¢) cos ¥

+ x(t)sin Y] + o). (9)

The electric and magnetic force exerted by the
electromagnetic wave on the electron are F and Fy
respectively. Their components are

ve
Fp. = Eecos {, Fex= — Fe cos a,
c
vE .
Fp, = —Eesin y, Fg. = — FEe sina,
c
FE‘.=0’ FBA"=O

The total electromagnetic force exerted on the
electron by the wave is
F =F; + F,.
The longitudinal component (i.e., the component
parallel to the instantaneous electron velocity) is
ve

F,=F =
v, |

v(’ . .
Ee{[cosy —— cosa]sina+ [ —siny +
c

(10a)

v? .
. sin alcos al,

while its tranvserse component along the directiony
X v, is
Ve
F, =F— F“‘—T = Ee{[cos 1/
e
v?

— - cosa]cosa—[—siny
c

+veﬂnﬂsma} (10b)
c

Substitution of Egs. (6) and (9) in Egs. (10) gives
F and F asafunction of time. Fortunately, for our
purposes it is not necessary to deal with the full
complexity of these equations. First, the velocity
changes in the energy modulator turn out to be
negligible, so that we can consider v, a constant, v, =
c¢. Furthermore, we will consider cases when a << 1
and ¥ << 1, which allows us to approximate the
trigonometric functions by their power series expan-
sion in a and ¥ (except when in the argument of
another trigonometric function). In this manner, we
may write to a sufficient approximation

—y 42 @—&”

ve
F = Ee o/ [az‘
c

c

+=a) (o= —¢)‘,

c

Fl=Ee‘U—Jm%[aﬂf
C

—y 42 @—%” —a@-%-—¢)l

Since F is proportional to the first power of the
small quantities @ and y, while F, is at least second
order in them, we neglect F, in the following. In F,
we keep only terms proportional to the first power in
a and ¥ then substitute for a and E:

F E v, 214, 1
= e —— —— - -
! e N, 2

(o] ol
cos Y cos X X sin ¥
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X sin (p)

2
— Eey { (cos @) cos (*}\

) 2w
+ (sin @) sin (w{ x sin g[/) ] , (11a)

where
27
d)——_—wt—T zcosy + ¢o. (11b)
When
24, .
a= X sin ¥y < 1, (12a)

we can write, with Egs. (6),

27 . A L
cos | —— xsiny| =1 —a/2sin T—z ,

A e
(12b)
[ ] cain 2
sin N xsiny| =asin A z. (12¢)

Provided that a is small enough, the first of these
expressions will not change sign, while the second
may. Provided furthermore that

X, }\<‘72 cos w),

from Eq. (6b) t = (z — zy)/v, + t,, and

27
cos I:T z— ¢>:] = cos ¢, (14a)

b= ~w (to _%2 ) — o :_21

] X (zo—cty) — 0.

(14b)

Clearly, if Eq. (13) holds, cos[(2m/A.)z — ¢ ] does
not depend on z. When Egs. (12) and (13) are satis-
fied, the energy gained by an electron passing
through the energy modulator will be

20+L
SE, = f dz F(z)
20

2mA, v, fott
— Y¥(cos ¢y) dz
A c 20

e

= FE.e

(1 — &*/2 sin’ z) + small terms. (15)

The main contribution to § E, is due to the first term
in the first curly bracket in Eq. (11a). The rest of the
terms oscillate as a function of z, their integral over a
large enough L will be relatively small; we neglect
these “small terms”.

With v, = ¢ and Egs. (7) and (12),

O0E, ~ eEy am/2 (cos ¢po) L (1— ) (16a)

. 1
s = Y(ay,sin ¢)? 7

20+L . 217
X dz sin?

20

z = Y(aysin V).

(16b)

Clearly, if conditions (12) and (13) are satisfied, an
electron passing through the energy modulator will
gain an amount of energy that is approximately
proportional to L. The energy gain may be positive
(if —7/2 < ¢, < 7/2) or negative (if 7/2 < ¢, <
3m/2) or zero (if ¢, = * m/2). If for some z, the cos
¢, = 1, then for z, + A\/2 one has cos ¢, = —1.
Electrons located in one A/2 long section of the
beam will increase their energy as a result of passing
through the energy modulator, while electrons in the
next region of the same length will decrease their
energy during passage through the device. If the
wavelength X lies in the optical region, then energy
gain and loss can thus be induced within an optical
wavelength.'®

In the energy modulator as just described, all
electrons move along a sinusoidal path. One could
instead let the electrons travel along helical paths;
the formulae valid for that case are similar to the
ones just given.

Beam Buncher. The purpose of this device is to
transform the energy modulation into beam-density
variation. The path followed by an electron is
deliberately arranged to be a sensitive function of
the electron energy E,. The shape of the paths can be
chosen to suit the range of parameters with which
one has to work. Here we shall discuss one of the
simplest possibilities.

The electron trajectory in the beam buncher is
shown by a solid line in Fig. 4. (The arcs indicated
by dash-dot lines and the angle ¢, will be discussed
later.) The beam buncher has total length D and is
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divided into three sections. The first and third are
D/4 long, while the second has length D/2. The
electron enters at z = ( with velocity parallel to the
z axis. Its trajectory is a sequence of three smoothly
joined circular arcs. The length of the trajectory in
the first, second and third sections has lengths
respectively S/4, S/2 and S/4. We have from Fig, 4,

%S =Rp and %D = Rsing,
so that

S=D+ % Ro*(1 — /09 + 0 (Re").(17)

Expanding ¢ = arc sin (D/4R) in powers of u =

D/R, one obtains

S=D+ '/9¢ Du*[1 —2.813 - 1072 u* +
1.041 - 1073 u* + 0(u®)].

(18)

X

- X Wi
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The radius R is proportional to E,. When E, changes
by an amount 0E, < E,, then R changes by 0R <K
R, and S changes by an amount

6s=9—161)u2 [—2—61?+3 (—61;1) 2
+0[(%)3]l Su)

f(u)=[1—5.626- 1072 u> + 0(u*)] (19)

Thus, if two electrons enter the beam buncher at the
same time, but one has energy E,, while the other has
E, + O8E,, the former electron will leave the device
first, and at that moment will be be ahead of the latter
electron by 6S.

(® ol
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FIGURE 4. The beam buncher has total length D. It consists of three sections: the first and third have
length D/4, the second D/2long. The magnetic field B is uniform in each section, perpendicular to the plane
of the drawing, and its orientation is shown for all three sections. The field intensity is the same in all sections.
An electron travels along the solid curve. It enters the beam buncher atz = 0. There its velocity is parallel to
the z axis. Due to the presence of the magnetic fields, the electron trajectory consists of three smoothly joined
circular arcs of radius R. The length of the first and third arc is S/4, that of the second is S/2.

When the magnetic field in the energy modulator is uniform, one may prefer to have the electrons enter and
leave the buncher not parallel to the z axis, but at an angle ¢, along the arcs drawn with dash-dot lines.
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The energy change induced in the energy modu-
lator is the same for electrons at positions z andz +
n A (where n is any integer); the energy modulation
will be periodic in z with a period \; therefore the
beam-density modulation produced is also periodic
by Ainz.

It is important to notice that this periodicity need
not be simple harmonic. Instead, it may contain a
significant admixture of much shorter wavelength
Fourier components A, << A, The amplitude of
these components depends on the parameters of the
beam buncher. When A is in the optical range, A,
may be in the x-ray region.

We now study the density function produced by
that particular beam buncher for which Eq. (19)
holds. Since the density is periodic, it suffices to
investigate those electrons which at time f, (before
traversing the buncher) are located in the interval
—% A <z <% A\ Without loss of generality one
may choose the reference point in time so that

27 3
—5\_ ct0+¢0:—3 T, (20)
which implies
cos ¢0=sin2nz—;\) . (21)

Since in the buncher r ~ E,, one has SR/R = SF,/E..
To simplify discussion, consider only the important
case when ¢ = 0. Then Egs. (16) and (19) give

e { . 21720
in
A

48 ]
+0 ( 6Ee) sin22"z°] l
E \

e

(22)

Typically, 6E,/E, ~ 107* for a high-energy stor-
age ring. Therefore, for most purposes the second
term in the curly bracket can be neglected. In this
approximation, 8S goes to zero as z, does: an
electron located at z, = O when ¢t = ¢, will travel a
distance S while traversing the buncher to a point
which we denote by z ,(0). Electrons with slightly
larger z, values will have a negative 8S: after
traversing the buncher, they will be displaced to-
wards z,(0) and end up at point z,(z,).

Let us concentrate our attention on electrons with
sufficiently small z,, so that sin 2mz,/\ can be

approximated by a power series. (The other elec-
trons will give a more slowly varying “background”
density distribution, which is of less interest to us at
the moment.) For these

D, 0E, 2nz, 1(2112()) 2}
oS ~ 48uf(u) {1 p .

E, A\ A
(23)
If one chooses
0E, 2T
— f—=1, (24
. E, A )

then in the first approximation (when the second
term in the curly bracket can be neglected) Eq. (23)
gives 88 = —z, so that as a result of traversing the
buncher, all electrons will end up at the same point
together with that electron which att= ¢, was at z,=
0, i.e., at point z/(0). In this approximation, z{z) =
z/(O) for all z,. The density will be infinite at the

““ catastrophic point” z,(0). In the second approxi
mation the density is finite, but high atz (0) (see Fig
5). The result is a density distribution p which falls
off as Z7*” near the points z;(0) -+ n\, where nis any
integer. This p(zy) is of the type illustrated in Fig. 1
by the solid line.

Fourier Transform of p. To calculate the Fourier
transform, F(w), of p(z ), one must know p for all z,,
but to calculate F{w) for w >=> 271/ ), it suffices to
know the behavior of p near !(O) In our case, forz,
near z;(0) one has p ~ z /*”°. Therefore,

Flw) ~ o™ (25)

for w >> 27/A. Evidently, p is rich in high Fourier
components: » can be increased by a factor of a
thousand before F(w) decreases by one order of
magnitude.

The validity of our approximation is limited by
the second term in the curly bracket in Eq. (22). In
practice, a more severe limitation is presented by the
accuracy with which the guiding fields can be
maintained in the ring and by the finite momentum
and energy spread of the circulating beam.

Bootstrapping the modulation frequency. Once the
beam modulation is sufficiently high to produce soft
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FIGURES. The quantity [z /(zo)—zj(O)] is shown as a function of z,. Is is assumed that #; is chosen so that
cos ¢pg = cos2mzy/A, and the solid curve shows ¢ as a function of z. In part of the figure it is also assumed
that Eq. (24) holds, so that 6S = —cos¢y. The 85 is indicated for one particular z,, value: z},. To find the
quantity [z r(z0)—2 f(O)] for any z,,, draw lines as shown by the arrows: first a vertical line from z to the solid
curve, then from there a horizontal line to the dash-dot curve. The distance between the dash-dot curve and
the vertical axis is [z £ (z9)—z, (0)]. For small zo/A, the approximation to Eq. (23) is shown by the dotted

horizontal arrows: [z/(z0)—z(0)]=0.

When the left hand side of Eq. (24) > 1, the dash-dot curve is to be replaced by a curve like the dash-

double-dot line.

x-rays in large enough quantities for pumping a soft
x-ray laser'' (e.g., Li Il or Li III laser), one may use
the collimated coherent radiation generated by this
laser as the electromagnetic wave in a second energy
modulator. The procedure described earlier can
now be repeated with this wave, so that in principle
one can induce a fundamental harmonic in the
electron density which lies in the soft x-ray region as
well as higher harmonics of even shorter wave-
length. These harmonics will then enhance the
intensity of x-rays emitted by the beam in this
shorter wavelength region. Those x-rays may in turn
be used to pump a shorter wavelength x-ray laser,
etc.

Practical realization of this sequence of ‘“‘boot-
strapping” steps will be more difficult as higher

modulation frequencies are reached. Partly because
to pump a shorter wavelength x-ray laser one needs
higher instantaneous pumping photon brightness,
partly because the tolerances on guiding fields in the
energy modulator, beam buncher, etc., are then
smaller, and partly, because higher electron density
is required if n is to be the same for smaller An.

Finite Momentum and Energy Spread. To simplify
our discussion, we assume that the vertical momen-
tum spread Ap, = pAy’ is negligible (otherwise Ap,
can be treated as Ap, will be).

The horizontal momentum spread Ap, can be
neglected, provided that it is smaller than some
critical Ap,
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Ap, < Apy = pAx. (26)

(the value of Axg will be evaluated later). In such a
case, the discussion of the preceding sections is
valid. When Ap, violates condition (26), our aim is
to change the electron phase-space distribution so
the inequality (26) should hold.

Changes in the electron phase-space volume are
illustrated in Figs. 6a-f. In these figures three-
dimensional projections of the (six-dimensional)
electron phase-space volume are shown. For ease of
illustration, a step-function-like (unrealistic) phase-
space distribution is assumed. With this unrealistic
distribution the (x,X') phase space ellipse is ideali-
zed as a “phase-space quadrangle”, as can be
observed by looking at the projection of the distri-
butions onto the (x,x') plane.

Spreading the Beam. 1t is assumed that originally
(at point z, along the orbit) the total horizontal an-
gular spread Ax; violates condition (26). The point z,
is so chosen that here the horizontal phase-space
quadrangle is ‘““upright”, i.e., its neighboring sides
are orthogonal to each other (Fig. 6a).

To reduce Ax’, the beam is first allowed to spread
along the x axis. This increases Ax, but leaves Ax; as
well as the total phase-space volume unchanged. By
the time the electrons reach z;, the phase-space
volume has assumed the shape shown in Fig. 6b.
Next the electrons are focused so that when they ar-
rive at point z., the phase-space quadrangle is again
“upright”, but now Ax" = Ax{ satisfies inequality
(26) (see Fig. 6¢).

Since the focal length of a magnetic lens depends
on the electron energy E,, at z, some correlation
exists between E, and x. This correlation causes an
additional momentum spread 8p, along the x axis.
Denoting by E,, the nominal electron energy, one
can show that (in the thin-lens approximation) dp, <
2p| AX;| AE./E,. We neglect 8p, in what follows.

Energy Separator. Its purpose is to induce a strong
correlation between E,.and x. In principle it can be a
simple device. For example:

Let an electron travel a distance / in a homo-
geneous magnetic field. As aresult, the electron will
change its direction by © = [/R. For an electron
whose energy is the nominal energy £, one has 9 =
O(E.). while for electrons with some other energy
E.=FE, + 2 AE.. the angle is

O(E) = &E.,) |1 + “AE./E,,].

since ® ~ R™' ~ E;'. If the electrons are now al-
lowed to travel a distance H in a force-free vacuun
to point z, the distance Ax between these two elec-
trons perpendicular to the momentum of the ideal
electron will be

A6
14 Ax,= H sin ~ Y% HO(E,)AE./E,. (28)

Subsequently the electrons are focused to form an
essentially parallel beam. At any point x, the beam
will contain electrons with energy lying within an
interval of total width

A E, ~ Ax./Ax,. (29)

The resulting phase-space volume is illustrated in
Fig. 6d. At this stage Ap_ is negligible and A E, <
AE,. Next the electrons traverse the energy modu-
lator, where their energy is altered by 8E,, as given
in Eq. (16). This alteration will not be washed out by
the background energy spread, provided that

YiEea, L > Y% A,E,. (30)

Note that if the energy separator is omitted, i.e., if
the step illustrated in Fig. 6d is absent, then it would
still be possible to induce in the beam the desired
density variation, but only if one satisfied the
condition

Y2Evea,, L 2~ % AE,. (30a)
For given «a,,L, the energy separator thus allows a
reduction in E, by a factor AE /A, E,.. Since the
power of an electromagnetic wave is proportional to
E;, this will lead to a large reduction of the (e.g.,
laser) power requirements when A, E /AE, << 1.

The ay, decreases with E, if the magnetic field in
the energy modulator is fixed. Therefore, 0E, will be
smaller for higher-energy electrons. One may have
to compensate for this. A magnetic field will accom-
plish such a compensation if its gradient along x has
the appropriate (positive) value (see Fig. 6d).

In an alternative approach, the magnetic field in
the energy modulator may be uniform, and compen-
sation is achieved by making the electrons enter the
beam buncher at an angle ¢, (dash-dot line in Fig. 4)
instead of entering along the axis (solid line in Fig.
4). In this manner, choosing ¢, < 0, one can insure
that for electrons with larger x (and thus E.) the
pathlength in the beam buncher is longer by an
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FIGURE 6. Projections of the (six dimensional) electron phase space are shown. Step-function-like
(unrealistic) distributions are assumed to simplify illustration.

a. Three-dimensional projection of the electron phase space at some point z,, along the orbit. The full beam
width along x is Ax,, the total angular spread in the horizontal plane is Ax’, and the full spread in the
circulating energy E,, is AE,. The Ax’', is assumed to be larger than the critical Ax'q.

b. By the time the electrons reach point z, along their trajectory, the beam width along x has increased to

Ax;. Now for any value of x the total angular spread is <h, < Ax,, but the total angular spread in the
horizontal plane is still Ax"y, = Ax',.
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c. At point z, the angular spread is reduced from Ax’y, to Ax'. = h,, while Ax, = Ax, is unchanged.
The far and near ends of the illustrated phase-space projection are vertical quadrangles (parallel to the [x". E, |
plane). Neighboring sides of these quadrangles are not perpendicular, because electrons with higher than
average circulating energy are focused less. After this point, the electrons enter the energy separator.

d. The energy separator induces a correlation between the circulating electron energy E, and x. The total
width of the beam is further increased to Ax,; > Ax,. The figure shows the phase space at point z, just after
the electrons leave the energy separator. To make illustration easier, the phase-space volume is assumed to
consist of three disconnected pieces. Dashed line means that it is below the [x", x] plane, or behind the [x', E,]
plane, or both. (In reality the phase-space volume is continuous.) Each piece has an energy spread AfE, <
AE,. The result is that at any chosen value of x the energy spread is less than in Fig. a, b, or c. The ratio
AE,/AfpE, can be large, if Ax;/Ax, is. After this stage the electrons enter the energy modulator.

57
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e. The energy modulator changes the energy of the electrons. The energy change is a function of the z
coordinate. (Note the change of axis.)

f. Electrons enter the beam buncher. Those with higher energy will fall behind, while those with lower
energy get ahead of electrons of average energy. The result is a beam-density modulation of optical and
suboptical dimensions.
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amount

E,—E
6¢1 = d)lR o
E

e0

= (const) x (31)

The phase of the electromagnetic wave in the energy
modulator contains a term 2wsiny, and since by
assumption E, ~ x (see Fig. 6d), all electrons with
the same ¢, will have the same z coordinate
(modulo A) after the buncher, if the constant on the
right-hand side of Eq. (31) satisfies

—2m sin ¥ = const.

Refocusing. For certain applications, one more step
is needed: the beam has to be refocused and its cross
section reduced in order to achieve high electron
density while the beam radiates the photons of
interest in the region of space of interest (e.g.,
synchrotron-radiation photons while passing in
front of the exit port; coherent photons between the
mirrors of a free-electron laser, etc.). The Ap, canbe
large here, subject only to the condition that high
electron density and its modulation should persist
throughout the region of interest.

To insure that refocusing will not wash out a
density modulation with wavelength A, all elec-
trons have to arrive at the focal plane with a time
accuracy of + A, /8c. In principle this can always be
done; an electron located at point (x;z) before
refocusing will travel a distance [ ~ £+ % x?/ fto the
focal point, if f>> x is the focal length. All electrons
which have the same z coordinate before refocusing,
and for which| x,| < %4 Ax will reach the focus with
the required time accuracy, provided that

fZ Y% (Ax)*/N,,. (32)

In practice, as in the example to be given below,
one may prefer to induce in the beam a correlation
between E, and y (instead of x). To illustrate this
case, one should replace x by y in Figs. 6d and 6e.
Proper timing is then insured by the inequality
obtained from (32) by replacing in it Ax by Ay. Since
usually Ay << Ax, for this case smaller f will
suffice.

Determination of Axg

To lowest order, conditions on AX, can be
obtained as follows. Electrons entering the energy
modulator at an angle %2Ax’, will gradually get out of
phase with the electromagnetic wave unless

L[cos(y £ % Ax)]"' — L (cosy)™' < N4.
(33a)

Furthermore, the electrons will deviate by Lx', from
the design orbit at the far end of the energy modu-
lator, which will wash out the correlation between E,
and x, unless

L% Ax'y < % Ax,. (33b)

Similar (lowest-order) considerations for the beam
buncher and for the process of refocusing (if needed)
lead to the additional conditions

Ax'g S[2N (S + )7,

AE, Ax.
AE, S

Axy <% s B fAx,, (330

where Ax , is the total horizontal beam diameter to
be achieved after refocusing,.

Compensation: Defocusing, beam debunching, energy
demodulation. The length of an electron trajectory
around the storage ring may vary by more than A
from one turn around the ring to the next, or, at any
rate, after a few turns around the ring. An electron
which gained energy during one traversal through
the energy modulator may either gain or lose energy
during the next traversal, or any one of the following
traversals. Therefore the average energy gained by
an electron will increase with time as ¢"/>. To avoid
blowing up the beam, the average energy gained by
an electron during one traversal of the energy modu-
lator must not exceed the average energy radiated
away by the electron during one trip around the
ring. This condition limits 8E..

That limitation can be circumvented as follows.
After the bunched beam emits the desired photons,
we immediately undo what we did to the beam to
bunch it. As an illustration, imagine that one takes a
motion picture of the electrons as they change their
energies while moving through the beam buncher,
and eventually the emergence of electron bunches
after traversing the beam buncher. Running this
motion picture backwards, it would show the disap-
pearance of bunches as the electrons move back-
wards through the beam buncher, and finally, all
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TABLE 1

The first part of the table gives the beam characteristics of the storage ring. The values are similar to those
calculated for SPEAR in single-beam mode operation, when the horizontal-vertical coupling is k = 0.1, and
when the magnets are tuned for this operating mode. The circulating electron energy is E,, and AE,/E, is the
full width of the gaussian energy spread, ¢, and e, the horizontal and vertical emittance, 2g0 = Az the full
gaussian bunch length.

The second part of the table refers to the energy separator, i.e., the device which takes the beam phase
space from a configuration illustrated in Fig. 6 ¢, to one similar to what is shown in Fig. 6d. Before entering the
energy separator, the beam has horizontal (r.m.s.) diameter Ax.and total horizontal (r.m.s.) angular spread
Ax;. After leaving the energy separator, the corresponding values are Axzsand x;. The Ay, Ay;, Aysand Ayz
are defined similarly. Note that whereas in Fig. 6d the energy is correlated with the x coordinate (Axqs >
Ax,), here we assume that the energy separator correlates E, with the y coordinate, therefore now Ay, > Ay ..
The ratio Ay,/Ay. = AE,/AgE, = 25.

The third part of the table describes the parameters of the energy modulator, i.e., the device in which (see
Fig. 3) an electromagnetic wave of wavelength A and (electric) amplitude Eo modulates the energy of
electrons moving along an approximately sinusoidal path of wavelength A, and amplitude 4. The maximum
angle which the electron path makes with the z axis is e and the maximum energy transferred to the
electrons is 8E ». The electromagnetic wave travels along a line whose direction makes an angle ¢ with the z
axis. The static magnetic field in the modulator is B®. Choose the ¢ = 0and By = 0. To insure that the energy
spread of the electrons will not wash out the effect of the energy modulator, the static field gradients ¢ ny and
0,B; are non-zero. At the center of the modulator the magnetic field has components Bj, and Bp,. R is the
average radius of curvature of the electron trajectory in the modulator. The beam dimensions in the
modulator are as in the energy separator: Ax,, Ay, (listed in the first part of the table).

The electromagnetic field is assumed to be produced by a laser, synchronized with the circulating electron
bunch. The laser pulse is assumed to fill a cylinder with horizontal and vertical diameters 2Ax;, 2Ay,, and
2.5 Az long.

The fourth part refers to the beam buncher. The beam dimensions are approximately as in the energy
modulator: Ax,, Ay,. The magnetic field is B,. The radius of curvature for an electron with circulating energy
2.5 GeVis R,. The length (along z) of the buncher is D. After traversing the buncher, the difference between
the z coordinate of an electron which gained | 8E eM\ energy in the modulator, and one which lost| 8E,,,!

energy in the modulator, will decrease by 8S. To insure effective bunching with A, = A, one needs S = A/2
(satisfied here).

Beam Characteristics E,o 2.5 GeV
WAE,/E, 0.5-107°
&, 107" mm-m rad
€, 1073 mm- m rad
0, 1 cm

Energy Separator Ax, = Ax, 4 mm
Ax, = Ax, 0.1 m rad
Ay, 0.1 mm
Ay, = Ay, 107% m rad
Ay, 2.5 mm
AFE. 50 keV

Energy Modulator A 1074 cm
E, 1.22-10° V/cm
>‘e 12 cm
A, 6.12-10> cm
ay 4.08-107°
SE, 50 keV
v 0

Az 2 cm
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S
0
20
0,8y
3.B;
R
Az

Energy in one laser pulse
Instantaneous laser power
Average laser power

Average laser power with 200

reflections

Beam Buncher B,

102 kG
0

2.04 kG
—2.04 kG/cm
7.35-10* cm

S5 cm
6.26-107% 3
3.76-10° W
800 W

8.00 W

21.4 kG
3.51-10% cm
1.94-10% cm
0.308
5-10° cm

electrons regaining their original energy, as a result
of their traversing backwards through the energy
modulator. Since electromagnetic interactions are
time-reversal invariant, and the beam consists of a
periodic series of microbunches, the same result can
be obtained (except for the first and last micro-
bunch) by running the electrons not backwards, but
allowing them to move forward, pass through a
“beam debuncher” essentially identical in construc-
tion to the beam buncher, and subsequently traverse
an “energy demodulator” whose construction is
essentially identical to that of the beam buncher.

On the basis of the above argument it is clear that
the effects of energy modulation and beam bunching
can be compensated in the following manner.

If the beam was refocused after bunching, allow it
to continue undisturbed until it unfocuses itself to
the same size as it had immediately after the
buncher. (If before focusing E increased with y (or
x), now E may decrease with y (or x). This
difference is inessential, it could be eliminated by
one more focusing and subsequent defocusing. If the
beam was not refocused after photon emission, it
may be led directly into the debuncher. In either
case, the beam entering the debuncher should be of
the same size as immediately after the buncher. The
beam debuncher is a device identical in construction
to the beam buncher, except that in it the magnetic-
field direction may be reversed. It is followed by the
energy demodulator, which is identical in con

struction to the energy modulator, except that in it
too some electric or magnetic fields may be re-
versed. At any rate, they are so arranged that if an
electron gained energy OE, in the energy modulator,
it will lose energy OF, in the energy demodulator.

Compensation will not be perfect, first, because
during emission of the desired photons (at a syn-
chrotron-radiation port, in an undulator or free-
electron laser, etc.) electrons undergo random
energy changes which will not be compensated. The
second, more important reason is that the guiding
fields in the storage ring are not perfect. Neverthe-
less, compensation will be effective because typic-
ally it is to take place within a few meters of the beam
buncher. Therefore, electron positions have to be
maintained with an accuracy about A/2 only while
the particles are traveling this distance.

Since these devices are essentially identical to
those discussed earlier, the conditions imposed by
them on Ax’, can be calculated as explained above.

An Example. We assume that a storage ring like
SPEAR is used in single-beam mode, with a hori-
zontal-vertical coupling of k = 0.1, and that the
magnets are tuned for such an operating mode.
The first part of Table III lists the beam character-
istics. The values are similar to those calculated for
SPEAR in such a mode of operation. The second,
third and fourth parts give the parameters relevant to
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the energy separator, energy modulator and beam
buncher respectively.

It is assumed that the electromagnetic radiation is
produced by a laser. In the first approximation there
is no net energy transfer from the laser pulse to the
electrons, since some electrons will gain energy
from it while others give up their energy to enhance
the pulse. The same laser pulse can, therefore, be
reused. Assuming that we reflect the laser pulse 200
times and thus reuse it 100 times, the average output
of the laser can be reduced by a factor of 100.
Actually, so large a reduction is not crucial, since
the average power output is in any case quite
modest. On the other hand, re-passing the same
laser pulse in the energy modulator also reduces the
necessary laser repetition rate, and that is desirable
for simple operation.

If we had not used the energy separator, then the
desired beam modulation could still have been
achieved, but only with a laser with about 250 times
higher power output than the one needed in con-
junction with the energy separator."
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