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STABILITY OF A SELF-CONSISTENT LONGITUDINAL
PHASE-SPACE DISTRIBUTION UNDER SPACE

CHARGE PERTURBATIONS

DAVID NEUFFERt
Lawrence Berkeley Laboratory, University o/California, Berkeley, California 94720 U.S.A.

(Received September 12, 1979)

The equations of longitudinal motion for particles in a beam bunch with a linear external bunching field and with space
charge forces are presented. A self-consistent phase-space distribution with an envelope equation, which is a solution to the
Vlasov equation with these equations of motion, is described. The stability of the stationary distribution, the phase-space
distribution with bunching and debunching balanced, is analyzed under normal mode perturbations. Eigenfrequencies and
eigenmodes of these perturbations are descrrbed; they are found to be stable. Equations for numerical analysis of normal
mode oscillations ofthe particle distribution in a system in which the external bunching force is periodic are derived. Results
of the numerical analysis indicate that these oscillations can be unstable when the period of the bunching force and the
period of the normal mode oscillation are in resonance. However, the numerical results also indicate that these instabilities
are quite small in the case in which the bunching force period is much smaller then the individual particle motion period.

NOTE: The lower case italic letter "v" should not be misconstrued with the lower case Greek letter nu "v".

INTRODUCTION

Many applications of particle acceleration, such as
heavy ion fusion, require longitudinal bunching of a
high intensity particle beam to extremely high
particle currents with correspondingly large space
charge forces. Proper accelerator design requires a
precise analysis of longitudinal and transverse mo­
tion with a stability analysis.

In previous work by L. Smith et aI., 1 an analysis of
transverse stability was presented. Those calcula­
tions were based upon the Kapchinskij-Vladimirskij
(K-V) distribution,2 which is a self-consistent trans­
verse phase-space distribution with coupled enve­
lope equations to describe the motion of that distri­
bution. Perturbations of the K-V distribution were
analyzed to determine conditions of instability, and
that analysis places important constraints on accel­
erator design at high currents.

In a previous paper~ we derived a self-consistent
distribution function in longitudinal phase space
with an envelope equation to describe the transport
of that distribution through an arbitrary linear
bunching system. In this paper we analyze the
stability of that distribution under small perturba­
tions.

In Section I we describe the longitudinal equa­
tions ofmotion and present the self-consistent phase

t Current address: Fermi National Accelerator Laboratory,
Batavia, Illinois 60510.
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space distribution which is the solution ofthe Vlasov
equation with these equations of motion. In Section
II we analyze the stability of the stationary distri­
bution; this is the case in which the external bun­
ching is constant and is balanced by the space
charge and phase space debunching. Eigenmodes
and eigenfrequencies of normal mode perturbations
are described and are searched for instability.

In Sections III and IV, the stability analysis is
extended to the case in which the external bunching
is periodic and the unperturbed distribution is ex­
tracted from the periodic solution of the envelope
equation of Section I. In Section III, coupled linear
differential equations are derived which can be
integrated numerically to find the eigenfrequencies
and eigenmodes ofperturbations of the phase space
distribution. In Section IV-A, scaled variables for
longitudinal motion are defined, so that the stability
of periodic systems can be described in terms of
three dimensionless parameters (l/Jo, l/J and IlL,
defined below). In Section IV-B we present results
of the numerical analysis of the stability of a beam
bunch in a periodic system, and describe conditions
of instability in terms of the parameters of Section
IV-A.

L The Longitudinal Equation 0/Motion and the
Self-Consistent Phase Space Distribution

In this paper we assume that the transverse (x-y) and
longitudinal (z) motions of particles in the beam
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(1)

bunch are completely decoupled with the beam
length much greater than the beam radius. We
choose the longitudinal distance from the center of
the bunch z and the position of the center of the
bunchs as the dependent and independent variables.

Under these assumptions, the ions in the bunch
experience a space charge force given, from Max­
well's equations,J by

gq2e2 dX
F =----

Z y2 dz

where e = 4.8 X 10- 10 esu, q is the ion charge state,
y is the usual relativistic kinematic factor, A is the
number of ions per unit length, andg is a geometrical
factor of order unity. For the particular case of an
ion at the center of a constant transverse density
round beam of radius a inside a round conducting
beampipeofradiusb,g= 1 +2In(b/a). We assume
that transverse variations of particle density and
motion simply produce some average value of g
which we treat as constant.

We simplify the discussion by assuming the
particles are nonrelativistic (y = 1) and by assuming
that the center of the bunch is not accelerating but
moves with constant speed f3c and rewrite (1) as

where M is the ion mass and the symbol (') denotes
differentiation with respect to s. This is a debun­
ching force and tends to extend the bunch. We add a
linear bunching force FB by applying a linearly ­
ramped external electric field

We define a bunching parameter K by the equation

qe (dE)
K= - Mf32c2 ~

The Vlasov equation for the z-z' phase space dis­
tribution function l(z,z',5) is:

of + z' of+ ( -Kz _ A dX) of = o.
as az dz az'

(4)

The solution of Eq. (4) must be self-consistent; that
is, the charge density function X(z,s) must be given
by

A.(z,s) = J f(z,z',s) dz'. (5)

In Ref. 2 we have derived a solution to (4) defined by

f(z,z' ,s) = 3M / _ Z2 _ Z5( z' _ zo' z) 2

21TeL z ~ e£ Zo
(6)

wherever the argument of the square root is real (f=
o otherwise). N is the total number of ions in the
beam, and eL is a constant (the longitudinal emit­
tance). Zo andi0 = dzo/ds are found by integration
of the envelope equation:

d2z 0 ei 3 AN
- =- + /2-···· - K(s)zo. (7)
ds2 zJ zs

The initial conditionszo(s = 0) andz'o(s = 0) may be
chosen arbitrarily and the bunching parameter K(s)
may be an arbitrary function of s.

The line charge density X(z ,s) is found using Eq.
(5) to be a parabolic function

A.(z,s) = * N( 1 - Z2 ) Z < Zo
Zo zs

(8)

A.(z,s) = 0 z > Zo

and obtain the equation of motion

(9)z" = -A
dA
dz

-Kz. (3)

The equation of motion of an individual particle in
the distribution, from Ref. 3, is

(
2AAo )z" = ---;f - K(s) z
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and is a linear force for all s.
This distribution function has an elliptical outer

boundary in phase space where the argument of the
square root is zero. The area ofthe ellipse is rrfL , the
longitudinal emittance, and f L remains constant.
This distribution function rEq. (6)] is similar to the
K-V distribution in transverse space in that it is a
self-consistent distribution with a linear space
charge force, and it has a second order linear differ­
ential envelope equation to describe the motion of
the distribution. Perturbations of this distribution
are analyzed below to determine longitudinal
stability.

For steady-state transport (K(s) constant), a
phase space distribution which is also constant can
be used This is found by choosing zo(s = 0) such
thati~ = 0 and settingz~(s = 0) = O. From Eq. (7)
we require

2 3 4 _
fL + - AN Zo - Kz o - O. (10)

2

dinal phase space is rewritten as

fo(z,v) =~J Z2 v2 (12)
27TVOzo 1 - 2" - 2" .

20 Vo

The theta-function is used to indicate that the
distribution fo is confined to the ellipitical region of
phase space where the argument of the square root
in fo is positive. We have also introduced an unnor­
malized function fa which contains the principal
variation of fo for future calculation convenience.

The single particle equation ofmotion, (3), can be
rewritten as

z" = -Kz - A~= -( K_
3AN

) z
oz 2zJ

== -(V5 - w~)z == -v2z. (13)

Then z"0 = 0 for all s. If we introduce parameters v
and vo, defined by v = z' and ZoVo = EL , we can
rewrite the distribution function in a symmetric form

f(z,v)= ~A
21TVozo

Z2 v2

f(z,v) = 0, -+-2 > 1z5 Vo

Z2 ~

-+-<1
z5 v5

(11 )

This includes the external bunching force Kz =
~z, and we have defined a plasma frequency w;
associated with the space charge force [3AN/2z6]z.

Oscillations of the standard distribution are de­
scribed by adding a perturbation

f(z ,v,s) == lo(z ,v) + /P(z ,v,s)

which in turn leads to a perturbed space charge field

A ~ = A 0 Ao + A 0 Ap

oz oz oz

In the next section we analyze the stability of
perturbations of this stationary distribution.

II. Normal Modes ofthe Stationary Longitudinal
Distribution

Our investigation of the longitudinal stability of the
transport of high current particle beams begins with
an analysis of perturbations of the standard station­
ary solution. The eigenmodes and eigenfrequencies
of these perturbations are described in this section,
and these characteristic eigenmodes are searched
for instability.

The standard stationary distribution in longitu-

In the analysis below we will use techniques
previously developed by Sacheret for analysis of a
one-dimensional transverse distribution. The Vla­
sov equation is linearized about fo(z ,v) to obtain

oJ; + v oJ; _ v 2z oJ; = zQw; oAp ofJ .
os oz OV 1TV OZ OV

(14)

We will use coordinates (r,¢) interchangeably with
(z,v). These coordinates are defined by zlzo = r
cos¢ and vivo = r sin¢. We will search for normal
mode solutions which are of the form
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where w is an eigenfrequency to be determined. In
these new coordinates, Eq. (14) becomes

manipulations somewhat similar to those used by
Sacherer. The derivative of the unperturbed func­
tion is replaced by

(15)

ofJ r 2
-~ --- 0(1 -r).
or ~2

( 18)

The unique solution of Eq. (15) which is periodic in
c/> is

xl ¢ ei(wlv)cP

¢-2rr

f(r,¢) =
w 2 e-i(w/v)¢

-p-

1TV3 1 - e -2rri(w/v)

oAp (ofJ )-- sinrh d rh • - --

O 'f'l 'f'l o·
Zl r

(16)

We have eliminated the term in (18) proportional to
the derivative of the theta function, since the multi­
plying factor (1 - r2)1/2 is zero where this deriva­
tive is non-zero and the term makes no contribution
to the integrations in (17). Another change of
variables

v= vo[~J 2 cos ~J
whence dv = -vyll - r2 d1],

This may be rewritten in terms of a new integration
parameter u as

convenien(ly simplifies Eq. (17) and we can write

ei(w/v)U

1 iw 12rr f021T E_l_(W_/V_)U _

v 2 +w; v Jo 27T(e 2rri(w/v)-I)

Ap (z1) d 1]d u , ( 19)

1 ofJ
-----

vor or
f(z,v) =

where

u = ¢I - ¢ + 2rr

ZI = Z cos u - v/v sin u

_1_ ofJ w;
vor 0r 7TV 2 ( e2rri(w/v)_ 1)

and

where in the last step we have integrated by parts
over u. In another change of variables we can write

Z I = Z(I cos If; = Z(t (cos ~ cos u +
sin ~ sin u cos 1]).

We now assert that the.solutions ofEq. (19) are
Legendre polynomials'

( 17)

V I = vz sin u + v cos u.

Our integro-differential equation for \(z) is

The solutions of Eq. (1 7) provide the eigenmodes
and eigenfrequencies of the perturbations. Equation
( 17) is reducible to an integral equation by a series of

Ap(Z) = An(Z/zo) = aPII(cos ~). (20)

This ansatz is demonstrated by inserting



STABILITY OF A SELF-CONSISTENT PHASE-SPACE 27

and

(1) W~i - «n - 2i)v)2 as w; - 0

(2) w~(J-+(1+2+ ... +n)w/~ (26)

The sum inside the parentheses is terminated at n ­
2m = 2 if n is even, and at n - 2m = 1 if n is odd.
Some of the lowest order eigenvalue equations are
tabulated in Table 1 for convenience. We find that
for even n there are nl2 eigenvalues of w~, and for
odd n there are (n + 1)/2 eigenvalues of w~. The
eigenfunctions flli(z,v) can be found by substituting
W lli and A,/(zlzo) into Eq. (4) or (5) and integrating.
We do not display these functions' explicitly in this
paper.

It can be seen by inspecting Eq. (23) or (24) that
the eigenvalues W;'i are real and positive for all nand
i when w; has a value within the range 0 < w; < v~;

that is, a normal, non-negative value. This indicates
that perturbations are bounded. This is unlike the
corresponding problem in tw(}-dimensional (x-y)
transverse space, where the K-V distribution shows
instabilities when w; is sufficiently close to V(~.6

We state below the asymptotic values ofW;'i in the
limits of interest; that is ( 1) w) -+ 0, the limit of zero
space charge, and (2) w; -+ vo, the limit ofmaximum
space charge

(21 )

(22)

(23b)

411"
A(cosl/J)=aP (cosl/J)=-- .

n n (2n + 1)

a ~Ynm( C;, 1]) Y nm(u ,0)
m

cos(n - 2m)u (23a)

into Eq. (19). The second substitution in Eq. (21) is
an application of the addition theorem for spherical
harmonics. Because of the integration over 1], only
the m = 0 term of the expansion in Eq. (21)
contributes and we find that the solutions A,/(zlz(j)
are indeed Legendre polynomials of order n greater
than 0, provided that w satisfies the eigenvalue
condition

Equation (22) can be reduced by use ofthe following
two identities

and we find the eigenvalue equation
(i ~ 0)

v
2 + w; = w2 t ~ (2

m
m) (2

n
n_-

m
m')

w2 p m=O 4 n

1
X . (24)

w2- «n - 2m)v)2

We conclude that the normal modes ofoscillation
of the standard stationary longitudinal distribution
are stable, independent of current.

By grouping similar terms .. (24) can be rewritten as
III. Stability ofthe Standard Longitudinal Distri­
bution in a Periodic Transport System

In the previous section we derived the eigenfre­
quencies and eigenmodes of oscillation of the sta­
tionary standard longitudinal distribution. These
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TABLE 1

Eigenvalue equations for An(Z/Zo); n ::; 6.

n Eigenvalue equation: K n( w) = 1

1

1

2

3

4

5

6

w2- (2V)2

3w 2 45w 2
--~P'---- + P

8( w2 - v 2) 8( w2 - 9v2)

5w 2 35w 2
--~P'---- + P = 1
4(w2-4v2) 4(w2 -16v2)

30 w2 35·9 w2 63·25 w2
-- p +-- P P =1
128 (w 2 - v2) 128 (w 2 - 9v2) 128 (w 2 - 25v2)

105·4 w; 126·16 w; 213·36 w2
+ + -----=-P_-

512 (w 2 - 4v2) 512 (w 2 - 16v2) 512 (w 2 - 36v2)
1

K(s)z = Koz 0 < s < I

K(s) = 0 I < s < L

is replaced by a periodic bunching force of period
length L of the following form, as shown in Fig. 1A

(28)
f3;

llz = -- .
2

and

This corresponds to an accelerator composed of
bunching sections of length I alternating with longi­
tudinal drift sections of length L-I, which may
contain transverse focusing elements.

In order to exhibit similarities between this work
and corresponding analyses of transverse motion,
we will use longitudinal beta functions f3z, llz which
correspond to the transverse Courant-Snyder func­
tions. These are defined in terms of the beam
envelope parameters Zo and €J. of Section I by

A. Solution of the Equations of Motion for the
Periodic Solution. The constant bunching force
used in Section II

modes are found to undergo stable oscillations. In
that analysis we required the external longitudinal
bunching force to be constant throughout the accel­
erator transport system. A more accurate approxi­
mation would require the bunching force to be
periodic in the accelerator, as will occur when
bunching elements are alternated with other trans­
port elements in the transport structure. The enve­
lope equation (7) can be solved to find a periodic
solution for the unperturbed longitudinal phase
space distribution. In this paper we consider pertur­
bations ofthis solution, and we derive coupled linear
differential equations which can be used to find the
eigenfrequencies of these perturbations. These
equations can be integrated numerically and sear­
ched for regions of stability.

(27) The unperturbed self-consistent longitudinal phase
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K(s)

29

K = Ko

K= 0 r- )

FIG U RE I A Bunching force K(s) in a periodic longitudinal transport system.
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FIGURE 1B The tune f/J as a function of the dimensionless space change parameter Q with f/Jo = 101.5° and IlL = 0.1.

The equation of motion of an individual particle in
the distribution is

where Zo = (ELf3z)1/2 is the periodic solution of the
evelope equation

space distribution

3N
h(Z,Z',s) = -- .

21TEL

is rewritten as

(29)

Z " - EL + 3/ AN K()o - - 2-- - S Zoo
zJ z5

(31 )

fo(z ,z' ,s) =
3N

(30)

Z" =- ( A.N) zK(s) - 3/2
z~

(32)
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The Hamiltonian associated with this equation of
motion is

is a constant of motion. Our unperturbed distri­
bution function can be written in terms of this
constant of motion as

H = ~Z'2 + ~ (K(S) - QO) Z2Z6 . (33 )
fo(z ,z') = fo(z ,p)

3N

21TEI.

Following L. Smith's analysis for transverse
motion, I we change variables from z, z' toz ,p using
the generating function

3N
( 40)

cp(z,p) = z (p - a~ z)
2f3z

from which

(34 )
B. Perturbations ofthe Periodic Solution. As in our
analysis of the stationary solution we add a per­
turbed distribution J;(z ,p ,s) to fclz ,p) and search
for self-consistent solutions of the Vlasov equation
linearized about the unperturbed solution. The per­
turbed distribution adds a perturbed line charge
density

From Eq. (37), it follows that

(42)

(41 )

3NA oAp

21TE/ OZ

d/p
= \1 V · \1 p f;)( z ,p) = ­

ds

Vp = A Ap(z ,s)

The linearized Vlasov equation is

Ap(Z,S) = J/P(z,p,s)dp

with a space charge potential

In Eq. (43) we have ignored a term proportional to
the derivative of the theta function (as in Section II)
since It makes no contribution to the analysis below.

Our method of solution for eigenfrequencies is
similar to that of L. Smith et all for transverse
oscillations. We choose eigenfunctions of the form

8( 1 - R -: ) { (Z) II -- i

!,,(z,p,s) = VI -R~ · i~Ci(S) Vf3:

nh ( Z ) 1/ -"2 i

(vTpJi + i~ D,,(s) Vf3:

h/[i"pJi + .... }. (44)

(37)

(39)

ocp ., z"2 a~
=~p-+~ .,- - zp (36)

os f3; f3::

sin( t/J - Wo),

fl=H+

If; = If;:(s) = J ds = J E,., ds. (38)
f3:: Z6

where z(so), p(so), f30 = f3::(so), t/J() = t/J::(s()
are the initial particle coordinates and beta function
values. The quantity t/J is the longitudinal phase
advance defined in the same manner as for trans­
verse space

and

and, precisely as in the transverse analysis, the
solution of the equations of particle motion is
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and we define

dCi (n-i+l) (i+l)
-- == - C i - 1 +----

ds f3z f3z

Q' == %AN = f3 3/2QO
3/2 z 3·

EL Zo

i == 0, ... ,n

The differential equations for the lowest order
perturbations (n S 4) are tabulated explicitly in
Appendix I.

The equations for Co, C" ... ,CII are.coupled linear
equations with periodic coefficients. Their solutions
are

AplI(Z) = 7T (JpJ II AzICo - ~C2

. (2j - I)!! I
+%C4 +· .. +(-1)' . C 2i +···

(2J)!! .

+ 0(Z)I/-2. (45)

These eigenfunctions are characterized by an order
n, which is the highest power ofz appearing in AIl(Z).
In the above expansion the progression C, D, E, ...
inn, n - 2, ... , n - 2m, ... terminates atn - 2m == 1
(n odd) or n - 2m == 0 (n even). Also in this
progression n, n - 2, ... , we include only odd or only
even values ofn - 2m, since odd and even powers
decouple completely.

To find the eigenfrequencies of fll(z ,p,s) using
Eq. (43) we need only retain the terms proportional
to ZIl -- jJi, that is, the highest order terms. The lower
order terms will only repeat eignefrequencies olr
tained by equations of lower order in n.

Thus we write for our charge density

The sum inj terminates at 2j == n (n even) or 2j == n
- 1 (n odd). We have used the relation

Substitution of( 44) into (43), using( 45), gives us (n
+ 1) coupled linear differential equations for the (n
+ 1) functions Ci(s). These linear differential equa­
tions are of the form

J
+1 al u2n rr(2n - I)!!

~Ial Va2 - u2 du = (2n)!!
(46)

where ci is a periodic function ofs with the focusing
period, and ei,,)S is a growth function. There are (n +
1) eigenvalues of wand each eigenvalue is asso­
ciated with a set of periodic functions ci(s) and the
eigenfunctions ei,,)S occur in complex conjugate reci­
procal pairs. If n is even, w == 0 is one of the
eigenvalues.

The eigenvalues can be found by integrating the
coupled linear equations over a period of the accel­
erator structure, using the periodic solution of the
equation for f3z. A matrix can be formed by choosing
an (n + 1) orthogonal set of initial values of
(CO,C1, ••• ,C,J and integrating the differential equa­
tion over one period to find final values of
(CO,C1, ••• C,J. An (n + l)X (n + 1) transfer matrix
A can be constructed so that

final initial

+ %C4 + ....}
The eigenvalues ofA provide the (n + 1) eigenfunc­
tions ei,,)s.
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O<s<l

The variables I, L, and Q, completely determine the
scaled motion. We can express these variables in
terms of the longitudinal phase advance per period
l/J, where

Ifw is not real the perturbation grows in amplitude where
and the oscillation is unstable. In the next section we K( )
will follow the procedure outlined above to identify S( ()) = _s_ == 1,
oerioclic ~v~tpm~ U!lth 1I"\noltll~;nn 1 ~~~;;crJ.~~ic~,;)J ,;)'-~lJl~ \IV llH JUuglluulnaJ Insla6111ues.
_ _ _ _ The procedure outlined abov~Ba11Pe~seclt()lr~riS ~ L.

the eigenfrequencies and eigenmodes of oscillation ,.)),
of the stationary distribution by setting the focusing
force K(s) constant and the beta function f3;: also
constant. The resulting eigenvalues w, as we derive
above by a different method, are all real.

I/Jo = voL and I/J == vL,

where Vo and v are the bunching frequencies with
and without space charge defined in Section II. The
scaled variables may be used to parameterize an ..
equation for the total number of ions N, which is
similar to the Maschke formula for the current I
determined from the transverse stability require­
ment.4 We replace dEldz in Ko with

In Eq. (49) we use the periodic solution of the
envelope equation (31, or 48) to determine Zo or Uz •

Through the envelope equation l/J is a function ofthe
space charge parameter Q. We define a phase
advance at zero current l/Jo by setting Q == O. The
variation of l/J with Q for a typical case is shown in
Fig. 1B. The transport system can be described by
these three variables: l/Jo, l/J, and IlL.

The special case whereK(s) is constant (or 1== L)
is the continuous focusing system analyzed in Sec­
tion II. In this limit (I -... L) I/Jo and I/J have the values

E max E maxKJ/ 4

Z max ei/2umax

(49)

in radians.
dO

dE

dz

l/J == l L

e
L

ds == l VKOL

oz6 0

(47)

and we replace the constants in the space charge
term by a scaled parameter Q with

IV. Stability ofthe Standard Longitudinal Distri­
bution in a Periodic Transport System-Numeri­
cal Analysis

In the previous section we derived coupled linear
differential equations for perturbations of the stand­
ard distribution3 which can be solved numerically in
a particular transport system to determine the
longitudinal stability of that system. In this section
we define scaled variables so that the stability of a
periodic transport system can be described in terms
of three dimensionless variables: l/Jo, l/J, and IlL, and
we present a summary of the numerical analysis of
the stability of longitudinal transport in terms of
these variables.

A. Scaled Variables. The envelope equation (31)
can be set in a dimensionless form by the following
change of variables, similar but not identical to the
scaled transverse variables used by Lambertson et
al.~ We replace s by 0, with 0 given by

o== ",/Kos.

We replace Zo with Uz ' where

In these coordinates the envelope equation be­
comes

where E max is the maximum bunching field. We
solve for N in Eq (47), obtaining

(48)

Q
U 1/3

max

(50)
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In this expression we have cgs units. This can be
written as

FIFTH ORDE.R EIGENVALUE ?)4ASE
AS FUNCTiON OF PAJ<TlCLE. P'-IASE. tIJ

N = 4.4 X 10 14 A~,3q' :'1.7,f34i3(Em<lx)'/3(EI.)4,:'

Q( )- 1 I ~ -- I (5 1)U max . g, .

with A the ion atomic weight, q the ion charge, Em<lx
in voltslm, EL in meter-radians, and Q and umax are
dimensionless. We have used non-relativistic kine­
matics (y = 1) and the emittance EL is not normal­
ized. However, unlike the transverse case, stability
does not limit Q and Umax to values of order unity.

B. Eigenvalues ofPerturbation Oscillations. In the
previous section we derived (n + 1) coupled linear
differential equations for the (n + 1) coefficients
C

l1
(z ,p ,s) of a particle distribution perturbation of

order n, where n is simply the highest power of z
appearing in the perturbed density \(z ,s). These
questions can be integrated over one period to form a
transport matrix A and the eigenvalues ofthe matrix
A provide the eigenfrequencies of the perturbations.
There are (n + 1) complex eigenvalues Em of the
form

Em = Ameir,')m m = ±n, ±n - 2, ...

and these eigenvalues occur in complex conjugate
reciprocal pairs.

In the case whereK(s) is constant, Am is 1 for all m
and the phase Om is simply Om = vmL with asymptotic
values given in Section II

Q-+O

o
XBl 797-10513

FIGURE 2A Positive phases ¢ of fifth order perturbation
eigenvalues (Em = Am±i¢m) with 5 t/Jo « 1800

•

-+ 0 for all other ¢m, Q -+ 00.

For the periodic focusing case the eigenvalue
phases have similar behavior, with the important
difference that the phase must lie between - 1800

and +1800 per period. Thus the eigenvalue phases
¢m have asymptotic values

(m = ±n)

as l/J -+ 0 or Q -+ 00. The difference between these
two types of behavior is illustrated in Figs. 2A and
2B for a particular fifth-order set of phases (only the
three positive phases are shown).

This difference is important in determining re­
gions of possible instability, since the eigenvalues
A,neic/)m occur in complex conjugate reciprocal pairs.
Instability occurs in regions where Am ~ 1, and this
can occur only where two different phases are equal
or where a phase is 0 0 or 1800

• In the fifth order case
shown in Fig. 2B there are three possible regions
with instabilities (which are circled) and the phase
crossings (which in Fig. 2B are shown as point
crossings) may stretch over finite regions in l/J( orQ).
The fifth order case shown in Fig. 2B has been
calculated in detail for IlL = 0.5 and all three areas
are found to contain instabilities. The values of

m = ±n,

modulo 180 0

modulo 180 0

¢m -+ 0

¢m -+ ±nl/Jo, ±(n - 2)l/Jo, ...

as l/J -+ l/Jo or Q -+ 0, and

¢m -+ ±y'l + 2 + ... + n voL
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SECOND AND FOUIn~ O~DER EIGENVALUE PHASE.S

«.fJo = fOl.bO

large. The corresponding fourth order instability
occurs for 45° < t/Jo < 56.9°, and we find a growth
\'1ax of --1.035 near 56°. The sixth order instability
occurs for 30° < ljJo < 39.3°. It has a maximum
growth near 39° of 1.015. We find that as the order
increases, the sizes of the growth function and of the
regions of IjJ and ljJo with instability rapidly decrease,
so that we expect that only the lowest order instabili­
ties of this type may be important.

We summarize some general conclusions on
stability obtained by analyzing a number of cases
with different values of IlL, t/Jo, and for n S 8.

1. Regions of instability occur whenever phase
crossings occur for n > 3 (third order crossings are
stable), unless dep/dljJ and depjldep (where epbepj are
the crossing phases) have the same sign (as in Fig.

Q::t

,,; \. v / 180
0

UNSTA~LE. IN SE.COND 0 E.R

Q=O U

F"IFTH O~Pfr{ EI6f,NVALUE- PHASE'S

%= 6&°

O°O-----------.L.--------:3
CPo 0/ 0°

t/'o

FIGURE 2B Positive phases ¢ of fifth order perturbation
eigenvalues with l/Jo = 68°.

I Ami are found to lie in the range 0.995 < I Ami <
1.005 and the instabilities stretch over ranges of
~ t/J/ t/Jo :S 0.005.

In Fig. 3A we show the fourth order phase
diagram for ljJo = 101.6°, IlL = 0.1. The instabilities
are somewhat larger; IAmi max = 1.032 and ~ljJlljJo =
0.03 for the 0° instability at l/J = 70°. The sixth order
phase diagram for the same case is shown in Fig. 3B
and shows seven possible instabilities, all but the
one labeled S are unstable; the values lie within:
0.983 <I Ami < 1.017, ~l/Jlt/J(l ~ 0.1. This case(t/Jo=
101.6°, IlL = 0.1) has three small fifth order
instabilities with I Am I < 1.01 and ~l/Jlt/J(l < 0.01.
However, there is a large second order instability
also shown in Fig. 3A. For l/J < 55°, the second
order perturbations (which are perturbations of the
envelope boundary) are unstable with ! Am : max ~
1.11. In fact, for t/J(I within the range 90° < t/J(l < 104°
large regions of phase advance t/J are unstable,
indicating a serious space charge instability.

An instability similar to the above second order
instability occurs in each order n in the region
1800 ln < t/Jo < 180°/(1 + 2 + ... +n)l/2. The
instability is greatest for ljJo close to the upper
boundary (180°/(1 + 2 + ... + n)1/2 and for Q

SECOND ORDE

FOURn4 O~DE'

u
o·'IJ = 4{l.,-0-----J80'----4--.l'-4--60~--40L----2--'-O---O°

FIGURE 3A Positive phases of ¢ of second and fourth order
perturbation eigenvalues with f/;o = 101.6° and l/L = 0.1.
Instability (Am =1= I) occurs in all regions of phase crossings and
where 4>m crosses 0° or 180°.
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SIXTH O~DE.R E.IGE.NVALUe PHA.5E.5

<Po = (01.&

U U U

FIGURE 3B Positive phases ¢ of sixth order perturbation
eigenvalues with I/Jo = 101.60 and l/L = 0.1. Instability occurs at
all phase crossings labeled U, but does not occur at the phase
encounter region labeled S.

3B, the case of stability). All 0° and 180° crossings
are unstable if n =1= 3.

2. The size (~l/Jil/Jo) and amplitude I A,n I max of
these instability regions decrease with increasing
order n. The size and amplitude also increase
somewhat as IlL decreases at constant l/Jo; however,
the instability is not a sensitive function of this
parameter.

3. We do not expect instabilities of small size
(~l/Jil/Jo ~ 0.05) and small amplitude (I AI max < 1.05)
to be ofsignificant importance in accelerator design.
Our analysis indicates that only the second order
instability which occurs for 90° < l/Jo < 104° is large
in these terms.

4. Currently existing or proposed accelerators
have a rather small longitudinal phase advance per
period l/Jo. The lowest order n at which an instability
may occur is n == 180°Il/Jo, which would be large.
Numerical analysis shows that as n increases the
degree of instability becomes vanishingly small.
However, superperiods of accelerator design should
avoid resonances with the largest low order insta­
bilities.

Our conclusion is that as long as l/Jo is relatively
small, space charge perturbations of the standard
longitudinal distribution show no large instabilities.
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APPENDIX I

COUPLED DIFFERENTIAL EQUATIONS
FOR LOWEST ORDERS (n == 1,2,3,4)

A: n == 1 (dipole mode)

dCo C1

ds f3z

B: n == 2 (oscillations of envelope boundary)

dCo ==S
ds f3z
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C: n = 3

dCo C I

ds f3z

dCI 3Co 2C2 Q'
(3Co - 3/2 C 2 )--+---

ds f3z f3z V{3z

dC2 2C I 3C3as T T
dCo C I---
ds f3z

D: n = 4

dCI _ Co
as - f3z

dC 2 _ 4Co + 2C2 -~

ds f3z f3z Vf3z

. (4Co - 2C2 + 3/2 C 4 )

dC 2 3C I 3C3--+-
ds {3z {3z

dC 3 2C2 4C4--+-
ds {3z (3z

dC4 C3--
ds f3z
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