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The relationship of regenerative beam breakup (BBU) in a recirculating electron accelerator (recyclotron or microtron) to
the orbital beam optics is discussed. To reduce BBU, the optics should be designed so that deflection of the beam during a
given traversal of the structure produces minimum displacement of the beam during subsequent traversals. The selection of
orbit matrices to achieve this result is discussed. Implications of these calculations for the magnitudes of the BBU starting
currents are illustrated using experimental data from the Stanford superconducting recyclotron. It is shown that in principle
BBU can be suppressed completely in the first orbit by “reflection” or “‘rotation” of the beam.

INTRODUCTION

High duty-factor, high-current (and high-beam qual-
ity) electron accelerators are currently being con-
sidered for the next generation of electron-scattering
experiments, which will investigate nuclear struc-
ture by coincidence techniques.' The only method
available at present of accelerating electrons with
high current and high duty factor is by means of a
linac, either superconducting’ or conventional.’
High duty factor necessitates low energy gradients
in both cases, so that for final energies of several
hundred MeV, the length becomes prohibitive.
Hence machines are being built and proposed where
the beam is recirculated through the linac many
times. These machines fall into two main tyg)es, the
recyclotron,” and the race-track microtron.

The beam current which may be accelerated by
these accelerators is limited by a regenerative beam
breakup (BBU) phenomenon that is rather different
from that encountered in a linac. This BBU arises
because of the interaction of the recirculated beams
with the TM;, deflecting modes of the accelerating
structures.” In superconducting structures, these
modes can have Q values of order 10° and if not
loaded down, will restrict average recirculated cur-
rents to the order of 0.1 to 10 uA.>* Even room-
temperature accelerators such as the proposed mi-
crotron at Mainz® are expected to be limited to
currents of approximately 16 uA by this effect.

Although this phenomenon may be suppressed by
loading the transverse modes of the cavities with
resistive probes, this alone is not necessarily suf-
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ficient to produce acceptable BBU starting currents.
The purpose of this paper is to point out that careful
selection of orbit beam optics is also an essential
part of the design which can enhance performance
significantly.

2 BEAM OPTICAL CONTROL OF BEAM
BREAKUP

The general principle of beam optical control will be
illustrated by assuming initially that all deflections
and displacements of the beam are confined to one
plane, for instance, the bending or x-plane. Consider
the first orbit of recirculation. The first-pass beam
may be perturbed by the transverse magnetic fields
of a potential BBU mode. This can lead inturnto a
displacement of the second (or higher) pass beam,
which may feed energy into the mode by interaction
with its longitudinal electric fields. If this energy is
supplied faster than the rate at which the mode
decays, BBU occurs.

The perturbation of the primary beam is domi-
nated by deflection, although if the phase slip of the
beam with respect to the BBU mode during the first
pass is not zero, a displacement of the beam is also
possible. For a transverse field that could cause an
intolerable deflection of the beam, the order of
magnitude of the possible displacement is much less
than the typical beam size. Hence deflections of the
primary beam are generally most important.

The BBU modes are of a dipole nature, so that for
a given field amplitude the rate at which energy is fed
into the mode is proportional to the displacement of
the second-pass beam. Hence it can be shown that
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the starting current for BBU is proportional to the
energy E, (strictly momentum) of the first-pass
beam and inversely proportional to the displace-
ment of the centroid of the beam at second pass, due
to unit deflection during the first pass, i.e., the
magnitude of the “orbit matrix” element R,,, in
TRANSPORT notation.® (The “orbit matrix” is
defined as the beam-transport matrix from a given
point in the linac back to the same point at the
subsequent pass.)

Thus the obvious strategy for reducing BBU is to
minimizel R,,| /E '+ as much as possible for all points
in the linac. This is a general technique that is
applicable to all orbits. There are certain special
techniques which apply only to the first orbit. These
will be mentioned later.

BBU also depends of course on the phase shift of
the beam around the orbit at the frequency of the
breakup mode. A study of this dependence has been
made by Vetter et al.’

3. CHOICE OF ORBIT MATRIX
3.1 Point-to-point Focusing

The ideal condition for minimizing BBU is point-to-
point focusing in both planes, i.e., R;, = R;, =0, at
all points in the linac. In general, this condition
cannot be satisfied exactly except in the limit of no
acceleration. As will be seen below, the best approx-
imation to this ideal that can be achieved in practice
is Ry, = R3, = 0 at three points in the linac.

It is convenient to investigate the optimization of
the first-orbit optics by assuming that the orbit
matrix is arranged so that R,, = R;, = 0 at a point,
whose distance from the injection end of the linac is
L, 1t will be assumed that there is no mixing
between the x- and y-planes. The first-order orbit
matrix at L, in either plane is then of the form

R=[M0] :
» c x/ml (1)

where M is the magnification around the orbit, C
represents R,, or Ry3, X, = E,/Ep and E,, E are
respectively the energies of the first- and second-
pass beams at L, (see Fig. 1).

Now consider a point in the linac a distance L
downstream from L,. The orbit matrix at this point
may be written R = ap(L)R,a;'(L), where a,(L),
a(L) are the transport matrices for the linac from L,

to (L, + L) for the primary and second-pass beams
respectively. Using matrices for standing’~ and
traveling’-wave structures, the quantity R,,/(E, +
E), where F is the energy gain corresponding to the
length L, has been calculated. Complete results are
given here for standing-wave structures, since these
are directly applicable to the Stanford supercon-
ducting linac. Corresponding results for the tra-
veling-wave case are given in the appendix.

The TRANSPORT matrix for a standing-wave
structure (for an integral number of periods) is of the
form (with symbols as defined in Fig. 1).

C, — %S
m@Z[A o4

_3/—AS
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A

LS, ]
X (Cy+ 1Sy
where S, = (8)"* sin A, C, = cos A, A =

(1//8)In (I/X,), and X, = L,/(L, + L). ag(L) is
similarly defined.

Hence

R, L1
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P
(3)

By choosing M and C appropriately, one can set
R,,/(E,+E)=0 attwo values of L, say L, and L,,
as well as at L = 0. [The trigonometric functions
involved in R,,/(E, + E) span only a fraction of a
period in all practical cases.] The necessary magni-
fication is then determined by

M = Sp185:(S:C 010 = S41Ca2)
SAISAZ(SB2CBI - SBICBZ) ’

(4)

which always has real roots such that M =~ + y/X,,.

Some insight into the exact expression (3) for
R,,/(E, + E) may be gained by expanding R,, as a
power series in L, i.e.,

Ro=1| %] +E | B 4
12 — M L 2EA( p)

0

G )-ex] ] (2)
M 0 L 2E,
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This third-order expression is surprisingly accurate
even for small E,/E,, as will be shown below.

The problem now is to find the values of L ,, M and
C that minimize| R,,| /(E, + E) for all points in the
linac. This requirement is interpreted throughout
this paper to mean that the extreme values of Ryl/
(E, + E) should be minimized, although when
phase and other effects are taken into account, this is
not necessarily the optimum condition.

An approximate analytical solution to the optimi-
zation problem is available only for the case E, >
E,. This is most useful for high injection energy or
higher orbits of recirculation. In this case, the max-
ima of| R,,| /(E, + E) are at the maxima of| R,,! .

- — - ——

ENERGY-2ND PASS: (\

Therefore by symmetry L, = % L, and the re-
quirement that the coefficient of L? be equal to zero,
determines CL, in terms of M. Furthermore it is
necessary to have R = 0 close to the ends of the
linac,i.e., L; = —Y% Lo, L, = %2 L. Hence it can be
shown that the maxima of |R,| occur at L = +
Lo/2\/3 where Ry, = £Lo[(X,/M) —M}/3\/3.

Other quantities of interest are

1\42~X[1—%<E°>21—X2)] (6)
- 2E, ( Py

3
CL, = %( 22) (1-X)(1-XX,
(7
and
[R,I L, E, \’
<EA + E> max 12y/3 E, < 2EA>
X (1 = XVX, (8)

—— . ————— ————— ———— —————

ENERGY - | ST PASS: E,  E  E, i+ Eg_
| ! | |
i | L
ORBIT MATRIX: E Rp agRpa, ;
| (R,,=0) ! !
| | | |
] ! |
| ] :
INJECTOR |— MAIN LINAC
| | | |
LENGTHS t  jo— L, —=i  fo— L —te— L — |
e ' -
o ! Lo T
I
La=li+le
Lg=L;+Lp+Lg
RATIOS : X =E,/Eg=L,/Lg A= Ep/ (E,+E)

X
Xg= Eg/ (Eg+E)

FIGURE 1 Defintion of symbols—first orbit.
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In the limit of negligible energy gain per pass, the
required orbit parameters become M> =X, and C L,
==(, i.e., a diagonal orbit matrix with R, = O for all
points in the linac. Examples of ray diagrams for
diagonal orbit matrices are shown in Fig. 2.

The optimization problem cannot be solved anal-
ytically for low injection energy, but a good approx-
imation to L, may be obtained by assuming M* =
X,, C = 0, and calculating from the third-order
expression (5) the condition for equal IR,/ (E, +
E) at the ends of the linac. This gives

L,~Lo[1+ 1 +E/E)”I"". (9)

For the numerical example considered below, this
expression proves to be quite adequate.

We now come to the problem of matrix optimi-
zation for multiple orbits. (All formulae given above
are valid for any group of consecutive orbits if E,
and E; are respectively replaced by the energies of
the beam at the first and last passes defining the
group.) Consider the displacement of the centroid of
the beam in pass NV due to deflections suffered during
all previous passes. In general it is most important to
minimize the extreme values of R*Y,/(E, + E)

where R), is an element of the transport matrix
from pass 4 to pass N. Next in order of importance
would be to minimize the quantity R®Y,/(E; + E),
but as expression (8) shows, this is already a factor
(ER/E,)** less significant than the equivalent first-
pass quantity. Hence perturbation of the first-pass
beam is the dominant effect.

It is expedient to think in terms of the third-order
approximation (5) for R*Y,. The shape of the curve
RY,J(E, + E) may be described by three para-
meters L,, L, and L,, which define the positions
where R*), = 0. The optimum values of these
parameters depend only on the ratio of injection
energy to energy gain per pass. Hence for different
N, R, /(E , + E) differs only by a scaling factor and
the corresponding magnification M“" and matrix
parameter C*" may be calculated from the previous
formulae with subscript N substituted for B.

It is interesting to note that the exact expression
(4) for optimum magnification can be cast in the
form

MAN:f(A)=f(A)Xf(B) » X[(—Ai).
S(N) f(B) f(C) f(N)
(10)

R“ ----- ’-2—0‘_\*
Ri2
LINAC ]
180°
BEND

(a)

(b)

FIGURE 2 Diagonal matrix orbit optics for a recyclotron with
(a) negative magnification (b) positive magnification in the limit
of no acceleration. Each lens is a quadrupole pair. Optical effects
(inversion) at the 180° bends in the bend plane have been ignored.
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Thus the condition for R,, = 0 at the same L, L, and
L, for each orbit individually is consistent with the
overall requirement. A similar statement is true for
the orbit matrix parameter C*¥, but the functional
dependence is more complicated.

The signs of the orbit magnifications also influ-
ence BBU for multiple orbits. For instance, consider
the first two orbits. At an arbitrary point in the linac,
R4S, =~ M“E REC, + MPC R*2, ~ MPC R*%,. Now
energy may be fed into the BBU mode by both the
second- and third-pass beams. Therefore the start-
ing current for BBU becomes inversely proportional
to R*%, (1 + pM*©), where p depends on the orbital
phase shifts. The optimum sign for M®C then de-
pends on the frequency of the dominant BBU mode.

For the first orbit, numerical calculations are
generally necessary to find the optimum values of
L,, M and C. For the orbit matrix starting at L,,
these define six independent conditions: R,; = R;;=
M; R, =R;,=0,R,, = R,;= C. Therecirculation
system should be sufficiently flexible that any such
given set of conditions can be attained. For instance
the orbrts of the Stanford superconductrng recyclo-
tron’ (SCR) each have at least six quadrupoles, so

E4R

that in general a solution is possible. Such solutions
may be found using a program such as TRANS-
PORT.

To demonstrate the orders of magnitude involved
in the above theory and to give one example of orbit
optimization, sample calculations have been made
with E,//E, = 0.2.

Figure 3 shows exact calculations made with the
approximate value of L, for high injection energy; L,
=4 L,. Here R,,/(E, +E) and R, are plotted in a
non-dimensional form for the case where R, = 0 at
both ends of the linac. The third-order approx-
imation (5) to R,, is also shown for the same
boundary conditions. For most purposes this ap-
proximation would be adequate. In this case the
maximum value of Eo|Ry2|/Lo(E4 + E) is ~0.028
near the injection end of the linac.

An attempt at minimizing the extreme values of
| R, (E,+ E)is shownin Fig. 4. Here L, has been
calculated from equation (9). For this value of L,
three sets of curves have been calculated. These are
(a) R, = O at both ends of the linac, (b) M =
(X,)"”?, C = 0(diagonal matrix), and (c) optimum
conditions. In the second case, the third-order

05~ o2
Lo (EptE)
Lp/L
(o} } } + + + + } } |
0 .5 1.0
(L + LP) / Lo
-05L
02~ Rz
Lo Lp/Lg .
- \\\\
0 } + } + 4 + + } |
0 5 1.0
S==== (L+Lp)/Lg
-02-

FIGURE 3 Calculated values of Ey R5/Lo(E4 + E) and
Ryy/Lg for E;/Ey = 0.2, L,/Ly = 0.5. Curves are fitted to R,
=0 at bothends of the linac: M =0. 61919,CL,=0.0395. Solid
lines—exact calculation, dashed line—third order approxima-

tion.
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FIGURE 4 Calculated values of Eq R5/Lo(E4 + E) and
0.355.

Ryy/Ly for E/Ey = 0.2, L,/Ly =

curves (a): R;, = 0 at both ends of linac: M = 0.57255,C Ly =
-0.0314

curves (b): Diagonal orbit matrix: M = 0.59742, C Ly =0
curves (c): Extreme values of Ey| Ry,! /Lo(E4 + E) minimized:
M=0.5784, C Ly = —0.010

Solid lines—exact calculation, dashed lines—third order approx-

imation.

approximation is also shown for comparison. The
optimum curve (c) shows that the approximate
value for L, is not quite correct, but certainly
acceptable. The minimized value for the extremes of
Ey|R,| /L(E, + E)is ~ 0.11.

3.2. Experimental Tests

To illustrate the quantitative implications of these
calculations with respect to BBU starting currents,
measurements of the latter have been made under
known beam optical conditions on the Stanford
SCR. This machine consists at present of 3 super-

conducting standing-wave structures, each of length
6 m. The optics of each orbit of recirculation may be
varied by 3 pairs of quadrupoles. The final design
allows for 8 accelerator structures and 4 orbits of
recirculation. The tests were made with an injection
energy of 5 MeV and an energy gain per pass of 36.5
MeV for 2- and 3-pass operation. The behavior of
the SCR was observed with a central accelerating
structure whose transverse modes were not damped
and which in fact had Q values of order 10°. These Q
values have subsequently been reduced to the order
of 107 to 10® by inserting appropriate resistive
probes. The transverse modes in the other structures
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were already loaded down to this level. This discus-
sion ignores the effect of the phase shift of the beam
at the frequencies of the transverse modes.

For the first orbit, for an arbitrary non-point-to-
point orbit matrix, it is common to observe BBU
starting currents as low as 0.5 nA (average). For a
point-to-point configuration with M, = 0.16 and M,
= (.30, implying R,,/L = 1.92 and R;,/L = 0.81
[only the first-order terms in L are significant in
equation (5)], the BBU starting current was ob-
served to be approximately 2 uA. For a second
configuration with M, = —0.44, M, = 0.51, R,/L
= —0.32 and R,,/L = 0.14 and the same energy the
starting current was approximately 12 wA. These
results imply that BBU was due to a mode which
deflects the beam almost vertically. The plane of
deflection was actually observed to be oriented at
about 60° to the horizontal.

Although BBU actually occurred in the non-
damped accelerating structure, the significant result
for the eventual configuration of the machine was
that it did not occur in the first loaded structure,
where it is estimated E, | R, | /Lo(E, + E) = 2.6.
With careful orbit design, this quantity can be
reduced by up to two orders of magnitude. There-
fore in the final configuration, it is possible that the
starting current for BBU in the first orbit could be as
high as 1 mA.

Tests with a 3-pass beam showed a BBU starting
current of 3.6 uA, with a magnification for the
second orbit of + 0.8 in both planes. Disregarding
the different phase shifts for the two orbits, one
would naively expect in this case a starting current
of 12/1.8 = 7 uA, showing that the phase-shift
effect is significant.

3.3 Beam Reflection

The discussion so far has assumed that there is no
mixing between the horizontal and vertical plane of
the orbit optics or, equivalently, that the breakup
modes are polarized in these planes. In the more
general case of orthogonal transverse structure
modes oriented at angles  and (90° + B) to the
horizontal plane, a further increase in BBU starting
current can be obtained by using a “reflector’” or
“mirror”’ configuration for the first-orbit matrix.

A reflector configuration is defined as one in
which R, and R;, are of opposite sign. This can
generally be achieved with magnifications of oppo-
site sign although, as formulae (3) and (5) show,
there are other possibilities.

To see how this can be useful for increasing BBU
starting currents, suppose that a displacement r of
the second-pass beam is caused by a deflectionr’y =
(', ¥'o) of the primary beam, where tan 8 = y'o/x’,.
Then power is fed back by the beam into the breakup
mode at a rate proportional to the component of r in
the direction B, i.e., r*t'o = (Ri2 X5 + Rss ¥'0)/7o.
Thus it is clearly advantageous for R,, and R3, to be
of opposite sign and in fact at R |,/R;, = — tan’B, ris
orthogonal to r'y, so that regenerative BBU will not
occur. This analysis ignores the fact that the trans-
verse modes occur as orthogonal pairs and would
only be useful if one of the pair were dominant for
some reason. It also assumes that the beam does not
couple the orthogonal modes, which is generally
true in superconducting structures, where the separ-
ation of the modes is typically of order 10* band-
widths.

In the more general case where the orthogonal
modes have roughly equal Q values, complete
damping of the second mode, oriented at (90° + B)
to the horizontal plane would require R;,/R, =
—tan’ B. Obviously both modes cannot be com-
pletely damped simultaneously unless = 45°. In
general the best compromise for the two modes is
Ri; = —R;4 giving r-¥9 = Ri ¥ cos 2 B. This is
illustrated in Fig. 5(a). This condition therefore
increases the BBU starting current by a factor
| 1/cosZ/5’| compared with the case R, = R;,.

It is worth noting that if the structures are
designed in such a way that the transverse modes are
oriented at 45° to the orbital bending plane, BBU in
the first orbit can be eliminated entirely in principle.
This simple requirement of the structure design
together with beam optical reflection provides an
economical method of achieving high currents. To
achieve the optimum conditions R, =~ —R;, (where
the exact equality holds only if the Q values of the
orthogonal modes are equal) is not difficult and does
not require the magnifications in the two planes to be
exactly equal and opposite.

Suppose for instance that one has the situation
shown by the vector rin Fig. 5(b) where R # —R4,
i.e., p # v. By a slight adjustment of one of the orbit
quadrupole strengths by an amount AQ, one can
modify R,, and R, to be (R, + k AQ X,/M,) and
(Ryy — k AQ X,/M,) respectively, where k is. a
constant. Thus the tip of the vector r can be made to
trace the straight dashed line shown in the figure
until y = B. This apparent rotation of the vector r has
been demonstrated both using TRANSPORT and
in practice, on the first orbit of the SCR. A change of
the strength of the second quadrupole in the orbit by
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component of r in the direction of ry is » cos 2 B.
(b) Rotation of the displacement r by adjusting a single quadru-
pole. The tip of the vector r follows the dashed line.

only 1% is sufficient to rotate r by 90°. This was
achieved using the orbit configuration described
earlier (M, = —0.44, M, = 0.51).

3.4 Beam Rotation

Pure “rotation” of the beam so that the displace-
ment on the second pass is always orthogonal to the
deflection which causes it during the first pass, as
shown in Fig. 6, would clearly eliminate BBU
altogether for 2-pass operation, provided coupling
between the orthogonal modes is negligible, and
whatever their orientation. This would require an
orbit matrix of the form

M AL
cC X/M
-—M - AL
-—C —X/M

where AL is given by formula (3) or (5) forR ,. Such
a matrix is not difficult to realize in principle and
practical ways of achieving it are discussed below.

Assuming that all interactions between the first-
and second-pass beams can be eliminated, the

,Al /'
Yo y
-
)
B Xc’) B X
-
r
FIRST PASS SECOND PASS

FIGURE 6 90° Beam rotation (x'y, y'g) — (=, x).
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question again arises as to the optimum optics for
subsequent orbits. Further rotation of the beam
would not be desirable, since then interaction could
occur between a higher-pass beam and the first-pass
beam. Any mixing of the two planes even by differ-
ent magnifications would have this effect. Subse-
quent orbit matrices should therefore be as de-
scribed previously. BBU could then occur between
the second-pass beam and subsequent passes, but
the effective injection energy would have been in-
creased to that of the second-pass beam. The gain in
BBU starting current due to this effect would there-
fore be at least a factor of 2, but more probably an
order of magnitude if breakup occurred at the injec-
tion end of the linac. This would be the real gain
from beam rotation in the first orbit.

4 PRACTICAL REALIZATION OF BEAM
ROTATION

4.1 Beam Rotating Devices

(a) Solenoids The beam-transport device that im-
mediately comes to mind in connection with rotation
is the solenoid. It is, however, unsuitable for this
particular application, as is shown below.

The transport matrix for a solenoid may be
written as the product of a rotation matrix and a
particular thick-lens matrix. For the case of rotation
by 90° it is

[~ — 1 . - -
1] - I
1 K %
K — —
_ K
L 1 4 L -k | K

where K = Bo/2Bp, Bo is the field inside the
solenoid and Bp is the rigidity of the beam. For this
90° rotation, the length of the solenoid is / = 7/2K.

The problem with this matrix is that it inter-
changes displacement with deflection, which, al-
though it can be corrected by the remainder of the
orbit optics, has unfortunate consequences for the
physical length of the solenoid. To take the Stanford
SCR as an example, the recirculation system is
designed to operate with a maximum beam size in
the first orbit of 2.5 mm and maximum angular
spread of +0.1 mr at 120 MeV. In order that the

beam leaving the solenoid should not exceed these
limits, the value of K must be given by K" = 25 m.
This implies a solenoid length of approximately 39
m and a field of 320 G, quite impractical values.
Furthermore, for any solenoid producing 90° rota-
tion, the product of length and field would remain the
same, implying at best a very bulky and expensive
device, either conventional or superconducting. If
the solenoid could be made with a field of 20 kG and
length 0.63 m, it would produce a highly divergent
beam requiring correction by at least a quadrupole
triplet. It would be better to split the solenoid into 3
parts, rotating the beam by 22.5°, 45° and 22.5°
respectively and separated by drift spaces, each of
length 2/K. This would produce a (negative) unit
matrix with a 90° rotation but still each solenoid
would hardly be a practical device.

b) Rotation by Reflection Beam reflection with all
matrix elements in the two planes equal and oppo-
site is commonly used to rotate the plane of disper-
sion of a beam by 90°'%!! by setting the reflecting
plane at 45° to the x- or y-axis. This arrangement
is adequate for operating “energy-loss” spectro-
meters for instance. It does not, however, give a true
rotation, but only a pseudo-rotation of the general
form

1 AL
1

where AL is determined by the details of the optics.
This is not suitable for the present purpose. A true
rotation can be obtained by combining this rotated
reflector with a second reflector oriented normally.
The resulting transport matrix is then

1 AL 1 AL
1 v 1

-1 —AL 1 AL

-1 1

1 2AL
1
= | -1 —2aL
-1
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FIGURE 7 Beam reflector using 5 quadrupoles.

This is the form of matrix required for true beam
rotation. It can be realized in a recirculation system
by a single reflector at 45°; the second inversion is
performed by the orbit itself.

4.2 Practical Beam Reflectors

Beam transport elements which produce reflections
about a mirror plane with optical length equal to

their physical length are well known. The basic
arrangement consists of 5 quadrupoles. Its optical
mode is illustrated in Fig. 7. Similar arrangements
may be devised with zero optical length.

A simple reflector, although with a limited range
of application, consisting of three approximately
equal-length bending magnets with parallel pole
faces is shown in Fig. 8.

LAYOUT IN x-z PLANE

[ L
X —
e -
—ta__ Y
.\

FIGURE 8 Beam reflector using 3 bending magnets.
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FIGURE 9 Possible layout for the first orbit of a recirculating
accelerator incorporating a reflector installed at 45° to the bend
plane in a region of zero dispersion. Quadrupole pairs sufficient
to produce true rotation of the beam at the linac and diagonal
matrix focusing are shown.
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FIGURE 10 Incorporation of (a) a 90° rotator and (b) a
pseudo-rotator (reflector at 45°) into the orbit optics of a
recirculating accelerator. Dispersive elements are omitted.
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4.3 Incorporation of Rotation Into Orbit Optics

It has already been pointed out that rotation of the
beam is desirable only in the first orbit of a recircu-
lating accelerator and for this reason it is undesir-
able to install a rotator on the linac axis where all
beams would be affected to some extent. The
obvious site therefore for the rotator is the ““back-
leg” of the first orbit. In this region the beam is
usually dispersed, so that a prerequisite for the
rotation is that this dispersion first be removed
unless it is of such a magnitude that vertical disper-
sion of the beam would not be troublesome. A first-
order design for a race track microtron or recyclo-
tron which would achieve this end, incorporate
rotation and allow diagonal matrix focusing, is
shown in Fig. 9. Details would depend on the quality
of the first-pass beam and permissible degradation
of this quality in subsequent passes.

Finally, ignoring the problems of dispersion and
the effects of the 180° bends, Fig. 10 shows how (a)
a 90° rotator and (b) a reflector mounted at 45° may
be incorporated into the complete orbit optics to
produce pure rotation in both cases, with diagonal
matrices. The position of the rotator or reflector is
quite arbitrary. The arrangement 10 (b) could in fact
provide rotation of the first orbit beam with diagonal
matrix conditions, with the minimum number of 10
quadrupoles.

5 CONCLUSION

It has been shown that from the point of view of
BBU, the desirable properties of the orbit optics in a
recirculating accelerator are in order of importance

as follows:
First orbit:

(a) point-to-point focusing at a position about
one-third the length of the linac from the
injection end and preferably also near each
end of the linac;

(b) magnification = & (E4/Ep)"?, (opposite signs in
two planes)

(c) approximately diagonal matrix;

(d) reflection mode (My = —M,, Ri» = —Ray);

(e) beam rotation.

Subsequent orbits:
(f) point-to-point focusing as for first orbit;
(g) magnification = +(En/En)"” in both planes;

(h) approximately diagonal matrix.

Of these items, the effectiveness of (a), (d) and (f)
have been demonstrated on the Stanford SCR. The
remaining items indicate that up to two orders of
magnitude increase in BBU starting currents can be
achieved in this machine by beam optical methods.
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APPENDIX

Orbit Matrix Element for a

Travelling-Wave Linac

Using the notation of Fig. 1 and section 3, the
transport matrix for a traveling-wave structure’ is

L,In(1/X,) ]

1
a,(L) =[
0 X,

Hence:

Ry, _ Lo

1
FAEE [A—/[ In(1/X3) — M In(1/X )

Eg
— = CL, In(1/X,) In(1 /XB)]

0

The Power series expansion for R, is

o] £ L (5
12 M L, L2E, \Mm

X, 3
(1=X)7% = CLo| + 5
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