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I. INTRODUCTION

In the investigation of particle beams, the aver
aged characteristics, such as mean velocity, tem
perature, mean-square dimensions, etc., are often
of practical interest.

The problem of the time dependence of the
charged-particle beam mean-square dimensions
(the envelopes) in electromagnetic fields was in
vestigated by several authors. I

In Refs. 2 and 3, the self-consistent envelope
equations were obtained for a beam with elliptical
cross section and a uniform charge density (Vla
dimirsky-Kapchinsky equations). It is character
istic for this model that the beam boundary does
not rotate in configuration space. Later, these
equations have been generalized for a beam with
a charge density having elliptic svmmetry.4.5

In Ref. 6 a nonstationary self-consistent beam
model was proposed which eliminated the re
strictions of the Vladimirsky-Kapchinsky model
and included it as a special case. The envelope
equations obtained in that study represent a sys
tem of nonlinear differential matrix equations
which makes their use more difficult.

Recently an equation was obtained for the var
iation with time of the mean-square radius of a
beam in a longitudinal magnetic field for the case
of azimuthal symmetry.7

By dealing with a distribution function which
is non-zero in a finite region of the phase space
or is integrated with arbitrary powers of phase
variables, it is possible to introduce full moments
of the distribution function, i.e., moments for all
phase variables. In Ref. 8, in the case of relativ
istic motion in arbitrary electromagnetic fields of
bunched charged particle beams of a low density,
the hierarchy of equations for the moments of
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different order was obtained. If the electromag
netic fields are linear, this hierarchy degenerates
into independent subsystems for moments of one
order.

In this paper, on the basis of the method pro
posed in Ref. 8, a system of equations for mean
square dimensions of charged particle beams in
the linear electromagnetic fields is derived. The
influence of space charge of the beam is taken
into account. Effects connected with nonlinearity
of the forces acting on the particles are also con
sidered.

II. EQUATIONS OF MOTION

As in Ref. 8, we will obtain equations for the
mean-square beam dimensions in linear external
electromagnetic fields. For nonrelativistic parti
cle motion, the equations of motion can be ex
pressed in the following form:

dXi
- = v·dt I

+ biO(t) + F/(x, t), i = 1,2,3

where Xi, V i are the particle coordinates and ve
locities in a rectangular coordinate system, b ik,

a ik are square matrices; and FS(x, t) is the Lor
entz force of the beam electromagnetic field.

For sim.plification we will express the system
(1) in matrix form. Let us define a vector. Yin 6-
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dimensional phase space as matrIx. Int~gration in (6) is performed relative to
the phase volume occupied by particles (dy =
dx dv).

Let us form a block matrix from the second
order moments:Y= == (~), (2)

MIl = (M~x Mxv).
M xv M vv

(7)

where X, V, are vectors of particle coordinates
and velocities.

According to the system (1), the vector Y sat
isfies the matrix equation

The elements' of this block matrix are square
matrices. Thus, for example, M xx is the sym
metric matrix of the mean-square dimensions of
the beam:

If collisions are neglected, the distribution
function f satisfies the Liouville equation

Let us define the moments of the distribution
function over the total set of phase coordinates
as

(8)

(10)

(IIa)

(lIb)

M xx = (X - X)(X - X)*.

+ M vvQ * + F sv + F:v

dM vv - b M* b* Mdt - M xv + xv + Q vv

aM xx = M M*
xv + xv

dt

To derive Eq. (9) we take into account the con
sequence of Newton's third law, i.e.,

dM
I

= AMI + B
'dt 0

dM
Il

= AMII + MIlA"" (9)
dt

By using the definition of the matrix A and Eq.
(9), it is easy to obtain equations for the elements
of the matrix MIl.' .

From Eqs. (3), (5) we get the system of equations
for the moments (6). That is,

dM o
-=0·

dt '

(6)

(3)

(5)

(4)

df = 0
dt ·

dY
dt = A(t)Y + Bo(t) + F s

A(t) = (b~t) a{t»); Bo= (~o) ·

MO = Jjdy;

- 1 fM I = Y = MO Yj dy,

MIl = (Y - Y)(Y - Y)*

Here A(t) is a block matrix constructed from. the
matrices Q and b, I is the unit matrix, the notation
of Bois evident, and the vector F s is constructed
from the components of the Lorentz force.

1 f - -= M O (Y - Y)(Y - Y)*j dy,
dM xv M' b* F' * M *~ = M vv + xx + sx + xvQ , (lIe)

where the symbol ,'*', denotes the transposed where the matrices Fsx'l F sv are defined"
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according to Eqs. (2), (4) as

(Y - Y)F s * == (00 F:x)F:v

= (00 (X -'81F*)(V - V)F* . (12)

The system (11) will be closed if the elements
of the matrices F sx, F sv are expressed in terms
of second-order moments. If the self-fields are
linear, these expressions are .found easily6 and
give the dependence of the matrix b elements on
the mean-square dimensions. The problem of
self-fields will be discussed in detail in Section
II.

Let us consider for simplicity the case of a
beam with negligibly small self-fields. We intro-
duce a matrix J defined as '

(
db 1 )+ dt - lab M xx

(
db* 1 )

+ M -. - -,b*a*xx dt 2

(
1 2 1 da)+ b+-a ---.J
4 2 dt

, ( 1 2 1 da*)+J* b*+-a*---
4 2 dt .

(16)

The elements of this matrix are connected with
the mean angular momentum

By differentiatIng Eq. (15) and using Eq. (lIb),
we get

(17)1 (dMxx *' dMxx)+- --a -a--
2 dt dt

dJ.~ M b* bdt - xx - M xx

As can be concluded from Eqs. (lIe) and (14),
the matrix J satisfies the equation:

+ I(Ja* - aJ*)

The systems (16), .(17), in conjunction with in
itial conditions for the moments and Eqs., (8),
(11), taken at the initial moment of the time, solve
the problem.
. Note that in the case of low particle density
(when the self-fields of the bunch may be ne
glected), Eqs. (16, 17) are linear and do not de
pend on the distribution-function form. The same
result· was obtained in the one-dimensional case
in Ref. 8. In the two-dimensional case (infinite
in the beam direction) these equations are valid
in the presence of the beam self-fields for a wide
class of distribution functions f. For linear self
fields solutions of Eqs. (16, 17) give self-consis
tent oscillations of the beam.

(13)

(15)1 ( dMxxdMxx *)+- a--+--a
2 dt dt

+ l(aJ* + Ja*).

.j = ~o f [(x - i)(v - v)]fdy

.J = (-~~ _~: -l~). (14)

To eliminate the matrix M xv from the system
(11), we differentiate Eq. (1Ia) 'with respect to
time.

d
3
M xx _ (2b _la 2 + l da) dM xx

dt 3 - 4 2 dt dt

'dM xx (2b* 1 . *2 l'da*)
+---;j( , -"4 a +"2dt

III. TRANSVERSE MOTION

When the motions are separated; beam infinite
in one direction (X3 axis) can be considered, and
the moments (6) for the transverse motion can
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(18)

be constructed. The matrices M xx and J entering
the system (16, 17) will then be square matrices
of the second order and the derivative with re
spect to time is understood as

d a a
-=-+v -
dt at 0 aX3 '

d~~;; = g2 = _ (4V22 _ ;2) ih

- fa 2
g1 - a(v)2 + 3V22)g - 3ag

d 3M I2 d 3M 21
dt tX = dt/

x
=g = - 2(v. 2

+V2
2

- a 2
)g

The matrices a and b are expressed in the form

(26)

+2a(v22g2 - v 1
2g) (24)

+ ia(g2 - gl) - (V)2 - V2 2)J

dJ)2 _ dJ 21 .--- = J = (V)2 - V2 2)gdt - dt

-ia(gl + g2).

The oscillation frequencies 00 of the system (24)
are determined from the equation

002[004
- 4oo 2(v)2 + V2 2 + ( 2) + 16v)2v22]

[(002 - VI 2 - V2 2 - ( 2)2 -4V)2V2 2] = o. (25)

where N is the number of particles per unit beam
length, (MIl) -) is' the inverse of the matrix MIl,
IMIII is the determinant of the matrix MIl, a
prime denotes differentiation with respect to the
argument, and <I> is an arbitrary function

The solutions of Eq. (25) are real for real values
of the parameters v I , V 2, a. Consequently, the
system (24) determines the stable oscillations of
the mean-square dimensions of the beam. As will
be shown below, degeneration of the character
istic frequencies in the case v) = V2 = 0 does
not cause a linear increase of the oscillation am
plitude. Note that the first of the factors in the
square brackets generates double oscillation fre
quencies of a particle in the fields (19, 20).

The self-field is easily introduced into consid
eration in the case of beam with elliptic cross
section and uniform charge density (self-fields
are linear). Then the elements of matrices F sx and
F sv entering Eqs. (11) are expressed in terms of
second-order moments. These expressions are
valid fora wider class of distribution functions
f·

Let us define the distribution function f as

N

(21)

(22)

(20)

(23)

eH 3
a = 200L = --,

mc~o

a = a ( _ ~ ~); b = (: \ : 2) ·
The parameter a is equal to the cyclotron fre
quency

Here the elements v) and v 2 are the normal os
cillation frequencies in the potential (19).

In this case, the components of matrices M xx

and J satisfy the equations

d3M~~ ... (2 (2
).--;}t3 = g) = - 4v ) - 2 g)

-io. 2g 2 + a(v22 + 3v)2)g + 3ag

where e and m are the particle charge and mass,
respectively, c is the speed of the light in vacuum,
and 'Y 0 is the relativistic factor of longitudinal
motion.

Equations (16, 17) are invariant with respect
to a rotational transformation which diagonalizes
the matrix b. The matrix a does not change under
the transformation. For this reason, the matrix
b may be considered to be diagonal without lim
iting the general nature of the problem. That is,

b = _ (V 12 0)
O 2·

V2

where Vo is the longitudinal particle velocity. The
transverse particle motion is assumed to be non-
relativistic. .

Let us discuss the problem involving oscilla
tions of mean-square beam dimensions in a static
potential

U( ) b) 2 b2
X\,X2 = T X \ + bX\X2 + TX22 (19)

and in a stationary longitudinal. magnetic field
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satisfying the normalization condition:

L'" <I>(x) dx = 1. (27)

Turning back to the initial system of coordinates,
by using formulae (31, 32), we get an expression
for the matrix F sx

vc 2 M;~2
F sx = F:x = -3 S M I /2

'Yo P xx

= bSMxx = Mxxb s* (~3)

vc 2 M- I /2

b s xx
= -3 S M I /2 ·'Yo P xx

(28b)

In formula (33) the following designations have
been used: v = Nro is the Budker parameter,
ro = (e 2Imc 2), SpM;~2 is the trace of the
matrix M ~~2, and the matrix M~~ is

In accordance with Eq. (28a), the charge den
sity p at a fixed time is constant on ellipses with
centers at the point (i I , i 2) and rotated about
the axis x I by some angle 'P. Let us choose a new
system of coordinates (x I ' , X 2')

(29)

(34)

The expression for the matrix b S agrees with that
obtained in Ref. 6 in the case of linear self-fields.

By using formulas (28b) and (33) we find the
dependence of matrix F sv elements on the
second-order moments

In the primed system of coordinates the charge
density p is expressed in the form

This result may also be obtained by using the lin
ear approximation of the Lorentz force proposed
in Ref. 5

(30)

(31)

(36)

(37)

(38)

F = e(X·- X),

- F I S(x, t)]2fdx dv = min

D2 = ~ f [E21(XI - xd + E22(X2 - X2)

where the matrix e is a solution to the problem
of minimizing the following functionals at a fixed
time:

DI = ~ f [EII(XI - xd + Edx2 - X2)

It is straightforward to show that

(

XI'2 X2'2 )

= P dl2 + d
2

2 ,t ,

'E' N d 2
X2 2 = e d d·

I + 2

where d1.2 are the eigenvalues of the matrix M xx •

The case of beams with charge density (30) has
been considered in Ref. 5. It can be shown4

•
5 that

for the self electrical field E' of beams with such
density a valid relation which does not depen~

on the functional form of p is

'E' N d l
XI I = e d d;

I + 2

In accordance with the symmetry of the system By using formulae (36) and (38), an expression
for matrix F sv is easily found and coincides with
formula (35).
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(41)

+ [(VI +V2)gO + (VI - V2)JO]

x sin(vI +V2)t + [g °+ (VI + V2)2g 0]

X COS(VI - V2)t - [(VI - V2)gO

+ (VI + v2)JO]sin(vI - V2)t}

J = - V~ - V2 {[(VI + V2)gO + (VI - V2)JO]
VI V2

+ (VI + V2)JO] COS(VI - V2)t

+ .[g ° + (VI + V2)2g 0J sin(vI + V2)t}.

In formulae (41) and below .. the index "0" de
notes the initial value of the moments and its
derivatives.

The diagonal matrix elements g I , g 2 vary with
time according to a harmonic law with frequen
cies W 1,2 = 2v 1,2 and solutions coincide in form
with the general solution of the Vladimirsky-Kap
chinsky equation.3

The variation of element g and mean moment
Jwith time depends on the rotations of the elliptic
beam cross-section with respect to the coordinate
axes. These rotations represent oscillations with
combined frequencies W 3,4 = V I ± V 2. Indeed,
the matrix M xx has the form in the case of a beam
with uniform charge density and elliptic cross
section

(39)

IV. EXTERNAL FIELDS

where Do is the initial phase volume. In the· ab
sence of energy dissipation (Spa = 0) the effec
tive phase volume is an integral of the motion.
Thus the restriction of the distribution fUfiction
class in the form (26) leads to conservation of the
beam phase volume. An analogous result in the
case of azimuthally symmetric beams has been
obtained in Ref. 7.

D = Do exp 2LSpadt' , (40)

It follows from (33), (35) the influence of the
self-fields leads to the dependence of the matrix
b elements on the second-order moments:

where the matrix b ext is defined by the external
electric field (19).

Thus the system of equations of the second
order moments (11) with definition of the matrix
Fsx andFsv in accordance with formulae (33),
(35) does not depend on the distribution function
form in the class of functions (26). Consequently,
the equations for mean-square dimensions (16, 17)
with the formula (39) yield self-consistent oscil
lations of the beam dimensions for a wide class
of distribution functions.

The important characteristic of the system (11)
is the determinant D of the second-order moment
matrix MIl. The quantity defines the effective
phase volume of the beam. It can be shown6 that
determinant D changes in time as

, (42)

(, 1
2

- , 2 2) sin 2<p x

x , 1
2 sin2 <p + '22 cos2 <p

where '1,2 are the half-axes of the ellipse, and 'P
is the angle between the half-axes , I and axis x I .
The absence of rotation ('P = 0) means g == O.

In contrast to Ref. 3, the general solution of
Eqs. (24) in the case of a = 0 yields not only the

In this section we will consider some conse
quences of Eqs. (16, 17) in the special case of
external electromagnetic fields.

In the absence of an external longitudinal mag
netic field (a = 0), Eqs. (24) are simplified and
have solutions
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oscillations of the half-axes of the elliptic beam
boundary but also its rotation in the plane
(x I , X2).

Let us assume that the ellipse does not rotate
(g == 0). It is straightforward to show that Eqs.
(16, 17) are equivalent to the Vladimirsky-Kap
chinsky equations. Let's consider for example
the element g I. According to (16), it obeys the
equation

d-'gl 2agl aVI6.
dt 3 + 4vI "dt + 2g 1 dt = O. (43)

Considering the effect of the self-fields of the
beam (39), we get the Vladimirsky-Kapchinsky
equatIons

(48)

Eq. (43) coincides with the equation obtained in
Ref. 8 in the one-dimensional case.

Let us transform the dependent variable

(44)

Then

Now let us discuss oscillations of the beam
mean-square dimensions in a longitudinal mag
netic field (matrix b = 0). In this case, in ac
cordance with Eq. (25), the oscillation frequen
cies are degenerate, but this does not cause any
increase in oscillation amplitude. The general so
lution of the system (24) is

or

[
2 . ° g10J- - g + - cos at
0. 0.

2

g I [gI0+~~: + ~ (~20 + ~ go) J

+ [}a glo - Lg20 + ::J sin at

[
2' .. OJ- - gO +~ cos at
0. 0.

2

(45)

(47)

(46.1)

dE I
2

= 0
dt ·

According to Schwarz's inequality, the quantity
in brackets is positive. It is .straightforward to
show that

The constant E I is determined from the initial
conditions for the moments and Eqs. (8), (11),
taken at the initial time.

The constant E I for an arbitrary distribution
function is the analog of the phase volume con
tained in the Vladimirsky-Kapchinsky equations.
An expression for the square of the phase volume
which is analogous to formula (46.1) was obtained
in Refs. 4 and 5.

+ [ 4~g I0- 4~ if 20+ ::2] sin at

+ [~~: - ~~: + ;~J cos 2at (49)
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[

"0 "0 2 Jgl g2 . 0 ·+ - - - - - g .. sIn at
2a2 2a2 a

It is not difficult to see that the first of Eqs. (52)
coincides with Eq. (43) with a change of v 1

2 to
V 1

2 + a 2/4. For this reason, we have an equation
for the radius of the envelope R 2 = 4g I (for a
uniformly charged beam)

[

'·0 . 0 . oJg gl g2+ - + - - - cos at
a 2 a a

(53)

[
.. 0 .. 0 .OJgl g2 g .+ -- - _... - - sIn 2at
4a2 4a2 2a

[

.. 0 .. 0 • oJgl g2 g .
+ 4a2 - 4a2 + 2a cos 2at

The second of Eqs. (52) is the expression of the
conservation law of the canonical angular mo
mentum (Busch's theorem):

(54)

J - JO 1 (.. 0 + .. 0
- - 2a gl g2

1
+2a (g ,0 + g 2°) COS at.

Thus the mean-square dImensions ot the beam
in the longitudinal magnetic field oscillate with
frequencies 00 1 = a, 002 = 2a.

In the case of azimuthal symmetry (beam with
a circular cross section) from the system of Eqs.
(16, 17) an equation analogous to the Vladimir
sky-Kapchinsky equation may be obtained.7 For
a circular beam, we have

Indeed, in the case discussed the canonical mo
menta P 1,2 are

PI = VI - ooLX2; P 2 = VI + WLXI (55)

By introducing .Eq. (55) into Eq. (54) and aver
aging, we find

M 3 = J + ag I = const. (56)

For determination of the constant £3 in Eq.
(53) we use Eqs. (11), (15) and find

(57)

(60)

Q = ( cos $(t) sin $(t») (59)
- sin $(t) cos $(t) ·

where the matrix Q is

By representing formula (57) in the coordinate
system where the condition

It can be shown that the expression in brackets
is invariant with respect to rotation of the coor
dinate system

X = X + QX'; V = V + QX' + QV', (58)

(52)

(50)

(51)bind = ! da
2 dt'

By introducing formulae (50, 51) into the sys
tem (16, 17), we get two independent equations

and, as a consequence ot (50), v I = V2. In a vary
ing magnetic field it is necessary to take into ac
count the induction electric field. This field
makes an additional contribution to the matrix
b:
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is valid, it can be easily seen that the resulting
expression coincides with (46.1) and conse
quently is positive. By calculating the moments
in the coordinate systems (X, V) and (X', V'), we
find

(67)

(66)

where the emittance E is defined in accordance
with formula (46.1)

dv
2

2 2 2Q. n- = - Wo xv - ....,vx
dt

As in the previous sections, the bar in Eqs. (65)
designates averaging with distribution function
f. It follows from Eqs. (65) that the second
order moment is connected with the higher-order
moments x n + l

, vx n •

As in Section III, an equation for change with
time of the mean-square dimension r =W may
be derived

(61)

(62)

(XI - XI)(V2 - V2) = XI'V2' + ~XI'2

(x I - i 1)2 = X I '2.

To satisfy Eq. (60), we have

tj, = (x 1 - i d(V2 - V2) = -.!-
(X I - i I )2 2g I

Equation (53) in conjunction with formula (57)
yields stable nonlinear oscillations of the mean
square radius of the azimuthally symmetric
charged beam in a longitudinal magnetic field in
the vicinity of a stationary point which is

However, in this case E is a function of time. By
using the definition (67) we get from Eqs. (65)

dE 2 --dr2 2f3 dx n + 1

dt = J3x n
+

1 dt - r2 -;;+!d/' (68)

(64)

IV. NONLINEAR FIELDS

In this section effects connected with the nonlin
earity of the external electromagnetic field will
be considered in the case of a one-dimensional
problem.

Let us assume that in Lorentz force of an ex
ternal electromagnetic field, there is a nonline
arity xn , where n is an odd integer. The equations
ofa motion for particles in this case are expressed
in the form

dx
- = v
dt

dv
dt - -wo2x - f3x n

and for the second-order .moments we have the
system

dx 2


- = 2xv
dt

Accounting for the variation of emittance per
mits one to close the system (65) for the second
order moments, i.e., to obtain a closed system
of equations for the mean-square quantities. In
deed, let us solve Eq. (68) with respect to x n + 1

and introduce the resulting expression into Eq.
(66). We find

d 2r £2 f3
- + wo2r - - - -(n + l)r n + 1
dt2 r3 2

(69)

f t 1 dE2
-

X 0 J3r n + 3 dt' dt' + J3r n = 0,

where ~ = f3xon+l/ron+l, andxon+l, r02 = x02

are moments of the initial distribution function.
If the variation of emittance E can be ne

glected, then, according to Eq. (69), the mean
square dimension r satisfies the equation:

d 2r 2 E 2
-- + Wo r - - + f3r n = o. (70)

dt 2 r 3 .

In this case, a small static (d~ /dt = 0) nonline
arity results in a nonlinear shift of the oscillation
ft~equency. In the absence of the nonlinear term
(f3 = 0), the general solution of Eq. (70) can be
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expressed in the form

(,~r = VI + A 2 + A sin(2wot + Ip), (71)

Let us introduce the moments of the distribution
function

(72)

For a cubic nonlinearity (n = 3), calculation of
the integral in Eq. (72) gives the result

(80)

dI = 0
dt

dl\J = w(l)
dt

For the Liouville equation we get

+ . x(v ) sin 2W(Eo)t
W Eo

[
x 2

X 2 (1 + cos 2W(Eo)t)

d2M II7 + 4M1,{+] = 4E n ; n = 0, 1,2... (78)

+ 2W~(2EO) (l - cos 2W(EO)t)] dx dv, (79)

where f(x, v, t = 0) is the initial distribution func
tion.

This result may be obtained from the more gen
eral formula. In the case of a particle oscillation
in an arbitrary static potential, the ,equations of
motion in angle-action variables (\fJ, l) are

and the solution for the mean-square
dimension x 2 has the following form (see Appen
dix):

x 2 = Moll = ff:oc!(X, v, t = 0)

Here E is the integral of the system (74)

The moments M nIl and En satisfy the series of
equations

(74)

(73)

d 2x
dt 2 + W

2(Eo)X = 0

d;t
o

= :t (V
2

2

+ wo;X
2

) = o.

where r In - radius of matched beam. In the first
order of smallness of ~, the amplitude A and
phase 'P in Eq. (71) should be treated as slowly
varying functions which, according to the Kry
lov-Bogolyubov method,9 s~tisfy the equations

dA = 0
dt

dip = ~rm n-] 127r (1 VI + A 2 )

dt 271"wo 0 + A sin 'I'

x (VI + A 2 + A sin 'I')n-1/2 d'l'

Therefore, in addition to the nonlinear frequency
shift for one-particle oscillations, proportional to

'the square of the amplitude,9 there is a correction
for the frequency independent of the oscillation
amplitude.

In the case of a small static nonlinearity, it is
also possible to obtain an expression for the var
iation with time of the mean-square beam di
mension, taking into account the change in emit
tance of Eq. (67). In the first order of smallness
in respect to ~, according to Ref. 9, the equations
of motion (64) are equivalent to the system

For cubic nonlinearity, the dependence of the
frequency on energy is

3 ~Eo
W(Eo) = Wo + -4 -3 .

Wo
(75)

(81)

The solution of this equation is easily found to
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be

f(t) = f(I, tV - w(I)t) , (82)

wheref(I, tV) is the initial distribution function.
The average value of an arbitrary function A(I,

tV) is given by

Let us consider an initial distribution function
of the form

f(x, v, t = 0)

, =~ exp ( -~ (vo2 x2 -2xvoXv+ X0
2

V
2
))

27rEo 2Eo

A = f A(l, tj, + w(l)t)f(l, 1jI) dI dljl. (83)

Thus, we obtain the formula (79) by considering
elementary beams with transverse oscillation en
ergy Eo and averaging the resulting expression
with initial distribution function f.

In analogy to (79), it is possible to obtain an
expression for the change with time of the po
sition of the beam center of mass. For the mo
ments of the distribution function

M n
J = W

2n(Eo)X; n = 0, 1,2, ... , (84)

(88)

where the index "0" denotes the initial values
of the second-order moment, Eo is the initial
value of the effective phase volume (67). Let us
substitude expression (88) into (79) and perform
the integration, neglecting the inessential de
pendence of the frequency on energy in denom
inators in (79). We find the result

- - [ )2J- x0 2 v0 2 1 3 ~
x 2= - + --+ -{ 1 + (--x.1t

2 2w02 2 2 Wo

the series of equation

(90)

(89)

Here the notations are

-2
-2 Vo
Xo --

wo 2

cos 2qr = X. X.
2 - I

1 3 ~+ - arctan - - X. 2 I t
2 2 Wo .

(87)[
x 2 xv

x -(1 + cos 2wot) + - sin 2wot
2 Wo

v
2

]+ 2
w

o2 (1 - cos 2wot) dx dv dwo.

x [x cos W(Eo)t

+ _v_ sin W(EO)t] dx dv. (86)
W(Eo)

Similar expressions for variation with time of
i and x 2 may be obtained in the case of a circular
charged-particle beam in a linear external field,
with a distribution in angular frequency Wo. For
example, for the mean-square dimension x 2 we
will have

x2= fff:xf(X, v, wo, t =0)

is valid. The solution of the system (85) is found
in a manner such as that for Eqs. (78)

i = Mol = ff:xf(X, v, t = 0)



192

2 xVo

sin 2'1' = __w_o_
A2 - ~1
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quency spread

t ~ (:0 ~1,2) -I; 1
t~

~'
(94)

(95)

In the absenc~of nonlinearity (~ = 0), the
expression for x 2 coincides with the general so
lution of the Vladimirsky-Kapchinsky equation
(41). The constants ~ 1,2 are connected with the
maximum and minimum mean-square dimen
sions

these oscillations are damped and the niean
square dimension tends toward the limiting value

2 _ 1 (-2 V
02

) _ 1(-2- -'-2-.)x - - x 0 + 2 - 2 X max + X ,nln •
2 Wo

At times t ~ [(~/wo)A 1,2] -1, formula (89) de
scribes the oscillation of the mean-square dimen
sion with constant amplitude and frequency de
pendent on oscillation amplitude. For the almost
matched beam (A I ~ A2 ~ , m 2), the nonlinear
frequency shift a 1,2 does not depend on oscilla
tion amplitude and differs from formula (73) only
by the factor 3/2. Therefore, the Eq. (70) deriving
in the case of small emittance variation is valid
for time interval less than the inverse nonlinear
frequency shift..

In the case of a circular beam with a spread in
angular frequency, for an initial distribution func
tion

~ 1 + A2 = X ~ax + X ~in (91)

This result is valid for every initial distribution
function with finite second-order moments. In
dee~d, when t > 0, the terms dependent on time
in (79) are the sign-changed functions of the co
ordinates and velocities and the distance between
two zeros is Ax ~ (w o/~t) 1/2. If d is the charac
teristic length of the variation of the functionf(x,
v, t = 0), then for Ax ~ d corresponding integrals
in (79) are equal to zero and the damping time is
t ~ [(~/Wo)d2] -1.

If the position of the system center of mass is
not equal to zero at initial moment of the time,
then, as follows from (86), i oscillates with fre
quency W00 For longer time period, if the ine
qualities (94) are satisfied, these oscillations are
damped. In this case the variation of the beam
dimension with time is of particular interest

(96)

f(x, v, Wo, t = 0)

= N <I> (x, ~) e-(000 - ooo)212~2 , (92)
Thaw 0 Wo

the mean-square dimension varies with the time
as

Let us assume that at the initial time the condition

(97)

is satisfied. Then for longer time periods, the
dimension of the beam tends to the value

+ (X;2 _2:::2) cos 2w otJ .
As can be shown from formulae (89),j93), in both
cases the mean-square dimension x 2 oscillates
with the double frequency 2wo near the equilib-
rium value l(x0 2 + v0 2

/W0
2

) and with decreased
oscillation amplitude. At times greater than the
inverse nonlinear frequency shift or inverse fre-

-2 -2 [-2 Xo Vo -2~2t2 xVo ·x = - + - ..-.'-" + e -.-. sIn 2wot
2 2w02 Wo

(93)

(98)

where '0 is the initial beam dimension. The in
crease in beam dimension is connected with tran
sition of the energy of coherent oscillations into
the energy of incoherent motion because of the
external fields nonlinearity (or of the frequency
spread).

As mentioned earlier, the oscillation nonlIne
arity (frequency spread) leads to the infinite. se
ries of equations (65) for the distribution-function
moments. Nevertheless, this infinite system may
be reduced to one equation (69) for mean-square
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(99)

The particles occupy a region of effective area
E k on the phase plane. The full emittance change
is given by

2 2
2 000 )2 000 (-2- -2-)2

E k = 4 (A.) + A.2 = 4 X mllX + X 111 in •

(101)

(102)

2 ( -2)2= 00 0 -2- 1 _ X min

4 Xmllx 2·
X max

2
A 2 2 2 000 ( )2uE = E k - Eo = 4 A.I - A.2

From Eq. (100), the emittance E slowly in
creases from its initial value E 0

2 = x02v02 
(xvo)2 = oo02A. 1~ 2 and for a time period longer
than the iriverse nonlinear frequency shift tends
toward the value

This expression for the full emittance change is
valid also for a circular beam with frequency
spread.

Therefore the external-field nonlinearity (fre
quency spread) leads to emittance growth. This
growth increases with increase of the initial beam
mismatching X~lllx/X~in. This fact had been noted
in Refs. 4 and 11, where emittance growth caused
by beam self-fields nonlinearity had been ob
tained by numerical simulation of the beam trans
ported in a smooth focusing channel.

In conclusion of this section, we consider the
problem of the emittance growth caused by the
instantaneous change of the oscillation fre
quency. Let us assume that at some time a change

- XVoo(Eo) sin 2oo(Eo)t

V
2

]+ 2 (1 + cos 2oo(Eo)t) dx dv.

Calculation of the integrals in (99) with the initial
distribution function (88) gives the emittance var
iation with time

£2 = wt {(~I +~2)2

dimension if the beam emittance (67) is a known
function of the time. In the case of a small static
nonlinearity, the emittance variation may be eas
ily obtained. The moments entering the definition
(67) are found in accordance with the formulae

xv = JJ~oof(x, v, t = 0) [xv cos W(Eo)t

X2oo(Eo) .
- 2 sIn 2oo(Eo)t

+ 2;:0) sin 2W(EO)tJ dx dv

v2 = JJ~oof(x, v, t = 0)

1 +

of the oscillation frequency occurs and at the in
itial time the matched beam conditions (97) were
satisfied. This situation takes place in the use of
an electron ring for ion-acceleration several times
in electron ring accelerators. to When the ions are
lost 00

2 is represented by Eq. (103). If the time
period between two successive acceleration cy
cles is longer than inverse" nonlinear oscillation
frequency shift (or inverse electron frequency
spread) then for one acceleration cycle, the emit
tance E growth is given by

(103)

(104)

. A.2 2
+------

(
3 ~ )2--A.2t
2000
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t=O

APPENDIX

'(A.I)

p2 4 0 0
0 p2 4 0

....,
0 0 p2 (A.2)
Fo 4 0
F 1 p 2 4 0

F N 0 p 2

Then MIjp may be determined according to for-

Let us define the sequence of determinants of
(N + I)-order:

For the Laplace transform of moments MIjp we
get according to Eq. (78):

2M II 4M II 4e n
P np + n+IP = -

P

Accounting for the change of emittance permits
one to close the equations for the second order
moments, Le., to obtain closed equations for the
mean-square quantities. The law of variation of
emittance may be· applied from outside, partic
ularly on the basis of the solution of model prob
lems.

From the results obtained, it is concluded that,
during the time of the inverse nonlinear oscilla
tion frequency shift (inverse frequency spread in
the circular beam) the emittance may be consid
ered constant. For time periods much longer than
those considered, the effective emittance in
creases to a limiting value and this emittance
growth increases with increase of the initial beam
mismatching. During the same time period, the
oscillations of the beam center of mass decay
and, because of the energy transition from coh
erent into incoherent oscillations, the mean square
dimension increases. The full emittance growth
caused by instantaneous frequency changing is
also obtained.

The authors express their appreciation to G.
D. Shirkov for his assistance. and valuable dis
cussions during the study.

(105)

V. CONCLUSION

In conclusion, we summarize the basic results.
The system of equations for the mean-square
dimensions of the charged-particle bunched beams
was obtained by using the equations for the full
second-order moments of the distribution func
tion. If self-fields of the beam can be neglected,
the equations will be linear and will not depend
on the (orm of the distribution function of par
ticles in the beam. The effect of space charge will
be easily taken into account if the self-fields are
linear.

In the two-dimensional case (infinite in the
beam direction) the equations obtained are valid
not only for a beam with elliptical cross section
and uniform charge density (linear self-fields),
but for a wider class of distribution functions. In
this case the equations do not depend on distri
bution-function form in the presence of self
fields.

The equations derived permit a consideration
of the mean-square dimension oscillations of a
linear beam in a focusing potential and a longi
tudinal magnetic field by a unified approach.

In the absence of a longitudinal magnetic field,
the equations are equivalent to the Vladimirsky
Kapchinsky equations, provided that the elliptic
beam boundary does not rotate.

For the mean-square radius of a circular beam
in a longitudinal magnetic field, the equation co
incides with that obtained by Lee and Cooper
(particle collisions not taken into account).

The restriction of the distribution function
class does not allow us to account for the emit
tance changing caused by oscillation nonlinear
ity. The effects connected with a variation of
emittance were investigated with simple one-di
mensional problems with nonlinearity of the Lor
entz force of the external electromagnetic field.

This result follows from (102) when a~ w02 .

Therefore for k acceleration cycles the emittance
increases as

In this case 8 is proportional to the neutralization
factor in = ZN ;/Ne' where N e,; are the numbers
of electrons and ions and Z is the ion charge. For
in ~ .1, the emittance growth may be significant
and put a limit on the number oT acceleration
cycles.
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Calculation of the determinant D N is easily per
formed

Let us expand determinant D NO according to the
elements of the first column. We obtain in result:

expression and by performing an inverse Laplace
transformation, we obtain the final result:

(A.8)

Mo/J = II:",!(x, v, t = 0)

X [W2~O) (l - cos 2w(eo)t)

+ x 2 cos 2W(Eo)t

+ w~:o) sin 2W(e o)t] dx dv
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