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A geometry is proposed in which it may be possible to introduce electrons into ion beams within a linear-accelerator
structu~e. In th~ configuration, elec~rons ar~ c?ntr?lled by solenoidal magnetic fields of moderate intensity; the electron
flow gUI~·e.s th.e Ion beam electrostatically, ~hmlnatlng the need for direct magnetic focusing. Such systems may be capable
of con~alnlngIon beams at ~evels up to the kl10ampere range. Models are given for electron neutralization of ion beams over
short time scales, the focusIng properties and current transport limits for the electron-flow geometry, and the orbital stability
of beams.

I. INTRODUCTION

The potential application of ion accelerators to
inertial confinement fusionl~ has prompted con
sideration of methods of relaxing space-charge
limitations to ion-beam transport. In accelerators
with unneutralized beams, the most common ap
proach has been to overcome space-charge repul
sion by strong quadrupole magnetic lenses. Limits
on beam current in this case have been discussed by
Maschke.5 In the present paper, methods are sug
gested for introducing electrons into the ion beam
within an accelerator to produce almost complete
cancellation of space-charge forces. Moderate mag
netic fields limit the region accessible to electrons
while preventing backflow. The control of the elec
tron orbits results in the creation of strong electro
static confining forces. In this sense, the electrons
act as an amplifying intermediary so that the beam
can be contained by magnetic fields much smaller
than those needed to directly focus the ions. Such a
system would have a considerable cost advantage
over conventional focusing systems. A viable
method of electrostatic transport is particularly
attractive for heavy-ion accelerators.

The basis of electron neutralization on short time
scales and the general concept of the neutralized
linear accelerator are discussed in Section II. Sec
tion III introduces the method used to treat the
transverse-focusing problem. Effects of applied
magnetic fields, electrostatic confining fields, as
well as space-charge repulsion in the accelerating

tThis work was supported by the U.S. Department of Energy,
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gaps are included. The model is applied in Section
IV to find beam-transport limits, in Section V to
derive self-consistent transverse phase-space dis
tributions, and in Section VI to investigate beam
orbital stability. Practical considerations relating to
the geometry are discussed in Section VII.

II. ELECTRONS IN LINEAR ION
ACCELERATORS

Before considering the specific accelerator geo
metry, it is useful to present ideas on the electron
neutralization of ion beams. The process in field
free regions over long time scales is a familiar
phenomenon.6 Here, ionization of background gas
can act as an electron supply within the beam. The
advent of high-intensity pulsed ion sources7 has
brought about consideration of the time-dependent
neutralization problem. On nanosecond time scales,
background ionization will be negligible for good
vacuum. The simplest approach in this case is to
provide sources of free electrons on the boundaries
surrounding the vacuum region. These electrons can
rush inward, attracted by the positive space charge
at the approach of the pulsed ion beam or beam
bunch. The time dependence of electron flow from
boundaries into the ion beam volume has been
considered for parallel injection in field-free regions8

an~ for perpendicular injection in regions of mag
netIc fields transverse to the beam direction.9 In
general, it is found that electrons are attracted
inward during the rise of the ion-beam density. The
electron flux is limited mainly by space-charge
constriction. If the source is not too far from the ion-
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FIGURE 1 Transport of ions across a magnetic field with neutralization by electrons supplied from
surrounding conducting boundaries.

beam boundary, the light electron mass allows high
fluxes with relatively small residual space-charge
potentials. Equilibrium calculations of the process
in a geometry with one-dimensional symmetrylO
predict ineffective neutralization with a high central
potential. On the other hand, in time-dependent
cases with realistic geometry, the neutralizing elec
tron velocity distribution can become randomized.
In this case, electrons that have already entered the
ion-beam volume have little effect on others entering
from the source, so there is a continuous inward flux
that eventually depresses the potential to zero.

With this type of electron flow, it is possible for
ions to traverse magnetic fields strong enough to
confine the electrons, while still maintaining space
charge neutralization, as shown in Fig. 1. If elec
trons have access to all field lines occupied ·by the
beam, they can flow inward during the rise of the ion
density and leave with the passage of the beam. This
case has been studied with a time-dependent com
puter-simulation model. II The calculations confirm
the electron space-charge flow limit and the im
portance of electron velocity relaxation. In the
model, the boundaries (see Fig. 1) are assumed to
supply electrons to fulfill the Ey(O) = Ey(d) = 0
condition, the uniform ion density rises linearly with
time and then becomes constant, and the effects of
electron relaxation are introduced into the one
dimensional system by canting the magnetic fields at
a,small angle with respect to the boundaries. Typical
calculations treat a beam rising to n i = 10-12 cm-3 in
0.5 nsec, corresponding to a current density of the
order of kA/cm2 and an unneutralized central
potential of 250 kV. If the electrons are introduced,
but the system is symmetric (magnetic field lines
normal to the wall), the central potential reaches a

steady-state value of 40 kV. If the field lines are
canted so that electrons develop velocity compon
ents transverse to the field, the space-charge poten
tial is reduced to less than 1 per cent of the
unneutralized value within 1 nsec, and continues to
decrease. The theoretical models8

,9,11 as well as
experiments on intense pulsed ion beams in trans
verse magnetic fields 12,13 indicate that a good first
approximation for the neutralization process of low
f3 ion beams is to assume that beams (or bunches in
conventional accelerators) with rise times on the
order of a few nanoseconds or more are completely
neutralized in regions accessible to electrons from
boundary sources.

The system of Fig. 2 is proposed as a method of
utilizing rapid electron neutralization in the drift
tubes of a linear ion accelerator. The major dif
ferences from a conventional structure are the
presence of solenoidal magnetic fields, which make
cusps at the accelerating gaps and electron sources
at the tube entrances. The magnetic field must
prevent electron backflow in the accelerating gaps,
which is important for two reasons. First, the
backflow of electrons could constitute a power drain
and second, the loss ofelectrons from the drift tubes
would prevent the build-up of an adequate density
for neutralization. The major disadvantage of the
simple cusp fields compared to more complex
magnetic field geometries9 is the opening on the axis.
Ifattempts were made to neutralize a cylindrical ion
beam in the geometry of Fig. 2, there would be a
large electron leakage. On the other hand, if the ion
beam were annular in cross section, electrons could
be prevented from reaching the axis, eliminating the
problem. This can be accomplished by the selective
production of neutralizing electrons.
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FIGURE 2 Geometry for introducing neutralizing electrons into the drift tubes of a linear accelerator.
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Referring to Fig. 2, it is assumed that the walls of
the drift tube contain electron sources 14 on their
inner surfaces at the entrances. These electrons can
flow along field lines external to line f3. Lines
internal to this line (line 'Y, for instance) curve back
on the outside and connect to electrically unstressed
portions of the drift-tube support structure. Because
of the low electric fields and long vacuum paths,
electrons are not supplied on internal lines, even
under very high gap-field stress. This has been
verified experimentally in a similar geometry. 15 Ions
attempting to enter the region r < ri are unneutral
ized and build up a repulsive positive space charge.
Thus, the inner boundary of the annular ion beam
can be maintained by electrostatic repulsion. Con
tainment on the outer boundary can be either
magnetic (note that the magnetic field is equivalent
to a series of solenoidal lenses) or electrostatic. The
electrostatic option results if electron production is
inhibited on parts of the drift-tube inner surface
connecting to field lines external to line a. In this
case, neutralizing electrons controlled by relatively
weak magnetic fields define an annular region. Ions
are prevented from leaving this electron-flow annu
lus by their own space-charge forces. The situation
is unusual in that the ions can be contained by space
charge forces, rather than dispersed. (In Section III,
details of the formation of electrostatic sheaths will
be discussed.) The restoring forces that act on the

transverse beam dynamics are highly nonlinear. In
this paper the term focusing will be reserved for
linear elements, while the term containment will be
applied to the nonlinear ion-beam control of the
system of Fig. 2. It will be shown that the nonlinear
containment system does not preclude the pro
duction of beams of good quality which can then be
focused to a target by linear elements. 16

As has been mentioned, the cusped magnetic
fields not only channel electrons along the proper
annulus, but also prevent electron backflow in the
accelerating gaps. This allows high field stresses to
be applied in the gap. I? The available longitudinal
field gradient can be concentrated in a small fraction
of the accelerator length. This is important because
the ion beam will be unneutralized in the accel
erating gaps, so the relative amount of time it spends
there should be minimized. In Fig. 2, if the gap has
an average width d and the drift tube has length L,
then the neutralization of the beam in the drift tube
reduces the effects of space charge roughly a factor
of (d/L ).The minimum magnetic field necessary to
prevent electron backflow is called the critical
insulating field, B*. If 8 is the spacing of the drift
tubes at the point of maximum electric-field stress,
then B* is given approximately by

B* === (2 eVo/reyh (1 + eVo/2mec2)Y2/8, (1)

where Vois the applied voltage and re is the classical
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FIGURE 3 Critical insulating magnetic field in terms of gap spacing and applied
potential (parallel plate approximation).

electron radius. A plot of B* versus Vo for various
values of 8 is given in Fig. 3. It can be seen that
modest magnetic fields will provide insulation of
gaps even into the megavolt range.

III. EFFECTIVE TRANSVERSE
CONFINEMENT POTENTIALS

The exact treatment of ion orbits in the neutralized
system, including nonlinear confinement effects
from the electrostatic sheaths and the self-consistent
inclusion of beam space charge in the accelerating
gaps, is a difficult problem. A useful approximation
that provides a straightforward and general descrip
tion ofbeam dynamics is to average the confinement
forces over a number of drift tubes and accelerating
gaps. The average forces can then be integrated to
give effective confinement potential wells. In this
way, the various factors entering the problem can be
handled separately and then added to give a total
potential. In addition, the changing parallel velocity
of the ions does not enter into the problem except to
determine certain adiabatically changing para
meters such as beam density. Given the potentials,
self-consistent beam distributions can easily be

calculated. The validity of the approximation de
pends on two conditons: 1) the transverse oscillation
frequency of the ions is small compared with the
frequency of traversing gaps and 2) the periodic
application ofconfining forces does not couple to the
transverse oscillations to produce an orbital in
stability. The verification of these conditions will be
deferred to Sections IV and VI.

As an example of the method, the magnetic forces
acting on the ions from the applied solenoidal fields
will first be considered. It is assumed that d « L,
and that orbits through the lens array make small
angles with the axis. In other words, it is sufficient to
characterize the radial position of an ion in a
particular drift tube or gap by an average r; this is
equivalent to condition 1 above. By conservation of
angular momentum, the component of azimuthal
velocity in phase with the alternating direction of the
solenoidal field (which gives a net radi al deflection
when averaged over many drift tubes) is v() == ±
eBr/2 mic, where B is the solenoidal field within
the drift tube. The net radial force is then Fr ==
-e2B2r/4 m i c

2
• This is the v X B force minus the

centrifugal force, and is always directed inward. It
acts almost continuously, since the ions spend a
small fraction of their time in the acceleration gaps,
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where the field is radial. The effective magnetic
potential is then

The effective potential well is quadratic, as ex
pected' because solenoidal magnetic lenses are
linear focusing devices in the paraxial approxima
tion. Note that there is no dependence on the
longitudinal velocity in Eq. (2), so the treatment of
transverse orbits in this potential is independent of
the acceleration process.

In a similar way, the formation of an electrostatic
sheath at r = ri , as the transverse energy of the ions
causes them to penetrate the region forbidden to
electrons, can be considered. An exact sheath
solution would depend on the specific ion-energy
distribution. Such a solution is not imperative, since
it is generally true that the sheath will be thin
compared with the beam annular thickness. In
calculating ion orbits, it can be regarded as a
reflecting surface. To estimate the sheath dimen
sion, it is assumed that there is a uniform beam
density ni at ri which is shifted inward a distance ~p
as shown in Fig. 4(a). At the same time, extra
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FIGURE 4 Electrostatic sheath fonnation at edges of electron annulus. a) Inner
boundary. b) Outer boundary.
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with no dependence on ion mass as long as there is
sufficient ion density (see Section IV). For heavier
ions and moderate magnetic fields, the contribution
of magnetic fields to the effective potential can
become small. In this case, the radial potential well
approaches a square well and the main purpose of
the magnetic field is to channel electrons along the
appropriate annulus.

Because of the irregular geometry of the accel
erating gaps, it is difficult to treat this region exactly.
Inste~d, general scaling laws will be derived to gain
a rough estimate ofresidual space-charge effects. As
the ion beam proceeds towards an accelerating gap,
at some point the accompanying electrons will exit
along magnetic-field lines. This occurs at the posi
tion where the repulsion of electrons by the applied
field in the gap exceeds the attraction ofthe positive
ion space charge. (A discussion of this effect is given
in Ref. 9.) The ions will thus be unneutralized until
they cross the gap to pick up electrons from the next
drift tube. The unneutralized portion of the beam's
travel is characterized by an effective gap distance

UT == (e2B2/8 m 1c
2

) (r2
- 2 r; + r0

2
), r < r i (4)

UT == (e2B 2/8 m ic
2

) (r2
- r;), r > rio

The sheath has been assumed to be thin, and UT

taken as 0 at rio The total depth ofthe well (and hence
ro) is determined by the transverse beam energy.
Note that the restoring forces are highly nonlinear
and thus there is no unique transverse oscillation
frequency. For a given maximum radius (rw), the
magnetic-field energy density must be increased in
proportion to the ion mass in order to confine beams
having the same transverse energy. Thus for heavier
ions magnetic confinement using solenoidal lenses
becomes impractical. A better option is to suppress
electron emission along field lines having r > roin the
solenoid to produce an electrostatic sheath at r == ro.
The behavior of the effective potential in this case is
shown in Fig. 5(b). The height of the sheath
potential rises to match the beam transverse energy,

In terms ofthe effective potential model, Ue (max) ==
e¢max. The height of the sheath potential rises to
reflect all ions, so that Ue (max) ~ EB~, whereEB~ is
the transverse beam energy, determined by either
the initial injection conditions or by space-charge
effects in the accelerating gaps. For the case of an
electrostatic sheath on the outer boundary of the
beam (r == ro in Fig. 2), similar considerations apply
although the electron behavior differs somewhat.
The ions are shifted to slightly larger radii, de
creasing the average ion density in the beam. In
order to preserve an equipotential along field lines,
electrons flow inward to match this lowered density.
This gives zero net charge for r ::; ro, and a net
positive charge outside roo The external sheath is
illustrated in Fig. 4(b).

In the case of electron emission on all field lines
connecting to the inner drift-tube wall, there will be
an electrostatic sheath at r == ri only, and the external
confinement is magnetic. Adding the two effects
gives the effective potential well shown in Fig. 5(a),
of the form

electrons have been drawn out on the field-line f3 to
make Er == 0 within the beam volume. It will be
shown in Section IV that these electrons are con
fined closely to the field line compared to the sheath
thickness. With this condition, typical curves for the
radial electric field and electrostatic potential are
shown in Fig. 4(a). The height of the electrostatic
potential is approximately

¢max ~ 2 rren i ~p2. (3)
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d. Ifit is assumed that the transverse components of
the accelerating electric field have positive and
negative components that approximately cancel as
the beam traverses the gap, then the increase in
beam transverse energy is caused mainly by space
charge repulsion. The space-charge distribution of
Fig. 6 can be used to estimate this process. The
magnetic field flux surfaces that define electron flow
upstream and downstream can be taken as con
ductors. In the case of a thin annulus with ~r « ri ,

~r « d, and uniform ion density, the conducting
boundaries can be neglected. The space-charge
potential across the minor dimension approximately
obeys the one-dimensional equation d2¢/dp 2 =
4 rreni• The quantity ¢ is given by ¢ = ¢max 
4 rreniP

2/2, where ¢max = rreni~r2/2. When ~r "'-' d
(a thin accelerating gap), the conducting boundaries
are important, shorting out space-charge contri
butions to the potential except within a distance of
the order of d from the edges of the beam. In this
case, the potential averaged across the gap has a
maximum of ¢max "'-' rren/d2/2. In the typical case
(see Fig. 2), d will be ofthe order of~r. Ifthis is true,
a geometric scaling factor a of the order ofunity can
be introduced so that the average maximum space
charge in an accelerating gap can be written

¢max = arrenid
2/2. (5)

The scaling factor accounts for boundary con
ditions and the finite length of the unneutralized part

p

of the beam. The depth of the space-charge con
tribution to the effective potential is then

Note the (d/L) factor. In the average model, there is
no dependence on longitudinal velocity. This comes
about because the space-charge forces act over a
time interval (d/vz) with frequency Iz = (vz/L), so
that the vz factor cancels.

A typical total potential well is shown in Fig. 7.
Some qualitative observations can be made based
on a general knowledge of particle oscillations in
potential wells. 1) When space charge is negligible
and magnetic confinement is used, the depth of the
potential well must be on the order of the beam
transverse energy, which will probably be deter
mined by injection conditions and the confinement
properties of the magnetic lenses. 2) In the case of
predominantly electrostatic focusing, the beam
boundaries are determined by the magnetic-field
geometry and the location of electron sources. The
height of the electrostatic sheath potential rises to
reflect the ions. 3) When gap space charge is signif
icant, the periodic repulsive forces will increase the
beam transverse energy above the injection energy.
After many gaps, the beam will fill in the effective
potential well and acquire an equilibrium transverse
energy ofE B-1 "'-' E B-1 (Injection) + Usc (max). These
considerations will be applied in Section IV to

Ion
beam

FIGURE 6 Geometric parameters relating to ion beam space-charge effects in an accelerating gap.
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FIGURE 7 Total effective potential confining well (Ur ), with contributions from magnetic fields (UM),
electrostatic sheaths (UE) and accelerating gap space-charge effects (Usc),

estimate beam transport limits and other param
eters.

Usc (max), given by Eq. (6). When this is substituted
into Eq. (3), it is found that

IV. BEAM TRANSPORT LIMITS

Before considering factors that limit the transport of
current in neutralized linear accelerators, typical
values for a number of relevant physical parameters
will be calculated. The first example is the sheath
thickness ~p determined by Eq. (3). Fig. 8 gives a
plot of ion-beam density as a function of current
density and energy per nucleon. Typical beam
densities might range between ni == 1010 cm-3 and
1012 cm-3

• The sheath thickness is given as ~p ==
(EBl./2' rre2nJY2, where EBl. is the transverse beam
energy. The quantity EB~ is determined by either the
initial injection conditions or by space-charge re
pulsion in the accelerating gaps, as discussed in
Section III. In the first case, EBl. is given by EBl. e::
E BOLl(}02, where E BO is the longitudinal energy at
injection and ~(}o is the initial divergence. For
example, with a I-MeV injector and a half-angle of
divergence of 2 0

, the perpendicular energy is 1200
eVe With this figure and a minimum density of 1010

cm-3
, the sheath thickness is about 1 mm, small

compared to beam dimensions that would typically
be a few centimeters. For the case of beam trans
verse energy determined by space-charge repulsion,
the transverse energy can be taken as E Bl. "-'

(7)

Since in practical cases d « Land d :S rb , the sheath
will be thin compared to the beam dimensions.

The magnetic fields that control the electron
motion must satisfy two requirements. First, they
must provide sufficient magnetic insulation of the
accelerating gaps to prevent losses ofelectrons from
the drift tubes. As shown in Fig. 3, fields on the order
of a few kilogauss should suffice. Second, the fields
must be strong enough in the drift tubes to confine
electrons to less than an electrostatic sheath thick
ness in order for the model of a sharp boundary to be
valid. In the case of a uniform electric field per
pendicular to a magnetic field, a single-particle o~bit

estimate shows that a zero-energy electron enterIng
the electric field region is confined within a distance

DB == 2 rge == 2 mecvdleB == 2 mec(cE/B)leB, (8)

by the magnetic field. Here Vd is the ~ X B d:ift
velocity. The condition for the magnetIc excursIon
DB to equal the sheath thickness Llp will b~ derived.
In this case, the electric field can be approxImated as
¢max/DB, using ¢max from Eq. (3). By substitution, it
is found that DB ::; Llp when

B2/8 rr 2: n im ec2I4. (9)
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FIGURE 8 Ion beam density as a function of current density Ui) and energy per nucleon (EB/A).

As an example, when n i == 1012 cm-3
, thenB must be

greater than 2.3 kG to satisfy Eq. (9). Thus fields of
a few kilogauss can confine electrons in the drift
tubes even for high ion densities.

In systems with magnetic confinement, there is a
limit to the transverse beam energy that can be
handled. If the beam energy results mainly from the
injection process,- the limit can be written

EBO~()i < (e 2B 2/8 mic
2

) r;, (10)

where rw is the radius ofthe physical boundary ofthe
drift tube. For example, if rw = 10 cm, Bz = 10 kG
and E BO = 1 MeV, then for proton transport the
initial divergence must be less than 19°. For the
same parameters using N+, the divergence must be
less than 50. Thus for light and intermediate ions the
initial perpendicular energy does not present much
problem. A more stringent constraint on magnetic
confinement using solenoidal lenses arises from the
effects of gap space charge. A beam limit can

A
be

estimated by setting Um (max) (= e2B 2r:;/8mic2
)

equal to Usc (max) [see Eq. (6).]. This gives the
approximate condition

B is plotted in Fig. 9 as a function of ani for various
ion species. With protons, magnetic confinement
can be quite effective. Beam densities up to
1012 cm-3 can be accomodated with fields on the
order of 10 kG. For example, with (d/L) == 0.05,
a = 1, and (d/rw ) == 0.2, thenB > 6.1 kG. This rises
to 23 kG for N+.

In systems with electrostatic confinement, ex
tremely high currents can be transported ifthere is no
limit on beam divergence. Specifying a maximum
beam (or transverse energy) sets an upper limit on
current, as explained in Section III. For instance, it
might be necessary to produce a focal spot of radius
~ a distanceD from a final focusing lens. In this case,
the final beam divergence must be ~()f :S ~/D.

The transverse beam energy is E B~()}' where E Bf is
the final longitudinal energy. This quantity must be
of the order of Usc (max). In order to relate this to a
current limit, it is useful to rewrite Usc (max) as
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FIGURE 9 Magnetic field requirements for the magnetic confinement of space-charge limited beams in tenns of
beam density.

where Usc (max) andEs are in eV andlin amps. The
total beam current has been taken as I =
enivz (2 rrrb~r). The limit on beam current set by
space-charge effects and a divergence requirement
is then

I < (6.2 X 10-6
) Es~f)} (EBIA)Y2 (Lid) (rbld)la.

(12)

The following example is appropriate to a fusion
application.4 If it is necessary to- focus on a
0.5-cm radius pellet from a distance of 4 m, then the
final divergence angle must be on the order of 1.25 X
10-3 radians. If EBJis 1 GeV, (EEIA) at the point of
interest is 10 MeV per nucleon;.(dIL) = 0.05 and
(dlrb ) = 0.25, then the current limit would be about
2.5 kA. In theory, it is possible to transport large
currents through nonlinear transport elements while
still maintaining good beam quality.

The final matter to be considered is the validity of
the effective potential model with respect to the
magnitude of the transverse-oscillation frequency
compared with the frequency oftraversing gaps. The
gap traversal frequency, h, characterizes the time
scale of variations in the transverse forces and is

given by Jz = vzlL. In the nonlinear potential wells
considered, there is no unique radial-oscillation
frequency, but an average can be taken as ir =
vrI2/),.r. In terms of the local divergence angle,
~f) = vrlvz, the conditionJz » f,. holds if

/),.f) « (2 /),.rIL). (13)

As an example, consider /),.r = 2.5 cm and L -=
100 cm. The ~f) should be less than 3°. This could
be satisfied at injection and almost certainly is
satisfied in latter stages of the accelerator where the
divergence has been reduced by longitudinal ac
celeration.

V. SELF-CONSISTENT TRANSVERSE
BEAM DISTRIBUTIONS

An important problem related to the nonlinear
transport elements of the neutralized linear
accelerator geometry is the existence and choice of
equilibrium transverse phase-space distributions. If
the beam has such an equilibrium, it will propagate
without change in cross section. Calculated dis-
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tributions can indicate the optimum injection con
ditions to minimize beam oscillations. As has been
pointed out, the longitudinal velocity does not enter
into the transverse problem directly, but rather
determines parameters such as the local value of
space-charge fields, particle mass in the case of
relativistic particles, and so forth. If these param
eters vary slowly compared with the transverse
oscillation frequency, the beam transverse distri
bution will change adiabatically and proceed
through a series of approximate equilibria.

U sing the effective-potential model, it is possible
to compute steady-state beam distributions even in
the case where the beam determines the potential
variation. Given the externally applied components
ofthe effective potential and a law to relate potential
to the beam density, there is a straightforward
method for computing the self-consistent density
distribution. 18 This is most easily done in the case of
particles oscillating in a one-dimensional potential
well that increases monotonically from a minimum
point. The velocity distribution will vary as a
function of position. A more convenient quantity is
the flux distribution measured at the point of min
imum potential. The flux distribution F is defined as

F(vpo)dvpo = !VPO' (14)

where! is the fraction of total number of particles
having vPO in dvpo at Po and UrlPo) = O. Considering
one group of particles, if the distribution is in a
steady state, then the flux of these at any point must
be equal either to the flux at Po (if the particle is
energetic enough to reach the point) or to zero if the
point lies beyond the particles' turning point. Thus
these particles make a contribution to the local
density of

dn(p) = noF'(vpo)dvpolvp if UT(p) - mivp~/2, .(15)

or dn(p) = 0 if UrlP) > mivp6/2,

where no = n(po). Noting that vp= (vp~ - 2 UTlmJ Y
\

we can write the total density as a function of UT' as

Two examples of this calculation will be treated:
1) the distribution in a magnetic focusing system
with negligible space-charge effects and 2) the
distribution with negligible magnetic confinement
with the inclusion of space-charge effects. A thin
annulus approximation will be used so that var
iations are one-dimensional in p. If this were not the
case, a lip term would have to be introduced into
Eq. (16), and the density could not be expressed
solely in terms of UT. The choice of flux distribution
is somewhat arbitrary, so a distribution will be used
that represents a randomized collection of particles
and gives a closed-form solution to Eq. (16). If
! = 3 [1 - (v plv PO (max) ]2dvPO (max) and
~ mivpo {max) = U (max), then the density is found
to be

n(UT ) = (1 _ UT ) 3/2 . ( 17)
no UTmax

For the case of magnetic confinement with a sharp
electrostatic inner boundary, the potential can be
written as in Eq. (4). This can be combined with the
distribution of Eq. (17) to yield the spatial density
plotted in Fig. 10.

With space-charge effects included, the ion den
sity determines the repulsive contribution to the
effective potential (see Fig. 7). Ifmagnetic effects on
the ion orbits are small, the applied effective po
tential will be approximately a square well, as in Fig.
5(b). The height ofthe well is determined by the total
beam transverse energy, and for non-ideal injection
will generally be higher than Usc (max). In the case
of a thin annular beam (d » ~r), the space-charge
part of the effective potential will be related to the
density approximately through Poisson's equation,
d2Uscldp2= - A [n(UT)lno], where A is a parameter
to be adjusted to meet the boundary conditions. In
the case of the square well, there are no applied
potential variations across the region occupied by
the beam, so in this region it is possible to write for
UT

The integration is taken over all particles that can
reach the point where the potential is equal to UT.

Given n( UT) combined with a functional relation
ship to give UT in terms of n(p), the problem can be
solved self-consistently.

n(U)T
----

d2 [UTIUT (max)]= _ _ A_ ~ _ UT ] 3/2

dp2 (~rI2)2 L UT (max)

(18)

For various choices of UT (p = O)IUT (max), this
equation can be solved with A adjusted to satisfy the
boundary conditions Uy{p = 0) = Usc (max) and
dUTldp = 0 at p = 0, and UT = 0 at p = ±~rI2.

In this case, there are two points of minimum
potential. But since the well is symmetric, particles
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FIGURE 10 Example of self-consistent density distribution for ions confined in a magnetic well with
negligible space-charge effects.
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FIGURE 11 Self-consistent density distributions for electrostatically confined ions with gap space-charge effects
included. Usc (max)/UT (max) is the ratio of the depth of the effective space-charge potential well to the total
transverse beam energy.

crossing the midplane can be considered to be
reflected, and hence it is sufficient to deal with one
class of particles occupying half the well. In the
general case ofnon-symmetric wells with more than

one minima, the problem becomes more complex
because there may be a number ofdifferent groups of
trapped and untrapped particles relative to the
various minima. Figure 11 shows self-consistent



TRANSPORT OF IONS IN LINEAR ACCELERATORS 119

tranverse-density variations for the square well with
space-charge effects. As the space-charge potential
Usc (max) rises with respect to the total beam
energy, the density profile is hollowed. An alterna
tive approach to the problem with application to the
choice of injection parameters would be to assume a
beam profile (uniform, for instance), which would
determine an effective potential. Then, the above
process could be inverted to find the appropriate
beam-velocity distribution that should be approx
imated at injection.

The two examples treated could be approached
analytically because of the ~particularly simple ge
ometries. Real cases will be complicated by finite
width annuli, magnetic-field effects, and electron
flow dynamics on each side of the accelerating gap.
Presently, such cases with realistic geometries are
being studied by numerical-simulation methods.

VI. TRANSVERSE ION ORBITS

In this section, the validity of the effective potential
model will be investigated by the numerical compu
tation of ion orbits. In particular, it will be shown
that as/z becomes much greater than};., the ion orbits
will approach those predicted by a continuous
effective potential, even though the force may be
applied periodically for a brief instant (as in the case
of the gap space-charge forces). It will also be seen
in the model chosen that because of the high non
linearity ofthe effective potential wells, there is little
unstable coupling of the periodically applied forces
to the transverse oscillations.

In order to simplify the calculations, the applied
potential will be taken in the form of a square well of
width ~r [see Fig. 5(b)]. Since the ions sample this
well for the majority of the time, periodic variations
in the applied fields will be neglected. Such vari
ations appear mainly in the accelerating-gap space
charge forces, which are assumed to act instantan
eously with a frequency Iz. The effect of the space
charge forces in the paraxial approximation is to
give an ion a transverse velocity deflection ovp as it
crosses the gap of width d; the velocity deflection
will be a function of position [see Fig. 12(a)]. In
order to relate this to the physical parameters
already introduced, the electrostatic potential in the
gap (averaged over the length d) is approximated by
the expression

¢sc(p) ~ ¢sc (max) [1 - (2 pi~r)2].

The average transverse force on an ion will then be
F=:; - [(dldp) (e¢ )]. The velocity deflection is given

by oVp =:; (Flm i ) (dlvz ) and it can be written as

ovp(p) == [OVO 2P J, (19)
Vz Vz ~r

where ovolvz =:; (2 LI~r) Usc (max)/(m iv;/2). Here
e¢sc (max) has been expressed as Usc (max) (Lid) in
order to relate these calculations to the effective
potential model. A typical ion orbit is shown in Fig.
12(a). The main information of interest is the
behavior of the radial velocity vp with time. The
positions p and z are not important except to
calculate the velocity deflections. The problem can
be simplified by neglecting the reflections from the
applied potential. In other words, an equivalent
problem results from removing the reflecting bound
aries and lining up an infinite sequence of gap
potentials in p with period ~r. The transverse
position variable is defined as x =:; vp*dt, where
vp* is the radial velocity neglecting reflections at the
boundary (although there may be reflections at the
midplane). The form of the velocity changes is
shown in Fig. 12(b). The velocity is modified every
time interval ~tz =:; (Llvz) according to the velocity
change at the position x. A uniform Vz is assumed.
With a changing vz , the transverse-velocity problem
is unchanged in the effective-potential limit
ifr/lz « 1) since the deflection ofEq. (19) scales as
1Ivz and the number of deflections per time interval
is proportional to vz.

If X n and vpn are the transverse position and
velocity just before the nth accelerating gap, then
these quantities are advanced by the equations

X n+1 =:; X n + Vpn+l (L/vz ), (20)

_ 0 (FRAC (xn/~r) - ~r12 ) .
vpn+1 - vpn + vpo ~r

Here FRAC indicates the fractional part of the
expression. Using the dimensionless variables
Xn =:; xn/~r, and V pn =:; vpnlvz , the equations can be
recast as

X n+1 =:; X n + yVpn+b (21)

Vpn+1 =:; Vpn + {3[FRAC (Xn) - Y2],

where y =:; (LI~r) and {3 =:; ovolvz • These equations
can be easily solved numerically. Typical solutions
are shown in Fig. 13. The parameter y has been
taken equal to 20. Using Eq. (19), it can be shown
that the parameter {3 scales as {3 ~[1/y ifrl/z)]2.
Thus low values of {3 better fulfill the validity
conditions for the equivalent-potential models. In
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FIGURE 12 a) Simplified geometric model for calculation of ion orbits. Reflections
from inner and outer sheaths with instantaneous space-charge deflections at the
accelerating gaps. b) Form for computing acceleration gap deflections using the
variable x that allows neglect of sheath reflections.

the runs shown, the particle has been started at
p = 0, with an initial velocity vpo chosen so that the
effects of the space-charge forces will be strong, but
the particle is not trapped on one side of the
potential. In the first example [Fig. 13(a)], the
choice of parameters makes!,. ~ 1z14. In this case,
the effective-potential model conditions are not
satisfied. There is little correlation of the deflec
tions, so that they occur in a random manner. The
behavior of the transverse velocity is diffusive. The
variation following Gap 27 is interesting in that it
appears that the deflections have come into reso
nance with the longitudinal frequency. There is an
increase in the average transverse velocity, but the
instability rapidly quenches. This is a favorable
property of the highly nonlinear confining forces; a
change in the transverse velocity caused by a

resonance will change the transverse-oscillation
frequency to decouple the particle. Resonance ef
fects act mainly to increase the velocity diffusion
rate and do not cause exponentiating instabilities.
As the parameters are changed to bring the orbits
closer to the conditions for the effective potential
model ifr « i), the deflections become more
correlated, diffusion effects rapidly decrease, and
resonant effects become smaller (because the
higher-order resonances would have to act over
many radial oscillations to produce a significant
change). Effects of increasing ilf,. are shown in
Fig. 13(b) and (c). In the third case, a well-defined
periodic orbit results with a change in the velocity
about 0.8 that predicted by the effective-potential
model. Thus the model appears to give a good first
order approximation of transverse orbits.
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FIGURE 13 Results of particle orbit models. Plots of vp versus gap number. Particles initiated with X = 0.5 (p = 0)
at O. a) y = 20, f3 = 0.01, Vpo = 0.01, b) y = 20, f3 = 0.0025, vpo = 0.005, c) y = 20, f3 = 0.001, vpo = 0.0031.
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VII. PRACTICAL ASPECTS

The electron-annulus geometry may be able to
accelerate and transport ion beams of a variety of
masses with current levels in the range from amperes
to kiloamperes. A number ofpractical aspects ofthe
configuration that may affect its application will be
discussed in this section. One of these is the
complication of the simple space-charge neutral
ization behavior when the ion beam has high (EBIA).
As the ion beam fills a drift tube, electrons from the
upstream electron source must flow with the head of
the beam; therefore, as discussed in Ref. 8, the beam
must assume a potential with respect to the source of
at least EB(melm i ) in order to accelerate the elec
trons to the beam velocity. For ion-beam fusion
parameters (EBIA 1"'0./ 10 to 25 MeV), this ptobably
would not be a severe problem, because the electron
energy need only be 5 to 10 keV at the end of the
accelerator. The beam could be at this potential with
respect to the wall, in which case the electrostatic
sheath would have to increase somewhat to counter
act the additional radial electric field, or the source
could be referenced to a negative potential with
respect to the rest of the drift tube. In any case, for
beams exceeding hundreds of amperes, there is
enough positive space-charge density to pull elec
trons into the beam volume. For low currents or high
beam velocities, this may not be the case. In
conventional accelerators, the area of applicability
of this means of neutralization would possibly be
limited to the 10w-f3 regime. Computer studies are
underway to better understand the electron behavior
at an accelerating gap in order to make more
definitive statements on these limits.

A second area that may pose problems is that of
the stability of the electron annulus. In a macro
scopic sense, the ion-electron plasmoid in the drift
tube is in a region of minimum magnetic field,19 so
that large-scale deformations would not be ex
pected. On the other hand, microscopic instabilities
could be important if they produced electron dif
fusion, which would increase the size of the electron
annulus. This would provide an upper limit to the
ion-beam pulse length that could be confined. The
instabilities would have to occur very rapidly to
affect adversely typical pulsed beams or beam
bunches (:S 50 nsec). Current experiments have
demonstrated the existence ofstable electron clouds
over microsecond time scales for field stresses
exceeding 200 kV/cm. 20

,21

In order to have a controllable longitudinal ac
celeration of the beam, it is important that the

presence ofthe neutralizing electrons does not affect
the charge state ofthe ions. In other words, the mean
free path for ionization must be greater than the
length of the accelerator. An exact determination of
the ionization probability would depend on the
relative velocities of the ions and electrons. The
energy of the electrons with respect to the ion beam
will probably be on the order of E B (melm;), which
may vary from hundreds of electron volts to many
keY. At any rate, the cross section should be less
than 10-16 cm2 for injected ions, and will decrease
with energy. Typical beam densities at injection are
less than 1012 cm-3

• Thus, the mean free path for
ionization of the injected ion beam is greater than
100 m. This allows sufficient distance to accelerate
the beam to a point where the cross-section and
density decrease make the probability of ionization
negligible.

In conventional accelerators with linear focusing
elements and space-charge effects, it is possible to
tune the focusing to approximately balance the
space-charge forces. In terms of the effective
potential model, the focusing and space-charge
potentials have the same shape but opposite polar
ity, so that a net zero well can be obtained. In such a
system, space-charge repulsion does not greatly
increase the beam's transverse energy. The con
fining well need only be deep enough to handle the
initial transverse energy. In the electron-annulus
geometry, such a balance cannot be obtained be
cause of the nonlinear forces involved. Space
charge effects on the beam transverse energy are
inevitable; these effects are minimized through the
use of electron neutralization. Even though some
increase in the transverse energy is unavoidable,
there are benefits to be gained from a nonlinear
confinement system. For example, it need not be
tuned. The sheaths that are set up adjust auto
matically to changing beam parameters. There is
also the advantage that particles in the nonlinear
confining wells may not be subject to orbital in
stabilities since there is no unique oscillation fre
quency_ Particles leave a resonance with a pertur
bation by gaining or losing transverse energy.

At the expense of locating electron sources and
coils for moderate magnetic fields in appropriate
areas on the drift-tube structures, important advan
tages may be gained. There is the possibility of
reducing complex and costly magnetic focusing
elements. In addition, there is the fact that large
currents, possibly orders of magnitude higher than
those set by space-charge limitations, could be
accelerated and transported. In the case where beam
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quality can be relaxed, extremely high currents are
possible using electrostatic confinement of the
beam. This may make it possible to build medium
energy, very high flux machines for industrial or
medical applications.
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