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A geometry is proposed in which it may be possible to introduce electrons into ion beams within a linear-accelerator
structure. In the configuration, electrons are controlled by solenoidal magnetic fields of moderate intensity; the electron
flow guides the ion beam electrostatically, eliminating the need for direct magnetic focusing. Such systems may be capable
of containing ion beams at levels up to the kiloampere range. Models are given for electron neutralization of ion beams over
short time scales, the focusing properties and current transport limits for the electron-flow geometry, and the orbital stability

of beams.

I. INTRODUCTION

The potential application of ion accelerators to
inertial confinement fusion'™ has prompted con-
sideration of methods of relaxing space-charge
limitations to ion-beam transport. In accelerators
with unneutralized beams, the most common ap-
proach has been to overcome space-charge repul-
sion by strong quadrupole magnetic lenses. Limits
on beam current in this case have been discussed by
Maschke.® In the present paper, methods are sug-
gested for introducing electrons into the ion beam
within an accelerator to produce almost complete
cancellation of space-charge forces. Moderate mag-
netic fields limit the region accessible to electrons
while preventing backflow. The control of the elec-
tron orbits results in the creation of strong electro-
static confining forces. In this sense, the electrons
act as an amplifying intermediary so that the beam
can be contained by magnetic fields much smaller
than those needed to directly focus the ions. Such a
system would have a considerable cost advantage
over conventional focusing systems. A viable
method of electrostatic transport is particularly
attractive for heavy-ion accelerators.

The basis of electron neutralization on short time
scales and the general concept of the neutralized
linear accelerator are discussed in Section II. Sec-
tion III introduces the method used to treat the
transverse-focusing problem. Effects of applied
magnetic fields, electrostatic confining fields, as
well as space-charge repulsion in the accelerating
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gaps are included. The model is applied in Section
IV to find beam-transport limits, in Section V to
derive self-consistent transverse phase-space dis-
tributions, and in Section VI to investigate beam
orbital stability. Practical considerations relating to
the geometry are discussed in Section VII.

II. ELECTRONS IN LINEAR ION
ACCELERATORS

Before considering the specific accelerator geo-
metry, it is useful to present ideas on the electron
neutralization of ion beams. The process in field-
free regions over long time scales is a familiar
phenomenon.® Here, ionization of background gas
can act as an electron supply within the beam. The
advent of high-intensity pulsed ion sources’ has
brought about consideration of the time-dependent
neutralization problem. On nanosecond time scales,
background ionization will be negligible for good
vacuum. The simplest approach in this case is to
provide sources of free electrons on the boundaries
surrounding the vacuum region. These electrons can
rush inward, attracted by the positive space charge
at the approach of the pulsed ion beam or beam
bunch. The time dependence of electron flow from
boundaries into the ion beam volume has been
considered for parallel injection in field-free regions®
and for perpendicular injection in regions of mag-
netic fields transverse to the beam direction.’ In
general, it is found that electrons are attracted
inward during the rise of the ion-beam density. The
electron flux is limited mainly by space-charge
constriction. If the source is not too far from the ion-
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FIGURE 1 Transport of ions across a magnetic field with neutralization by electrons supplied from

surrounding conducting boundaries.

beam boundary, the light electron mass allows high
fluxes with relatively small residual space-charge
potentials. Equilibrium calculations of the process
in a geometry with one-dimensional symmetry'®
predict ineffective neutralization with a high central
potential. On the other hand, in time-dependent
cases with realistic geometry, the neutralizing elec-
tron velocity distribution can become randomized.
In this case, electrons that have already entered the
ion-beam volume have little effect on others entering
from the source, so there is a continuous inward flux
that eventually depresses the potential to zero.
With this type of electron flow, it is possible for
ions to traverse magnetic fields strong enough to
confine the electrons, while still maintaining space-
charge neutralization, as shown in Fig. 1. If elec-
trons have access to all field lines occupied by the
beam, they can flow inward during the rise of the ion
density and leave with the passage of the beam. This
case has been studied with a time-dependent com-
puter-simulation model."" The calculations confirm
the electron space-charge flow limit and the im-
portance of electron velocity relaxation. In the
model, the boundaries (see Fig. 1) are assumed to
supply electrons to fulfill the £,(0) = E(d) = 0
condition, the uniform ion density rises linearly with
time and then becomes constant, and the effects of
electron relaxation are introduced into the one-
dimensional system by canting the magnetic fields at
asmall angle with respect to the boundaries. Typical
calculations treat a beam risington, = 102 cm ™ in
0.5 nsec, corresponding to a current density of the
order of kA/cm? and an unneutralized central
potential of 250 kV. If the electrons are introduced,
but the system is symmetric (magnetic field lines
normal to the wall), the central potential reaches a

steady-state value of 40 kV. If the field lines are
canted so that electrons develop velocity compon-
ents transverse to the field, the space-charge poten-
tial is reduced to less than 1 per cent of the
unneutralized value within 1 nsec, and continues to
decrease. The theoretical models®”!' as well as
experiments on intense pulsed ion beams in trans-
verse magnetic fields'>'? indicate that a good first
approximation for the neutralization process of low-
B ion beams is to assume that beams (or bunches in
conventional accelerators) with rise times on the
order of a few nanoseconds or more are completely
neutralized in regions accessible to electrons from
boundary sources.

The system of Fig. 2 is proposed as a method of
utilizing rapid electron neutralization in the drift
tubes of a linear ion accelerator. The major dif-
ferences from a conventional structure are the
presence of solenoidal magnetic fields, which make
cusps at the accelerating gaps and electron sources
at the tube entrances. The magnetic field must
prevent electron backflow in the accelerating gaps,
which is important for two reasons. First, the
backflow of electrons could constitute a power drain
and second, the loss of electrons from the drift tubes
would prevent the build-up of an adequate density
for neutralization. The major disadvantage of the
simple cusp fields compared to more complex
magnetic field geometries is the opening on the axis.
If attempts were made to neutralize a cylindrical ion
beam in the geometry of Fig. 2, there would be a
large electron leakage. On the other hand, if the ion
beam were annular in cross section, electrons could
be prevented from reaching the axis, eliminating the
problem. This can be accomplished by the selective
production of neutralizing electrons.
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FIGURE 2 Geometry for introducing neutralizing electrons into the drift tubes of a linear accelerator.

Referring to Fig. 2, it is assumed that the walls of
the drift tube contain electron sources'® on their
inner surfaces at the entrances. These electrons can
flow along field lines external to line S. Lines
internal to this line (line vy, for instance) curve back
on the outside and connect to electrically unstressed
portions of the drift-tube support structure. Because
of the low electric fields and long vacuum paths,
electrons are not supplied on internal lines, even
under very high gap-field stress. This has been
verified experimentally in a similar geometry.'® Ions
attempting to enter the region r < r; are unneutral-
ized and build up a repulsive positive space charge.
Thus, the inner boundary of the annular ion beam
can be maintained by electrostatic repulsion. Con-
tainment on the outer boundary can be either
magnetic (note that the magnetic field is equivalent
to a series of solenoidal lenses) or electrostatic. The
electrostatic option results if electron production is
inhibited on parts of the drift-tube inner surface
connecting to field lines external to line a. In this
case, neutralizing electrons controlled by relatively
weak magnetic fields define an annular region. Ions
are prevented from leaving this electron-flow annu-
lus by their own space-charge forces. The situation
is unusual in that the ions can be contained by space-
charge forces, rather than dispersed. (In Section III,
details of the formation of electrostatic sheaths will
be discussed.) The restoring forces that act on the

transverse beam dynamics are highly nonlinear. In
this paper the term focusing will be reserved for
linear elements, while the term containment will be
applied to the nonlinear ion-beam control of the
system of Fig. 2. It will be shown that the nonlinear
containment system does not preclude the pro-
duction of beams of good quality which can then be
focused to a target by linear elements.'®

As has been mentioned, the cusped magnetic
fields not only channel electrons along the proper
annulus, but also prevent electron backflow in the
accelerating gaps. This allows high field stresses to
be applied in the gap.!” The available longitudinal
field gradient can be concentrated in a small fraction
of the accelerator length. This is important because
the ion beam will be unneutralized in the accel-
erating gaps, so the relative amount of time it spends
there should be minimized. In Fig. 2, if the gap has
an average width d and the drift tube has length L,
then the neutralization of the beam in the drift tube
reduces the effects of space charge roughly a factor
of (d/L). The minimum magnetic field necessary to
prevent electron backflow is called the critical
insulating field, B*. If § is the spacing of the drift
tubes at the point of maximum electric-field stress,
then B* is given approximately by

B* = (2 eVy/r.): (1 + eVy/2m,cH)?/8, (1)

where V) is the applied voltage and r, is the classical
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FIGURE 3 Critical insulating magnetic field in terms of gap spacing and applied

potential (parallel plate approximation).

electron radius. A plot of B* versus V,, for various
values of & is given in Fig. 3. It can be seen that
modest magnetic fields will provide insulation of
gaps even into the megavolt range.

III. EFFECTIVE TRANSVERSE
CONFINEMENT POTENTIALS

The exact treatment of ion orbits in the neutralized
system, including nonlinear confinement effects
from the electrostatic sheaths and the self-consistent
inclusion of beam space charge in the accelerating
gaps, is a difficult problem. A useful approximation
that provides a straightforward and general descrip-
tion of beam dynamics is to average the confinement
forces over a number of drift tubes and accelerating
gaps. The average forces can then be integrated to
give effective confinement potential wells. In this
way, the various factors entering the problem can be
handled separately and then added to give a total
potential. In addition, the changing parallel velocity
of the ions does not enter into the problem except to
determine certain adiabatically changing para-
meters such as beam density. Given the potentials,
self-consistent beam distributions can easily be

calculated. The validity of the approximation de-
pends on two conditons: 1) the transverse oscillation
frequency of the ions is small compared with the
frequency of traversing gaps and 2) the periodic
application of confining forces does not couple to the
transverse oscillations to produce an orbital in-
stability. The verification of these conditions will be
deferred to Sections IV and VI.

As an example of the method, the magnetic forces
acting on the ions from the applied solenoidal fields
will first be considered. It is assumed thatd << L,
and that orbits through the lens array make small
angles with the axis. In other words, itis sufficient to
characterize the radial position of an ion in a
particular drift tube or gap by an average r; this is
equivalent to condition 1 above. By conservation of
angular momentum, the component of azimuthal
velocity in phase with the alternating direction of the
solenoidal field (which gives a net radial deflection
when averaged over many drift tubes) is vy = *
eBr/2 mc, where B is the solenoidal field within
the drift tube. The net radial force is then F, =
—e’B*r/4 m,c*. This is the v X B force minus the
centrifugal force, and is always directed inward. It
acts almost continuously, since the ions spend a
small fraction of their time in the acceleration gaps,
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where the field is radial. The effective magnetic
potential is then

U, = —[ F,dr = &Br’/8 mc* (ergs). (2)

The effective potential well is quadratic, as ex-
pected, because solenoidal magnetic lenses are
linear focusing devices in the paraxial approxima-
tion. Note that there is no dependence on the
longitudinal velocity in Eq. (2), so the treatment of

transverse orbits in this potential is independent of
the acceleration process.

a)

Sheath
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In a similar way, the formation of an electrostatic
sheath at r = r,, as the transverse energy of the ions
causes them to penetrate the region forbidden to
electrons, can be considered. An exact sheath
solution would depend on the specific ion-energy
distribution. Such a solution is not imperative, since
it is generally true that the sheath will be thin
compared with the beam annular thickness. In
calculating ion orbits, it can be regarded as a
reflecting surface. To estimate the sheath dimen-
sion, it is assumed that there is a uniform beam
density n; at r; which is shifted inward a distance Ap
as shown in Fig. 4(a). At the same time, extra

b) Beam
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FIGURE 4 Electrostatic sheath formation at edges of electron annulus. a) Inner

boundary. b) Outer boundary.
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electrons have been drawn out on the field-line f to
make E, = 0 within the beam volume. It will be
shown in Section IV that these electrons are con-
fined closely to the field line compared to the sheath
thickness. With this condition, typical curves for the
radial electric field and electrostatic potential are
shown in Fig. 4(a). The height of the electrostatic
potential is approximately

¢max = 2 Tren,- AP2 (3)

In terms of the effective potential model, U, (max) =
ed..x- The height of the sheath potential rises to
reflect all ions, so that U, (max) ~ E,, where E, is
the transverse beam energy, determined by either
the initial injection conditions or by space-charge
effects in the accelerating gaps. For the case of an
electrostatic sheath on the outer boundary of the
beam (r = r, in Fig. 2), similar considerations apply
although the electron behavior differs somewhat.
The ions are shifted to slightly larger radii, de-
creasing the average ion density in the beam. In
order to preserve an equipotential along field lines,
electrons flow inward to match this lowered density.
This gives zero net charge for r < r,, and a net
positive charge outside r,. The external sheath is
illustrated in Fig. 4(b).

In the case of electron emission on all field lines
connecting to the inner drift-tube wall, there will be
an electrostatic sheath at» =r,only, and the external
confinement is magnetic. Adding the two effects
gives the effective potential well shown in Fig. 5(a),
of the form

Ur=B/8mc) (P —2r2+rd), r<r, (4)
Ur= (e’B*/8 mc?) (¥ — r2), r > r.

The sheath has been assumed to be thin, and U;
taken as 0 at 7. The total depth of the well (and hence
ro) is determined by the transverse beam energy.
Note that the restoring forces are highly nonlinear
and thus there is no unique transverse oscillation
frequency. For a given maximum radius (r,), the
magnetic-field energy density must be increased in
proportion to the ion mass in order to confine beams
having the same transverse energy. Thus for heavier
ions magnetic confinement using solenoidal lenses
becomes impractical. A better option is to suppress
electron emission along field lines having 7 > ryin the
solenoid to produce an electrostatic sheath at r = r,,
The behavior of the effective potential in this case is
shown in Fig. 5(b). The height of the sheath
potential rises to match the beam transverse energy,

a) 4

FIGURE 5 Forms of effective potential wells with magnetic
and electrostatic sheath effects. a) Strong magnetic effects with
complete neutralization for > r;. b) Weak magnetic effects with
both external and internal sheaths.

with no dependence on ion mass as long as there is
sufficient ion density (see Section IV). For heavier
ions and moderate magnetic fields, the contribution
of magnetic fields to the effective potential can
become small. In this case, the radial potential well
approaches a square well and the main purpose of
the magnetic field is to channel electrons along the
appropriate annulus.

Because of the irregular geometry of the accel-
erating gaps, it is difficult to treat this region exactly.
Instead, general scaling laws will be derived to gain
arough estimate of residual space-charge effects. As
the ion beam proceeds towards an accelerating gap,
at some point the accompanying electrons will exit
along magnetic-field lines. This occurs at the posi-
tion where the repulsion of electrons by the applied
field in the gap exceeds the attraction of the positive-
ion space charge. (A discussion of this effect is given
in Ref. 9.) The ions will thus be unneutralized until
they cross the gap to pick up electrons from the next
drift tube. The unneutralized portion of the beam’s
travel is characterized by an effective gap distance
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d. If it is assumed that the transverse components of
the accelerating electric field have positive and
negative components that approximately cancel as
the beam traverses the gap, then the increase in
beam transverse energy is caused mainly by space-
charge repulsion. The space-charge distribution of
Fig. 6 can be used to estimate this process. The
magnetic field flux surfaces that define electron flow
upstream and downstream can be taken as con-
ductors. In the case of a thin annulus with Ar << r;,
Ar < d, and uniform ion density, the conducting
boundaries can be neg]ected The space-charge
potential across the minor dimension approx1mately
obeys the one-dimensional equatlon d*¢/dp?

4 men,. The quantity ¢ is given by ¢ = ¢ —
4 rren,pz/2, where ¢,,,, = men,Ar’*/2. When Ar ~ d
(a thin accelerating gap), the conducting boundaries
are important, shorting out space-charge contri-
butions to the potential except within a distance of
the order of d from the edges of the beam. In this
case, the potential averaged across the gap has a
maximum of ¢,,, ~ mend’/2. In the typical case
(see Fig. 2), d will be of the order of Ar. If this is true,
a geometric scaling factor « of the order of unity can
be introduced so that the average maximum space
charge in an accelerating gap can be written

Doy = amen;d*/2. (5

The scaling factor accounts for boundary con-
ditions and the finite length of the unneutralized part

of the beam. The depth of the space-charge con-
tribution to the effective potential is then

U, (max) = (an/2) e’nd* (d/L). (6)
Note the (d/L) factor. In the average model, there is
no dependence on longitudinal velocity. This comes
about because the space-charge forces act over a
time interval (d/v,) with frequency f, = (v,/L), so
that the v, factor cancels.

A typical total potential well is shown in Fig. 7.
Some qualitative observations can be made based
on a general knowledge of particle oscillations in
potential wells. 1) When space charge is negligible
and magnetic confinement is used, the depth of the
potential well must be on the order of the beam
transverse energy, which will probably be deter-
mined by injection conditions and the confinement
properties of the magnetic lenses. 2) In the case of
predominantly electrostatic focusing, the beam
boundaries are determined by the magnetic-field
geometry and the location of electron sources. The
height of the electrostatic sheath potential rises to
reflect the ions. 3) When gap space charge is signif-
icant, the periodic repulsive forces will increase the
beam transverse energy above the injection energy.
After many gaps, the beam will fill in the effective
potential well and acquire an equilibrium transverse
energy of Ez, ~ Ej, (Injection) + U, (max). These
considerations will be applied in Section IV to
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FIGURE 6 Geometric parameters relating to ion beam space-charge effects in an accelerating gap.
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(ergs)

FIGURE 7 Total effective potential confining well (Ur), with contributions from magnetic fields (Uy,),
electrostatic sheaths (Ug) and accelerating gap space-charge effects (U,,).

estimate beam transport limits and other param-
eters.

IV. BEAM TRANSPORT LIMITS

Before considering factors that limit the transport of
current in neutralized linear accelerators, typical
values for a number of relevant physical parameters
will be calculated. The first example is the sheath
thickness Ap determined by Eq. (3). Fig. 8 gives a
plot of ion-beam density as a function of current
density and energy per nucleon. Typical beam
densities might range between n, = 10'° cm™ and
102 cm ™. The sheath thickness is given as Ap =
(E./2 me’n;)”, where Ej, is the transverse beam
energy. The quantity E;, is determined by either the
initial injection conditions or by space-charge re-
pulsion in the accelerating gaps, as discussed in
Section III. In the first case, Eg, is given by E, =
EzoA8¢, where Eg, is the longitudinal energy at
injection and A#f, is the initial divergence. For
example, with a 1-MeV injector and a half-angle of
divergence of 2°, the perpendicular energy is 1200
eV. With this figure and a minimum density of 10"
cm?, the sheath thickness is about 1 mm, small
compared to beam dimensions that would typically
be a few centimeters. For the case of beam trans-
verse energy determined by space-charge repulsion,
the transverse energy can be taken as E,, ~

U,. (max), given by Eq. (6). When this is substituted
into Eq. (3), it is found that

Ap = Y% d (d/L)". (7

Since in practical casesd << L and d < r,, the sheath
will be thin compared to the beam dimensions.
The magnetic fields that control the electron
motion must satisfy two requirements. First, they
must provide sufficient magnetic insulation of the
accelerating gaps to prevent losses of electrons from
the drift tubes. As shown in Fig. 3, fields on the order
of a few kilogauss should suffice. Second, the fields
must be strong enough in the drift tubes to confine
electrons to less than an electrostatic sheath thick-
ness in order for the model of a sharp boundary to be
valid. In the case of a uniform electric field per-
pendicular to a magnetic field, a single-particle orbit
estimate shows that a zero-energy electron entering
the electric field region is confined within a distance

85 =2r,=2myev,/eB=2myc(cE/B)/eB, (8)

by the magnetic field. Here v, is the £ X B drift
velocity. The condition for the magnetic excursion
85 to equal the sheath thickness Ap will be derived.
In this case, the electric field can be approximated as
Drax/ O 5, USIng P, from Eq. (3). By substitution, it
is found that 6; < Ap when

B*/8 m > nym,c*/4. 9)
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FIGURE 8 Ion beam density as a function of current density (j;) and energy per nucleon (Ep/4).

As an example, when n, = 10'2cm™>, then B must be
greater than 2.3 kG to satisfy Eq. (9). Thus fields of
a few kilogauss can confine electrons in the drift
tubes even for high ion densities.

In systems with magnetic confinement, there is a
limit to the transverse beam energy that can be
handled. If the beam energy results mainly from the
injection process, the limit can be written

Ep o A8¢ < (e*B*/8 mc?) r2, (10)

where r,, is the radius of the physical boundary of the
drift tube. For example, if r, = 10 cm, B, = 10 kG
and Ez, = 1 MeV, then for proton transport the
initial divergence must be less than 19°. For the
same parameters using N*, the divergence must be
less than 5°. Thus for light and intermediate ions the
initial perpendicular energy does not present much
problem. A more stringent constraint on magnetic
confinement using solenoidal lenses arises from the
effects of gap space charge. A beam limit can _be
estimated by setting U,, (max) (= e’B%r,}/8m'c?)
equal to U, (max) [see Eq. (6)]. This gives the
approximate condition

BY/8 m > Yanmge?® (d/L) d/r,)’. (11)

B is plotted in Fig. 9 as a function of an, for various
ion species. With protons, magnetic confinement
can be quite effective. Beam densities up to
10> cm™* can be accomodated with fields on the
order of 10 kG. For example, with (d/L) = 0.05,
a=1,and (d/r,)=0.2,then B> 6.1 kG. This rises
to 23 kG for N™,

In systems with electrostatic confinement, ex-
tremely high currents can be transported if there is no
limit on beam divergence. Specifying a maximum
beam (or transverse energy) sets an upper limit on
current, as explained in Section III. For instance, it
might be necessary to produce a focal spot of radius
Ax adistance D from a final focusing lens. In this case,
the final beam divergence must be Afl, < Ax/D.
The transverse beam energy is E5 A6}, where Eis
the final longitudinal energy. This quantity must be
of the order of U, (max). In order to relate this to a
current limit, it is useful to rewrite U, (max) as

U,. (max) = (1.6 X 10°) al(d/L) (d/r,)/(Es/A)",
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FIGURE 9 Magnetic field requirements for the magnetic confinement of space-charge limited beams in terms of

beam density.

where U, (max) and E are in eV and / in amps. The
total beam current has been taken as I =
eny, (2 mryAr). The limit on beam current set by
space-charge effects and a divergence requirement
is then

1< (6.2 X 1079 EgA0? (Ey/A)* (L/d) (r,/d)/a.
(12)

The following example is appropriate to a fusion
application.* If it is necessary to focus on a
0.5-cm radius pellet from a distance of 4 m, then the
final divergence angle must be on the order of 1.25 X
107° radians. If E is 1 GeV, (E3/A) at the point of
interest is 10 MeV per nucleon, (d/L) = 0.05 and
(d/r,) = 0.25, then the current limit would be about
2.5 kA. In theory, it is possible to transport large
currents through nonlinear transport elements while
still maintaining good beam quality.

The final matter to be considered is the validity of
the effective potential model with respect to the
magnitude of the transverse-oscillation frequency
compared with the frequency of traversing gaps. The
gap traversal frequency, f,, characterizes the time
scale of variations in the transverse forces and is

given by f, = v,/L. In the nonlinear potential wells
considered, there is no unique radial-oscillation
frequency, but an average can be taken as f, =
v,/2Ar. In terms of the local divergence angle,
A6 = v,/v,, the condition f, >> f, holds if

Af < (2 Ar/L). (13)

As an example, consider Ar = 2.5 cm and L =
100 cm. The A#f should be less than 3°. This could
be satisfied at injection and almost certainly is
satisfied in latter stages of the accelerator where the
divergence has been reduced by longitudinal ac-
celeration.

V. SELF-CONSISTENT TRANSVERSE
BEAM DISTRIBUTIONS

An important problem related to the nonlinear
transport elements of the neutralized linear-
accelerator geometry is the existence and choice of
equilibrium transverse phase-space distributions. If
the beam has such an equilibrium, it will propagate
without change in cross section. Calculated dis-
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tributions can indicate the optimum injection con-
ditions to minimize beam oscillations. As has been
pointed out, the longitudinal velocity does not enter
into the transverse problem directly, but rather
determines parameters such as the local value of
space-charge fields, particle mass in the case of
relativistic particles, and so forth. If these param-
eters vary slowly compared with the transverse
oscillation frequency, the beam transverse distri-
bution will change adiabatically and proceed
through a series of approximate equilibria.

Using the effective-potential model, it is possible
to compute steady-state beam distributions even in
the case where the beam determines the potential
variation. Given the externally applied components
of the effective potential and a law to relate potential
to the beam density, there is a straightforward
method for computing the self-consistent density
distribution.'® This is most easily done in the case of
particles oscillating in a one-dimensional potential
well that increases monotonically from a minimum
point. The velocity distribution will vary as a
function of position. A more convenient quantity is
the flux distribution measured at the point of min-
imum potential. The flux distribution F is defined as

F(v,))av,, = fi,, (14)

where f'is the fraction of total number of particles
having v, indv,, at p, and U{(p,) = 0. Considering
one group of particles, if the distribution is in a
steady state, then the flux of these at any point must
be equal either to the flux at p, (if the particle is
energetic enough to reach the point) or to zero if the
point lies beyond the particles’ turning point. Thus
these particles make a contribution to the local
density of

dn(p) = noF (v, ))dv, /v, if Ur(p) - mv,2/2, (15)

or dn(p) = 0 if Up) > mp,3/2,

where n = n(p,). Noting thatv, = (v,. —2 Up/m,)",
we can write the total density as a function of Uy, as

v, (max)
I’Z(U)T _ PO F(va) dvpo . (16)
e A T
Hy . (v,0 — 2 Ur/my)
2 Ug/my)

The integration is taken over all particles that can
reach the point where the potential is equal to U;.
Given n(U;) combined with a functional relation-
ship to give U in terms of n{p), the problem can be
solved self-consistently.

Two examples of this calculation will be treated:
1) the distribution in a magnetic focusing system
with negligible space-charge effects and 2) the
distribution with negligible magnetic confinement
with the inclusion of space-charge effects. A thin-
annulus approximation will be used so that var-
iations are one-dimensional in p. If this were not the
case, a 1/p term would have to be introduced into
Eg. (16), and the density could not be expressed
solely in terms of U. The choice of flux distribution
is somewhat arbitrary, so a distribution will be used
that represents a randomized collection of particles
and gives a closed-form solution to Eq. (16). If
f =311 — (v,/v,, (max))’dv,, (max) and
% my,, (max) = U (max), then the density is found

to be
372
Un) _ <1— Ur. > .an

g UT max

For the case of magnetic confinement with a sharp
electrostatic inner boundary, the potential can be
written as in Eq. (4). This can be combined with the
distribution of Eq. (17) to yield the spatial density
plotted in Fig. 10.

With space-charge effects inciuded, the ion den-
sity determines the repulsive contribution to the
effective potential (see Fig. 7). If magnetic effects on
the ion orbits are small, the applied effective po-
tential will be approximately a square well, as in Fig.
5(b). The height of the well is determined by the total
beam transverse energy, and for non-ideal injection
will generally be higher than U,, (max). In the case
of a thin annular beam (d > Ar), the space-charge
part of the effective potential will be related to the
density approximately through Poisson’s equation,
d*U,./dp* = — A [n(Uy)/n,), where 4 is a parameter
to be adjusted to meet the boundary conditions. In
the case of the square well, there are no applied-
potential variations across the region occupied by
the beam, so in this region it is possible to write for
Ur

d* (Uy/Uy (max)]= 4 [1 B U, ] 32
dp? (Ar/2) Uy (max)d
(18)

For various choices of U (o = 0)/U; (max), this
equation can be solved with A adjusted to satisfy the
boundary conditions U{p = 0) = U,, (max) and
dU;/dp =0 atp =0, and U; = 0 at p = £Ar/2.
In this case, there are two points of minimum
potential. But since the well is symmetric, particles
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FIGURE 10 Example of self-consistent density distribution for ions confined in a magnetic well with

negligible space-charge effects.
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FIGURE 11

Self-consistent density distributions for electrostatically confined ions with gap space-charge effects

included. Uy, (max)/Ur (max) is the ratio of the depth of the effective space-charge potential well to the total

transverse beam energy.

crossing the midplane can be considered to be
reflected, and hence it is sufficient to deal with one
class of particles occupying half the well. In the
general case of non-symmetric wells with more than

one minima, the problem becomes more complex
because there may be a number of different groups of
trapped and untrapped particles relative to the
various minima. Figure 11 shows self-consistent
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tranverse-density variations for the square well with
space-charge effects. As the space-charge potential
U,. (max) rises with respect to the total beam
energy, the density profile is hollowed. An alterna-
tive approach to the problem with application to the
choice of injection parameters would be to assume a
beam profile (uniform, for instance), which would
determine an effective potential. Then, the above
process could be inverted to find the appropriate
beam-velocity distribution that should be approx-
imated at injection.

The two examples treated could be approached
analytically because of the particularly simple ge-
ometries. Real cases will be complicated by finite-
width annuli, magnetic-field effects, and electron-
flow dynamics on each side of the accelerating gap.
Presently, such cases with realistic geometries are
being studied by numerical-simulation methods.

V1. TRANSVERSE ION ORBITS

In this section, the validity of the effective potential
model will be investigated by the numerical compu-
tation of ion orbits. In particular, it will be shown
that as f, becomes much greater than f;, the ion orbits
will approach those predicted by a continuous
effective potential, even though the force may be
applied periodically for a brief instant (as in the case
of the gap space-charge forces). It will also be seen
in the model chosen that because of the high non-
linearity of the effective potential wells, there is little
unstable coupling of the periodically applied forces
to the transverse oscillations.

In order to simplify the calculations, the applied
potential will be taken in the form of a square well of
width Ar [see Fig. 5(b)]. Since the ions sample this
well for the majority of the time, periodic variations
in the applied fields will be neglected. Such vari-
ations appear mainly in the accelerating-gap space-
charge forces, which are assumed to act instantan-
eously with a frequency f,. The effect of the space-
charge forces in the paraxial approximation is to
give an ion a transverse velocity deflection v, as it
crosses the gap of width d; the velocity deflection
will be a function of position [see Fig. 12(a)]. In
order to relate this to the physical parameters
already introduced, the electrostatic potential in the
gap (averaged over the length d) is approximated by
the expression

®ulp) = by (max) [1 — (2 p/Ar)’].

The average transverse force on an ion will then be
F=—[(d/dp)(ep)]. The velocity deflection is given

by dv, = (F/m;) (d/v,) and it can be written as
(o) [ dvg 3@]

v v, Ar

where 8vo/v, = (2 L/Ar) U,, (max)/(my»2/2). Here
e, (max) has been expressed as U, (max) (L/d) in
order to relate these calculations to the effective-
potential model. A typical ion orbit is shown in Fig.
12(a). The main information of interest is the
behavior of the radial velocity v, with time. The
positions p and z are not important except to
calculate the velocity deflections. The problem can
be simplified by neglecting the reflections from the
applied potential. In other words, an equivalent
problem results from removing the reflecting bound-
aries and lining up an infinite sequence of gap
potentials in p with period Ar. The transverse
position variable is defined as x = v, *dt, where
v,* is the radial velocity neglecting reflections at the
boundary (although there may be reflections at the
midplane). The form of the velocity changes is
shown in Fig. 12(b). The velocity is modified every
time interval Az, = (L/v,) according to the velocity
change at the position x. A uniform v, is assumed.
With a changing v,, the transverse-velocity problem
is unchanged in the effective-potential limit
(f,/f. << 1) since the deflection of Eq. (19) scales as
1/v, and the number of deflections per time interval
is proportional to v,.

If x, and v,, are the transverse position and
velocity just before the nth accelerating gap, then
these quantities are advanced by the equations

(19)

z

xn+l = Xn + vpn+l (L/Vz)’ (20)
FRAC (x,/Ar) — Ar/2\ .
vanrl = vpn + 6vp0 Ar

Here FRAC indicates the fractional part of the
expression. Using the dimeénsionless variables
X, =x,/Ar,and V,, = v,,/v,, the equations can be
recast as

XrH.-l = Xn + YVpn+ls (21)
Vi1 = Vo + BIFRAC (X,) — %],

where y = (L/Ar) and B = 8v,/v,. These equations
can be easily solved numerically. Typical solutions
are shown in Fig. 13. The parameter y has been
taken equal to 20. Using Eq. (19), it can be shown
that the parameter B scales as B ~[1/y (f./f)].
Thus low values of S better fulfill the validity
conditions for the equivalent-potential models. In



120

STANLEY HUMPHRIES, Jr. AND JAMES W. POUKEY

Z
6v,(x) 4
——AT ——»)
/ f
6V,
| /.
= ﬂvpldt

FIGURE 12 a) Simplified geometric model for calculation of ion orbits. Reflections
from inner and outer sheaths with instantaneous space-charge deflections at the
accelerating gaps. b) Form for computing acceleration gap deflections using the
variable x that allows neglect of sheath reflections.

the runs shown, the particle has been started at
p = 0, with an initial velocity v,, chosen so that the
effects of the space-charge forces will be strong, but
the particle is not trapped on one side of the
potential. In the first example [Fig. 13(a)], the
choice of parameters makes f, = f,/4. In this case,
the effective-potential model conditions are not
satisfied. There is little correlation of the deflec-
tions, so that they occur in a random manner. The
behavior of the transverse velocity is diffusive. The
variation following Gap 27 is interesting in that it
appears that the deflections have come into reso-
nance with the longitudinal frequency. There is an
increase in the average transverse velocity, but the
instability rapidly quenches. This is a favorable
property of the highly nonlinear confining forces; a
change in the transverse velocity caused by a

resonance will change the transverse-oscillation
frequency to decouple the particle. Resonance ef-
fects act mainly to increase the velocity diffusion
rate and do not cause exponentiating instabilities.
As the parameters are changed to bring the orbits
closer to the conditions for the effective potential
model (f, < f,), the deflections become more
correlated, diffusion effects rapidly decrease, and
resonant effects become smaller (because the
higher-order resonances would have to act over
many radial oscillations to produce a significant
change). Effects of increasing f,/f, are shown in
Fig. 13(b) and (c). In the third case, a well-defined
periodic orbit results with a change in the velocity
about 0.8 that predicted by the effective-potential
model. Thus the model appears to give a good first-
order approximation of transverse orbits.
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VII. PRACTICAL ASPECTS

The electron-annulus geometry may be able to
accelerate and transport ion beams of a variety of
masses with current levels in the range from amperes
to kiloamperes. A number of practical aspects of the
configuration that may affect its application will be
discussed in this section. One of these is the
complication of the simple space-charge neutral-
ization behavior when the ion beam has high (Ez/A4).
As the ion beam fills a drift tube, electrons from the
upstream electron source must flow with the head of
the beam; therefore, as discussed in Ref. 8, the beam
must assume a potential with respect to the source of
at least Egz(m./m;) in order to accelerate the elec-
trons to the beam velocity. For ion-beam fusion
parameters (Ez/4 ~ 10 to 25 MeV), this ptobably
would not be a severe problem, because the electron
energy need only be 5 to 10 keV at the end of the
accelerator. The beam could be at this potential with
respect to the wall, in which case the electrostatic
sheath would have to increase somewhat to counter-
act the additional radial electric field, or the source
could be referenced to a negative potential with
respect to the rest of the drift tube. In any case, for
beams exceeding hundreds of amperes, there is
enough positive space-charge density to pull elec-
trons into the beam volume. For low currents or high
beam velocities, this may not be the case. In
conventional accelerators, the area of applicability
of this means of neutralization would possibly be
limited to the low-f regime. Computer studies are
underway to better understand the electron behavior
at an accelerating gap in order to make more
definitive statements on these limits.

A second area that may pose problems is that of
the stability of the electron annulus. In a macro-
scopic sense, the ion-electron plasmoid in the drift
tube is in a region of minimum magnetic field,” so
that large-scale deformations would not be ex-
pected. On the other hand, microscopic instabilities
could be important if they produced electron dif-
fusion, which would increase the size of the electron
annulus. This would provide an upper limit to the
ion-beam pulse length that could be confined. The
instabilities would have to occur very rapidly to
affect adversely typical pulsed beams or beam
bunches (< 50 nsec). Current experiments have
demonstrated the existence of stable electron clouds
over microsecond time scales for field stresses
exceeding 200 kV/cm.?**%!

In order to have a controllable longitudinal ac-
celeration of the beam, it is important that the

presence of the neutralizing electrons does not affect
the charge state of the ions. In other words, the mean
free path for ionization must be greater than the
length of the accelerator. An exact determination of
the ionization probability would depend on the
relative velocities of the ions and electrons. The
energy of the electrons with respect to the ion beam
will probably be on the order of Ey (m,/m;), which
may vary from hundreds of electron volts to many
keV. At any rate, the cross section should be less
than 107'® cm? for injected ions, and will decrease
with energy. Typical beam densities at injection are
less than 10'? cm™>. Thus, the mean free path for
ionization of the injected ion beam is greater than
100 m. This allows sufficient distance to accelerate
the beam to a point where the cross-section and
density decrease make the probability of ionization
negligible.

In conventional accelerators with linear focusing
elements and space-charge effects, it is possible to
tune the focusing to approximately balance the
space-charge forces. In terms of the effective-
potential model, the focusing and space-charge
potentials have the same shape but opposite polar-
ity, so that a net zero well can be obtained. In such a
system, space-charge repulsion does not greatly
increase the beam’s transverse energy. The con-
fining well need only be deep enough to handle the
initial transverse energy. In the electron-annulus
geometry, such a balance cannot be obtained be-
cause of the nonlinear forces involved. Space-
charge effects on the beam transverse energy are
inevitable; these effects are minimized through the
use of electron neutralization. Even though some
increase in the transverse energy is unavoidable,
there are benefits to be gained from a nonlinear
confinement system. For example, it need not be
tuned. The sheaths that are set up adjust auto-
matically to changing beam parameters. There is
also the advantage that particles in the nonlinear
confining wells may not be subject to orbital in-
stabilities since there is no unique oscillation fre-
quency. Particles leave a resonance with a pertur-
bation by gaining or losing transverse energy.

At the expense of locating electron sources and
coils for moderate magnetic fields in appropriate
areas on the drift-tube structures, important advan-
tages may be gained. There is the possibility of
reducing complex and costly magnetic focusing
elements. In addition, there is the fact that large
currents, possibly orders of magnitude higher than
those set by space-charge limitations, could be
accelerated and transported. In the case where beam
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quality can be relaxed, extremely high currents are
possible using electrostatic confinement of the
beam. This may make it possible to build medium
energy, very high flux machines for industrial or
medical applications.
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