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In the work presented here, we investigate the features and possibilities of a cooling technique of heavy particle beams
with an electronic feedback system as suggested by S. Van der Meer. The consideration is based on the kinetic equation
for systems with nonconservative interaction. Expressions are derived for damping decrements of transverse and
longitudinal oscillations of particles in storage rings. Limits are obtained for the attainable value of the decrement,
determined by the influence of particles on each other. Effects are considered that determine the equilibrium size of the
beam and optimization of cooling methods is discussed. The main features of the method are also illustrated by a simple
model.

The absence of radiation cooling for heavy
particles requires some additional effort to damp
particle beams in accelerators. At low energies,
electron cooling1 is quite effective, allowing one
to achieve cooling times of the order of a fraction
of a second. At high energies, however, the cooling
rate goes down (as the 5th power of energy for a
given angular spread of a beam) and a more effec­
tive damping may be that due to particle interac­
tion with external dissipative device.

The stochastic cooling proposed by Van der
Meer2 by means of an electronic feedback system is
such a damping. The simplest system of this kind
consists of a wideband difference pickup and a
kicker. A signal proportional to the particle mean
transverse displacement is induced on the pickup
and after amplification is transmitted to the kicker.
The influence of this signal on the same particle
at the kicker determines the damping effect (for
example, reduces the particle transverse velocity
at the point of the orbit where the velocity has its
maximum). The delay time is selected to be equal
to the time required for a particle to move from the
pickup to the kicker. Currently there are experi­
ments where this method is realized and oscillation
dampling is observed to be of the order of several
tens of per cent per hour. 3 In the work presented
here an analysis of this stochastic cooling is given.

As is shown later, a useful effect will be deter­
mined by "selfaction" just as in electron cooling.
The mutual influence of particles on each other via
the external system decreases the damping decre-
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ment and becomes unavoidable as the beam density
increases, resulting in a limit for the damping
decrements attainable with this method. Note that
since the characteristic distances associated with
interaction via an external system are large com­
pared with the distances between the particles in
the beam, this effect becomes dominant much
earlier than for electron cooling.

In Section 1, a simple model is considered which
shows the observation of the main features of this
method. In Section 2 the particle interaction form
is obtained. Based on the results in Section 2,
damping decrements are obtained in Section 3. In
Section 4, the mutual influence of particles on each
other is considered and limits are obtained for
maximum decrements attainable with the method.
Here we use the results of general considerations
used by authors in Ref. 4 ofparticle interaction with
a dissipative external device. In Section 5, effects
that determine the beam dimensions are discussed.
In Section 61 some ways of how to optimize this
method are considered.

1 MODEL

Particle motion will be considered in terms of
variables of action I and the phase "'; in the case
of betatron oscillations I is proportional to the
oscillation amplitude squared and for longitudinal
motion I 1/ is proportional to the momentum
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deviation from its equilibrium value III t'o.I P ­
Ps = q. Let us demonstrate the main features of the
method by using it for the problem of betatron­
oscillation damping.

Particle interaction can be considered to be
dependent on the phase difference because the
relative frequency spread I1wlw is small and damp­
ing times are large. Taking the particle transverse
displacements from an equilibrium orbit to be
small compared with characteristic the apertures,
one can write the equation of motion in the form

(1.5)

i=_LoV(a,b)
a b ot/Ja

.i, _ () ~ oV(a, b)
o/a - W..L a + '-' ~ .

b vIa

(1.1)

(1.2)

so that the parameter A determines the single­
particle damping decrement. A damping effect
occurs in a nonconservative system (nonHermitian
interaction). That is, Yea, b) =1= V(b, a).

The remaining terms of the sum (1.1) describe the
mutual influence of particles on each other. One
can understand this interaction within the frame­
work of perturbation theory. Let us find (from
(1.2)) the first-order corrections in Ato the phase t/J
due to the interaction in (1.2) and substitute them
into (1.1). Let us average the expressions obtained
over phase, taking initial phases for all particles
as independent, random values. Then, within an
accuracy of the order of O(A4

) we obtain

~ nNA
2

2 f 2
Aer = A - f looro'l gl dqf (q),

Consequently, the harmonics gz are of the same
order of magnitude gz ~ eo up to 1~ eo 1; for
larger l; their values decrease rapidly. For the sake
of simplicity, let us ~lso assume that at A = 0, the
unperturbed frequencies

gz == f dO e- iI8g(O)
2n

to -be real. The azimuthal interaction length will be
taken to be equal to eo, so

With these,variables, Eqs. (1.1) and (1.2) take the
form

where n is a vector whose longitudinal component
is 1 and whose transverse components are either
zero or unity and ro' == oroloq. The effect of the
mutual influence of particles increases as A~.

Therefore the maximum attainable decrement is
limited by A < Amax given by

-1 ~ nNgr Nef 1
Amax ~ f 10 0 Aro I ~ Awoler In 0

0
(1.6)

This value depends on the revolution frequency
spread I1wO = lowOloqll1q, where I1q is the mo­
mentum spread determined by the width of the
distribution function. The dependence of Amax on
the frequency spread makes (1.6) different from the
result obtained by Van der Meer. The difference
appears as a consequence of conservation of the
particle phase correlations over many turns be­
cause the interaction is weak and the relative
spread of frequencies is small, whereas Van der
Meer assumed splitting for correlations for one
turn. Amax is determined by the length of interaction
region eo, lef ~ eo

1 and by the number N ef t'o.I Neo
of particles located in this region. In this sense, the
result (1.6) appears to be universal.

If both terms in (1.5) are of the same order of
magnitude, perturbation theory over A is in­
applicable. In this case, the use of the variable X a

and X: seems to be more appropriate, where

gee) ~ 0, lei> eol2gee) ~ 1, lei < eol2;

Here

Yea, b) == AJI:4g(ea - eb)sin(t/Ja - t/Jb) (1.3)

describes the interaction between particles a and b.
The factor gee) depends on the feedback-system
structure and determines the azimuthal distance of
the effective interaction between particles. Since
there is no damping in a Hermitian interaction, as
will be shown below, we shall consider the factor g
to be symmetric: g(ea - eb) == g(eb - ea) and its
azimuthal harmonics

are linear functions of momentum, neglecting their
dependence on amplitudes. Since the number of
characteristic harmonics is large (l ~ 1), it is
sufficient to have this assumption satisfied only
for the revolution frequency WO(q).

The term b == a in (1.1) describes the useful
"self-action" effect

(1.4)
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a

(1.14)

(1.15)/ Agl )
Yl = \IGlq)1 2 •

eb) = 1 + i Ail ~ (v - D(0b)-l.

The poles for the function under the integral are
determined by the zeros of the functions Gl(V). If
the coherent motion is stable, the significant zeros
of Gl(v) lie near the single-particle frequencies

·r r =~v = nOlc - lsc; ~c ,
2Gl(Wc)

where

where

Let us consider the case when ANef gl is less than the
frequency spread ~w. In Gl(W) one can neglect 'I
and the most significant contribution in (1.13) is
given by the residue c = a. In this case, (1.13) is
reduced to the expression

<j(t) = - 2~ ~ IX~12 t yla)e- yft

This shows that <1(t) damps from the value <1(0)
with the decrement

The brackets here mean an average over mo­
mentum using the distribution function. Thus, the
mutual influence of particles on each other result
in a decrease of the partial decrements Agl by a
factor IGd 2

• The difference of IGll from unity is of
the order of magnitude of the ratio of the coherent
decrement yfoh == tAglN to the beam frequency
spread ~w.

At IGll ~ 1 (1.5) again follows from (1.14). With
an increase in number of particles, the partial
decrements vary inversely with N 2

• The maximum
attainable decrement is obtained if IGII ~ 1 at all I,
which coincides with the condition (1.6).

In the converse limiting case ANgl ~ ~w,

i
Glv)· (v - nOla) ~ v - nOla + 2. ANg1,

so (1.13) shows that damping <I) occurs with the
coherent decrement yfoh, but the equilibrium
spread of amplitudes

<1(00) = <1(0) [1 - 1]
N ef

(1.13)

Z?(t) = L X~e-iro.L(a)t-iLOa(t)

a

x exp i[lOa(t') - w-l(a)· (t - t')J. (1.10)

Because of this interaction, the motion of different
particles turns out to be correlated, which finally
leads to a restriction on the attainable decrement.
Let us demonstrate this with a transverse-decre­
ment calculation. The value

Assuming that the initial amplitudes X~ are
statistically independent and using the solution
(1.12), we can rewrite (1.11) in the form

<j)= -~LIX~12LAgl
N a I 2

1

1 foo dve-
ivt

1

2

X 2ni _ 00 Gl(V)· (V - nOla) ,

as follows from (1.7) is expressed through Ze(t) as

<j) = - t ~~ IZl(tW. (1.11)

Ifthe initial distribution ofparticles is homogeneous
over phases, then (1.10) gives the equation

A itZlt) = Z?(t) - il
0dt'Z,(t')!z(t - t'), (1.12)

where

Here a collective variable Zl is introduced

Zl(t) = L X b(t)e - ilOb(t), (1.8)
b

which may be interpreted as an azimuthal harmonic
for the beam center of mass coordinates. Each term
in the sum (1.8) oscillates with its own frequency
n · Olb = lwO(b) + w-l(b), so that Zl(t) is not zero
because of dynamical (non-thermodynamic) fluc­
tuations in a system with a finite number of
particles N.

As is seen from (1.7), each particle, in addition
to free oscillations of amplitude X~, experiences
constrained oscillations connected with fluctua­
tions of the center-of-mass coordinate. Thus
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does not differ from the initial spread, within
statistical accuracy. In this sense, damping does
not occur.

The result obtained (1.15) is in agreement with
the more thorough considerations of the authors in
Ref. 4 (see also Section 4).

2 FORM OF THE INTERACTION

The amplitudes of the field ((Jk(t) are determined by
all the particles which excites the field:

.. 2 2 _ 4ne" dU(raCt), 0) -ikROa(t)
({Jk + c k ({Jk - - M: ~ de.

y2n a t

A signal induced in the pickup is then amplified
and transmitted to the kicker where the field
A(r; t) is excited. This has the same form (2.1) with
amplitudes ifJk determined by an amplification
factor

<Pk(t) = K(k)({Jk(t - r),

where r is the delay time for a signal.
The influence on particle 1 inside the kicker is

described by the potential

e -
V(llt) = - - v(l) . A(rb t),

c

where the dependence V(llt) on time reduces to the
field dependence on the particle parameters exciting
the field in the pickup.

. As a result, the potential

is expressed by the effective interaction V(l, 2)
of Eq. (1.3) between particles 2 that produce the
field, and the affected particle 1.

We shall take into account only the interaction
of particles via an amplifying system by considering
a sufficiently large amplification factor and by
neglecting the effects of particle interaction with a
single pickup and kicker. These interactions are
considered in Ref. 5, for instance, and have no
relevance to stochastic cooling. Besides, we shall
confine ourselves to the case of unbunched beam
and the small corrections modulation of azimuthal
motion caused by betatron oscillations will be
neglected.

Let us introduce the interaction harmonics V0102

V(1,2) = L 11;.1
0

2(1 l' 12 )ei
(01'\j#1-

0
2'\j#2), (2.4)

In order to obtain certain formulae we shall
consider pickup and kicker as a matched line. Such
a choice is determined by the following considera­
tions:

1) the kicker length III cannot be too short,
otherwise due to revolution frequency spread the
useful effect of self-action will be absent for most
particles while they pass the kicker;

2) in order to get more effective interaction, the
pickup fields should vary in a time on the order of
that required for a particle to pass through the
pickup;

3) the fields should damp sufficiently fast to
decrease the influence of the signal on the other
particles. Many-turn effects should not exist.

Therefore, the choice of pickup in the form of a
matched line seems to be the most appropriate. In
our description of particle interactions with
matched lines we shall follow Ref. 5. On other
methods see, for example, Refs. 6 and 7.

F or low-frequency oscillations the field in the
pickup has a form similar to that for an infinite
waveguide; i.e., it can be represented as a super­
position of travelling waves

A(r, t) = Ao(rl-' ())~ fdkcpk(t)e
ikRO

(2.1)

V(llt) = LV(l, 2)
2

(2.3)

It can be considered as a potential field

Ao here is an electrostatic field whose value
differs from zero inside the pickup and falls
exponentially outside the pickup in a distance of the
order of the transverse dimention I

V-l . A o = 0;

(2.2)

where n means a set (mr ; mz ; 1). Following the
procedure described above, the harmonics are
expressed through the potential harmonics U(r-l; 0),

U~rm.(q) = f ~~ eiIO[~I.f;.«())I]lmrl

x [~lh(O)I]lmzl.

. [olmrl + Imzl U(r-l; 0)]e-l(mrtlr+mztlz) ----~-
ozlmrl ozlmrl Zb = 0
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3 DAMPING DECREMENTS

(2.9)

(3.1)

L a
r=--­

c WO

{[ (~ + ( 0 ) (~ - Oo)Jx g -2- - g -2- cos\l'

(
00 - ~) }+ v.l -2- sin qJ

[ (~o + ( 0 ) (~o - Oo)J' tTl.X g 2 - g 2 SIn TO,

where a ~ 00 is a parameter whose value will be
specified later, then

L L
Xnln2 = Ii (1 1 - 12) + m2 1- v1- r + Rwoo , ~ro - al2·

(2.10)

If the delay time r is approximately equal to the time
required for a particle to pass the distance between
the pickup and kicker,

After an averaging of the rapidly oscillating terms
iIi the expansion (2.4), only the diagonal harmonics
~n will be left and the interaction will become a
function of the particle phase difference. The
acceptability of this averaging will be discussed
in Section 5.

When considering transverse motion with an
accuracy o(a2Iii), it is sufficient to confine ourselves
to dipole oscillations (I mr I = 1, mz = 0 for radial,
mr = 0; Imz I = 1for vertical oscillations). Iffurther,
one takes the amplification factor to be constant
K(k) = K, then (2.4) through (2.8) yield the dipole
interaction in the form

Ke
2

ITT 2 2V1(1, 2) = - V 1112 [U 10(q)]
V1-Ps

similar to the result (1.3) in the model interaction
above. Here qJ = t/Jl - t/J2 + rdwo + rW1- + tv~;
~ = a - !~Wo - «(Jl - ( 2 ) and V1(1, 2) differs from
zero for ~ > O. Note that in the sum over azimuthal
harmonics carried out for (3.1), harmonics up to
I ~ 00 1 are essential.

The transverse-oscillation decrement is defined
"self-action" from (1.4). If one can neglect a small
term ( "-I (Jo) in braces then the decrement

Ke2

...11- = - - UIo(O)
v1-Ps

(2.6)

Here f(O) = If Ieitl is the Floquet function. The
momentum dependence of U~ appears through the
momentum dependence of the particle radial
deviation

a=r,z

t/J(O)Rq
r1- = rb + ---

Ps
Let L be the distance between the centers of pickup
and kicker. For the sake of simplicity let us neglect
the difference between the value of Floquet
functions in the region of the pickup and kicker,
Assuming also that the potential U(r, 0) is factor­
ized, it can be rewritten in the form

U(r; 0) = U(r)g(O),

where the function g(O) is equal to unity inside the
pickup and falls rapidly to zero at distances
~O ~ 11-IR from the pickup edge.

g(fJ) ~ 1; IfJ I < ~o ,

Here 00 is the azimuthal length of the pickup
00 = l"IR. Its harmonics gz are constant gz ~ Ooln
for III < n1200 ; falls as 1-1 for nl200 < III < ~0-1

and are negligibly small for III > dO- 1
•

If~ f1- ~ 1 in the region of the pickup, then

U~rmz(q) = gel + kR)Umrmz(q) (2.5)

With minor simplifications, the interaction har­
monics can be written in the form

where

Vn1n2(q 1q2) = Um1rm1z(q I)Um2rm2z(Q2)T,,1n2

X exp(iXn1n2) (2.7)

and the constant ~1n2 is equal to

T. = - 2e
2 fdx . K(x)Cn1(x)Cn2(x) ;

n1n2 R W6 X2 - (02 .(OS + i£)2

(0' (OS + XWo). g(l + x) ( R )lmr /21
C (x) == - (2.8)

n Imr I! Im21 ! 2vr PS

X (~)lmz/21

2vzps

The frequencies here are taken as their equilibrium
values.

The integral is defined in (2.8) in accordance with
the causality principle. The phase Xnln2 in (2.7) is
equal to
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(3.4)

will have its maximum under the condition that It is
taken to be equal to

It = eo (3.2)

and the distance between pickups L is chosen to
meet the requirement

(~)(L -~) = 1+ 2nk; k= 0, 1, ... (3.3)

In this case, if the frequency spread ~w is small, the
decrement is equal to

Ke2

A1. = - UIo(O);
v1.Ps

Formula (3.4) is applicable as long as

~wo

t~wO < eo or I" > L-o • (3.5)
w

The conditions (3.2) to (3.5) have a simple meaning.
The condition (3.3) corresponds to the ordinary
requirement for the distance between pickups to be
a multiple of a quarter wavelength of betatron
oscillations. The minimum-distance limit (3.5)
between pickups insures a kicker signal effect on a
particle in spite of the time spread of motion of
particles between pickups. Condition (3.2) shows
that the optimum delay time (2.9) should be less
than the distance between the pickup centers. This
condition appears due to some structural features
of the system under consideration when pickups
are made as matched lines. Really, as follows from
the structure of (2.8), the interaction is due to the
effect on a particle of the wave travelling in the
pickup in the direction opposite to the beam
motion. For complete use of the pickup length, the
signal should be picked up and transmitted to the
opposite sides of the kicker and pickup. This leads
to the condition (3.2). With the parameters chosen
It, L an interaction with an accuracy to the small
term of the order of veo changes its sign at the
transition 1~ 2. The back-coupling system under
consideration is thus close to systems with purely
non-Hermitian interaction, ensuring the best con­
dition for oscillation damping.

For defining the damping rate for energy spread,
it is sufficient to confine oneself to harmonics with
m1. = 0,

Ke2

Vo(l, 2) = - Uoo(q I)U00(Q2) R

x [g(e ~00
) - ge ~ Oo)} (3.6)

with the condition that ~ = It - leI - e2 1 > 0,
whence

Rql. = - (8VO(I, 2») = _ Ke
2

U60(ql)
8e 1 1=1 R

x [(~:t - (~:tl (3.7)

where derivatives (8g/8e)± are defined as derivatives
at the point e = t(lt ± eo).

It is clear from (3.7) that q i=- 0 due to edge
effects where the derivative 8g/8e has its extremum.

The delay time (2.9) is optimum with

It = 0; It = 2eo (3.8)

These values differ from those for the transverse
motion (3.2). Note that the distance between the
kicker and pickup is insignificant here.

It = 0 means that at the moment ofinput (output)
of the particle into (from) the kicker, there exists the
same (but amplified) field that was induced by the
particle at the input (output) of the pickup. Both
of these effects have the same sign. The value
It = 2eo means that at the input of the kicker a
particle experiences the effect of the amplified
field induced by the particle at the output of the
pickup.

The average value of the first part of (3.7) at
q = 0 gives the average particle losses.

The energy-spread damping can be characterized
by the decrement <5 p in the relation

d
dt <q2) = -bp<q2), (3.9)

and its form follows from (3.7).

bp = - ~~2 [~ U60(q)1=J(~:) _ - (~:)J,
(3.10)

which gives

2Ke2 t/Jp 2Ke2

bp= -R U OO(0)U I0(0) All ~ -1-2 t/Jp. (3.11)
Ps LlO Ps l.

Here t/J is the t/J-function value at the point of the
pickup p location for which the momentum de­
pendence Uoo(q) is significant.

It can be seen from (3.10) that the decrement
differs from zero due to excitment of the. field at
the ends of the pickup under the condition that in
the pickup (or kicker) the harmonic U00(0) =1= O.
In deriving the value (3.11), U00 was taken to be
Uoo ~ 11. U I0 ; IC8g/8e)± I ~ ~e-I = R/1.l'



ON STOCHASTIC COOLING 243

Note that the interaction (3.6) is determined by
the azimuthal harmonics up to I ~ ~()-1 = Rill..

Earlier the amplification factor was considered
to be constant. If the band width is limited, the
effective length of the interaction changes. That is
if harmonics with frequencies nwo, n > no are not
amplified, it can be easily shown in all formulae that
the interaction length along the azimuth ()o should
be taken as the maximum of ()0 = III IR and no 1.

Hermitian interactions. The second term cor­
responds to the ordinary collision integral, which
gives only a redistribution of decrements.

The value en( q) in (4.2) is

eiq) = 1 + inN fdr2b2[nro2 - nro1JV:n(12 12)

(4.3)

4 ATTAINABLE DECREMENTS

In this section, we shall consider the effect of the
particles' mutual influence. This effect, like the
effect ofself-action that has been already considered,
can be described using a standard method of the
kinetic equation. In the kinetic equation for the
zeroth harmonics of the single-particle distribution
functionf(I 1) = f(l)

of(1) . 0
T - I ~ all [nV,m(11; 11)f(1)J = St (4.1)

fd3r 1 f(1) = 1; d3r = did"'.

and plays a role analogous to the dielectric constant
(or specific inductive capacitance) in plasmas. For
the model considered in Section 1, (4.3) coincides
with (1.13).

From (4.1) (4.2), one can obtain expressions for
damping decrements.

If one can consider the momentum distribution
and frequency w(q) as constant in time (for instance,
tJ p ~ A1.), the betatron-oscillation damping goes
exponentially with decrement

or

For transverse oscillations (lmax ~ nl()o), this leads
to the limitation

which corresponds to the estimate (1.6).
The decrement A1. (3.4) achieves its limiting value

(4.6) with amplification factors of the order

(4.6)
I1w

A1. < Amax ~ -()2'
nN 0

The decrement A1. differs from the single-particle
decrement (3.4) (which is due to self-action) by
the amount that Ie,l differs from unity. Thus, as in
the model considered in Section 1, the particles'
mutual effect leads to the result that the decrement
decreases as N- 2

, where N is the number of
particles. The maximum attainable decrements (in
order of magnitude are determined by the con­
dition

The second term on the left-hand side describes the
self-action effect, which differs from zero with a
non-Hermitian interaction. As is shown in Ref. 4,
the collision integral St for the non-Hermitian
interaction has the form

St = ~ (n :1){(1 -len l- 2
). f(11)·lmv"i1 1;11)

+ nN f dr2 b[nro2 - nro1J·len(q)I- 2

x I Jt;m(1 112 ) 1
2

X [n O~illl) f(12) - n0~iI22) . f(1 1)]} (4.2)

Here we ,have taken into account only diagonal
interaction harmonics ~n(I112). We shall discuss
the role of the neglected terms in Section 5. In
addition to that, because the frequencies are
included in combinations nro = fwO + ml.rol. with
characteristic m1. ~ 1; 1~ 1, the dependence of w1.
on the amplitude is insignificant, S9 the frequencies
can be considered as linear functions ofmomentum.

The first term in (4.2), proportional to the
imaginary part of the interaction, describes the
dissipation of the process; this term is absent in
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Similarly, damping of the momentum spread (3.9)
is determined by the decrement

b . ( 2) = _ " 21 / 1mVl/(Il)) (4.7)
p q 'I R \ q IBl(q) 12 •

At IBll ~ 1, this expression takes the form (3.11).
In energy-spread damping, with the decrease in
the frequency spread ~co(q) the particles' mutual
influence increases [that is, Bl(q) becomes higherJ.
Therefore, the damping does not have an expo­
nential character.

If the interaction harmonics Voo is not equal to
zero at mr = mz = 0, damping leads to a distribu­
tion with a non-zero equilibrium momentum
spread

If the initial spread <q2(O) ~ (bp/~)2 is small, the
damping has the form

(q2(t) = (q2(O). [1 + ~2(~:(O) tJ-t
In other words, the optimal value of bp for

energy damping should be

4~co(0)

(bp)opt = nN(MJ)2 ; (4.11)

in this case

As can be seen from (4.7) and (4.9), if the average
energy losses are compensated, <q) = O. Then
with a large initial spread ~co(O) ~ N(~O)2bp, the
damping of <q2) goes exponentially

<q2(t) = <q2((})e-c>p t

up to ~coc ~ Nbp ' (~(})2. Then the rms momentum
spread decreases inversely proportionally to time as

(q2(t) = (~r·(1 + bpt)-t (4.10)

(5.3)

under the condition that the argument of the
logarithm is larger than unity. Here bco is the
frequency detuning and ~co is the frequency shift
to the closest neighbouring resonance. It is assumed
here that harmonics U 00 ~ 11. U 10 .

The effect decrease with decrease in the fre­
quency spread and it disappears at ~co S bco((}o/n).
Another way to remove the effect is by appropriate
choice of the pickup design to get no signal if a
particle passes through it with no transverse

5 EQUILIBRIUM SIZE OF A BEAM

As is shown in Ref. 4, the most dangerous resonances
are those with Imllol = 1, Im21.1 = 0, leading to a
final equilibrium size

/a2
) A1. (n ~co)

\ Ii ~ (Al.)max In 00 . bW '

Until now, we have taken into account only
diagonal terms in the interaction (2.4), assuming
harmonics with "1 i= "2 to be rapidly varying in
time. This is incorrect in the case when resonances
"1 0>(1) = "2 0>(2) with n1 i="2 are possible. Let
us now take into account these resonances,
assuming IBll ~ 1 when the interaction renormali­
zation is negligible. To this end, to (4.2) one should
add a collision integral

(4.8)

In this formula,

A ~ 4psv; (8COO)ln- 1 (OO)
o nN~O oq ~()

The spreads occuring are, generally speaking,
large. In order to avoid an equilibrium momentum
spread, it is desirable to choose the damping
system in such a way to have the Voo harmonics
small. For example, one can make a pickup in such
a way as to get zero signal if a particle passes the
pickup without deflection from its equilibrium orbit
[field harmonics U00(0) = OJ. In this case, the
decrement will differ from zero [but half that in
formula (3.11)J, if in the kicker the field harmonic
U00(0) i= O. An equilibrium momentum spread
under these conditio,ns is determined by the
accuracy of pickup adjustment.

The difference of IBll from unity in such a system
is of order
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(6.1)

(5.4)

deflection [U00(0) = 0]. Then <a2
) will be de­

termined by the accuracy of alignment of the
pickup.

Resonances Imil. = Im21.1 = 1decrease the damp­
ing decrement value and become lower with a
decrease of L\w-spread.

Another factor that affects the final beam size is
field fluctuations in pickup of the order of (82 ) ~

(4rc/ll)T because of their further amplication. Here
T is the pickup temperature (or that of matching
element) given in energy units. The effect leads to
the beam size of the order given in Ref. 4.

<a;/R 2 ) c:= KT()o
Esvr

If the amplifier noise is substantial, it should also
be taken into account.

6 FURTHER POSSIBILITIES OF THE
METHOD

Let us consider the possibilities of this method in
getting maximum decrements and minimum beam
size. We discuss first the case when it is required to
damp only the transverse dimension ofthe beam at a
given frequency spread. In this case, transverse­
oscillation damping is exponential. The maximum
decrement attainable for transverse motion was
already found in (4.6). It grows as eo 2 with decrease
of interaction length, which corresponds to a
decrease in mutual influence of particles on each
other. However, eo cannot be less than that re­
quired by the condition (3.5) with a final spread of
the revolution frequencies. The optimum situation
is

e -!1 ~ ~ L\wO
o - R - R WO

In this case, the decrement is inversely proportional
to the frequency spread Amax ~ 1/L\wo. Since the
pickup length is always larger than its transverse
dimensions /1., the choice (6.1) may require the pick­
up dimensions to be decreased. This, in its turn, gives
a limit for the transverse dimensions of the beam.
That is, the choice of a length ill with (6.1) is
possible if the pickup function t/Jp can be made
sufficiently small

L
t/Jp < R<t/J).

At the same time, a corresponding decrease of the f3
function in the pickup is required.

The same formulae are applicable if the effective
interaction length is determined by the band width.
In the case when the resonance effect (5.3) is
suppressed [field harmonic U00(0) is absent], the
transverse beam size is determined by noise (5.4).
The noise effect can be diminished by an increase in
the number of the pickup-kicker systems per turn,
decreasing correspondingly the amplification factor
for each pair, maintaining the total effect amplifica­
tion factor at the same level. It is assumed here that
the signal from a pickup is transmitted only to its
"own" kicker. Otherwise Amax is decreased. Since
the revolution frequency spread is small, phase
correlations are maintained for many turns. There­
fore, for the modification given, all the formula
derived above are valid except for (5.4), where the
interaction should be understood as a sum of
interactions with all systems (i.e., the amplification
factor is a summing factor nK). In particular, an
increase in the number of systems does not alter
the maximum attainable decrement. An exception
is the effect of noise, which influences a beam in
each system independently. As a result, in formula
(5.4) one should mean as previously, an amplifica­
tion factor ofa single pickup-kicker pair. Thus, with
the total amplification factor nK maintained,
<a2

) are decreasing as n- 1 with an increases of the
number of systems n and the beam is less affected
by noise.

Recall that maintaining phase correlations for
many turns led also to the difference in the ex­
pressions for the maximum decrement obtained
(4.6) and the result obtained by Van der Meer. The
difference is determined by a factor woeo/L\wO and
for eo from (6.1), this difference is small (on the order
of L/R).

Let us consider what will happen to a stored
cooled beam with a number of particles N from
injection of additional bunch of particles with
number of particles N. Let the momentum spread
for injected and cooled beams be the same. It is
easy to show that at A. ~ A.max , the rms amplitude
for the cooled beam satisfies the equation (here
mz = 0; Imrl = 1):

<i) + AO) = -nAT L IVn«()W [0) - (7)],
I InL\ml

(6.3)

where <I) is the rms amplitude of the injected beam.
As can be seen from (6.3), interaction of the beams

leads to two effects; first, to a slight variation of the
decrement and second, to excitation of the cooled
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beam by the injected beam (effect of temperature
flattenning of beams). If the frequency spread is
assumed to have a constant time dependence
<let)~, one obtains

<let)~ ~ <1(O)te- At
,

which gains its maximum at t ~ A-1, <l)max ~

(A.1./Amax)<I(O). Here Xmax is determined by formula
(4.6) which N = N. In this case, an injected beam
damps with decrement of the order ,.11.'

Let us emphasize that if transverse oscillations
are cooled with decrement ,.11. ~ Amax ~ N- 1 and
if the total number of cooled particles is the same
for both methods, then the time for storing does
not depend on the fact whether the beam is cooled
at once or by fractions. The condition A < Amax
coincides with the condition of coherent-oscilla­
tion stability Acoh < 110) since the decrement of
coherent oscillations Acoh ~ AN(}6.

Let us proceed to discuss energy-spread damping.
Recall that the delay times in systems which damp
energy spread and transverse oscillations should
be different [see (3.2), (3.8)]; therefore, it is reason­
able to make these systems independent. In the
optimal case, the J p that characterizes the rms
momentum-spread variation with time is deter­
mined with (4.11) by the transverse dimension of the
pickup 11(} ~ 1.1./R. Therefore it is desirable to make
1.1. smaller, which requires smaller t/J and f3 functions
in the pickup for a given frequency spread. It is of
course necessary to increase the amplification
factor K so that Kt/Jp and the decrement (3.11)
remain constant. In order to avoid any increase
of noise influence, it is better to increase the
summing amplification factor by an increase in the
number of damping systems.

The problem of total phase-volume damping can
be solved in two ways, first at a given initial
frequency spread 110)(0) betatron-oscillation damp­
ing with a maximum attainable decrement (4.6)

Amax ~ 110)(0) is achieved and then the energy­
spread damping according to (4.12) occurs. In the
second method, cooling occurs in parallel over both
degrees of freedom. In this case, the amplification
factor for the system damping betatron oscillations
should alter in the process of cooling, so that the
decrement ,.1.1. should have its optimum value
AI1(t) ~ 1100(t) at. any given moment. In this case,
the damping characteristic for transverse oscilla­
tions has the form

I = 10 exp{ - 2ilmax if}
where Amax is determined by (4.6) with LlO) = 110)(0)
and J p is determined by (4.11). Damping times for
both cases are, generally speaking, of the same
order of magnitude.
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