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We consider the cooling of a beam of heavy particles in an accompanying electron flux “frozen” by a longitudinal
magnetic field. The velocity distribution of electrons is assumed to be sharply flattened in the longitudinal direction
(A < A,)). Under these conditions in the region A; < A,, (where A; is the ion velocity spread) the effective temperature of
the electrons is determined by the longitudinal spread of their velocities because of the long-range character of Coulomb
forces and because the transverse motion of electrons is magnetized. In this case, the cooling rate increases rapidly
compared with thecase A, ~ A,, and the ion temperature may be decreased down to the level of the longitudinal temper-
ature of the electrons. It is shown that under certain conditions this effect is reduced by deviations of the magnetic-field
force lines from the closed-orbit direction in the cooling region.

The electron cooling method is based on the
transfer of the heat energy of a heavy-particle beam
to an accompanying electron flux by Coulomb
collisions.! The kinetics of the electron cooling
method has some features that distinguish it from
the usual relaxation of a two-component plasma.
These features are attributed to the cyclic char-
acter of particle motion in the beam being cooled
and also to the formation conditions of the
electron flux.

The main phenomena connected with the char-
acter of particle motion in storage rings were con-
sidered earlier?* and some principal restrictions
were imposed on the possible deviation of the
electron flux from the thermodynamic equilibrium
state in the reference system moving with the beam.
These requirements can be satisfied in practice
without any significant decrease in the electron-
cooling efficiency. Success of the first experiments
on proton-beam cooling* ® confirmed the general
optimistic viewpoint of the realizability of this
method and stimulated further experimental and
theoretical studies.

In the work presented here some features are
considered of a cooling process in the electron flux
with low (with respect to the transverse) longi-
tudinal temperature that is accompanied by a
strong magnetic field.

In Ref. 2 the kinetic equation was given taking
account of magnetized electrons. In this equation,
we used the form of the collision integral in a strong
magnetic field that was first derived by S. T.
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Belyaev,” but the analysis of the cooling process
was conducted without taking into account the
magnetized electrons.? The study of electron cool-
ing was primarily concentrated on the cases where
the velocity distribution was approximately the
same in any direction; under these conditions a
magnetic field does not substantially effect the
process of relaxation. Further, V. V. Parchomchuk
paid attention to a very important fact that, in the
case of electron cooling in a passing (not circulat-
ing) beam of electrons, their longitudinal tem-
perature becomes much lower than that of the
cathode because of electrostatic acceleration. As is
shown in Ref. 6, the noise level of accelerating
voltage can be lowered down to such a level that
the distribution of electrons over velocities in an
accompanying system is sharply flattened in the
longitudinal direction. The study of magnetization
influence on the cooling process was stimulated by
the work of N. S. Dikansky and D. V. Pestrikov®
on the coherent interaction between the proton
beam and a magnetized electron flux. In this work,
it was found that the decrement of the small
coherent oscillations of a short bunch can rapidly
increase with decrease of the longitudinal spread
for electron velocities.

In the work presented here, it is shown that these
two factors, magnetization and smallness of the
longitudinal temperature of electron beam, taken
together can lead to a quite unexpected phe-
nomenon, a rapid cooling of a beam of heavy
particles with the velocity spread lower than the
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transverse spread of electron velocities (A; < A,)).
This can also lead to the fact that the beam tem-
perature is lowered down to the electron longi-
tudinal temperature, which is a few orders of magni-
tude lower than the cathode temperature.

1) It is known that for the Coulomb interaction
the momentum and energy exchange for colliding
particles is logarithmically divergent in the region
of large impact parameters and should be cut off by
a certain macroscopic parameter p,,,, after which
the interaction is effectively decreased. It is clear
that in collisions between heavy particles and
electrons in magnetic fields under the conditions

ry < Pmax>

where r, is the Larmor radius of the electron, the
region of impact distances p

rp < p < Pmax (11)

can give a substantial contribution to the inter-
action integral. In this case, if the ion velocity with
respect to the Larmor circle is

llA=V——Ve” =VJ_+IIH, (1.2)

where v is the proton velocity in a system ac-
companying the electron beam, does not exceed
the electron velocity v, transverse to the magnetic
field H, then the ions effectively interact with
Larmor circles (but not with free electrons) in the
region (1.1) since the collision time

exceeds the Larmor period of the electron.

With a decrease of u, the exchange intensity
grows, together with an increase of the collision
time. In this case, only the longitudinal degree of
freedom of electron participates in an exchange,
because the collisions are adiabatic with respect to
the Larmor rotation of the electrons. The effect
depends slightly (only logarithmically) on the
magnetic-field value and on the transverse electron
temperature.

2) The friction force F and the momentum dif-
fusion tensor d,; = (d/dt){Ap,Ap;) with collisions
in a strong magnetic field can be represented by the
sum

F=F°+F
dyp = d% + d2y, 2.1

where the indices “0” and “A4” denote the contribu-
tions of the usual (fast) and adiabatic collisions
respectively. Expressions for F° and d2; are well
known?°

4nnZ%e* u
po = - 2 f L) 5 f6)d%, (22)

U,y —
— 3

dy, = 4nnZe* fLo(u) Hally f(v,)d3v,,

2.3)

where e and m are the charge and mass of the

electron, Ze is the ion charge, n is the electron flux

density, u = v — v, is the relative velocity, f(v,) is

the distribution of electrons over velocities. In the

case of relativistic beams, all the considerations are

carried out in terms of the accompanying system.
In the Coulomb logarithm

L°(u) = In(r,mu?/Ze?),

the average Larmor radius of the electron r; is taken
as the maximum impact parameter pQ, of fast
collisions. In the case of the reduced electron
velocity distributions, the definition of p,, requires
a correction that will be given later with more de-
tailed consideration of the magnetic-field effects.

The expressions for F# and df; given in ? can be
obtained by using the known expression for the
fast collision diffusion tensor df,, and also the
relation (see Appendix 1)

1 0 /d 4
F, 2m’ a0, (dt <APAPH>) , 2.4)
which is (as is the similar relation F? = (1/2m)
X (a/au,,)d;’,,) the consequence of Belyaev’s general
relations for kinetic momenta.'°®

In the case of Coulomb collisions, in order to
find the diffusion tensor it is sufficient to calculate
the momentum transfer AP in first approximation
(over the unperturbed trajectories of colliding
particles). Then the expression d:,, will be similar
to dJ; with the substitution of the relative velocity
u=v-v, by uy=v-v, and the Coulomb
logarithm by LA(u,).

2
5. —
d;‘ﬂ = 47rnZze4 qu :f:; L uAﬂ LAf(ve) dsve)

A

2.5)
where
pA

L*u,) = In T". (2.6)

min
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Using (2.5) and (2.4) we obtain
Fi= — 2anZ%e* Jula‘“ A of (v,) &, @7)

m u,, Ve,
2nnZ2e* 40
P =22 YO 33, (28)
m uA o,

€l

Note that one cannot derive F* in a similar way to
d7s. This is connected with the fact that the friction
force occurs principally because the inertia of the
scatterer is finite; but with the transition from fast
to adiabatic collisions, an electron as a scatterer
loses its degrees of freedom transverse to the
magnetic field.

In the Coulomb logarithm for adiabatic col-
lisions (2.6), the parameter pZ,, should be taken as

follows
. uul u
péax = mln{rl’ L’ -_A}ﬂ

fe ~ wq

where r, is the transverse dimension of electron
beam, [/fc is the time required for particles to pass
through the cooling section, w, is the Langmuir
oscillation frequency for electrons. The parameter
pa should be smaller than the impact distance at
which the momentum transfer to electron in the
longitudinal direction becomes of the order of
mu 4, therefore

2
4 e
Pmin = MaAXSF, 2(
muy

In this work we shall assume that for char-
acteristic velocities u, the following condition is
satisfied:

uA > (uA)min’ (2'11)
where
2 1/3
(uA)min = max{r_" B ( ¢ ) }
Tee \MTeqr

. l
To = mm{a)g 1 ﬂ—} (2.12)

c

In the experimental conditions at the NAP-M
storage ring with electron cooling, in particular,
there are electron beam parameter domains and
proton velocities where these conditions are well
satisfied.

A more general consideration of heavy-particle
interaction with magnetized electrons will be given
later.

3) Let us discuss the behaviour of F4 as a func-
tion of the ion velocity v with respect to an electron
average velocity. Let A, be the longitudinal
velocity spread of electrons. Let us consider first
the situation

v> A, . (3.1

In (2.7), (2.8) it is convenient to carry out an inte-
gration by parts. Then the distribution f(v,) can
be substituted by d(v, ). To a correction accuracy
of order 1/L* we obtain

2 ZZ 4
Fi= M€ ag )72”” 32
U v
6nnZ%e* 2 v
FA = LA _l Y. .
I - )7 3 (3.3)
2
O.p —
%<APaAP,,>A = dnnZ2%e*LA®) w

(3.4)

It can be seen that the longitudinal friction
originated from collisions with Larmor circles in
case (3.1) has the feature that it disappears at
v, < |vy|. This fact has an evident reason: when
an ion moving along the magnetic force line passes
by the Larmor circle, the integral momentum
transfer in the longitudinal direction is zero.

The transverse friction properties are especially

unusual. At v, < \/E |v, |, F{ is directed along v,
(but not oppositely), i.e. an antifriction occurs. The
friction sign alteration at small v, < |v;| (com-
pared with friction on free electrons) can be
understood from the following considerations:
when an ion is approaching the Larmor circle
“force line,” the longitudinal velocity of an electron
1s substantially decreased on the average. At the
same time, if an ion is moving away, it is increased.
The time difference for effective interaction oc-
curring leads to an ion acceleration. For like
charges similar considerations (with evident
changes) lead, of course, to the same result.

Let us now estimate the friction and diffusion at
velocities

v<A,,- 3.5)

To be more definite, let us choose the distribution
f(v,) in the form

32 ) U2 U2 -1
f) = [(2n) 2A,, A2, exp( o+t )] .

€|

(3.6)
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In this case, from (2.7), (2.8) and (2.5) we abtain

ZZ 4
Fi=—2/2n° 2y, 1n(ﬂ)LA(Ae“); 3.7

3
mA;, v,

4 —nZ**

€l

d nZ%e* (A,
@y =8/ ln(f)L"(Ael.);
e
3.9
Z%e*
A,

To within numerical and logarithmic factors,
these expressions are like the usual friction and
diffusion in non-magnetized electron flux with an
isotropic distribution of electron velocities at tem-
perature T, = mA7, .

4) The relative role of fast and adiabatic colli-
sions depends on the ion velocity and also on the
correlation between the transverse and longi-
tudinal electron temperatures. Let us consider the
case of practical interest where A, < A, . For
comparison with F* and d;, the expressions F°
and dg; are given here which are obtained by sub-
stitution of (3.6) into (2.2) and (2.3).

a) v > A, ;in this case

4nnZ2e*

d
3 <@Pp? = 42122 1A4®v)). (3.10)

FO ~

L) % @.1)

b) v < A, ; in this region

e, ?

n/2nnZ?e* v
Fix - =LA 45 (4)
4nnZe*
0 ~S —_———
Fy~ mAZ,
4l vy T
Tm LO(UH) — Ael \/; LO(AEJ_), vy > Ae”
8 2
YL /%50
Ae|| \/.,:.L (Aeu)’ v < Aen
4.3)
d 2\0 __ d 2\ 0
3 (P = = AP
_ (2n)*?nZ2e*L°(A, ) @.4)

A

€L

Let us consider ion-beam damping with the
initial velocity spread A; > A, without taking into
account some features determined by the cyclic
character of the ion motion in the storage ring and
a possible variation in the direction of the magnetic
field that “freezes” the electron flux. In the initial
stage, when A, is still more than A, , the fast and
adiabatic collision contributions are related as
their corresponding logarithms, so that the damp-
in decrement is of order of magnitude:

_4mnZ Ze*L

N W, L = LO(A') + LA(Ai)a (Al > Ael).

When A, becomes less than the electron transverse
spread A, , the friction due to fast collisions starts
to reduce at the same time as the friction from
adiabatic collisions continues to grow rapidly and

_4mnZ?* [LO(AEL) LAA)

A~ M A3 A3 ];AeII <A <A,,.
The moment comes quite quickly when one can
neglect the first term.

Finally, when A; decreases to the value of the
electron longitudinal spread A, , the damping
decrement achieves its maximum value

4nnZ?e*
™ mMA3

€|

LA, < A,

after that, the damping continues with a constant
decrement unless the ion temperature over all
degrees of freedom becomes the same as the
electron longitudinal temperature, that is,

Tl ~T,,

(for the electron distribution (3.6), Tly, = T. ).

Note for comparison that without the longi-
tudinal magnetic field (at A, < A,)) the trans-
verse equilibrium ion temperature is in order of
magnitude equal to T,, (common relation) and the
longitudinal temperature is equal to the geometric
mean of T, and T, .° For example, for the electron
distribution (3.6)

7t
T.le =3T., T, la = VLT, -LA.)/LO(A,)

Let us remind ourselves that the applicability of
expressions (3.7) through (3.10) and (4.5), (4.6) is
limited to the domain (sec. 2.12) A, > (U )min-

S) During particle motion in the storage ring,
the particle velocity in the cooling section does not
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remain constant from turn to turn, cut oscillates
with a period of the order or less than the rotation
period around the average direction corresponding
to the closed orbit. Because the friction is small
in the electron flux it does not perturb the closed
orbit in practice and only leads to a slow change in
oscillation amplitudes and longitudinal velocity.
With the absence of rf voltage, the longitudinal
velocities are damped to their values when the
longitudinal friction becomes equal to zero F (v,)
= 0. Since the difference between the electron
average velocity and the ion equilibrium velocity
is not damped in the transverse direction, this value
is an independent parameter in the kinetics of
electron cooling.

Earlier, in Ref. 2, the effect of the so-called mono-
chromatic instability was considered, i.e., an excita-
tion of ion oscillations that occurs when the average
difference in velocities exceeds the velocity spread.
The cause of the instability onset is an alteration
of the sign of the friction characteristic (decrease of
friction force) for velocities |{u;>| > A, . It is
evident that this effect may occur in collision kine-
tics with “frozen” electrons not only in the region
v, > A, but also at-substantially smaller “de-
tunings” v, > A, . The detuning of average vel-
ocities can be characterized by an angle a(s) =
(e, o) between the direction of the ion closed orbit
and that of the magnetic field along the force lines
of which the Larmor circles of electrons are moving.
That is,

v, = '))ﬂC[O - a(S)], 0= (6x9 Bz)a

where s is the coordinate along the closed orbit
and 0 is the angular deviation of the ion velocity
from the closed orbit, which oscillates from turn
to turn with frequencies incommensurable with the
rotation frequency, i.e.,

— Ao g —
0x,z - Bx,zcos ‘Px,zs lIIx,z - COx,z

Let us estimate the mean friction power for small
amplitudes of vertical and radial oscillations of
ions 82 and 02 with the dependence on a. We assume
that the electron flux is homogeneous in the x, z
direction and the ion longitudinal velocities are
damped “inside” the spread of the electron longi-
tudinal velocities spread. The average rates of the
energy variation for the corresponding oscillators
are equal to

éz = ’yBCBZF’z’ éx = yﬁcexe’

where the averaging is performed over both the

phases V., ¥, and the ion revolution period in the
storage ring. It is evident that small « < A, /yfc
(for all 5) does not lead to substantial changes in the
friction power and decrements and damping
generally occurs similarly to that described above
in section 4.

The friction effect qualitatively changes in the
case when a(s) > A, /vfc along the whole cooling
section. Using expressions (3.2), (3.3) the friction
force can be represented in the form

a 2nnZ%e*L* 0 — 3a(c0) — a
2T m(yfea)®

FA ~ 67rnZZe4LA U||
o Tm(yBea)? yPea’

where ¢ = a/a. Note that the friction character-
istics do not change at reflection a.

Let us assume that a is directed along the normal
degree of freedom, for example, a, = 0.

Then

; (5.1

5.2)

s n2 . n2
£, ~ 20,6, ~ —0g,

i.e., oscillations in the direction of & are excited,
while the transverse in direction they are damped,
the decrement sum being negative. One can show
(see Appendix 2) that under the condition of
homogeneity of electron flux in x and z directions
near the ion equilibrium orbit, the decrement sum
for transverse oscillations at arbitrary coupling of
x and z motions does not depend on the direction
a and is equal to

nZ%e* LA
mM

A
gt LT

S
M v, (yBc)°n,

(5.3)

where the averaging is performed along the closed
ion orbit. Thus transverse oscillations generally
appear to be unstable if along the whole length of
cooling as) > A, /yfc. In this case, the mean
value of the vector a(s) is not significant. As an
illustration, we can give some simple examples of a
behaviour at a = const.

a) a = const;

b) over the cooling length, & varies in sign in
several jumps;

¢) afs) uniformly rotates around the closed-
orbit direction. '
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The total sum of decrements in the conditions
under consideration is positive, though, since 4, is
three times larger in its magnitude than the sum
of transverse decrements (5.3),

1 oF4
A+ d + A = —— T
(x+ z+ H) IM v

2nnZ2e* LA _
= —W_ (yﬂc) 3n. (5.4)

According to the general theorem of the total
sum of decrements, this value does not depend on
the coupling of degrees of freedom and in the
general case is determined by the divergence of the
friction force as a function -of particle velocity
(Appendix 2). This property can be used for sup-
pression of the instability of betatron oscillations
mentioned above by redistributing decrements be-
tween the longitudinal and transverse particle
motion by introduction of z — x coupling and a
transverse gradient for the longitudinal friction (for
example, a gradient of the longitudinal electron
velocity dv, /dx. When decrements are positive,
the value yfca plays the role of an effective spread
of electron velocities and an ion beam will be cooled
down to a temperature ~m(yfca)*. Here

0, ~ /% a.

If decrements are negative, the ion angular
oscillations are excited up to

0° ~ q,

i.e., the ion and electron velocity values with respect
to the closed orbit are levelled, not the effective
temperature as might be expected. This conclusion
can be derived on the basis of the study of mono-
chromatic instability carried out in Ref. 2. The
dynamics of large amplitudes will be considered
later in greater detail.

Let us now consider the case when a(s) oscillates
over the cooling section length running through the
small values o <A, /yBc. It is convenient to
introduce the distribution w(a) of values a,
f w(e)d®a = 1. In the general case

(R = f FA@w(a)d?a,
(5.5)
(day = f d2ow(e)da,

where F*(a), d,4(a0) is derived from (2.7), (2.8), (2.5)
with v, = yfc(@ — o). We are interested in the
case 0® + (v,/yBc)* < {a%);inthe opposite case F4
and df; do not depend on a and have the form
(2.2)-(3.4). 1t is easy to estimate that for a two-
dimensional distribution w(at) of the Maxwellian
type having width

Ko = +/ <(X2>/2 > Aell/yﬁca

which is the same along both the transvere direc-
tions, the transverse and longitudinal friction
forces are equal to (v, = yfcay):

ZZ 47 A
(FA) ~ —n\ﬁ————" L) Oy (56)

2 mv g’
dnnZ%e*

FHS ~ —
CFiD. mv3

Ll

3 jnv
oy L) - 5 \/5 v_(l)l L*(vo), vo > vy > A,

U” 2
2 A \/7—; LA(Ae”).
€

To within the accuracy of numerical factors,
these expressions are analogous to those for the
friction force (4.2) and (4.3) for fast collisions, where
A,, hasthe same function as a spread v, in this case.

Thus, oscillations of o with a “normal” distribu-
tion w(at) as should be expected, do not lead to
instability and create only an effective temperature
(included in expressions for decrements) of the
transverse motion for Larmor circles. If the con-
dition oy < 0, = A, /yfc is satisfied, the contri-
bution of adiabatic collisions to friction and
diffusion remains dominant in the region 6% +
(v /7Be)* < 62

Note that the case when ay < 0, is characteristic
for experimental conditions. So in the experiments
on proton-beam cooling at NAP-M,!! the angle
between directions of an accompanying magnetic
field and closed orbit of protons was monitored
with an accuracy of several units x 10~% at an
angular spread 0, ~ 3- 1073, The fast damping of
transverse dimensions of a proton beam!! is
possibly accounted for by adiabatic collisions
under the conditions

Ae” < “oyﬂc < Ael'

We shall give some expressions for the friction
force in the case of one-dimensional oscillations a;.
In the direction along these oscillations, the friction
force differs from (5.6) only by a logarithmic

o <A, (57)
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factor, that is,

(FH = _sz

Uo

O 1n<—3°—); (5.8)
%o v2 + A?ll‘

in the directions transverse to «, (interpolation
formula),

_ _2\/271: nZze“LA(, / 1.7,2,. + Aezu)

m(vtr + A?H)

Yﬂ; 0 < ay, v, <vy (59)
Vo

where v,, = (yfc#,,, v;). From comparison of (5.6),
(5.8) and (5.9) with the previous case (formulas (5.1)
and (5.3) where only large values a(s) > A, /vBc
were present), one can derive the qualitative cri-
terion: the ion transverse-oscillation decrements
become negative only in the case when the angles
of the magnetic field deviation from the closed orbit
direction lie around a certain value with relatively
small spread ({a?) — (a)?) < <a>2 (for example,
with distribution w ~ 6(a? — a3)).

If the monochromatic instability occurs, it can
be damped by introducing smoothly oscillating
inflection force lines of the magnetic field with an
angular amplitude o, larger than the uncom-
pensated deviation «,,.. To this end, another
method can be also used, namely, the modulation
of the potential accelerating electrons with a
relative amplitude AU/U > ya,,,. In this case, the
modulation frequency should exceed the increment
instability.

6) Summarizing the consideration of the mag-
netized electron influence on the cooling process
given above, let us emphasize the dependency
differences in the contributions of adiabatic and
fast collisions from the transverse and longitudinal
spread of electron velocities. Under conditions
A, < A, the decrements of the usual (i.e., fast)
coihsmns do not practically depend on A, , but
these decrements are very sensitive to the trans—
verse spread of electron velocities. Opposite to this,
the decrement of the ion adiabatic collisions with
Larmor circles is insensitive to transverse electron
temperature and strongly depends on the spread of
electron longitudinal velocities (including the
spread caused by oscillations of accelerating
electrical potentials). Another distinguishing fea-
ture is that adiabatic decrements are strongly
dependent on the deviations of magnetic force

lines of the accompanying magnetic field with re-
spect to the closed ion orbit in the region o >

A, ,/vBc, while the decrements of fast collisions
become sensitive to this only at angles & > A, /yfc.

7) The only factor thoroughly studied here is the
deflection of the magnetic force lines, which limits
the positive effect of a.magnetic field on the cooling
process. One can also indicate some other factors
affecting the kinetics:

a) a drift of the Larmor circles in the field of
space charge of the electron beam with a velocity
which increases with moving off the beam “center”;

b) longitudinal and transverse gradients of elec-
tric potential in the cooling section;

¢) the Larmor mean radius variation along the
beam cross section which occurs, for example,
because of imperfections in the electron gun
optics;

d) electron-electron interactions leading to the
effects like an unstationary shielding of the Cou-
lomb interaction and also to an increase of the
longitudinal temperature of electrons;

¢) ion-ion interactions, coherent and nonco-
herent (stochastic) both direct and via an electron
beam;

f) multiple collisions of ions with magnetized
electrons in the region of impact parameters that
are less than the Larmor radius of electrons.

One should consider futher the interaction of a
beam of heavy particles with a flux of magnetized
electrons without confining oneself to the case of
“the Coulomb-logarithm approximation” and tak-
ing explicitly into account the factors mentioned
above.

Note that one can hope to use in some way the
large friction force in the region v > A, /yfc for
faster cooling of beams with a large angular spread
0> A, [vBe

The work presented here was performed in con-
junction with the experimental studies under way
at our Institute. The simultaneous theoretical and
experimental analysis and a search of optimal
cooling conditions are especially important be-
cause of a large number of factors determining the
electron beam properties and effectiveness of the
method.

The authors use the opportunity to thank the
late Prof. G. 1. Budker for continuous interest to
this work, and V. V. Parchomchuk, N. S. Dikansky,
D. V. Pestrikov, I. N. Meshkov for fruitful dis-
cussions.
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Appendix 1

In order to prove (2.4), we shall give a derivation of
a general relation for the kinetic momenta.'® Let
C, be the set of canonical integrals of motion, action
and phases for two particles in an external field and
V(C, t) the interaction between particles. The
variation of C, with time during collision one can
represent in the form of the Poisson bracket

C(0) ={V;Cy

Let us find C,(¢) as a function of the initial condi-
tions at t = 0 to the second order in V. Then
. 0 ~ 0
2) _ L, — . — . N— (V- C
O = AC, 5 (Vi) = (73 C} 5 (V3 €l
={V;{V;C,}}

where

(A.1.1)

24
V= f V(C, t)dt, AC, = {V; C,}.
0

Splitting (A.1.1) into parts symmetrical and anti-
symmetrical with respect to ¥ and V and using the
Jacobi equation, one can obtain

1 0 d

~2) _ ___ (V- C V:C.
C’(v 2acvl dt {V’ v}{V’ v}

+3{V; v}y ).

We are interested in the rate of change of the action
variable I, averaged over initial phases y,. The
second term of the Poisson bracket with potential

LV, v} dissappears in averaging and we obtain
the relation

d— 10 d———

—AI? = - — —AILAI,.
dt 201, dt
Selecting the coordinates and momenta of ion and
electron as the variables of action and phase, after
averaging over the initial coordinates we obtain

d— 10d—— 1202 d
aAP-Ea—m5APAPa+Ea—§;5APAPE“.
(A.1.2)

The friction force corresponds to the second term
appearing because of perturbations of the electron
motion. In the case of free electrons, the tensor
APAP,_ depends on the difference of velocities

v —v,, and AP, = —AP; after carring out inte-
gration over the electron distribution we obtain
1 o d
F° = — — — (APAP,). A.13
2m 0Ov, dt < « ( )

In the case of adiabatic collisions in a magnetic
field, the electrons have effectively only one degree
of freedom, namely, the longitudinal; taking into

account that AP, = —AP, from (A.1.2), we
obtain an analogous relation to (A.1.3)
1 0 d
FA=_—— —<APAP>.
2m Ov| dt < %
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Appendix 2

Let I, and ¥, (v = 1, 2, 3) be the action variables
and phases of a particle moving in an external
magnetic field: I, = const, ¥, = w(I) = const;
they are connected with the generalized momentum
P = p + (e/c)A and a coordinate r by a canonical
transformation. Under the effect of the friction
force F(P, r), the variables I, are slowly varied, i.e.,

ol ol
= ——v F = v
M) P
Let us define the decrement sum in the form
10 .
A= — 5 6_1‘, <Iv>,

where the brackets denote averaging over phases.
With averaging, the value A can be represented

in the form
1 a0 al, a oy,

Using the canonical relations
o, or oy,  or

oP oy, oP ol

v

(A.2.1) can be transformed to

1 0 Or 0 or
A=‘5<(5i:5a‘a—w—zv>F>
= —¥{F;r}p.

The decrement sum may thus be expressed through
the Poisson bracket of the friction force with the
radius vector of a particle ; writing the sum explicitly
in the variables P, r we obtain

A = —(0F(P, r)/0P), (A22)
the very thing required to be proved.

In situations when the longitudinal (with respect
to the ion closed orbit) friction force does not
depend on the transverse coordinates x and z, the
longitudinal decrement is evidently equal to
—3(0F /0P >; in this case, from (A.2.2), it follows
that for other conditions being arbitrary, the
decrement sum for betatron oscillations is equal to

A + A, = —3(F /oP ).





