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DISTRIBUTION OF THE MAXIMUM ORBIT DISTORTION
FOR RANDOMLY DISTRIBUTED MISALIGNMENTS
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Analytic expressions have been developed for the rms value of the distribution of the maximum orbit distortion and
for the extreme tail of the distribution, taking into account the possibility of several contributing harmonics of the mis
alignments. These results are compared with Monte-Carlo computations over a wide range of transverse oscillation
frequencies and it is found that the two are in excellent agreement if one includes between three and four harmonics
in the analytic results.

I INTRODUCTION

The misalignment ofmagnets in an AG synchrotron
leads to distortion of the closed orbit. When the
wave number of the transverse oscillation is close
to an integer, this closed-orbit distortion will be
dominated by a single harmonic, and its ..amplitude
is easily calculated for a given set of errors. 1 One
can also easily obtain the distribution of the
maximum orbit distortions for random distribu
tions of the individual magnet misalignments, and
thereby establish a "safe" aperture requirement.

In those cases where the wave number of the
transverse oscillation is such that more than one
harmonic contributes significantly, one finds it
necessary to perform Monte-Carlo type numerical
simulations. 2

,3 Such calculations, which imply a
significant increase in the "safe" aperture require
ment, have been the basis for selection of aperture
size.

The purpose of this paper is to develop approxi
mate analytic expressions for the maximum closed
orbit distortion in the case where more than one
harmonic is important. This will provide a better
understanding of the computer results, as well as
a simple means of estimating the necessary "safe"
aperture.

II CLOSED-ORBIT DISTORTION

We shall consider, for simplification, a circular
machine with N equally spaced magnets, each of
which is displaced randomly and independently.
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We shall further consider only a "smoothed"
machine with wave number v, such that

1 ~ v ~ N.

Clearly, our calculations can be modified to
remove these restrictions, but the primary results
contain the features of present interest, namely, the
effect of several contributing harmonics.

The basic equation to be solved is

d 2x N-l 2ni

dll2 + v2x = L B;b(8 - 8;), 8; = -. (1)
u ;=0 N

The probability distribution of each orbit error
impulse, B; is taken to be

P(e) = (T~ exp[ - 2
e
: 2J. (2)

A Fourier decomposition of the right side of (1)
leads directly to

00 00

x = L Pj cos j8 + L qj sinj8, (3)
j=O j=l

where

1 N-l

P -- 'B·0-2 2 ~ "-nv ;=0

1 N - 1 2nij
Pj = (2 ·2) L ejcos -N' j ~ 1 (4)

n v - ) ;=0

1 N-l . 2nij
qj = (2 .2) L ej SIn -, j ~ 1

n v - ) ;=0 N
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(5)

(6)

(10)

aJN . aJN
RM = It!v2 _ M 2 1 ~ 2ltM!v _ MI (11)

is the rms value of the maximum amplitude. It
should be noted that Ro in (8) and RM in (11) are in
agreement for v close to the integer M.

Another useful index of the distribution is its
behavior for large A. If we define Q(A) as the
probability of finding an amplitude equal to or
greater than A, then

Ql(A) == LoodAP1(A) = ex{~ :~J (12)

for one dominant harmonic.

In this-case the distribution in amplitude A can be
shown to be

where

B Two Contributing Harmonics

If two harmonics U= M and M + 1) are impor
tant, one can write

X = PM cos MfJ + PM+ 1 cos(M + l)fJ
+ qM sin MfJ + qM+l sin(M + l)fJ

= cos MfJ[PM + PM+1 cos () + qM+l sin ()J
+ sinM()[qM - PM+l sin fJ + qM+1 cos ()].

(13)

The "maximum amplitude," for large M, is then
given by the maximum value of

[(PM + PM+1 cos fJ + qM+l sin ())2
+ (qM - PM+ 1 sin fJ + qM+ 1 cos fJ)2]1/2

= [p~ + q~ + 2 cos ()(PMPM+1 + qMqM+1)
+ 2 sin ()(PMqM+1 - qMPM+1)
+ 'p-K.t+ 1 + q~+ 1]1/2.

This expression has a maximum value given by

(8)

(7)

the
the

N a
2

[ sin 2nvJ= 1+---.
8v2 sin2 nv 2nv

For v ~ 1, one can write for the rms orbit dis
placement

a ri:i
R ~ yN.

o 2v Isin nv I
Actual orbit-distortion amplitudes will be measur
ed in units of Ro in the present work.

x ~ VISi: ltv! ft,
a result quoted in Refs. 1 and 2.

If the distortion is dominated by a single har
monic, the rms maximum amplitude, Ro, will be
j2X, or

Our problem is to determine the distribution of
the maximum value of x.in (3), for the 8; distributed
according to (2).

A useful index of the size of the closed-orbit
distortion is the rms value of the displacement.
From (3) this can be written as

- 1 00

X
2 == <x2

) = <P6) + - L <pJ + qJ),
2 j= 1

where the bar represents the average over
circumference, and the bracket represents
average over the distribution of errors. Since

(81) = a2

Na2

<P6) =-424n v

2 2 Na
2

<PJ· + qj) = 2( 2 02)2. . n v - ]

(14)

III APPROXIMATIONS where

A One Dominant Harmonic

If v is close to the integer M, the harmonic j = M
will dominate the closed-orbit distortion and the
maximum amplitude will be given by

A2=p~+q~. (9)

It can be shown that 1 - <rMrM + 1)/<rM)<rM + 1)
goes as liN for large N. Thus, the distributions in
rM and rM+ 1 are essentially uncorrelated. Using
(10), one can therefore write the distribution in
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maximum amplitude with two contributing har
monics,

where S2' the region of integration in (16), is
bounded by

{

rM ~ 0,
S2 = rM+l ~ 0,

rM + rM+l ~ A.

It is a simple matter to calculate the rms value of
the maximum amplitude from (15). It is

A 2 == (LooP2(A)A2 dA )1/
2

= (Rit + ~ RMRM+ 1 + Rit+ 1y1
2. (17)

It is also possible to express Q2(A) in terms of the
error function defined by

Erf(t) = Jooe- u2 duo

Specifically,

R~ [A2JQiA) = Rit + Rit+ 1 exp - Rit

R~+ 1 [A2

]+ 2 2 exp - -2-RM + RM + 1 RM + 1

2RM R M + 1

+ (Rit + Rit + 1)3/2 A

For large A, the last term dominates (except very
close to v = M or M + 1). Since Erf(x)~· 0 as
x ~ 00, one can write (18) in the form

;:RM RM + 1 A [A 2JQiA) ~ 2y 11: R2 R
o

exp - R5 ' (19)

where R2 = RF..t + RF..t+l. As we shall see, for addi
tional harmonics, the quantity A always occurs in
units of R, which is generalized to include the
additional harmonics. For this reason we have
replaced AIR by AIRo in (19). Here Ro, given by
(8), is the generalization (to several harmonics) of

R5=···+R1+Rlt+l + ... ,
as illustrated in (6).

The tail parameter, Qm(A), can be written as the
obvious generalization of (16):

Qm(A) = fff ...dr:- 1 dr: dr:+ 1

RM- 1 RM RM+1
Sm

... exp[- rit-l _ rit - rit+ 1 ] . . . (22)
Rit-l Rit Rit+ 1 '

where Sm, the region of integration in (22), is
bounded by

Sm = Srj ~ 0, all m terms (23)
1Irj ~ A.

For large A and several contributing harmonics,
the dominant contribution to the integral in (22)

C Several Contributing Harmonics

If three or more harmonics are important, the
maximum amplitude is no longer simply the sum
of the amplitudes of each harmonic, since the
various harmonics will not necessarily be in phase
with one another when each is at its maximum
value. Nevertheless, we can obtain an upper bound
for the maximum amplitude by writing approxi
mately

A=···+rM-l +rM+rM+l + ... (20)

and assuming uncorrelated distributions for the rj's.
The rms value of the maximum amplitude can

then be written, for M harmonics, using the same
analysis as that leading from (15) to (17), as a
generalization of (17):

Ait = LRJ + ~ LL RiR j (21)
2 all pairs

i*j

(18)
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f={1 Lrj>A}
o L rj < A

where £5 is a small positive quantity to place the
pole in the upper half complex plane, the function
Qm(A) in (22) can be approximated by

( ) ~ _1 foo du exp[ - iuA] Ilm
Qm A - 2 0 00 0£5

nl - U-l j=1 (29)

IV COMPARISON WITH CALCULATIONS

and

- . (m-l)/2!Il
m

[ R j J [ A
2JQm(A) - (4n) j= I (L Rf)1/2 exp - R6

x ~(m-1)/2 ~-1Y(m - 1)! (~)m-1--2i

L 22 '01( 1 2°)' Ri=O l. m - - l. 0

term goes as the (m - 1)st power of A, a conclusion
which sheds light on the Monte-Carlo results in
Ref. 2.

The analytic results which contain information
about the distribution of maximum amplitude are
given in (21) and (27) which are rewritten below

[

i*j ]1/2
LLRiRj

Am _ 1 + ?:. aHpairs (28)
R o - 2 LR}

(24)

(25)
__1 Joo du exp[iu(L r j - A)]

f - 2 . 0£5
nl - 00 U - 1

as

comes in the vicinity of

R~

rj = " J 2 A
i-J R j

in which case the region of integration can be
extended, for convenience, from 0 ~ rj ~ 00 to
- 00 ~ rj ~ 00.

If one also writes the function

where

R 2 = LRJ (m terms)

is generalized to R6, given in (8), in all terms involv
ing A. This result can easily be seen to agree with
(12) for m = 1 and with (19) for m = 2, and will be
the basis for our conclusions about the tail of the
distribution. Equation (27) implies that the leading

foo 2r dr [r
2 J

-2-, exp - ~ + iur
-00 R J RJ

[
U2R~J= iuR;fi exp - ~ ,

Qm(A) can be written, letting £5 -+ 0, as

Qm(A) ~ (2r- 1n(m/2)-1 ex{ - ~iJ

M (Ro)foo (A )m-1x ,Il ~ dv - + iv exp[ -v2
]

.1=1 R -cl) R o

[ A2JM (R)~ (4n)(m-l)/2 exp - 2 Il --l
Ro j= 1 R

x ~(m-l)/2 (~)m-1-2i (-li(m - I)!

,L R 22i( - 1 - 2')' .,'l =0 0 m 1 .l.

(27)

Since

[f 00 2r dr [ r
2

• JJx -.~- exp - ~ + lur .
-00 R.J R.J

(26)
We have performed numerical calculations simi

lar to those in Refs. 1 and 2 with which to compare
our analytic results. We have taken

N = 100

M = 19,20

(J2 = t (uniform distributiont of each Gi between
-1 and 1) and have performed calculations for
10,000 machines for each value of v, all having
independent, random values of each Gi 0 The results
are given in Tables I and II, and illustrated in
Figures 1 and 2, and are in agreement with the
Monte-Carlo results in Refs. 2 and 3 where they
can be compared.

Table I summarizes the results for AmiR o, the
rms value of the distribution of the maximum
amplitude in units of the rms value of the one
harmonic amplitude distribution given in (8).
The second and third columns contain the Monte
Carlo results and the next four columns contain the
analytic results obtained from (28) for m = 1, 2, 3,4.
In these calculations we have used the second form
of (11) for R j , namely

const
R; = Iv _ ii' (30)

where we have lumped all other parameters in the

t The analytic results were obtained from a Gaussian
distribution in each t;. The Monte-Carlo results assume a
uniform distribution for each Gi' The two assumptions are
compatible for large N.
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TABLE I

RMS value of the distribution of maximum amplitude, in units of the one harmonic result,
as given by AmlRo in (28).

Monte-Carlo
Calculations Analytic calculationsa

v - M M= 19 M= 20 m = 1 m = 2 m = 3 m = 4 m = 3.7b

0.0 (1.000) (1.000) 1.00 1.000 1.000 1.000 1.000
0.05 1.098 1.084 1.00 1.040 1.077 1.097 1.091
0.1 1.190 1.179 1.00 1.083 1.152 1.193 1.181
0.2 1.361 1.362 1.00 1.170 1.289 1.370 1.346
0.3 1.496 1.487 1.00 1.252 1.401 1.517 1.482
0.4 1.582 1.575 1.00 1.313 1.475 1.616 1.574
0.5 1.610 1.604 1.00 1.336 1.497 1.652 1.606
0.6 1.578 1.574 1.00 1.313 1.475 1.616 1.574
0.7 1.489 1.485 1.00 1.252 1.401 1.517 1.482
0.8 1.351 1.349 1.00 1.170 1.289 1.370 1.346
0.9 1.178 1.178 1.00 1.083 1.152 1.193 1.181
0.95 1.083 1.087 1.00 1.040 1.077 1.097 1.091
1.0 (1.000) (1.000) 1.00 1.000 1.000 1.000 1.000

a Using Eq. (28).
b This column is a linear interpolation between m = 3 and m = 4.
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constant in the numerator which need not be speci
fied since only relative values of R j are called for in
(28) and (29). In all analytic calculations we take
the two, three or four nearest harmonics for
m = 2,3,4. For example, for v = 20.6 and m = 3,
we take j = 20, 21, 22, and add j = 19 for m = 4.

Comparison of the Monte-Carlo and analytic
results in Table I and Figure 1 strongly suggests
that as many as four harmonics contribute in a

significant way. Although we are conscious of the
fact that (20) is not an accurate representation of
the maximum amplitude for three or more har-
monics, one can assume it is and limit the number
of contributing harmonics to three or four. In
fact, a linear interpolation for m = 3.7, displayed
in the last column of Table I and as the dashed
curve in Figure 1 duplicates the Monte-Carlo
results surprisingly well.

TABLE II

Tail distribution parameter in units of the one harmonic result, as given by At/2Ro in (31), (18), and (29).

Analytic calculations
Monte-Carlo
calculations

v - M M = 19 M = 20 m = 1 m = 2a

0.0 1.000 1.000 1.00 1.00
0.05 1.056 1.056 1.00
0.1 1.099 1.103 1.00 1.045
0.2 1.172 1.179 1.00 1.092
0.3 1.220 1.217 1.00 1.128
0.4 1.247 1.237 1.00 1.155
0.5 1.256 1.240 1.00 1.164
0.6 1.246 1.225 1.00 1.155
0.7 1.218 1.206 1.00 1.138
0.8 1.167 1.161 1.00 1.092
0.9 1.100 1.093 1.00 1.045
0.95 1.055 1.050 1.00
1.0 1.000 1.000 1.00 1.00

a Using Eq. (18).
bUsing Eq. (29).
C Slightly outside the range of validity of (29).
d Well outside the range of validity of (29).

(1.070t (1.078t
1.125 1.174 (1.185t
1.154 1.213 1.258
1.164 1.227 1.281
1.154 1.213 1.258
1.125 1.174 (1.185t

(1.070t (1.078t d

d d

d

d

1 + (v - M)(1 - v + M)

1.000
1.048
1.090
1.160
1.210
1.240
1.250
1.240
1.210
1.160
1.090
1.048
1.000
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1.5

1.6

1.7

At
- ~ 1 + (v - M)(l - v + M) (32)
2Ro

around the circumference, that is, only if one har
monic dominates. Our result is the generalization
to several contributing harmonics.

In the comparisons in Table II and Figure 2,
we are limited somewhat by the range of applicabil
ity of our approximate form in (29), rather than the
exact form in (22) which is intractable for m ~ 3.
This is not serious, however, since the calculations
well between resonances, for which (29) is valid,
are the ones for which several harmonics are
needed. And so it is a simple matter to identify
the value for v - M = 0.5 and m = 3.5 and to
take the simple parabolic form

m=2

1.1

1.2

1.4
Am

~ 1.3

FIGURE 1 RMS value of the distribution of maximum
amplitude, in units of the one harmonic result, as given by
AmiRo in (28).

1.
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
II-M

1.28f ~m=4 )( Monte Carlo Calculations M=19
1+ (II-M){I-II+M)", ~ __ ~_"'\. 0 Monte Carlo Calculations M=20

1.24 >-~-- 0 - ......~ - Analytic Calculations m= 2,3,4

~
7/ 0 "i"-- Approximate Analytic Formula

1.20 // m=3'
0/ \

1.16 i ~
At I ",
2Ro 1.12 II ,

~I m=2 '~
1.08 I \

I \, ~

1.04 / \

/ \

1,0
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
II-M

FIGURE 2 Tail distribution parameter in units of the one
harmonic result as given by AJ2Ro in (31), (18), and (29).

The results in Table II and Figure 2 for the tail
properties of the amplitude distribution are equally
enlightening. Once again, the comparison of
Monte-Carlo and analytic calculations for the
behavior of the tail of the distribution strongly
suggests that between three and four harmonics
must be taken into account. In Table II and Figure 2
we have given results for At, which is defined as
that value of the amplitude for which

Q(At) = e- 4 = 0.0183.

Thus, the probability that the amplitude in a
machine, with a particular set of errors chosen
from a random distribution, will exceed At is
1.83%.

At this point, it is well to mention that the
discussion in Section 4(a)' of Ref. 1 addresses the
square of the amplitude, averaged around the
circumference. The conclusion about a safe aper
ture applies only if the amplitude does not vary

to approximate the interpolated analytic result.
Once again the simple form in (32) fits the Monte
Carlo results surprisingly well, as can be seen
from the last column of Table II and from the
dashed curve in Figure 2.

V CONCLUSIONS

We recognize that it is not a difficult matter to
perform Monte-Carlo computations to determine
the distribution of the maximum amplitude of the
orbit distortion for a randomly distributed set of
alignm,ent errors. Nevertheless, we felt it is impor
tant to explore analytic results for this distribution
in order to learn which features are important in
different machines and different settings. Simple
analytic forms have therefore been developed to
calculate the rms value of the maximum amplitude
as well as the value of the amplitude for which the
probability of exceeding it is e- 4 = 1.83 %. These
are contained, in (28) and (29).

Monte-Carlo calculations have been performed
to check our analytic results and we find that three
to four harmonics contribute. In particular, the
rms value of the distribution of the maximum
amplitude corresponds to taking m = 3.7 har
monics in the analytic result in (28). And the tail
distribution can be approximated by (29), taking
m == 3.5 harmonics midway between resonances
and using a simple parabolic extrapolation to
other frequencies, as illustrated in (32).

The dependence of the tail of the distribution on
A in (29) for m == 3 or 4 agrees with that found
from Monte-Carlo computations in Ref. 3.
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