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COHERENT OSCILLATIONS OF A RING OF
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I. HOFMANN

Max-Planck-Institut fur Plasmaphysik, Garching/FRG

(Received December 6, 1976,. in final form April 1, 1977)

The effect of ring curvature on the dynamics of coherent oscillations of a ring of relativistic particles is studied within
the framework of the linearized Vlasov equation. The centrifugal force term gives rise to coupling between coherent
radial and azimuthal motion, which affects the dispersion relation for the radial mode. In the limit of small-mode
frequency (wiD. ~ I) Landau damping of the resistive wall or electron-ion instability is shown to occur only if the fre­
quency spread exceeds a threshold which depends sensitively on the effect of curvature. This threshold condition and

the mode frequency are evaluated for several cylindrical boundary conditions.

INTRODUCTION

Longitudinal and transverse coherent oscillations
of intense particle beams have been investigated
by many authors with respect to the negative mass
instability,1,2 the longitudinal and transverse re­
sistive instabilities3

,4 and the electron-ion in­
stability,5 which may be important limiting factors
for accelerators with pronounced collective be­
haviour.

In the existing literature the transverse modes are
usually treated within the limit of negligible beam
curvature. This straight-beam limit is an approxi­
mation sufficient to describe many real situations.
Rings of highly relativistic electrons, however, like
those used in the electron ring accelerator (ERA)
devices are significantly influenced by curvature
effects, unless there is strong cancellation of the
electron space charge by an ion background. In the
Garching ERA device6 axial focussing of the ring
in the accelerating structure was found to be pos­
sible only if the axially defocussing effect of curva­
ture is compensated by images on an electric image
cylinder (" squirrel cage") close to the ring. Not
only the equilibrium but also the stability pro­
perties of such electron rings may critically depend
on curvature effects. In particular one must expect
coupling of longitudinal and radial coherent oscil­
lations owing to the centrifugal force term in the

t This work was performed under the terms of the agreement
on association between the Max-Planck-Institut fur Plasma­
physik and EURATOM.
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single particle equations of motion. This paper
treats the analysis of coherent modes within the
framework of the relativistic Vlasov equation in
cylindrical geometry. In contrast with previous
works curvature is correctly taken into account in
the Vlasov analysis. The curvature-modified disper­
sion relations of the most important modes are
derived. In special cases (low-frequency radial
modes) it is shown that Landau damping by a
finite energy spread may be suppressed by curva­
ture effects, which renders the mode (linearly) un­
stable with respect to the resistive wall and electron­
ion instability.

2 BASIC EQUATIONS AND
EQUILIBRIUM

The distribution in phase space of one species of
relativistic particles with charge e interacting
through their collective electric and magnetic
field is described by the relativistic Vlasov equation
in cylindrical geometry7

,8 :t

of . of . of . of . of
ot + ror + Ur OUr + eoe + Uo ~uo

t With units such that the speed of light becomes unity
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(3)

(2)
(11)

H~ is the transverse energy which can be written in
leading order as the sum of the radial and axial
oscillation energies, which are constants of the
motion in this order

This corresponds to purely circular motion at
radius R(Pe) with zero-order values uoe(Pe), yo(Pe),
H~(Pe) defined by

Pe == mRuoe + eRA~(R, 0)
2 .

mUoe e ° °- + - uoeBz(R, 0) + eEr(R, 0) == 0
yoR Yo

and obtain

y~ == 1 + u~e

H~ == myo + ecpO(R, 0). (10)

We are now able to expand HO about H~ if we
define the relative single particle displacement

curl E = - ~~; div B = 0

and particle density and current density computed
selfconsistently with the Vlasov equation

Ur == yf

ue == YVe == yrO

Uz == yz

y2 == 1 + u; + u~ + u;,

· u~ e ( Ue Uz )u ==-+- E +-B --B·r r z e ,ry m y y

· ueUr e ( Ur Uz )ue == - - + - Ee - - Bz + - Brry m y y

· e ( ue Ur )Uz == - Ez - - Br + - Be ,
m y y

with electric and magnetic fields satisfying the
Maxwell equations with appropriate boundary
conditions

div E = 4nen; curl B = 4nj + aEat

yields a solution

Ur == Uz == 0; r == R(Pe); Z == 0 (9)

if there is symmetry in z and no applied Ez field.

Next we replace Ue by Pe according to (6). The
energy HO(r, z, Ur , Pe, uz) is in general a compli­
cated function of its variables. With regard to the
linearization of the problem it is desirable to ex­
pand HO about the minimum value of energy for a
given Pe. The variational problem

Voe Uoe d f )Q(Pe) :;= - == - (zero-or er gyro requency ,
R Ryo

(13)

2 E? + R(E?' + voeB~') (eE~R )2
Vr == 1 + ° ° + -2-2

Er + VoeBz mvoeYo

2 R(E~' - Voe B?') (14)
Vz == ° . ° .Er + VoeBz

with the following restrictions:

a) fO non-negative,

b) f O is zero outside a finite range of Pe values
(such that 0 < Rmin ~ R(Pe) ~. Rmax),

c) fO is non-vanishing only within ranges of
values of x and z sufficiently small to justify omis­
sion of higher than second-order terms in (13).

(16)

The betratron tunes Vr , Vz agree with the results of a
different derivation in Ref. 10.

We can now specify fO as a function

(8)

(5)

(6)

(7)

(4)

~H == 0

HO == my + ecpo

Pe == mrue + erA~

fO == j'O(HO, Pe).

nCr, e, Z, t) = f f dUr duo duz

j(r, e, Z, t) = e f ~f dUr duo duz

A rotationally symmetric equilibrium distribution
can be described in terms of two constants of the
motion, the total energy and the canonical angular
momentum9
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Next we derive first -order expressions for the
moments Jfl da, Jxfl da and JZf1 da with

f 1 -iQ ( 1 eE~) f 1I da == ---- - - -2-3 xl da
w - iQ R mvooyo

(20)

(22)

(23)

(24)

da == dr dUr dz du z

dR 1 ell
i(w - iQ)R dP eEo + -(Er + vooBz )

o myo F O

v;Q2 - (w - iQ)2 '

(21)

which we need for calculating the beam displace­
ment and current'modulation in terms of fl. To
this end we expand the coefficients in (19) in terms
of x, Ur , Z, UZ , carry out appropriate integrations
and after partial integrations and elimination of
JUr 11 da, JUz f 1 da we find the following expres­
sions valid up to first order

and find from (1) using Po'==: 0 in' the equilibrium

U U af1
il ~ f 1 - iwf 1 +~-

ry y ar

+ (uJ + ~ (E? + U
oB~)) afl

ry m y aUr

+ Uz of 1 + ~ (E~ _Uo B? + Ur B2) af 1

y az m y y auz

_~ (E 1 + UoB1 _ Uz 8 1) Q(O
r z 0 am y Y Ur

(
1 Ur 1 Uz 1) ofO

- e Eo - - Bz + ~ Br r ;)P
y y U 0

_~ (E; - Uo B; + Ur BJ) ofO . (19)
m y y auz

Although the distributions (15) are only approxi­
mate solutions, they give a more'realistic descrip­
tion of experimentally observable electron rings
than the exact solutions (7), which, distribute
particles uniformly over energy surfaces in six­
dimensional phase space. The experimental obser­
vation 11 of energy transfer from the radial to the
axial degree of freedom after crossing the Walkin­
shaw resonance 2vz == Vr under unfavorable condi­
tions suggests that no equidistribution has occurred
before resonance crossing. Hence, for weak non­
linearities in the equations of motion (2) the
distributions (15) are a convenient starting point
for the following linearized analysis of coherent
oscillations. Such distributions (15) were also
considered in a numerical mode1. 12

With (c) a spt;eadof ,betatron and revolution
frequencies due to finite oscillation amplitudes is
disregarded in our model. Thus dispersion is
introduced in our system of particles only by the
spread due to Po. It seems reasonable to assume
that a spread of frequencies due to a finite range of
betatron amplitudes has, an effect upon Landau
damping and stability which is comparable to the
effect of an equally large spread produced by a
finite range of Po. Moreover, there is some evidence
to assume that both effects occur additively in the
stability criteria.4

3 LINEAR PERTURBATION THEORY
AND MO'MENT EQUATIONS

Small perturbations about the equilibrium (15)

.f == f ° +11 (1 7)
are treated with the linearized version of (1).

Using the independence of fO of t, (J, we may
Fourier-analyze.f 1 with respect to these variables.
The use of two further constants H~r, H~z in fO
suggests to Fourier-analyze also with respect to the
phase angles in x - Ur and z - U z • Here, however,
we are only interested in modes with density varia­
tions in the (J direction and beam displacement in
r or z, corresponding to zero or first harmonics in
the transverse phase planes. Higher transverse
harmonics are neglected here, because they cause
oscillations of the beam cross section which in turn
have a minor effect on the collective field if y is
large.

With Uo replaced by Po as an independent variable
according to (6) we assume

f1 == f1(r, Ur , Z, uz ' Po)ei(W-wt) (18)
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The local radial beam displacement as function of
lJ, t is defined by

(r)l = Jrf du dP8 _ J,:r du dP8
Jfda dPo JfO dO" dPo

= J(Jxf 1 du) dP6

+ J(R - (R»(If 1 dU) dP6 (25)

with

and

The corresponding expression for the axial dis­
placement is

and for the azimuthal line current perturbation we
have

. 1 e I n 1( eE~R)(10) == - (JJ - - . 1 - -.2 3
m (JJ - IQ R vooYo

dR 1 ell
i(w - IQ)R dP eEo + - (Ey + vooBz )

° myo FOdPx v;o.2 _ (w _ 10.)2 0

e
2 I Q d 1 °- i - - (EoRF ) dPo, (30)

m w - IQ dPo

1 e I1 E; - vooB: 0
(z) =;; Yo v;Q2 _ (m _ IQ)2 F dP8 • (31)

From these formulas we draw the following con­
clusions:

a) The axial perturbation (31) is in agreement
with the corresponding expression in,4 which was
derived there for transverse oscillations ofa straight
beam.

b) The radial perturbation (29) differs from the
straight beam expression by additional terms in­
volving the azimuthal electric field perturbation
and the spread in equilibrium radii R - <R)IR.

c) The azimuthal current perturbation (30) has
an additional term which is related to the radial
beam displacement and introduces coupling be­
tween the radial and azimuthal coherent motions.

The relative importance of the different terms in
(29)-(31) depends on the mode under considera­
tion and will be discussed in the next section.

Thus we obtain from (21)-(23)

- (~ _! ;:? 3) IX/I dO") dPo' (28)
R m VooYo

4 DISPERSION RELATIONS FOR
COHERENT MODES

The above-established coupling between radial and
azimuthal coherent motion depetlds quantita­
tively on the frequency w of the mode. In the limit
of vanishing collective field effects and no disper­
sion the zeros of the denominators in (29)-(31)
permit us to classify the modes. For an observer
gyrating with the particles a perturbing field
~ ei(IO-wt) has a frequency 10. - w. This field may
have a resonant action on the particles via

a) their azimuthal motion (w - 10. == 0),

b) their radial betatron oscillation «w - lQ)2
- v;Q2 == 0),

c) their axial betatron oscillation «(J) - 10.)2 ­
v;Q2 == 0).

(29)

<r)1 == I(l _R - <R) 10. (1 _e;?~).. )
R ill - 10. Voo'Yo
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Hence it oscillates synchronous with the radial
frequency and is therefore driven by the same
oscillating collective field that drives the radial
coherent motion. This term vanishes for (JJ -+ 0,
because in this limit the local beam center moves
perpendicular to the collective field which sup­
presses an azimuthal density modulation~ In the
limit of vanishing collective effects and dispersion
the modes solving (35) are given by

which follows from (10).
Equation (35) differs from the straight beam re­

sult4 by two additional force terms in the brackets;
the first term is relating the radial displacement
with EJ via the centrifugal force in the radial
eq.uation of motion; the second term includes the
contribution of the azimuthal current modulation
to the collective fields. Such a term appears because
the azimuthal component of the particle motion
obeys

The lower sign refers to the f04t slow wave;;, the upper
sign to the fO'fast wave". Using this approximation
in (35) we find

1 =~ {+ i F0, r + F
myo - V, ','

- ;; m(± t) ~ (±i F:;o + Fr,o)}' D (39)

for either wave.

(38)

(37)

(36)
dR 1
-~--~

dPo - m1'o V08 V;

compared with unity, we find

1 = ~ { ill - IQ
myo i v;Q Fo,r + Fr,r

.-;;m w ~ IQ~ (imv~~Q Fo,o + Fr,o)}.D

D == fv;Q2 _ ~: _ IQ)2 dPo· (35)

Here we have replaced for simplicity the n, R, v, by
their average values, unless they occur in the de­
nominator .V;Q2 - (00 - 10.)2, and have used the
relation

eE,R
V2 ,,3

0810

dO 1 (1 1)
dP = -~ v: - 1: ,from (10)

o myo , Yo

The second term expresses coupling to the radial
motion through the variation in equilibrium radius
and is in general small. The dominant first term
agrees with the familiar negative-mass dispersion

I . 1 2 . hre atton' WIt curvature only entering into the
expression for v, and we conclude that curvature
has not an important effect on this mode as long as
(ro - lUI ~ in and lro - 101 ~ v,Q, otherwise the
full expression (30) should be taken into account.

b) Radial-azimuthal mode:
Terms in (29)-(31) with the denominator v;Q2
- (ro - 10)2 contribute to this mode. Omitting the
~mall term associated with R - <R)/R and neglect­
Ing

Next we assume finite, but not too strong self-fields
such that for either mode (a), (b) or (c) only those
terms have to be maintained in (29)-(31), which are
associated with the respective denominator..

We assume a linear dependence of the field per­
turbations on the quantities (r)1, <io)\ (Z)l.
Small variations with R are neglected and the
perturbations evaluated at <R)

E} + vooB; = F,~,<r)l +-.F"o<io)l (32)

EJ = Fo,,<r)l + Fo,o(j(J)1, (33)

where the coefficients F depend on w, I (in general)
and follow from the Maxwell equations solved with
the respective boundary conditions.

With the leading terms the dispersion relations
are in the above defined cases:

a) Azimuthal mode (negative mass mode):
After partial integration in (29), (30) and omission
of all terms except those with denominator {w ­
10.)2 we find the dispersion relation for the negative­
mass instability

(

RQ dO
e f dP1 = iel - F0 (J 6 2 FO dP0
m ' (ill - if>.)

F f R~ 0 \
+ O,r (m _ I!>Y (R - (R»· F dP0j. (34)

with
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5 COHERENT FREQUENC'Y AND
THRESHOLD CONDITION FOR
DAMPING OF THE SLOW RADIAL
MODE FOR DIFFERENT BOUNDARIES

For most:.ofth-e electron ring applications IK I is in
the 'range 0 .. '. : 2 and we conclude that' Landau
-damping in the low frequency'case is possible only
if the average 'value.' of S obeys

1 == 2<Qvr )(U + (1 + i)V)D. (41)

V > °is induced by finite resistivity of the walls due
to image current damping and is in general small
compared with U.

With the realistic distribution

FU(Pe) == _3_ (1 _(2 Pe - <Pe»)2) (42)
211Pe I1Pe

for IPe - <Pe) I <I1Po/2, otherwise FO == 0, the
evaluation of (41) follows a standard procedure4

and gives a necessary condition for damping
(see Appendix)

(48)<S) ~ U,

otherwise' the mode is unstable (V > 0, finite
resistivity) or purely', oscillatory (V == 0). We ob­
serve that the same argument, holds if the con­
sidered mode is driven by resonant interaction
with a ring of oppositely charged particles, which
renders criterion (47) a necessary criterion for
stabilizing the electron-ion instability.t

Ring in Free Space

For a ring in free space" with, the mode [. == 1 and
co ~ Q we apply the results for the self-~elds of a
stationary ring' 13 on, the coherently sh,jfted, ring
'and ,find in the unshifted' coordinate system, (see
Appendix)

e(E; + Voe B;)

(
4R2 1 16R )

= myoQ2J1 - ( b) 2 + 21n --b, <r)l
a a+ Yo a +

16R
eEJ == -imyoQ2J1ln ---b <r)l (49)

a+

,where ,G', b are radial and· axial semi-axes,(44)

(40)

(43)115 ~'3U,

where I1S is the full spread in the quantity

S == (I - vr)Q

In the low-frequency case, i.e., 1~ Vr , the slow wave
leads to the dispersion relation

e {-i }1 == -, -Z-, Fe r + Fr r Dmyo ' ,

which we write in standard notation,4 with < )
indicating the average value,

due to the spread in Pe. The coefficient U, which is
modified here "by curvature effects, is the shift of the
coherent frequency due to collective effects in the
limit of V == °and negligible spread in S~ in which
case we write

Thus criterion (43) requires that the distribution in
S be broad enough to cover the shifted frequency
co, otherwise there are no particles in phase with the
coherent wave and there is no Landau damping.

With the following definition for the Landau
damping coefficient

E dS I1E
K == - - I1S == K - co (46)

codE' E'

(43) is converted into a criterion involving the
energy spread ~E/E and K:

(50)
Re co == <S) + U. (45)

v NreJ1-----
- Yo - 2nRyo'

and re is the classical electron radius.
Thus' we find for the coherent frequency shift

V = ~ J1(- 4R
2

. 1 + In 16R).
2vr ' a(a + b) Y;J a + b'

The logarithmic ter'm in U is due to, curvature and
dominates fOf large 'Yo over the straight beam term.
As an example we take

-3 R R ;
J1 == 3 x 10 , --;; == b == 10, Yo == 30

IK I < 2 I1E == 1,°-1.. "-' , E

3U
IKI ~ ~E

-co
E

3U
(47)

t A sufficient criteriom must involve also dispersion of the
ion species as observed aiready'in Ref. 5.
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(55)

and find that (47) can be satisfied only if

(51)

whereas omission of the curvature term would
allow for the much larger range (1 - vr ) ~

5 X 10- 3.

Ring Close to Cylindrical Conductors

The image contribution to U, if an infinitely long
conducting cylinder (radius R) is present, may- be
expressed in terms ofelectric and magnetic coherent
image coefficients £~oh and £~oh.

Q ( 4R
2

1
U = 2v

r
J1 - a(a + b) y;

16R £~oh _ f32 £~Oh)
+ In a + b + 4 (l _ S)2 (52)

- R
S == Ii' f3 == V08 .

The £~oh, £~oh are presented in the Appendix and in
Table I. We observe mutual cancellation of electric
and magnetic image contributions for an interior
cylinder. If an electric image cylinder is considered,
which is transparent for the magnetic field per­
turbations (poor conductor or squirrel cage) we
approximate U by putting £~oh == O.

For a combination of a good conductor and an
electric image cylinder £~oh follows from Table II,
whereas £~oh can be taken from Table I with 5 for
the conductor.

The single particle frequency follows from the
familiar formula 13,14 using incoherent image co-
efficients

(
4R2 1

v; = 1 - n - J1 ( b) 2
a a + Yo

16R £~nc _ f32 £~c)
- In a + b + 40-_ S? ' (53)

where for a perfectly conducting cylinder ~nc ~ 1/8
and £:c~. 1/8 - (1 - 5)2/4 (for (1 - S) :$ 0.5),
whereas a typical squirrel cage gives £~nc ~ 1/8,
£:c :$ 0.01( 11 - SI ~ 0.2).14,15 For the combina­
tion of a perfect conductor and an electric image
cylinder we find £~nc ~ 0.21 and again £~c ~ 1/8
- (1 - 5)2/4,15 if both cylinders are equally far
away from the ring.

From (52) and Tables I, II we conclude that the
coherent frequency shift U is nearly unchanged with
an interior perfect conductor, but an electric image
cylinder (useful for axial focusing) increases U
considerably above the free space value. There
remains a possibility to satisfy the .threshold
criterion (47) by including image contributions to
the Landau damping coefficient, which is readily
derived from (46) and the equilibrium equations as

(
dVr)

1 ( 1 1) S n R . dR
K = - /32 v; - y; ~ + ~ --;r' (54)

The free space contribution to K was found ap­
proximately as

dVrIRVr dR ;S J1
fr. sp.

from a numerical solution for the ring self-field 16

with aiR 1'-1 0.1 and y ~ 20.

TABLE I
Coherent image coefficients for one perfect conductor

S 0.5 0.6 0.7 0.8 0.9 - 1.1 1.2 1.3 1.4 1.5

£~oh 0.039 0.053 0.069 0.085 0.104 0.162 0.206 0.248 0.283 0.312

£~Oh 0.044 0.057 0.07 0.085 0.104 0.137 0.134 0.125 0.115 0.104

TABLE II

Coherent image coefficients for two conductors (electric image cyl.)

1.5(0.5)

0.37

1.4(0.6)

0.36

1.3(0.7)

0.35

1.2(0.8)

0.34

1.1(0.9)

0.33



158 I. HOFMANN

(57)
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radial mode (in contrast with the" fast wave") in
the low-frequency limit. This mode is potentially
dangerous because it may give rise to the resistive
wall or electron-ion instability. Landau damping
of this mode is possible only if the frequency
spread exceeds a threshold which depends critically
on curvature effects. For a high-y ring in free space
this threshold condition cannot be fulfilled if the
field index n approaches zero. This difficulty can be
removed with an interior conducting cylinder with
a small resistivity such as to increase the Landau
damping coefficient and decrease the coherent
frequency shift which determines the threshold.

(11 - SI ~ 1)

(56)

which holds for 'Yo ;C 20 and n ~ 0 and can be
satisfied with 1 - S ;$ 0.2 and i1E/E ;C 0.15.

Following a careful analysis of the relativistic
Vlasov equations, the effect of curvature on the
coupling between the coherent motion in the
azimuthal and transverse phase planes was studied.
For the negative-mass mode the basic azimuthal
density modulation is coupled with coherent
radial motion only in the limit of very small
Vr ~ 1. The radial mode is generally accompanied
by an azimuthal density modulation which con­
tributes to the perturbing field and should be taken
into account in the dispersion relation. This coup­
ling is negligible, however, for the "slow wave"

6 CONCLUSIONS

More significant may be the image contribution,
which for electric images on a cylinder results as

dVr I 1
Rv, dR . ~ 2J1 8(1 _ S)3'

el.lm.

using an expansion of the integrals involving
modified Bessel functions. For magnetic images it
has opposite sign.

For a compressed electron ring (field index
n ~ 0) the only favorable case with respect to (47)
occurs if there is a slightly resistive interior cylinder,
which is magnetically transparent for the equi­
librium field but screens the field due to the per­
turbation. Hence e~c ~ 0 and K follows from (56),
whereas U is independent from 1 - S and nearly
equal to its free space value. It follows from (50),
where we use in addition that the correct curvature
term in U is about 20 %smaller than the approxi­
mate value In 16R/(a + b).17 With the dominant
electric image contribution to K we find

i1E -3E;C 18(1 - S)
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(
k.r) (k.R) r<R (A.I0)xlo K o dk
k·R k·r r>R

which is invariant if the ring is shifted as a whole
according to r' = r + <r) 1, so that the difference in
potential results as

<1>; = <1>~ - <1>? = - 2enR<r) 1 Jeikz

center of the coordinate system

o 2 ( 4R
2

eEr = myQ Ji a(a + b) (jr

+ RIn 16R (1 _br)) (A.6)
a + b R

o 2 ( 4R
2

eBz = myQ JiVo9 - a(a + b) (jr

+ R In a1~Rb (1 - ~)), (A.7)
where Dr == r - R.

The mode I = 1 is described by a shifted ring
with a local displacement <r)1 1"..1 eiO and an obser­
ver in the unshifted coordinate system observes
the projections of the fields (A.6, 7)

2 (4R
2

1 1e(Er + vo9 Bz ) = myoQ Ji ( b) 2" ((jr - <r) )
a a + Yo

+2R(1 + :;)In a
1
:

R
b x (1 - (jr -R<r)l) (A.8)

o .! o<r/ = iE~ 1- .<r)1 . (A.9)
eEo = -Er R af} br=O R

The difference between these and the unperturbed
quantities gives the perturbations (49).

b) Ring Close to Cylindrical Conductors
The additional fields due to the perturbations of

electric and magnetic images on infinitely long
cylindrical boundaries close to the ring are con­
veniently expressed in terms of modified Bessel
functions. To this end we start with the familiar
expression for the scalar potential of a circular line
beam with line charge density en

<1>?(r, z) = 2enR Jeikz

Evaluation of the Dispersion Integral

For the slow wave we can approximate the de­
nominator in D

v;Q2
- (w - IQ)2 ~ -2<Qvr)(w - S) (A.l)

and have

D ~ 3 i 1
y(1 - y) dy (A.2)

<Qvr)S' ~Po 0 y - p

with

S = <S) + S'(Po - <Po»

= ~ (1 2w - <S»)
p 2 + S' ~Po

1 Po - <Po)
Y=2+ ~Po

and the path of integration below a singularity,
which might eventually occur on the real axis.

We calculate the case of marginal stability, i.e.,
1m w = 1m p = O. Clearly, for V =1= 0 this requires
that w - S = 0 somewhere within the range of the
distribution function and a residue contributes to
the integral. Hence,

3 ( 1 - P
D ~ <Qvr)S' ~P9 p(1 - p)In -p-

- p + ~ - inp(p - 1)) (A.3)

For V ~ U it is required that Ipep - 1) I ~ 1/2 and
we get

3
IDI ~ 2<Qvr)S' ~P9

and thus with (41) and ~S = s' ~Po
dS ~ 3U (A.5)

as necessary condition for marginal stability, or
condition (43) if damping is required.

Derivation ofSelf-Forces

In the quasistatic approximation the self-forces are
calculated as follows

a) Free Space
We start from the well-known expressions13 for

the self-fields of a stationary ring placed at the
x (1 1(k r)Ko(k R» k dk

(-/o(k R)K 1(k r»

r < R

r> R
(A.11)
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The perturbation of the potential due to the image
charges can be written as

<1>; = - 2enR(r) 1 feikZkac(k)1 1(kc)K1(kr) dk

(r > c) (A.12)

for a cylinder inside the ring at r == c and

<l>b = - 2enR(r ) 1 f eikzkab(k)1 1(kr)K 1(kb) dk

(r < b) (A.13)

for an external cylinder at r == b.
From the requirement

(A.14)

on the boundaries we obtain ab(k), ac(k) and thus
the electric field perturbations in terms of integrals
over modified Bessel functions.

A corresponding procedure leads to the magnetic
field quantities with boundary conditions B; == O.
The results of these calculations are summarized
in the next section in terms of e~~~ defined by
Eq. (52) together with (32) and (41).

Coherent Image Coefficients

For electric and magnetic images on a conducting
cylinder at radius Rand 5 == RjR we find

e~oh == fOO 2 K 1~y) I 2 ( ) d (A. 15)
(1 - S)2 0 Y I 1(SY) 0 Y Y

e~oh _ fOO 2 5yKo(5y) + K 1(5y) I 2( ) d
(1 - S)2 - - 0 y SyIo(5y) - 1

1
(Sy) 1 Y Y

(A.16)

if 5 > 1, and II ~ -K b Io~Ko interchanged if
5 < 1. An expansion of the integrals yields

1 1 - 5 -
e~oh ~ e~oh ~ - - -- (S ~ 1). (A.17)

8 4

With two electric image cylinders the correspond­
ing integral is, for 51 > 1 and 52 < 1

-LXli
I 1(S1y)11(52 y)K;(y) + K 1(51 y)K1(52 y)1;(y) d

x y
K 1(Sly)1 1(S2Y) - 11(Sly)K 1(S2Y)

(A. 15')

which we put equal to e~oh/(l - 5)2 if the cylinders
lie symmetric, i.e., \1 - 51 1==11 - 52 1== 11 - SI·




