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THE TREATMENT OF FIELD STABILIZATION IN DIELECTRICALLY
STEMMED HELICAL LOADED WAVEGUIDES BY A TRANSMISSION

LINE MODEL
H. HERMINGHAUS

fnstitut fur Kernphysik der Universitat Mainz, Germany, B.R.D. t

An approximate transmission line theory of the shielded helix is presented that allows the effect of certain dis
continuities of the waveguide to be estimated. From this model a method of field stabilization of the TALIX
type sections is derived. The results are experimentally verified.

where the notations of Fig. la are used. K is the
capacity between two neighbouring windings, C
the capacity between winding and shield. With the
above assumptions the sum of these equations may
be written

Considering the dielectric fluxes from the surface
of a winding one gets the relations

a
All = Kat[U(x)- U(x-s)]

a
AI2 = Kat[U(x)- U(x+s)]

a
A3f = CaiU(x)

(2)

(1)

af
ax

2) The guide wavelength is sufficiently large
compared to the pitch of the helix that, at
least in a rough approximation, quotients of
field differences taken along the pitch may be
replaced by differential quotients.

3) The distance between two windings is suffi
ciently small so that the electric flux between
other than neighbouring windings may be
neglected.

4) The pitch angle is small compared with unity.

If <I> is the magnetic flux going through the helix
in axial direction and s the pitch of the helix, then
the special dependence of the voltage U between
helix and shield is given by the law of induction:
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t This work was done on leave of absence from Mainz
at the University of Frankfurt (M).

1. INTRODUCTION

2. THE TRANSMISSION LINE MODEL

Let us assume the following suppositions to be
valid:
1) The phase velocity along the guide axis is small

compared with c, so retardation may be
neglected.

Helical delay lines have become interesting as
structures for heavy ion accelerators. 1 ,2 Their
theoretical treatment is usually done by aid of the
so called sheath model. 3-5 This model allows for
easy anq fairly accurate calculation of the line
properties if the line is uniform and may be con
sidered to be of infinite length. In case of non
uniformities, however, the treatment by this model
becomes rather complicated. Some attempts in
this direction are in progress at Frankfurt Univer
sity, however.

It is the intention of this paper to present an
approximate transmission line model by which
some cases of nonuniformities may be treated in a
simple and straightforward way and to apply it to
the treatment of field stabilization in accelerator
sections of the TALIX type.1 This model has been
developed for the treatment of closely wound
helices several years ago by Danzer and the author. 6

It has proven to be very useful in a number of
application.s (e.g. Refs. 7, 8), so its publication may
be of interest. In case of not closely wound helices
the idea is to present a simple possibility to estimate
certain effects rather than to calculate them
precisely.

P.A. A.



124 H. HERMINGHAUS

b

a b
FIG. 1. Sectional view of a shielded helix. Current vectors pointing out of the drawing plane are denoted by crosses.
(a) mutual dependence of voltages and displacement currents; (b) mutual dependence of eddy currents and magnetic
flux.

(3)

with I being the current flowing along the helix
wire.

Obviously a relation between I and <I> is still
missing. It is obtained in the following way: Due
to the skin effect, surface current density i and
magnetic flux density B above the surface are
linked by B = /loi. Applying this to the circum
ference of the helix wire which may be assumed
for the moment to be of rectangular cross section,
yields (see Fig. 1b):

s 1
I-is- ,f...

1 - 1 --0/1 (b2 2)/lo n -a

h 1
12 = i2h =~ ¢2 --

/lo e'2na

s 1
13 = i 3s =-¢3-

/lo na2

Here the assumption is used that the magnetic flux
densities between the windings, inside the helix and
between helix and shield are approximately con
stant with respect to r. Especially the latter assump
tion is very rough but a calculation by aid of more

sophisticated fields (e.g. from the sheath model)
does not change the results drastically, so for
estimation purposes the expressions given above
may be used. The restriction with respect to the
field between the windings will be dropped later.

Taking into account that

¢1 = ¢3 == ¢
¢4 = ¢(x)-¢(x-s)

¢2 = ¢(x)-¢(x+s)

the sum of the current contributions 11 - 14 may
be written

4 1 [4ne s 2nah 02¢J1 = 1 =. 0 ¢ - eo --S2_
~ v floeoC2na)2 1-(ajb)2 e ox2

Here the coefficient e02nah/e is just the capacity K
between two windings. The coefl.J;cjent of <I> which
is abbreviated by D in the following is a capacitance
of the order of C. (In general D > C, D approaching
C with b~ a). Thus the above equation may be
written

c
2

[ 2
02

¢J1=-- D<I>-Ks --
(2na) 2 ox2

It should be mentioned here that the identity of
the coefficients K in (2) and (3) is in fact valid with
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any cross section of the helix wire, provided
electrical and magnetical field lines may be con
sidered to be orthogonal to each other. Between
two windings of a closely wound helix this is
always true to a good approximation.

U, I and <1> may now be calculated from Eqs. (1),
(2) and (3). First, however, we write down the
solution of Eq. (3) with respect to <I>:

(2na) 2 I
¢(x) = - Se-)'(lx+~D/(~)d~+ble-)'x

2sc2 JKD 0

+bze+)'x (4)

where'}' = I/sJD/I(, I being the length of the helix.

Obviously this is a representation of the magnetic
flux by its sources, the coefficient (2na) 2 /2c 2J KD
being the inductance of a single winding of the
helix. Equation (4) further states that the linked
flux between two windings decays exponentially
with the mutual distance of these windings. This
has been found to be in good agreement with
experimental results on a closely wound helix.

For further calculation an antiderivative 'P will
be introduced by the equivalent definitions

necessary to fulfil the boundary conditions for U,
I and <1>.

The characteristic impedance, defined as the
quotient' U/I with travelling waves is easily cal
culated to be

(2na) 2 k oz=-_· -'- (10)
Ks3c k(k2 + '}'2)

The formulae (8) and (10) have been found in
fairly good agreement with experimental results
using closely wound helices6 if C was calculated
as the capacitance of a cylindric condenser of
length s, K the capacitance between two parallel
wires of length 2na and diameter d and D as
mentioned above, i.e.:

2neos
C=--

In(b/a)

K =(2n2eoa)/ln[(s/d)-J(s/d)2-I]

1 a'P a'P
U==.- -;</J==.--

s at ax
(5)

3. THE TREATMENT OF
INHOMOGENEITIES'

Then Eqs. (1), (2), (3) and (5) lead to a differential
equation of 4th order in 'P:

a
2

( a
2
'P) S2 C2 a

2
( a

2'P)- C'P-Ks2-- =-- - D'P-Ks2--
atZ ax2 (2na)Z ox2 ax2

(6)

For sinusoidal time dependence the complete
solution of (6) is:

'P = (a
1
e - ~x + aze - jkx + 03e+~x + a4 e+ jkx) . ejwt, (7)

where the a v are arbitrary constants and k and J.1

are given by

/12 - y2 = k 2- k o2e;ay; y== ~J~ (9)

The terms with real exponents represent cutoff
modes which will in general be present at any kind
of nonuniformity of the waveguide and will be

The last condition takes into account that eddy
currents will not allow the magnetic flux to pass

U(O-O) = U(O+O)

1(0-0) = 1(0+0)

<D(O-O) = <D(O+O) = 0

From this model the effect of an inhomogeneity
of the helix may be calculated, represented, e.g.,
by its coefficients of reflexion r and transmission d.
Denoting the amplitudes in (7) left of the in
homogeneity by a second index 1, the amplitudes
of the right-hand side by 2, these coefficients are
defined by

with all ==. a 32 ==. a 42 ==. O. The inhomogeneity is
assumed to be located at x = O.

In the case of a short-circuited winding of the
helix, for instance, the boundary conditions are:

(8)
(J)

k o =-_.
c

k - k S JD +K(ks)
2

•

o - 2na C +K(ks) 2 ,
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through the shorted winding. Thus rand dare
determined by the equations

jk(y2 +k 2)(a21 - a41 ) - fl(y2 - fl2)a31 =
jk(y2 +k2)a22 + fl(y2 - fl2)a12

jk(a21-a41)-fla31 =jka22+fla12 = 0

and its evaluation yields:

1
d= . r=l-d

1-(jk/fl)'

Analogously d and r may be calculated in case of a
series capacitance on a ordinary TEM trans
mission line. It will be seen then, that the shorted
winding has the same effect on a helical wave
guide as a series capacitance Cs of value Cs =
fl/2wZk has on an ordinary TEM transmission
line of the same characteristic impedance Z (note
that the low pass characteristic is conserved
because of Cs ~ 00 2 with w ~ 0).

As another example the effect of a lumped shunt
capacitance C between helix and shield may be
calculated in a similar way, and it turns out that
the capacitance acts as a shunt capacitance Ceff

of a somewhat different value would do in case
of an ordinary transmission line of same charac
teristic impedance. The reduction of C to Ceff is
given by

WCeffZ =(WCZ)/(~. wCZ+J.L2 +e)
2 2 fl 2 y2 +k2

Small capacitances are seemingly increased, large
ones are reduced and in the limit C ~ oo-giving
the case of a short circuit-a finite value of Ceff

is obtained.7

4. FIELD STABILIZATION OF HELICAL
LOADED WAVEGUIDES

Helically loaded accelerator waveguides are
usually proposed to operate in the standing wave
mode, the helix being supported, if necessary, at
the nodes of the voltage between helix and outer
conductor. We will confine ourselves in the
following to dielectrical stems.

The equivalent circuit of such a structure is a

transmission line, periodically shunted by lumped
capacitances. Its dispersion is given by

cos k'l = cos kl-w~Z sin kl (11)

where each k' solving (11) is a propagation con
stant of a possible partial wave and I the distance
between stems. The resulting Brillouin diagram is
shown in Fig. 2a. Operating the structure with the
stems at the voltage nodes means that the upper
cutoff frequency of the first stopband is used which
gives the same phase velocity as the unloaded line.
For this operation mode the transfer of voltage
and current across a single cell is given by the
matrix

where Cp is the capacity of a stem. The not
vanishing matrix element t12 indicates that a
change of impedance at the input of a cell will
change the voltage at the input of the next. In
n-mode this is equivalent to the possibility of
unflat field distribution. In practice it is desirable
to shield the dielectrical material of the stems from
the axial electrical field, e.g. by means of metal
strips as shown in Figs. 2 and 3. Thereby Cp might
become high enough to cause serious flatness
problems.

If, however, in the midst between two neigh
bouring stems a series capacitance Cs is inserted
into the transmission line, the transfer matrix
becomes

T =(- 1 Z(g +P))
o -1

where g = jwCpZ and p = l/jwCsZ. The Brillouin
diagram may be calculated to be given by

cos k'l = g: +(1+g:) cos kl+j(g; p) sin kl

As is readily seen, with g = - p the transfer
matrix of this biperiodic structure becomes equal
to the negative unit matrix indicating unconditional
flatness of the field distribution. In the Brillouin
diagram the extremum at kl = n is replaced by a
finite slope and it turns out that in the application
considered here the group velocity in the n mode
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FIG. 2. Sectional view, equivalent circuit and Brillouin diagram (a) uncompensated; (b) compensated.

is not significantly lower than in case of an un
disturbed uniform helix (see Fig.2b). It is an
important feature of this kind of stabilization that
it still leaves field distribution and phase velocity
unchanged with respect to the unloaded line.

As shown above the series capacitances may be
represented simply by shorted windings. Since a
s40rted winding represents a capacitance of fixed
value it is necessary to trim the capacitances of
the stems to satisfy the stabilization condition.
This may be done by adjusting the metal strips
mentioned above. Fortunately, the values needed
are of a suitable order of magnitude of some
picofarad.

FIG. 3. Photograph of a compensated helix ac
celerator waveguide. Arrows from above point to
shorted windings, arrows from below point to
dielectrical stems.
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To prove these considerations a helix accelerator
section of a length of 1 m has been equipped with
this kind of field stabilization, as shown in the
photograph (Fig. 3). It has successfully been tested
in CW operation to a field strength of 2.,6 MV/m
on the axis, limited by cooling capability. A
reduction of unflatness effects due to tuning errors
by a factor of five could easily be achieved by
trimming the capacity of the stems to 1.32 pF
each. From the transmission line model a value of
1.81 pF had been calculated.
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