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RESONANCE OF COUPLED TRANSVERSE OSCILLATIONS IN T\\lO
CIRCULAR BEAMS

D. G. KOSHKAREV AND P. R. ZENKEVICH
Institute of Theoretical and Experimental Physics of the State Committee on the Utilization of

Atomic Energy in the USSR, Moscow, USSR

It is shown that in a system of two circular beams there exist resonances analogous to the well-known resonances
produced by external perturbations in circular beams of singly charged particles. The general resonance condition
is nQl +mQ2 = k where Ql and Q2 represent the natural oscillation frequencies of the particles in the first and
second beams, and m, n, and k are integers. Equations are derived for the resonance bandwidth and for a resonance
of any order, and the crossing of resonances is investigated. Analysis of these results shows that the two-beam
interactions impose a strict upper limit on the frequencies of the self-stabilizing Bennet-Budker beam.

1. INTRODUCTION

In a system consisting of two beams of particles
of opposite sign each beam may act upon the other
as an 'external force', which gives rise to perturba­
tions of the average field, of the gradient, of the
quadratic nonlinearity, etc. affecting the other
beam. The 'dipole' two-beam instability ('snake'),
which occurs when the beam oscillations modify
the average fields acting upon them, has been
discussed in the literature.(1-3) It seems that
besides dipole resonances higher-order resonances,
corresponding to oscillations of the gradient, of the
quadratic nonlinearity, of the cubic nonlinearity,
etc. are also possible in a two-beam system. These
resonances may prove essential in determining the
basic parameters of electron-ring accelerators:
maximum ion current and maximum accelerating
field.

The aim of this paper is a theoretical investigation
of the higher-order resonances arising from oscilla­
tions of two circular beams.

Investigation of such resonances is difficult, and
an exact solution is possible only within the bounds
of established models. We consider two models:
(1) a beam with constant density over its cross
section, and (2) a 'ribbon' beam with constant
density in the phase space.

The first of these models enables one to derive
and investigate the dispersion equation for the
first- and second-order resonances, with the aid
of a theory that makes use of the linearized equa­
tions for the beam center and the beam envelope.
This analysis is particularly instructive and enables'

P.A. A

one to study both one-dimensional and two­
dimensional first- and second-order resonances.
However, it is essentially unsuitable for higher­
order resonances, for which the equations of
motion are nonlinear.

The second model yields the dispersion equations
for resonances of arbitrary order by using the
kinetic equation. A drawback of this method is
the approximate nature of the field calculations.
The errors arising from the use of this model can be
estimated by comparing the equations for the first­
and second-order resonances with those derived
earlier.

Note that neither model takes into account the
stabilizing effect of the beam's intrinsic non­
linearity; this requires a special study.

2. ANALYSIS OF THE DIPOLE AND
QUADRUPOLE RESONANCES

Since the radius of the ring is much larger than
its transverse dimensions, the equations for the
transverse motion of the electrons and ions with
one degree of freedom may be written as follows
(neglecting the field exerted by the electrons on
electrons and by the ions on ions):

(1)
e

Yi = lVI(E2y+E~y).

The dot denotes the total time derivative, dldt =
olot+OiJ/oO, Il represents the oscillation frequency
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(2)

(3)

(9)

(8)

(10)

he = 9yi.e exp (i f VYi .e9;i.; dt).

Zi.e = 9zi.e exp (i fVzi.e9ri.; dt).

~i+(2Qi)211i-1Q/l1e--!Qi2~e = 0,1
~i+(2Qi)2~i-1Qi2~e--!Q/l1e = 0,

~e+(2ney)2'1e-¥1/'1i-!n/~i= 0, I
~e+(2Qez)2~e-1Q12~i--!Q1211i = 0, J

where 11i,e = A.gyi,e and ~i,e == A.gzi,e.
In analyzing Eq. (10) we must distinguish be-

tween the two cases: (1) !ley ~ Q ez = Qe and (2)
Q ey i= Qez (this implies that Aey i= Aez)·

In the first case, Eqs. (10) are markedly simpli­
fied, since only two types of oscillation are possible

.. "2 2 [( )]-1Ye+Ay Ye = -Xi Ye gyi gyi+gzi. ,

Yi = - Xe
2Yi[gye(gye +gze)] -1 ,

•• A,2 2 [( )J-1Ze+ Ze = -Xi Ze gzi gyi+gzi ,

.. 2 [( )J-lZi = -Xe Zi gze gye+ gze . J

To analyze these equations it is convenient to go
to the equations for the beam envelopes. This can
be done by the well-known substitution

In Eq. (9), Vi and Ve are the phase-space volumes of
ions and electrons, respectively.

By linearizing the resulting equations and by
assuming that the unperturbed envelopes of the
two beams are identical (this is equivalent to the
existence of two circular beams of identical radius),
we get

In considering the oscillations of the beam shape,
we may disregard the deviation of the center of
mass of the clusters. On the other hand, the
fluctuations of the dimensions are fundamentally
coupled, and therefore the analysis must take both
transverse degrees of freedom into account.
Equations (2) then become

4. QUADRUPOLE RESONANCE

Substituting Eq. (6) into Eq. (4), we obtain the
following dispersion equation:

[-(kQ-ro)2+Qe2](Qi2 - ro2 ) = Q i
2Q 1

2. (7)

Xi2[gylgyi+gzi)]-1 = Q1
2

,

x e
2[gye(gye+gze)]-1 = ni

2
•

If the momentunl spread is neglected and the
equations are averaged, which is trivial in this case,
we obtain:

For dipole oscillations of the beams, gy = const,
gz = const,

3. DIPOLE RESONANCE

where xe
2 = 4Nee

2jM, Xi2 = 4Nie
2jmy, N i and Ne

are the numbers of ions and electrons per unit
length of the beam, Yi and Ye are the centers of mass
of the ion and electron beams, and gy and gz are
the maximum semi-minor dimensions of the beams
in the respective degrees of freedom. Equations
(1) are basic equations for the analysis of the dipole
and quadrupole resonances.

~i =YoiexP [i.(ke-wt)], } (6)

Ye - Yoeexp [l(k8-wt)].

We seek a solution ofEq. (4) in the following form:

of the electrons under the influence of the external
focusing force, Eiy and Eey are the y-components
of the electric field strength of the ions and elec­
trons, the superscript 0 refers to the unperturbed
field, the prime denotes the additional field pro..
duced due to the perturbation, and n is assigned
the value appropriate to the particle species under
consideration.

For microcanonical density distribution of the
electrons and ions in the phase space,(4) the electron
and ion beams have uniform density across the
cross section, and Eqs. (1) become
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for ions and electrons: symmetric oscillations
(~ = 1J), and antisymmetric oscillations (~ = -1J).
It is clear that no coupling is possible between these
two types of oscillation. Introducing the new
variables Pie = 1Jie-~ie and (Xie = 1Jie+~ie' we
obtain

F

(0 )

3

and

a;+(2QyIX;-2Q/lXe = 0 }

Cle+(2Qe)2(Xe-2Q12(Xi = 0
(11)

(12)

(15)

Pi +(2Qi)2Pi- Qi
2
Pe = 0 }

Pe+(2Qe)2pe-Q12Pi = O.

In the second case the oscillations of the electrons
in each degree of freedom are independent. To
remove ambiguity, suppose that the electron
oscillations are built up in 1J. By introducing a
new variable, Y = 11J i +t~ i' and neglecting the
excitation of the second degree of freedom of the
electrons, we obtain

y+(2Qi)2y-2,SQi21Je = 0 }
(13)

~e+(2Qey)21Je-Q12y = O.

Equation (13) was derived for the case QiY = Qiz.
When all four frequencies are different one need
only retain those two equations of (10) for which
the resonance condition holds.

Equations (11) to (13) are analogous to the
equations for a dipole resonance. The dispersion
equations for the quadrupole and dipole resonances
may be written in the following general form,
which is most convenient for subsequent analysis

F(V,Qi' Qe,r) = (v2_Q/)[(v-r)2_Qe2J
=p2Qi2Q1 2 =e, (14)

where Qi = o.;jo., Qe = Qe/o., and Ql = 0.1/0.; for
an extrinsic resonance v = OJ/Q, r = k, and p = 1,
and for the quadrupole resonances v = OJ/2Q,
r = k/2, andp < 1.

5. ANALYSIS OF THE DISPERSION
EQUATION

The stability or instability of the oscillations
depends on the number of real roots of Eq. (14),
which can be determined graphically as the points
of intersection of the function y = F(v) with the
straight line y = e = p2Qi2Q1 2. Figure 1 is a
qualitative/representation of the function for two

F

(b)

K

FIG. 1. Diagram of the functionF(v).

cases: (a) V2 = V3' and (b) V2 =f:. V3 (here Vi' V2 , V3'

and v4 are the roots of the equation F(v) = 0
arranged in order of increasing magnitude). In
the first case, for any e there are only two real roots
(unstable motion). In the second case, when
e~ maxF, all fOUf roots of Eq. (14) are real and
close to those of the equation F(v) = 0 (weak
coupling of oscillations). As e increases, V2' and
V3' (the second and third roots of Eq. (14)) approach
each other, and at the boundary of the stability
region V2' = v3 ' and e = maxF. If e > maxF,
Eq. (14) has only two real roots (instability region).

The boundaries of the instability regions in the
Qi' Qe plane may be determined by simultaneous
solution of Eq. (14) and the equation

dF =0
dv ·

The solution of Eq. (14) and (15), expressed in
parametric form, has the following form:

(16)
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FIG. 2. Instability regions in the Qe, Q, plane for
the dipole resonance (\\ \) and for the quadrupole
resonance (fIf); ).,1 = 0.

FIG. 4. Same as Fig. 2, ).,1 = 0,20.

A:: i

FIG. 5. Same as Fig. 3').,1 = 1,0.

different betatron oscillation frequencies of the
electron beam.

The instability region for the quadrupole
resonances has resonance bands of a characteristic
shape, whereas the instability region for the dipole
resonances has only a lower limit. However, it
can be shown that the instability has a resonant
character in both cases.

We now derive an approximate equation for the
complex roots of Eq. (14).

When B is small, the real parts of the roots of
Eq. (14) lie between V2 and V3' and their imaginary

Qi

tEl°
.il=O,05

1,0

~o

FIG. 3. Same as Fig. 2,).,1 =0,05.

o

o

Qe

where
p2A 2

b = (v-r)[v(1- p2)-r(1- p2j2)]-T'

c = (v-r)4- A12p2(v-r)(2v-r).

Figures 2 to 5 show the stability regions in the
Qi' Qe plane for different values of the parameter
A1 = A/n. In calculating the quadrupole resonance
bands, we set p2 = 0,156, which corresponds to
identical oscillation frequencies of the ion beam in
the two degrees of freedom and to significantly
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parts are small. Thus one can approximately
substitute v = V2 +v3/2 in the factors v - Vt and
v - v4 in the equation F(v) = B. Equation (14)
then reduces to a quadratic equation, the solution
of which is of the form

much stronger; this produces a small shift of the
region of maximum growth and makes the upper
limit of the resonance go to infinity. For quadru­
pole resonances, Eqs. (18) to (20) are fairly accurate.

The ratios of the growth rate and width of the
various quadrupole resonances to the growth rate
and width of the dipole resonance, calculated from
Eqs. (17) through (20), are given in Table I.

The width of the resonance band is defined by

+J(V2-V3)2 48 . (17)
- 4 (V2+V3-2vl)(2v4-V2-V3)

The center of the instability band is defined by
the condition V2 = V3' which has the following
form:

6. STUDY OF RESONANCES OF ANY
ORDER WITH USE OF THE KINETIC
EQUATION

In the general case, the fields appearing in the
right-hand side of Eqs. (1) are nonlinear and the
approximate solution of these equations for
E;y = E[y = 0 and for small nonlinearity is

Yi,e = .J1i,e cos Xite;

(22)Yi,e = -Qi,e-J1i,esinXe;

(19)

(18)Qi+Qe = r.

If this condition is satisfied,

Note that for a dipole resonance these equations
are only approximate. As one goes to the high­
frequency region, the dipole coupling becomes

where I is the square of the oscillation amplitude
and Q =/(1).

We restrict ourselves hereafter to the investigation
of the 'one-dimensional' resonances in which
coupling occurs between the oscillations of the ion
and electron beams in one degree of freedom.
Moreover, to simplify calculation of the non­
equilibrium electric fields we shall use the 'ribbon'
beam model, in which it is assumed that the
dimensions of the beam in the second degree of

(20)

(21)

bV = 21m (v).

For the dipole resonance, it follows from Eq. (19)
that at the center of the resonance band the ex­
pression for the increment bll has the form

~ (In) 1JQiQ1
2

ull =Im ())~~ =2 ~.

TABLE I

Condition for the existence c)jt5 11 e)coje)co II
Type of resonance of the resonance (Increment) (Width)

Symmetric, two-dimensional Qye = Qze; QZi= Q 0,5
resonance 2Qe+2Qi =k·

One-dimensional, Qye i= Qze; QZi i= Qyi; 0,75 0,375
uncoupled oscillations 2Qey,z +2QiY,z = k

One-dimensional-two- Qye i= Qze; QZi = Qyi; 0,78 0,39
dimensional resonance 2Qey,z +2Qi = k

Asymmetric, two-dimensional Qey = Qze; QZi = Qyi 0,5 0,29
resonance 2Qe+2Qi = k

Two-dimensional, uncoupled Qye i= Qze; Qyi i= Qzi; 0,25 0,125
oscillations 2Qey,z +2QiZ,y = k
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t A similar method was used in Ref. 5 in solving a some­
what different physical problem.

(33)

(32)

(31)../1 Pnl Pin 1- 3 /1 I
Yln = ~-P--- = 8V finl· Pin ,

II

c52_(16)2 NeN i __e
4
__

II - 3rc a2 b2 myMQi(lo)Qe(lo)·

The solution of Eq. (30) has the following form:

-(kQ-IQe+ nQi)± ~(kQ-IQe-nQJ2 -4<5"Yln

2

The parameter Yin <5
11

is thus the ratio of the

Thus, E~(y) is an even function of y for an odd
n and an odd function of y for an even n. On the
other hand, oscillation of particles with an odd n
can build up only fields that are even functions of
y, and vice versa. It follows that for coaxial beams
only 'even-even' and 'odd-odd' resonances are
possible; when polarization is present there may
also appear 'even-odd' resonances which are not
considered here.

Substituting Eq. (29) into Eqs. (28) and in­
tegrating, we obtain the following dispersion
equation:

( - ro + kQ -IQe)( - ro +nQi) = - bTIyfm (30)

where

(34)

Calculating E~(y) in terms of the distribution
function, we obtain the equation

Substituting Eqs. (26) and (27) into Eq. (24) and
integrating both sides of the equation with respect
to I and X, we obtain

= N/ f21t 2e sin XiE~l exp ( - inXi) dXi I l
en ( 2 /-

2rc) 0 MQl-iro+inQi)vlo 1=10 I

Ne' f21t 2e sin XeE~n exp (iIXe) dXe I J
CI = (21lY 0 my( - iw+ ikO- ilOe)Oe../10 1=10

(28)

(26)

(25)

(24)

dELe
-d = 4rcPie·y ,

We seek a solution of Eqs. (24) and (25)
under the following assumptions: (1) 11 =
exp (ikO)cp(/, X, t). (2) The system is situated
near the resonance, so that one can retain a
single harmonic in the expansion of/1i,e in periodic
variables Xl and Xe· (3) The frequencies Q e and Q i

are independent of time. (4) The steady-state
distribution function has the following fornl:t

{
N~
~ for Ii,e ~ 10 ,

fo = 2rclo

o for li,e > 10 ,

where N' = Nib, b being the transverse dimension
in the second degree of freedom.

Under these assumptions the solution of Eq. (24)
has the form

h,e = fo(Ii,e) +f1(Ii,e; Xi,e; 0, t) (23)

where li,e represents the density of the particles in
the space of the canonical variables I and X, 10(/)
is a steady-state distribution function, and 11 is a
small nonequilibrium component. Substituting
Eq. (23) into the kinetic equation and linearizing
it by the standard procedure, we obtain

Of1e+Q Ofle+O aile _ aioe 2e ../I;,. E I

"" e ~ ~O - ~ n SIn Xe iot VXe v vIe mY~l.e

ofti n afli OfOi 2e ../I;. ,
-+~l.i-- =---slnXiEe·
at aXi oIi MQi

These equations should be supplemented by the
equation for the electric field:

freedom are much greater than those in the degree
of freedom under consideration. For a circular
beam, this model of course will introduce an error,
which we shall estimate below.

To investigate a one-dimensional resonance of
any order we use the Vlasov system ofself-consistent
equations. We seek a solution of the kinetic
equation in the following form:
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(35)

Hence it can be seen that

For crossing of a resonance, we can set

(42)

(44)

(38)

(37)

s::z 2
ulIYln

a = 2iI-- .

The solution of this equation is(6)

Ct = AU1(a, t, z)+BUz(a, t, z) (43)

where U1 and Uz are the Whittaker functions.
Assume that Cz = 0 and Ct =1= 0 at t = - 00.

Then U1 and Uz satisfy the following relations:

Ul(ioo)~za-cez=zaz-tez~O }

U z(i (0) ~ eia1tz- a = eia1t/ z l z l-i1a l •

b = n, r = :lZQe+nQ;). (40)

After changing the variables so that z = irtZ/2,
we obtain a hypergeometric equation:

dZc l 1 dC lz-+(--z)--acl = 0 (41)
dz z 2 dz '

We perform the substitution

fIe = Cl exp [ - i f(kQ-ZQe)dt}

fii = c2 exp [ -i fnQ;dtl
Substituting Eq. (37) into Eq. (36), we obtain

dC l (·f)dt = alnCZeXP l bdt ,

dcz ( .f )dt = anI Cl exp -l bt ,

where b = kQ-IQe-nQ i•

Eliminating Cz from Eq. (38) and substituting
the values of anI and a In , we find that C1 is defined
by the equationn

2 3 4 5

1 1 ° 0,115 ° 0,012
2 ° 0,42 ° 0,100 °3 0,115 ° 0,25 ° 0,067
4 ° 0,100 ° 0,18 °5 0,012 ° 0,067 ° 0,15

fle = feet) b(l - 10 ) exp (ike) exp ( - ilXe) 1
fl; = J;(t) b(I - 10) exp (ikO) exp (inxJ )

Substituting Eq. (35) into the kinetic equation and
following the same procedure as before, we get the
following system of equations:

TABLE II

We consider the case in which the system is near
a resonance, but the average frequencies vary
slowly with time. Using the same initial assump­
tions as in the preceding section, the solution of the
kinetic equation will then have the following form:

7. CROSSING OF A RESONANCE OF ANY
ORDER

Table II gives the values of the parameters YIn

for 1and n ~ 5.

increment of the instability buildup to the incre­
ment of the dipole instability with the indices 1,1.
Strictly speaking, this equation is suitable only
when b ~ Q. However, if it is used to calculate the
increment of the dipole instability of a circular
beam, the resulting increment will be only 20 per
cent greater than that obtained from Eq. (21).

Analysis of Eq. (34), taking into account
Eq. (32), shows that (1) the increments sharply
decrease with increasing distance from the principal
diagonal (when 1= n), (2) the increments of the
resonances on the principal diagonal decrease as
n -1, and (3) the width of these resonances de­
creases as n - z.

(36)

where anI = fJnl b II is a constant.

A = 0, B = Ic1(ioo) Ie-ia1t/Zeil/J. (45)

The function Uz is analytic everywhere except along
the line qJ = 7l:. As t varies from - 00 to. + 00, the
point z = 0, which is included in this cut, is en­
circled. The change of the amplitude can be
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(47)

For resonances with 1= n, YZn '" n- 2
, and resonances

suppressed by Landau damping are determined
by the relation

[ b2 J*
n ~ . <AQi>~AQe> · (54)

Equation (53) implies another characteristic feature
of the two-beam resonance: a necessary condition
for suppression of instability is that the dispersion
of both beams be nonzero. It can be shown that
if j,,(Q i) = J(Q t - 'liO), the electron dispersion does
not give rise to a threshold, but only reduces the
increment, and in that case (for <AQe) ~ 'Ylnbll)'

",2 J2
J Iln II (55)

In '" <A'le)'

In the real electron-ion rings, the momentum spread
of the ions is close to zero. Thus, to determine the
instability threshold in this case it is necessary to
solve Eq. (24) for the other unperturbed distribu­
tions in I, which would make it possible to take
into account the natural frequency spread arising
from the nonlinearity of the betatron oscillations;
an analysis of this kind falls outside the scope of
this paper.

Analyses of instabilities of other types (see, for
example, Ref. 7) have shown that the Landau
damping is indeed determined by the total fre­
quency spread, irrespective of its nature.

Taking these results into account, we assume
that the total frequency spread can be inserted into
the equations for the threshold. If we assume that
J II = 0,1 'land <A'li) ~ <A'le) = 0,01 'l, then all
the. resonances with n ~ 3,3 will be suppressed by
the Landau damping.

If F(J zn -t 0) < 1, there is no instability. Since for
a Gaussian distribution ji(QiO) '" Ij3<AQio) and
Ie(Qeo) '" Ij3<AQeo), it follows from· Eq. (52) that
the following is a necessary and sufficient con­
dition for the suppression of instability:

y2 b2
<AQ. )<AQ ) >~ (53)

,,0 eO = ['n ·

9. CONCLUSION

Let us examine the results obtained qualitatively
and quantitatively. It seems that for stability of
the rings, a working point outside the two-beam
resonance bands must be chosen.

(49)

I
C(t=oo) I (ny2 J

2
)1(_ ) = exp (2nia) = exp _In_II (46)

Cl t - - 00 r
The change of the second amplitude is determined

by the integral of motion for the system (38):

IC1 IZ _I czlz = canst.
(Xln (Xnl

determined by considering the change of the
asymptotic value of U2 for motion along a circle
of infinite radius drawn about the point z = 0.

By considering the variation of Ct as we cross the
cut, we find

As a result of the frequency spread of the beam
arising from the longitudinal momentum spread,
the dispersion Eq. (30) is modified and assumes
the following form:

1 = _£52 2 fdQiflQi)f dQeJ<'e(Qe) (48)
111'ln w+nQ. kQ-IQ +w'

" e

where the functions j(Q i ) and j(Qe) are normalized
to unity. We look for a solution in the form

8. LANDAU DAMPING

where

Substituting Eq. (49) into Eq. (48) and taking into
account the fact that j(Q i ) and j(Oe) are even
functions of Xl = Qi-QiO and X 2 = Qe-QeO' we
obtain the following equations:

kQ - lQeo +nQiOw - - . (50)
0- 2 '

, dO.
[ = kd-+l.Qe

We confine ourselves to the case of zero detuning
(b = 0). The left-hand side of Eq. (51) is a maxi­
mum at bzn = 0. When bZn -t 0,
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TABLE III

9

Points

1
2

2,4x 10-2

2,7xI0-4
1012

2 X 1013

a (mm)

10
2,2

E(MeVjm)

48
200

24 X 1012

2:7 x 1010

As can be seen from Figs. 2 to 5, the presence of
external focusing (A i= 0) substantially increases
the capability of the electron ring accelerator.
However, a reasonable value cannot be obtained
for one degree of freedom, i.e., for the ring axis.
The only method capable of achieving this focusing
-the image method-does not provide stability
for the odd resonances, for which the center of
mass of the cluster is displaced. Therefore, the
dipole resonances must be considered for A = O.
As shown above, at A= 0 the first dipole resonance
in the high-frequency region is unlimited. There­
fore, in practice only two stability regions are
feasible: (1) frequencies Qi+Qe < t, and (2)
frequencies 1 >Qi-Qe > t. The centers of these
regions correspond to the points

(1) Qiz = 0,16; Qez = 0,16;

(2) Qiz = 0,7; Qez = 0,07.

where rpr represents the classical proton radius.
The question about an acceptable value of the
factor d has not been considered. It is evident that
the factor d < 1. We arbitrarily assume that
d=0,5.

It seems from Table III that when the external
focusing is weak it is difficult to obtain an accelerator
capable of competing with a proton synchrotron
simultaneously in intensity of the accelerated beam
and energy increase per unit length.
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For given values of '}', Ne , A and R the pair of
values Qzz and Qez completely defines the basic
parameters of the electron-ion ring: a, E, and N i •

In the calculations, we set'}' = 50, R = 5 cm, A = °
and N e * = 2nRNe = 1014

• The results are sum­
marized in Table III.

The following equations were used in the
calculation.

P.A. A2

N i myQl z

N e MQi Z
'

a = ~ JrprRNe*
Qi rc '

IMczQ/a
E = d . Emax = - -- --Z- ,

2 e R

(56)

(57)

(58)
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