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HELICAL WAVEGUIDES FOR HEAVY PARTICLE LINACSt
A. J. SIERK, C. J. HAMER, AND T. A. TOMBRELLO
California Institute of Technology, Pasadena, California, U.S.A.

The properties of helical waveguides for use as heavy particle accelerators are investigated, and a new method of
focusing is proposed that involves neither quadrupoles nor shaped electrodes.. These calculations include estimates
of mechanical stability, electrical losses, and the effects of finite helix wire size. In addition, the double helix
waveguide is analyzed; this structure may be practical for ions with initial velocities below 0.01 C.

1. INTRODUCTION

Early in the history of linear accelerators, it was
suggested that helical transmission lines might
provide a practical metho~ of achieving a low
velocity traveling wave for accelerating heavy
particles. (1-3) During the period 1950-1958,
several theoretical analyses were made, (3.4) indicat­
ing that the structure could be competitive with an
Alvarez(5) linac. Several groups constructed
various models, (6-10) and one group built a small
working accelerator. (10) This workwas not pursued,
as there appeared to be only marginal differences in
efficiency between the two designs, and problems of
breakdown in the dielectric supports of the helix
were encountered. The Alvarez design was
perfected by this time and performed satisfactorily.
In the following decade, a group at Frankfurt
continued work on the helical structure, (11) and has
constructed a small accelerator. (12)

There are several reasons for considering a helical
transmission line for use as a particle accelerator.
This structure can have phase velocities from
0.01 C to nearly C. When the helix is operated as
a standing-wave resonator, one may achieve a low
frequency which is nearly independent of transverse
dimensions. The field distribution is quite 'homo­
geneous, so that large phase-space acceptance,
simple alignment, and improved focusing properties
can be obtained.

In this paper, we present a briefreview ofprevious
treatments of the electromagnetic properties of the
helical transmission line, followed by calculations
of the effects of finite-wire helix coils, and distor­
tions and frequency shifts caused by gravity and by
electromagnetic forces. An improved focusing
method, well suited to helicallinacs, but also useful
for other configurations is explained. Finally, the
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double helix, which offers significant advantages in
accelerators is analyzed. Because this study was
undertaken with the thought of designing a super­
conducting accelerator, a brief mention is made of
properties of superconductors. Most of the results
presented do not depend on the use of super­
conducting materials; however, our bias in that
direction is reflected in some of the choices of
parameters given in the figures.

The units used in all formulae and graphs are
Gaussian cgs, unless explicitly stated to be other­
wise, for example in relating Eo to energy gain.

2. SUPERCONDUCTING ACCELERATORS

An important limitation upon the energy gain of
present linear accelerators is the rf power expended
in ohmic losses in the resonating structure. The
magnitude of these losses usually requires that the
power introduced be pulsed, often with duty factors
limited to less than 1 per cent. This pulsing
restricts the average beam current, and in practice
limits the energy resolution of the final beam.

Constructing an accelerator from superconduc­
tors, whose surface resistance is lower by 10-5 to
10-7 may make possible continuous duty cycle
operation at higher field gradients than are now
employed. The rf power source for such a device
would be significantly smaller, since the only power
needed would b'e to accelerate the beam, with losses
a negligible factor.

An article by Schwettman et al., (13) considers in
detail many factors of importance for supercon­
ducting accelerator design. A few of these are
mentioned here:

In order to remain in the superconducting state,
the material must operate below its transition
temperature, a few OK for usable materials. This
means the structure must be kept near the
temperature of liquid helium. Theoretical calcu­
lations (13) verified' by experiments, (14) show that
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proportionally less allowed at higher frequencies.
For a room-temperature machine, only the

limitation on the electric field remains. One still
wishes to minimize losses, but there is no limit on
the B field, and the power lost in dielectrics would
be much less than the resistive dissipation.

A. The Sheath Model
The usual method of obtaining the field distribu­

tion in this structure makes use of the sheath
model. (18,19) In this treatment, the coil is replaced
by an infinitely thin sheath which conducts perfectly
only in the direction of the coils. This model gives
very accurate values for the phase velocity and fields
(except in -the neighborhood of the coils) for
frequencies corresponding to wavelengths much
longer than the pitch. The 'tape model'(2o,21) is' a

FIG. 1. Diagram of single helix geometry, defining
a, c, d, P, and the rand z axes.

3. THE HELICAL TRANSMISSION LINE

The helical transmission line is formed of a wire
coiled into a helical shape, surrounded by a
coaxial, cylindrical conductor (see Fig. 1). For low

frequencies and small pitch angles the propagation
velocity is given by v "'-' 1/(LoCo)1/2 where Lo is the
inductance per unit length of the coil, and Co is the
capacitance per unit length ofa cylindrical capacitor
of the dimensions of the coil and shield. For higher
frequencies, v "'-' C sin (), corresponding' to a signal
propagating along the helix wire. A sinusoidal
current propagates around the coil, setting up a
wave consisting of a TM component, and an
interlocked TE component. The TM component
is the portion of interest for accelerators, as it has
a large axial electric field~

where € is the real dielectric constant, and S is the
loss angle. E·is in Gaussian units, and v in hertz.
For tanS "'-' 10~6 and a frequency of 10 MHz, this
rate is about 0.3 W/cm3• This would limit dielectric
material to about 10 cm3 per foot of structure, with

the surface resistance of niobium varies nearly as
(w2/T) exp ( - Eg /2k B T), for the range 1-4 oK. This
implies one would desire even lower temperatures,
but with obvious economic limitations. Because of
the improved heat transport properties of liquid
helium II, it will probably be desirable to operate
below the Apoint (2.2 OK).

Considerations of present refrigerator costs (13,15)
put a practical upper limit on rf losses of 1-5 W1ft
of structure. Since losses are proportional to IBII12
at the .superconducting surface, one desires low B
fields at all superconducting surfaces to minimize
losses. This limitation is also imposed by the
critical field transition in the superconductor.
Above a certain applied magnetic field level, Hc(T),
the superconductor makes a transition to the.
normal state. This consideration singles out the
elements lead and niobium as the only practical
alternatives. Lead has a dc critical field (T = 0) of
about 800 Oe., while in niobium, the thermo­
dynamic critical field is nearly 1950 Oe. (16) How­
ever, at radio frequencies, the transition always
occurs at lower apparent field levels. Experiments
on niobium cavities have achieved a critical field of
about 1100 Oe at 8 GHz. (14) For lead structures,
a value of 660 Oe at 750 MHz has been reported. (17)
It must be emphasized that practical operating
levels may be appreciably lower than these figures.

There is a limitation on electric fields imposed by
electron field emission. The actual limiting value
is a strong function of microscopic surface smooth­
ness, and depends greatly on how the sample is

. prepared. Workers at Stanford have achieved levels
of 70 MV/m without breakdown in carefully
annealed niobium cavities. (14) A group at Karls­
ruhe reports Q degradation due to field emission
in lead-plated cavities at fields near 30 MV/m.(17)
This phenomenon is nearly independent of tempera­
ture, so the same type of limitation applies to
normal materials.

In complicated geometries like the helical wave~
guide, 'it may be desirable to include dielectric
supports to provide mechanical stability. All
dielectrics involve losses, and the energy lost in
1 cm3 of material per second in'a standing wave is

EvtanSIEI2
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generalization of the sheath model which takes into
account the periodicity of the helix by replacing
the helix wires by flat tapes. The solution to the
tape helix is constructed of a superposition of the
basic sheath helix mode with additional higher order
modes not having azimuthal symmetry.

The analysis using the sheath model has been
given elsewhere, (11,19,20) so we will summarize this
treatment only briefly here. In the cylindrical
coordinates of the waveguide (see Fig. 1), the
general field distribution i's a sum over partial
waves, each of the form (see Appendix A for
definitions of symbols)

TM: E;"(r, 4>, z, t) = E;"(r) eiwt eimt/J e-ibm
Z (1 )

TE: B'ff"(r,4>,z,t) = B'ff"(r) eiWteim4> e-ibmz (2)

E~(r) and B'ff"(r) are solutions to Bessel's equa­
tion (20,21)

The components EJ!1J, E;, B!/", B; may be derived
from E~ and B~ by. the usual methods(22)

conditions on the five non-zero field amplitude ratios.
The extra equation results in a dispersion relation

v = Ctan8 [IO(gO a)I1(go c)
y 10(go c)I1(go a)

. (Ko(g0a)Io(g0c) - Io(g0a)Ko(g0c»)J1/2 (5)
K1(g0a)/1(g0c) - I] (g0a)K1(g0c) .

The boundary conditions at the sheath which mix
the 4> and z components cause a mixing of the TM
and TE modes in any propagating wave. Figure 2
shows this dispersion equation plotted as a function
of go c( = 27Tcly'A) for various values of cia. (19)

1.8 J-----.:~_+_---+------:-t_-____r--I

1.6 ~---+----'::~---1-----+---t

~y

tan 8 J-----+-~:-t-----~~___t-----1

1,2 ~-=--+---~--+--~--+---t
1.5
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FIG. 2. Phase velocity of a single sheath helix
waveguide as a function of DoC for several values of
cIa.

As mentioned above, this model cannot accurately
represent the field distribution near the helix, nor
can it give the actual losses. The tape model
improves the situation with respect to the fields, but
still cannot give the losses, since an infinitely thin
tape is completely different from a real wire. The
tape helix analysis, which agrees with experimental'
results, shows(21) that the periodicity of the helix
beyomes important to the propagation character­
istics only at frequencies much higher than those of
interest for accelerator applications; additional
modes begin to propagate at high frequencies and
large pitch angles. These higher modes can be
eliminated by introducing additional helix wires
between the coils, giving a closer approximation to
the sheath helix.

With the sheath helix model, one may estimate
which field components will be largest near the
conducting surfaces. The largest magnetic field
component for cia ~ 1.5 is B1(a), just as in a
solenoid. E~(a) is the largest electric field. These

(4)

Since b:n( = w 2 jv2
) > k2

( = w 2 jC2), the wave being
slower than C, Eq. (3) becomes a modified
Bessel's equation with the solutions Im(g mr),
KmJg mr) (g:n = b:n - k2

). Because of the azimuthal
symmetry of the sheath, only m = 0 components
appear in the solution.

There are eight independent field amplitudes, or
seven ratios, considering one amplitude arbitrary.
Two are trivially eliminated by the condition that
the coefficients of Ko(gor) must be zero inside the
sheath, since Ko becomes infinite at r = o. There
are two boundary conditions at r = c: Ell = 0 and
B1.. = O. There are four boundary conditions at
r = a: E z and E¢ are continuous across the sheath,
the component of E along the conducting direction
(Ez sin () + E¢ cos 8) is zero and the component of B
in this direction is continuous. Thus, there are six
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FIG. 5. Axial magnetic field outside the sheath
helix as a function of DoC for several values of cIa.

B. Corrections to the Sheath Model
The solutions given so far have been for traveling

waves. The power in these waves is of the order of
megawatts for accelerating fields greater than about
1 MV/m. Therefore, it appears that a standing
wave configuration would be more practical for an
accelerator. Because of the mixed TE-TM character

field levels are shown in Figs. 3 and 4 as a function
of go c for various values of cia. The values of
B~(a) and Br(a) are important when considering
losses and large wires. They are shown in Figs. 5
and 6. The ep components of both E and B fields
are very small for viC~ 1. The variation of the
large field components with radius is shown in
Fig. 7.
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FIG. 6. Radial magnetic field at the sheath helix
as a function of goc for several values of c/a.
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FIG. 3. Radial electric field at the outside of the
sheath helix as a function ofgoc for several values of
cIa.
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FIG. 7. Variation of the large field components
with radius in the sheath helix (schematic).
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FIG. 4. Axial magnetic field inside the sheath helix
as a function of goc for several values of cia.
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of the wave, a shorting plane across a helical
waveguide does not correctly satisfy the boundary
conditions for a pure standing wave. There will be
an unavoidable distortion of the magnetic fields in
the TE portion of the wave, but there is little effect
on the TM (accelerating) part of the wave. The
main effect for our consideration is a frequency
shift from a predicted value of V m' = m'v(v)/2L for
an m'AI2 standing wave cavity of length L. This
effect cannot be quantitatively predicted theoretic­
ally at this time. This shift was observed to be less
than 3 per cent in an actual 21.. helical resonator.

The main modification to the sheath model given
here is to include finite wires, allowing the accurate
prediction of losses. There are two important
effects of the wires. The radial electric field is
increased locally due to the finite radius of curva­
ture of the wires. This effect increases, B z by a
similar factor. There is an enhancement of Br
caused by flux conservation in the smaller area
available between the large wires. This effect also
increases the E z. field between the wires by the same
factor.

Since the first effect becomes smaller for larger
wires, while the second increases, there will be some
value of dip which causes the magnetic fields at the
wire from both effects to be equal.

Appendix B gives the details of the conformal
transformation which was used to estimate the
magnitude of the fields at the conductors in terms
of the sheath model values. These calculations
result in factors which must multiply the s4eath
helix fields to give a more accurate estimate.
Figure 8 gives these factors as a function of dIp.

X is the factor which multiplies E z and Br , while
Y is the factor for B z and Er .

These field mappings also lead to values of the
surface current density 'in the wires; knowing these
currents allows a calculation of losses in the helix.
This calculation also is done in Appendix B. The
losses jn a standing wave cavity with dip = 0.6 are,
shown in Fig. 9. Figure 10 shows the fraction of
losses occurring in the outer shield for such a
cavity. These curves are valid for (V/C)2 ~ 0.2.

4. MECHANICAL PROPERTIES OF THE
HELIX

From the considerations mentioned in Sec. 2, it
will probably not be possible to introduce any
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FIG. 9. Losses in a single helix cavity with
dip = 0.6 as a function of ooc for several values
of cia. Magnitudes are for Eo = 7 MV/m, Rs =
10-8 Q, c = 10 cm. Losses scale as cRsE~ .
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FIG. 8~ Correction factors to sheath helix fields
due to large wires as a function of dip. X multiplies
Br and E z ' Y multiplies Er and B z •

FIG. 10. Fraction of the losses of Fig. 9 occurring
in the outer shield, as a function of OoC, for several
values of cia..
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Ltv ~ LJp 1 ( )
v = P 1 +gocf'/!' 12

For the helix given under Eq. (7), LJv/v r-o-.J

-1. X 10-5 for an energy gain of 3 MeV/m.

5. PHASE SPACE AND FOCUSING

If a collection of particles is assumed non­
interacting, the motion of the members of that
collection is limited by Liouville's theorem.
Liouville's theorem states that if the particles are
under the influence of forces derivable from a
Hamiltonian, which is always true of electro­
magnetic forces, ·then the volume they occupy in
phase space is conserved. Phase space is a six­
dimensional space whose coordinates are the
canonical coordinates and momenta of the
Hamiltonian. (23) In addition; if the change in one
coordinate· is coupled only weakly to the others,
areas in the three orthogonal two-dimensional
spaces of coordinates with conjugate momenta are
separately conserved. Thus, it is useful to study
the effect of an accelerating or focusing system
upon a group of particles' by examining the change
of shape of phase space areas. The effect of
coupling between coordinates (e.g., E z is a function
of r) is to cause different behavior of the (qi' Pi)
phase-space plane for different values of qj and Pk
(j, k =1= i), while preserving the total six-dimensional
volume. The effect of space charge is to increase
the total phase-space volume. (23)

Focusing in linear accelerators may be examined
with the aid of the phase-space concept. It is
common when discussing linear accelerators to
consider a focused system as one having stable,
bounded motion in phase space, as opposed to the
optical meaning of reducing the spatial dimensions
of a beam. Thus, one speaks of radial and longi­
tudinal focusing, which means that the particles
move on closed, bounded surfaces in phase space,
and all particles initially located inside of one of
these surfaces remain enclosed.

In the usual heavy ion accelerator, longitudinal
stability is achieved by the 'surfrider principle'.
The machine is designed so that the velocity of the
accelerating wave is equal at all times to the
instantaneous velocity of one particle. The phasing
is such that the particle is on the forward side of the

dielectric supports into a superconducting helical
accelerator. The structure would necessarily con­
sist of a long helix supported only at voltage nodes
by superconductors, or of a series of separate half­
wave sections. Because of the necessity of cooling,
the helix should be formed of a hollow tube. Below
we consider limits on the unsupported length of a
helix. The actual calculations are given in
AppendixC.

The compressional modulus under small deforma­
tions for a spring wound from a hollow tube is

K= 7TfLd
3
~:2sin (J (F = K.dzZ) . (6)

The amount of sag due to gravity for such a
structure is

s - - pg2
4

'YJ (7)
- 48p,d2 sin2 8 '

where'YJ is a factor of order 1, which depends on the
'effective moment of inertia' of the. helix; 'YJ = 4 for
a solid bar, and. 'YJ = 2 for a thin-walled pipe. For
a copper helix with.d =·1 cm, 8 = 0.08; a deflection
of 1 mm occurs for 2 ~ 22 cm.

Since a small static sag has a negligible effect on
the accelerating fields and on losses, static gravita­
tional deformation will notbe the most troublesome
problem.

At the energy gradients considered, there are
magnetic fields of from 50 to 500 gauss acting on
the helix, in which there are large currents. In
addition, the electric fields also lead to comparable
forces. The longitudinal force acting per centi­
meter of helix is

dFz ~ 0.06a(B BEE) . 47TZdy.n (8)dZ = cos 8 r - + z - SIn X cm'

(There is also a force acting radially on the coils,
but the deformation caused by this force is much
smaller, so the frequency effects are small.) This
force is an average over times short compared to
mechanical vibration .frequencies; it produces a
static 'strain wave' which is linear in the field
energy. The pitch of the helix is distorted to

47TZ
P = Po +LJp cos -r- , (9)

where

LJp ~ 0.06a ~(B BEE ). (10)
p - K cos 8 47T r - + z -

One may estimate the frequency shift in a
standing-wave resonator by calculating the effective
velocity of a traveling wave in a structure with this

perturbed pitch. This shift is

~: ~ -0.5 (~Vr,

where

(11)
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wave, so that leading particles see a smaller field,
and trailing particles see a larger field. . Thus,
particles away from the equilibrIum phase feel a
restoring force toward that point.

Depending upon the chosen value of the stable
phase, different fractions of a dc beam are trapped
and accelerated. The usual method is to use a
stable phase point about 30° in advance of the wave
crest. Twenty-five per cent of a dc beam is trapped
in a stable region by this design. In Fig. 11, the
longitudinal phase-space trajectories of particles in
this type of accelerator are shown.

.1

-.1

aVz (n~~c)

FIG. 11. Longitudinal phase space curves for
non-relativistic protons in a standing-wave accelera­
tor with Eo = 10 MV/m, A= 40 cm, and 1>s.= 30°.

In a high-gradient accelerator of this design, the
problem of energy spread becomes important.
For example, for an accelerator with Eo = 10
MV/m, A = 40 cm, and ~s = 30°, a pulse of 50 MeV
protons of full Aj4length will have an energy spread
of about Lleje ~0.03.

There are two ways to improve energy resolution
with a fixed field strength and wavelength. One
may restrict the phase width of the particle bunch,
or operate at a smaller stable phase angle. By
reducing ~s to 5°, one gets the stable tr~jectories

shown in Fig. 12. The longest pulse th~f" may be
trapped is now 4 per cent A, and a 2 per ce'1?t Apulse
at 50 MeV has Lle/e = 0.002, with the samt; Eo and
A as before. This value of Lle/e could be reduced
only by decreasing the accelerating field. '

It was shown by McMillan(24) that for charge-free
regions of electric field, a particle bunch can be
focused in only one dimension if it has a constant
stable phase point. Therefore, an accelerator
operated in the above manner is unstable in the
radial direction, and will not radially focus a beam.
Conversely, for a stable phase trailing the wave
crest, the beam is stable radially, but diverges

~v £!1L
.01 Z nsec

-.01

FIG. 12. Longitudinal phase space curves for
non-relativistic protons in a standing wave accelera­
tor with Eo = 10 MV/m, A= 40 cm, and cPs = 5°.

longitudinally. This-difficulty is overcome by using
external focusing devices such as alternating­
gradient quadrupoles or electric field grid focus­
ing. (5) This adds to, the complexity of an accelera­
tor, and the use of large magnetic fields near a
superconductor causes difficulties.

McMillan's proof is valid only if the central
phase of the bunch remains a constant. It was
soon proposed to use a varying phase; with the
bunch alternating between regions of radial and
longitudinal stability, net stability in both directions
would result, in analogy to the strong focusing
principle. (25-27)

This proposal was discarded because numerical
computations(25-28) showed that the phase accept­
ance was limited to a few degrees. However, 'when
one considers the problem of energy spread
mentioned above, and the better bunching tech­
niques presently available, one realizes that the
limited phase acceptance may not be impractical.
The desire not to have magnetic quadrupoles near
superconductors also makes this type of focusing
more attractive for superconducting linacs. .

All of the above work on alternating phase
focusing used the idea of externally varying the
phase. This calls for a continuous or nearly
continuous varying of the wave velocity in the
structure (modifying drift tube lengths, dephasing
cavities, etc.).

6. THE SLINGSHOT

The desired result may be produced in a much
simpler fashion; by utilizing the· phase changes
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caused by the particles' acceleration in a constant
velocity wave, it is possible to achieve simultaneous
radial and longitudinal stability.

The procedure is as follows: the bunch enters
the accelerator section with a lower velocity than
the wave, with an initial phase of from 50° to 90°
leading the wave crest. It passes backward through
the region of longitudinal focusing and radial
defocusing to the rear of the wave crest, where the
opposite conditions exist. Since the particles are
being continuously accelerated by the wave, their
velocity equals that of the wave at a point from
25°-40° behind the crest. The acceleration
continues until the bunch reaches the approximate
phase of entry, at which point the accelerator
section is terminated, and the bunch may enter
another section that has a higher wave velocity.

In the reference frame of the traveling wave, the
acceleration process is like that of a stone hitting
an elastic band and rebounding. Hence, the term
'slingshot'. The effect of this procedure is analo­
gous to that of passing through an alternating­
gradient triplet lens, for both radial and longi­
tudinal motion, but it also involves an acceleration.
The actual average energy gain is 85 per cent to
95 per cent of the electric field amplitude in the
traveling wave, with the value depending upon the
initial phase point. For accelerating fields of the
order of 1-5 MV/ill, only a small number of these
constant velocity sections is needed. The velocity
increment of one section is of the order of 0.02 C
to 0.07 C (in the wave frame).

The- behavior of particles' in this type of self­
focusing wave has been calculated for a variety of
elm values, field strengths, and velocities.

The particle motions were studied by numerically
integrating the non-relativistic equations ormotion
for charged particles in the' complete electric and
magnetic fields for a sheath helix standing-wave
cavity-neglecting the fringing fields at both ends.
The trajectories were computed in the frame of the
moving wave. Since the largest velocities en­
countered here are < 0.05 C, these equations are
quite accurate. However, the results are not
limited to low velocities in the laboratory, since
they may be Lorentz-transformed from the wave
to the laboratory frame, as the relativistic effects
on the backward traveling wave were accounted
for in the wave-frame calculation.

By calculating the final positions of particles
initially scattered in phase space, it was possible
to determine the phase trajectories of particles
passing through the 'slingshot'. In this manner,

acceptance curves in longitudinal and radial phase
space were obtained. These results are shown in
Figs. 13 and 14.

The detailed shape of the phase space curves
depends upon the initial and final phases, and
velocities. Curves with larger velocity spread may
be obtained by varying the entering and exiting
phase slightly. This may be desirable for a low
velocity, low field accelerator because of bunching
criteria.

" /
'- ./

-.01

FIG. 13. Longitudinal phase ~pace curves for non­
relativistic protons in a standing wave 'slingshot'
accelerator with Eo = 10 MV/m and A= 40 cm.
The dotted curve is a phase space region from the
stable phase accelerator of Fig. 12, showing the
large improvement in energy resolution possible with
the slingshot. '

RADIAL PHASE SPACE
STRONGLY FOCUSED WEAKl Y FOCUSED

.02 .02

~02 -D2

FIG. 14. Radial phase-space curves for non­
relativistic protons in a standing-wave 'slingshot'
accelerator, with Eo = 10 MV/m and A= 40 cm.
The 'strongly focused' curves are from one end of a
3.5L per cent A pulse, with the 'weakly focused'
curves from the other end.
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The qualitative behavior of the particles is similar
for a wide range of elm values and field strengths.
The velocity gain in one section scales with
(eEoAIm)1/2, as would be the case if the accelerating
wave amplitude were a constant in space instead of
a cosine. Calculations were done for values of
elm from 0.02 to 1, A from 20 to 150 cm, with
Eo = 10 MV/m.

Some of the advantages of this accelerating
method are:

(1) Each section has a constant phase velocity,
which simplifies construction.

(2) Because of the time spent in'the longitudinal
defocusing region, there is a smaller energy spread
for a given pulse l~ngth than is possible for a
stable-phase accelerator. Figure 13 has one curve
from Fig. 12 (shown as a dashed line) super­
imposed, showing that the velocity spread for a
slingshot is about one half the lowest possible value
for a stable phase accelerator with the same energy
gain.

(3) No separate focusing devices are needed.
(4) The initial particle velocity is lower than that

of the wave, so that one can accelerate particles
with lower velocities than that of the accelerating
structure.

(5) .Because of the uniform fields of the low
frequency helical cavity, one can accept large radial
phase-space areas. For a 1 per cent A pulse in the
strong focusing case of Fig. 14, a 1 cm diam pulse
of 500 keV protons with emittance 711' cm-mrad can
be accepted, with large diameter pulses limited only
by the apertures used.

(6) The procedure is basically a rather weak
focusing method, in comparison to presently used
methods. Because of this, there are no high
frequency oscillations .In the radial motion which
might cause instabilities. In a 500 ft accelerator
taking protons from 500 keV to 700 MeV, particles
might cross the axis 4 to 6 times.

(7) One may vary the output energy of t~is type
of accelerator over a continu9us range by varying
the field level simultaneously with the relative
phasing. If the field amplitude of the last section
is held at 70 per cent of the design level, and the
particles' initial phase changed to about 180°, they
slip back by about Ii waves, and exit with the same
velocity with which they entered. The radial and
longitudinal phase-space properties of the section
operated in this manner are nearly the same as
when accelerating. For the intermediate field
levels, the energy spread of the exiting beam
increases to a maximum of about eight times the

original value when the final velocity is equal to the
wave velocity. This spread could be counteracted
by the use of a 'bunching section' after the final
accelerating section. The actual result would be a
debunching, but a buncher field profile would
provide the desired effect. The radial phase space
quality is also worsened by a moderate amount.
At 50 MeV the emittance of a 1 cm diam beam at
the full acceleration is 0.7511' cm-mrad. Exiting at
the wave velocity of the last section, the beam is
about 0.9 cm across, with an emittance of about
1.211' cm-mrad. Of course, the emittance does not
need to ·be this large, if the- initial emittance is
reduced, or if the accelerator is operated in a more
weakly focusing manner.

There are several limitations on this accelerating
method. The focusing produced by the slingshot
is quite astigmatic; the limitations on the pulse
length trapped are due to radial defocusing at either
end. Figure 14 shows the radial phase-space
curves at the opposite ends of a pulse of length
0.035 A. Five per cent of A(18°) appears to be the
maximum pulse length trapped by this method.
For 50 MeV protons with A = 40 cm, and Eo = 10
MV/m, a 4 per cent A pulse corresponds to J€/€ ~
0.002. A 1 per cent pulse gives 6 x 10-4 ; ! per cent
gives 3 x 10-4•

This type of accelerator is also necessarily
designed for a single velocity profile. Different
particles may be accelerated in a single machine by
varying Eo to keep Eoe/m constant. However, the
maximum field level must be chosen for the
smallest elm, thus limiting the energy gain of ions
of larger elm. This difficulty could be overcome
for a superconducting accelerator, for which a large'
part of the cost is the dewar and refrigerator system,
by having two or Il).ore accelerating structures
inside the dewar, each. for a certain range of elm
values. All existing linear accelerators have this
limitation on elm range, but there have been
proposals made which would allow acceleration of
all possible ion types with optimum energy gain for
each. (29,30)

7. THE DOUBLE HELIX WAVEGUIDE

The single helix waveguide already discussed is
limited to use at {3 ~ 0.04. Because of the stiffness
criteria discussed in Sec. 4, a smaller pitch implies
a smaller wire size, which results in a structure too
unsteady to be practical.

By adding an additional helical conductor of
radius b coaxial with the first (a < b < c), one
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gob =1.8
goc =2.5
tit. =-1.5

FIG. 15. Field lines in the modes of the cross­
wound double helix waveguide. In each picture,
the upper half shows the electric field, and in the
lower half the 11;lagnetic field, with the correct
phase relation for a traveling wave.

FAST MODE

- - - Ermax
6 --Bzmax
4
~----:::~--

2

SLOW MODE

~6 .8 1.0 goo 1.2 1.4 1.6

FIG. 16. Dispersion curves and maximum field
levels (in terms of Eo) for a cross-wound double
helix with goa varying. Dashed lines show
f3 = tan e.

The fast mode has currents of the same pola.rity
in both helices. This results in a large magnetic
field between the helices, and a large electric field
between the outer helix and the shield (see Fig. 15).
A minimum magnetic field much lower than
possible in the single helix may be achieved by
varying the position of a and b to cause B~(a) to
equal B~(a) or B~(b). In this case, all four of the
important independent parameters of the double
helix, goc, gob, goa, and tblta affect the result.

increases the capacitance and inductance of the
structure, lowering the phase velocity by a useful
amount. In Appendix D is presented a mathe­
matical analysis of the double helical transmission
line in the sheath approximation. Experiments
indicate that the sheath model predicts the disper­
sion properties of the double helix as well as it does
those of the single helix. Some of the results of the
calculations are discussed here.

Since there is a third conductor present in the
system, there is a splitting of the modes, one wave
propagating more slowly t~an for a single helix,
and one more rapidly. There are four distinct
modes possible in this structure, the additional two
resulting from the possibility ofeven or odd relative
parity of the two helices.

When both helices are wound with the same
parity, the additional helix exerts a relatively small
perturbing effect. One mode is a propagation of
the basic single helix wave along one conductor,
while the second mode is a propagation along the
other conductor. One may achieve slightly lower
field levels near conductors with this configuration,
but the phase velocity is about the same as in the
single. helix. The extra complexity of this structure
is not worth the marginal improvement gained.

Both modes of the cross-wound, double helix
waveguide appear to be interesting for use as
particle accelerators. The field lines inthese modes
are indicated in Fig. 15. It is clear that the field
distributions are not simply perturbations of those
of the single helix.

The slow mode has higher field levels than the
single ..helix; this is the price of achieving a lower
phase velocity. The largest magnetic field in this
mode, assuming reasonable spacings between the
helices and the outer shield, is B~(a). This is the
largest component over the entire ranges ofFigs. 16,
17, and 18. The maximum electric field, usually of
nearly the same magnitude as B~(a), is E~(a). Th~

currents in the two helices are of opposite polarity,
causing a large electric field between them.

From the numbers mentioned in Sec. 2, it appears
that minimization of B field is of primary impor­
tance. B~(a) is proportional to Eo(talf3) (IgaII1a)
(see Appendix D, Eq. (D.4), row 5). The function
I~/Il has a minimum of 2.71 at goa == 1.29, but is
within 5 per cent of this value for 1.1 ~goa ~ 1.6.
Any convenient arrangement of b, c, and tblta

which gives the desired velocity ratio, and reason­
able maximum electric fields may be used. With a
fixed maximum field, the energy. gain will drop
linearly with the value of f3ltan ()a achieved.
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FIG. 17. Dispersion curves and maximum field
levels (in terms of Eo) for a cross-wound double
helix with gob varying. Dashed lines show
f3 = tan 8.
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2
....J
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FIG. 19. Dispersion curves and maximum field
levels (in terms of Eo) for a cross-wound double
helix with tb/t a varying. Dashed lines show
f3 = tan 8.

broad minimum jn the field levels. A large range
of cfa, cfb, goc and tblta give BmaxlEo<:. 1.60; the
lowest value of this ratio found was BmaxfEo = 1.50
for goa = 0.77, gob = 1.77, goc = 2.75, and tbfta =

- 1.65. The phase velocity ratio for this con­
figuration is: f3lt a = 2.1. These numbers compare
very favorably with those of the single helix, where
the minimum of BmaxlEo is 2.3 for cia = 2 (see
Fig. 4).

The radial magnetic field will be important, of
course, as in the single helix; this can be calculated
from Br = (tlf3)Ez at any helical sheath.

For any specific geometry, optimum wire size
may be calculated using Fig. 8, and losses may be
found with the aid of Eq. (B.5) in Appendix B,
once the sheath model has been solved.

The slow mode of the double helix waveguide
allows traveling waves of f3 ~ 0.01, which makes
possible, using the slingshot, the acceleration ofvery
low velocity particles-such as protons from a low
voltage source, or very heavy ions from a high
voltage dc source. Also, the fast mode allows a
significant (50 per cent) improvement in ene~gy

1!ain over the single helix in the velocity region
B~ 0.10.

- -fast- - -

" - - -Ermax
""", --8z max

s~w- _

4

2

2

~ tp _

tan8a

I - - - - - - - - - - - - - - - -. - - - - ~~- --- - - --

Figures 16, 17, 18, and 19 show how the dis­
persion curves and maximum fields for both modes
vary with the' four parameters. The d~shed lines
shown with the dispersion curves give the velocities
that waves propagating at C along the helix wires
would have. The constant parameters in each of
the four figures were chosen to give low fields in
the fast mode. The slope discontinuities in the
curves occur when a different field component
becomes the maximum (see gob = 2.2 in .Fig. 17).
As canpe seen from the figures, there is quite a

01----+---+----+---+-----1
a:b:c=.32:.64:1

tbf'\a=-1.5

sow

8. DESIGNING ACCELERATORS

FIG. 18. Dispersion curves and maximum field
levels (in terms of Eo) for a cross-wound double
helix with goc varying. Dashed lines show
f3 = tan 8.

4 5
In this section, it will be shown how the various

graphs and data presented in this paper may be
used to make fairly accurate first order approxima­
tions to accelerator designs.
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Estimating Eo = 4, ,\ = 30, we find from Eq. (13)
that f3 ~ 0.05.

A number of criteria for maximum unsupported
length may be used. We shall require that gravi­
tational sag be less than 1 mm. From Sec. 4 this
implies

It is most instructive to do this by means of an
example. Consider an accelerator which is to
accelerate protons from a 500 keY source. Assume
that a material with (Hc)ac = 500 Oe is available,
and that a maximum electric field of 30 MV/m is
allowed. Because of cooling considerations, the
entire structure is limited to 20 cm diameter. The
velocity gain in one slingshot section is, for all cases:

(
e E ,\)1/2 cm

Vf-Vi~2 ml040 nsec' (13)

where elm = 1 for protons, Eo is in MV/m, and
,\ in em. The acceleration is such that

€i = 500 keY,

VI = 2.15 cm/nsec,

Length = 108 cm = 3,\

and v = 45 MHz.

Vi = 0.98 cm/nsec,

v = 1.62 cm/nsec,

€f = 2.4 MeV,

Emax = 12.5 MV/m,

t Since performing these calculations, the authors have
learned that the double helix was analyzed in unpublished
work by W. B. Hebenstreit at the Bell Telephone Labora­
tories in 1946-1947. He constructed a traveling wave
electron tube amplifier in which the electrons traveled be­
tween the 'two coils.

B~(a) = 3.7Eo, Br(a) = 3.9Eo = 500 G,

Eo = 3.9 MV/m = 130 st- V/cm

From Fig. 9 ,we find the losses in the cavity
(assuming no dielectric losses) to be 2.8 (Rs/I0-S)

W/m.
Dimensions of the following sections may be

estimated by the same procedure, with the ad­
ditional restriction that their frequencies must be
integer multiples of the frequency of the first
section. For this specific example, the next section
would possibly be a fast mode double helix, because
of the increased energy gain possible.

9. CONCLUSION

This paper has dealt with the possibilfty of using
asuperconducting helical waveguide as a heavy
particle accelerator. Methods are given for
accurately estimating maximum field levels, losses,
various distortions, and frequency shifts. Two
new results are presented: the analysis of the
double helix waveguidet; and the slingshot method
of simultaneous radial and longitudinal focusing
by self-phasing.

The question' of whether this type of accelerator
is practical depends upon a number of unanswered
experimental questions. Whether the energy gain
achievable will be competitive depends upon what
value of the ac magnetic field can be tolerated by
the superconductor in long-term use. The surface
resistance at these low frequencies must be low
enough'so that the losses are tolerable (see Fig. 9).
Methods of automatic tuning must be developed
that can operate over a range of Llv/v 1"./ 10-5 when
Q values are 109-1010•

The analysis suggests that if the above-mentioned
problems are solved the single helix may be
practical as an accelerator for velocities from
f3 ~ 0.05 to f3 ~ 0.15. The double helix may be
used from f3 ~ 0.01 in the slow mode to f3 > 0.5 in

(15)

(14)

a = 6.7 cm,

p = 2.0cm,

2
4

t'o.I 5 10' 2
d2 • 2 O· < x cm ·sIn

c = 10 cm,

~ = 36 cm,

There are two possibilities for the structure.
Either a slow mode double helix, which would have
a lower energy gain, or a single helix may be used.
We would prefer the single helix, but will have to
avoid the problem of tight pitch requiring too
small wires. Maximizing the pitch for fixed c would
imply small cia.

Since the B field will be the limiting factor on
energy gain, we choose cia = 1.5, since this is the
smallest value where Bg(a) ;5 B~(a). With 0 1"./ 0.045
(from Fig. 2), the pitch will be 27Ta tan 0 1"./ 1.9 cm.
This pitch gives dip 1"./0.66 for 13 mm diam. helix
wires.

From Eq. (15) we find 2 max = 18 cm. With
,\ = 36 cm, goc = 1.75. From Figs. 4, 6, and 8,
the magnetic field will be: B~(a) = 3.7Eo, .Br(a) =

4.2Eo • The 5000e limit implies Eo ~ 3.6 MV/m.
The revised value of Eo,\ leads to v - Vi = 0.620

cm/nsec, which gives f3 = 0.053. The pitch is
corrected to 41.9 x 0.053/1.125 = 1.99cm; dip is
now 0.64.

This approximation procedure may be continued
until the various results are self-consistent to the
desired accuracy. For this example" the resulting
structure has the specifications:
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canonical coordinate ofHamiltonian.
pitch of helix.
pitch of helix at r = a.
pitch of helix-at r = b.
canonical momentum coordinate of

Hamiltonian.
unperturbed pitch' of helix.
amplitude of pitch perturbation.
radial cylindrical coordinate of helix.
tan (}a , tanOb; tangent of pitch angl~.

loss angle; imaginary part of di-
electric constant = E tan S.

wave velocity.
velocity of particles entering a sling­

shot section.
velocity of particles leaving a sling­

shot section.
average velocity of a wave on a

helical structure with a perturbed
pitch.

amplitude of velocity perturbation.
distributed loading applied to a

beam.
iklgola-see Appendix D.
axial cylindrical coordinate of helix.
coordinate of the complex plane of

the large wire grating (Appendix
B).

coordinate of the half-plane mapped
into the large wire grating.

distortion of helix under longitudinal
force.

magnetic field.
component of B parallel to a con­

ductor.
component of B perpendicular to a

conductor.
magnetic field component of the mth

azimuthal mode.
sheath helix values for B components

at a conductor. Superscript tells
if inside or outside of a sheath.

(B~± B~)/2.

velocity of light.
capacitance per unit length.
energy- of particle.
electric field.
component of E parallel to a con­

ductor.
component of E perpendicular to a

conductor.
components of E in mth azimuthal

mode.

E

EJ..

vav

E
Ell

LJz

LJv
lV

B
BII

x
z
Z

v

radius of inner helix.
numerical constant used in conformal

mapping, Appendix B.
radius of outer helix.
axial wave number of mth mode.
axial wave number of traveling wave.

bo = 271'IA = wlv.
radius of outer shield.
diameter of helix wire.
wall thickness of tubing used for

helix.
charge to mass ratio of particle.
dispersiolil' function for single helix.
f(goc).~ {3yltan(}.

gravitational acceleration.
radial wave number of the mth mode.
radial wave number of helix wave.

go = bolY = (b~ - k2)1/2.
Boltzmann's constant.
free space wave number. k = f3bo =

wiC.
azimuthal mode number.
standing wave mode number; num­

ber of half-wavelengths.

c
d
LJd

m
m'
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APPENDIX A

Glossary of Symbols

the fast mode. The use of the slingshot effect will
allow ions with initial velocities f3;S 0.01 to be
accelerated in these structures.

The ultimate success of the slingshot method will
depend upon the devrJopment of efficient bunchers
which can. provide ,a very small bunch w'ith little
energy spread.

All the results of the analysis of the helical wave­
guide are also valid for normal conducting metals.
It may be practical to utilize the low phase velocity
of the double helix to construct traveling wave
bunchers for protons, or accelerators for very
heavy, low-energy ions, made from normal
materials.
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(B.1)

wavelength.
shear modulus.
frequency of wave.
frequency shift.
numerical constant used in con­

formal mapping, appendix B.
mass density of helix tubing material.
perpendicular stress component on

helix wire due to fields.
azimuthal cylindrical coordinate of

helix.
angular coordinate in the helix wire

(Fig. B.I).
stable phase value of constant phase

accelerator.
radian frequency of wave; (J) = 27TV.

P
[ (

z -1 )1/2Z = _._- tanh-1 _1__

7T(1+ g) Zl +al

(
z + 1)1/2J+gtanh-1 _1__ ,
Zl +a1

w

a

APPENDIX B

transforms the upper half plane (Zl) into a region
in Z extending from the center of the grating at
ReZ = 0 toReZ = 00, and from the midpoint ofone
wire (IrnZ = 0) to the midpoint of the space be­
tween the wires (ImZ = p/2). There is a nearly
circular quadrant (representing the wire) excluded
from the area near the origin, of radius dj2. The
complex function W = U + i V represents the field
lines and 'equipotentials' of various situations:

(1) Wex:: sin-1 Zl' for which the curves U = con­
stant represent the electric field lines which are
equal at a distance to (E~ - £:)/2; the curves
V = constant are. the magnetic field lines cor­
responding to (B~ - B~)/2. This mapping represents
a net current or charge in the wire.

p

Current Distribution in Helix Wires and Losses
B.l. Current Distribution. An approximation to
the field distribution near the helix wires may be
obtained by assuming that the adjacent helix wires
form an infinitely long, large wire plane grating.
This approximation is valid for distances which are
small compared to the radius of the helix. Then,
by assuming pseudostatic conditions, a conformal
mapping may be used to find the fields. Since the
frequencies of interest correspond to free space
wave numbers of from 0.002 cm-1 to 0.04 cm-I,
this is a reasonable approximation for distances of
a few centimeters.

The transformation(31)

sheath helix components of E at a
conductor. Superscript tells if
inside or outside of a sheath.

amplitude of standing wave. Ampli­
tude of accelerating component-is
Eo/2.. Energy gain is t'.I 0.45Eo.

(E~± E:)12.
initial energy.of particle.
final energy of particle.
energy spread of beam.
tensile force acting in the helix.

F ( ) = JZ dF(z') dz'
Z z d ' .

o z

longitudinal applied force density;
dynes/cm of-helix.

critical magnetic field of a super-
conductor.

current density in helix wire.
spring constant of helix; F = KL1zlz.
modified Bessel functions of order m.
lo(goa), Ko(goc), etc.
Fourier components of approximate

current distribution in helix wire.
inductance per unit length.
distance between the supports of a

helix. 2 = A12. ­
bending moment in a beam.
power loss per cm of helix.
quality factor of cavity.
lo(go r) - (locIKoc)Ko(go r).
lo(go r) +(llcIKlc)Ko(go r).
11(gO r) + (locIKoc)K1(go r).
ll(gor) - (llC/KIc)K1(gor).
absolute temperature.
ReW.
ImW.
complex potential function (see

Appendix B).
field enhancement factor for B r and

E z •

field enhancement factor for B z and
E r •

Young's modulus (Appendix C).
viC.
1/(1 - f32)1/2.

sag of helix.
energy gap of a superconductor.
real part of dielectric constant.
numerical factor;

TJ = SdAIS (rla)2 sin2 8dA.

pitch angle; tan 8 =p/27Ta.
pitch angle of the sheaths at a and b.

x
y

OJ!
f3
y
S(z)

Jl/J
K
Im,Km

loa' K oc , etc.
L,M,N

Jt(z)
p

Q
R(gor)
S(gor)
T(gor)
U(gor)
T
U
V
W
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and

01 = coth2 [;;(1 ; g)J + cot2 [;;(1 + DJ. (B.3)

The detailed field distribution at the wire surface
was calculated for dip = 0.70 and dip = 0.35. This
function was represented for the three cases by (see
Fig. B.l)

(2) Woc sin-1 [(2zl +al -1)I(al + 1)], for which
U = constant, gives E field lines which are asymp­
totically (E~ + E$)/2, and V = constant gives B lines
which are asymptotically (Bg + Bi)/2. This case
represents no net charge or current in the wire.

(3) Wocsin-l[(2z1+al+l)/(al~1)]; the curves
U = constant represent the corrected radial mag­
netic field, Br , while V = constant gives the
corrected E z •

The constants a1 and g are found from the
following equations:

.7.6.5
dip

.4

1....---r-----f-----+----+----+-~E::e+----+----i

2 1--3111.,...--r-----f---+-----f----+-----f----+----I

much better accuracy. The value of the co­
efficients L, M, N, and X were calculated for inter­
mediate values of dip without finding the complete
cp' dependence. The coefficients L, M, and N are
presented in Fig. ~.2, and X is given in Fig. 8.
The factor Y ~ M +N.

(B.2)[
7Td J [7Td 1+gJesc 2p(1 +D · = coth 2p-g- ,

B~ ~(---

E _ E~±E:
± - 2 .

FIG. B.2. Fourier components of approximate
surface currentsin helix wires as a function of dip.

Thus, in a standing wave cavity the following
surface fields are present:

BcP'(~') = [Lcoscp'B+ + (M +Ncos2~')B-] cosboz

· sin wt - X sin cp'B r sin boz sin wt , (B.4)
and

E.L(cp') = [Lcos~'E++(M +Ncos2~')E-]sinboz

· cos wt +X sin cp'Ezcos bozcoswt . (B.5)

The quantities Br and E z are the sheath helix values,
and

B~
(

-----------
FIG. B.I. Coordinate system for the large wire
corrections of Appendix B.

(1) Bq,'(4)') = (M +Ncos2~')B­

E.L(~') = (M +Ncos2~')E­

(2) Bc/>,(cp') = Lcoscp'B+

E.L(~') = LcoScp'E+

(3) Bc/>{cp') = -Xsin<{>'Br

E.L(4)') = Xsin~'Ez.

These trigonometric function approximations are
valid to better than 2 per cent for dip = 0.35, and
within 15 per cent for dip = 0.70. However, the
integral of these functions is approximated with

These results are derived for small pitch angles.

B.2. Losses. The surface currents in the helix wires
are

(B.6)

The losses per unit length of wire are

Rs ~J:"dfJ$(f)

= Jl3r:d {[VB~ + (2M2 + N2)B ~] cos2 boz sin2 wt

+X 2B; sin2 boz sin2 wt }. (B.7)
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(B.9)

(C.l)

section ofthe beam. The bending may be computed
from(32)

d2 S(z) Jt(z)

dZ2 CZYJ r 2 sin2 4>dA

Jt(z) JdA _ Jt(z) TJ
J(fr2 sin2 ep dA = ---x- a2 ' (C.S)

which serves to define the number TJ. For a thin­
walled pipe· of radius a, we find TJ = 2, and for a
solid bar TJ = 4.

Assuming a distributed load w due to the weight
of the helix, and point supports at intervals ~ on
an infinitely long helix, the moment distribution is

~\tvz wz2 W~2
.A(z) = -2--2-12. (C.6)

The deflection, by integrating Eq. (C.S) is

_ TJ .(~WZ3 wz4 W~2Z2)
S(z) - Ka2' 12- 24 -~. (C.?)

Using the distributed loading, w = pg(wdJdfsinO)
g/cm, the maximum deflection is

S(2) = _ pg~4 (!L) (C.8)
2 p,d2 sin20 48 .

C.3. Electromagnetic Distortion. Using the co­
ordinate system of Fig. B.l, thet stresses acting
perpendicular to the surface of the helix wire are
the:magnetic stress

1 . 2_ B2 _ sIn wt
uM-4w II-~

.{·[L2 cos24>' B~ + (M + N cos 24>')2 B~J
+ 2B+B-L(M +N cos 24>') cos 4>'

· cos2boz +X2 sin21>' B: sin2boz

- X sin 4>' Br [Lcose/>'B+ - (M +Ncos 2e/>')B_l

(C.9)· sinbozcosboZ} ,

and the electric stress

APPENDIX C

Distortions of the Helix
C.l. Spring Constant of the Helix. The torque
exerted by a thin-walled tube of length dx in
torsion is(32)

Averaging over time and over a wavelength, the
losses per centimeter of helix wire are

p = R. C
2
d {£2B2 + (2M2 + N2)B2

128w· + -

+X2B:}ergsfcm· sec. (B.8)

[The factor RsC2 in cgs units is equal to 109 Rs(Q).]
The equations (B.8) and (B.9), with the L, M, N,

and X values for dip = 0.6 were used to compute
the curves given in Figs. 9 and 10.

(d)3 d4>'
'T = 2wp, "2, Jd dx ·

When the tube is in the form of a large split ring of
radius a, and bending str~ins are assumed small,
the displacement of the two ends under a perpen­
dicular force F is given by

Pfsin 0 is the loss in a centimeter of helical wave...
guide. 'The loss in the shield is straightforwardly
given by

C
2 (B z(b))2

Pshield = Rs x 32w XC.

J
21t dx d4>' dz

LIz "" 0 dep dep dx dep" (C.2)

(d4>' jdx) = (4fwp,d3Jd)'T, where 'T = 2Fa, (dxfd4» =
(a/cosO), (dz/d4>') is the movement of the end of the
ring caused by a strain de/>' ate/>; (dzfd4>') =
2asin24>/2.

Therefore,

J
21t. e/> l6a3F 16a3F

L1 z = SIn2- d4> x = --:--.,.-----
o 2 wp,d3JdcosO d 3Jdp,cosO·

(C.3)

This is the distortion per coil in the helix. With
(cotO/2wa) coils per centimeter, we find

1
UE = 4w E1 = Eq. (C.9) (c. 10)

C.2. Gravitational Sag. The sag of the helix may be
estimated by considering a cylindrical beam of
radius Q, whose compressional modulus is K. The
effective Young's Modulus for this material is
KIS dA, where the integral is over the assumed cross

(C.4)
with the substitutions sin boz·-+- cos boz, cos boz --+

sin boz, cos <ut -+- sin <Ut, E+ -+- B+, E_ -+- B_, and
- E z -+- Br •

Since the largest distortions will be due to
longitudinal forces, the axial force component is

dF J21t
d(a~) = 0 dep'a(ep') sin (1/ (dyn/cm of wire).
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(C.13

APPENDIX D

A velocity of the form v(z) = Vo +,dVCOS(41TZI;\)
leads to an average velocity

This equation results from numerically integrating
x = fv(x)dt.

Thus, in a standing wave cavity, there is a
frequency shift ,dvjv = (vav - vo)jvo.

For the helix example under Eq. (7), with an
energy gain of (3 MeV jm), ancl neglecting l'lf, the
frequency shift is LJv/v g; 2 X 10-5•

(e.15)

E!II(C) = 0,

BlII(C) = 0,

Vav ~ Vo [1 :-0.5 (~:rl

The Double Helix Waveguide
Solving the sheath model of the double helix is

just an extension of the methods of Sec. 3(19) to a
more complicated geometry.

There is a helical sheath at r = a, with pitch
angle (}a, one at r = b with (}b' and a perfect con­
ducting cylinder at r = c. In each of the three
regions, the B z and E z fields are given 'by super­
positions of Io(gor) and Ko(gor). The other field
components may be calculated from

B (r) = ibooB.(r) B.., (r) = ik ?§.(r)
r g~ or 'Y g~ or

(D.l)

E(r) = !booE.(r) E (r) = -ikoBlr)
r .'g~ or cjJ g~ or

All nelds have the suppressed wave dependence
exp(i[wt - boz]).

Labeling region I for r < a, II for a < r < b, and
III for b < r < c, the following boundary conditions
apply:

E!(a) = E!I(a), E!I(b) = EiII(b),

EJ(a) = EJI(a), EJI(b) = EJII(b),

E!(a) sin (}a +EJ(a) cos (}a

= 0 = E;III(b) sin (}b + EJII cos (}b , (D.2)

B~(a)tan(}a+BJ(a) = B~I(a)tan(Ja +B~I(a), and

B~I(b) tan (Jb + B~I(b) = B~II(b) tan (}b + B~II(b).

There are eight unknown amplitudes:

E; = Eolo(gor), BI = Bolo(gor),

E-;I = E1 Io(go r) +F1 Ko(gor),

B~I = B1 Io(gor) + C1 Ko(go r), (D.3)

E;11 = E2 R(gor), and B~II = B2 S(gor),

dv volp
dp 1 +gocl'lf·

The velocity on the helix is then

"" ( L1pjp 41TZ)
v=vo 1+I+gocf'lfcosT' for LJpjp< 1.

(c.14)

(c. 12)

The waveguide with a pitchp = Po + L1p cos (41TZjA)
has an average velocity which is different from the
velocity in a waveguide with constant pitch Po·
Since v = (Cp/21Tay)/(goc) (see Fig. 2), for non
relativistic velocities,

dFz O.06a. 41TZ( ) d j-d ~ --() sln~ BrB_+EzE_ yn cm,
Z cos 1\

a result nearly independent of djp, and close to the
value gotten directly from the sheath model.

This force density produces a periodic force in
the helix

Fz(z) = f:dFz~Jdz'

O.06a A 41TZ
= --() -4' (BrB_+EzE_) cos~,cos 1T ' 1\

which produces a displacement

A = 1 fZ d I f
Zf

d "dFz(z")
t.JZ K Z Z d"o 0 Z

O.06a A2 .41TZ
= - Kcos(}161T2 (BrB_+EzE_)slnT·

The pitch change is given by

::Jp(z) ~ O.06a ~(B BEE) 41TZ = ~(A )- K () 4 r - + z - cos \ d t.Jz.P cos 1T 1\ Z

or,

All of the irigonometric integrals vanish except for

f: x

d</>' sin2 </>' cos 2</>' = - ~ and f: x

d</>' sin2 .p' = 'IT;

thus,

d~:;) = ~sinbozcosbozX(2M -N)

· [BrB_sin2 wt +EzE_cos2 wt].

Averaging over t" and dividing by sin (), we find
the force acting per centimeter of waveguide

dFz dX(M - Nj2)
dZ 128 sin ()

· sin2boz(BrB_ +EzE_) (dynjcm) (C.ll)

I' is the slope of the curve in Fig. 2.
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[R and S are defined in Appendix A, and include simultaneous equations gives seven field amplitude
Ez{c) = o and Br{c) = 0] with the eight boundary ratios in terms of Eo, and a dispersion equation
condition equations. which is a quartic equation for klgota. In matrix

As with the single helix, the solution of the· eight form, the boundary 'equations are

loa -loa -Koa 0 0 0 0 0 Eo
0 0 0 0 lla -lla KIa 0 E1

0 0 0 0 0 lIb -KIb Ub FI

0 lOb KOb -Rb 0 0 0 0 X E2 = 0, (D.4)

loa 0 0 0 -xlIa 0 0 0 Bo

0 0 0 Rb 0 0 0 ta U B I-x- b
tb

xlia -xl1a xK1a 0 loa -loa -Koa 0 C1

0 ta 1 ta K ta T 0 lOb KOb -Sb B2-x Ib --x Ib --x b
tb tb tb

.02

.1r------------------.

.04 J.P-'1 6_a _

fast mode

-------------- tC!~~~ _

.08

.06

~

FIG. D.l. Dispersion curve for double helix
cavity described in Appendix D. Solid lines are
predictions of the sheath model, squares are
measured values.' Dashed lines show f3 = tan 8.

o o~'---I--..-L..-.JL..-.J~~----I----IL-.-.J-1.-61.-L---J

goc 4

The modes were positively identified by a movable
shorting wire.

The f3 vs go c curve was calculated with the sheath
model using the ·exact radii and pitches mentioned
above. The theoretical results are plotted in
Fig. D.l as a solid line, along with the experimental
points. The dashed lines are the velocities which
waves propagating along either helix would
exhibit. The agreement is within 5 per cent for
both modes, and the slopes of the curves are
predicted exactly.

where the symbols loa, KOb ' etc. represent lo(goa),
Ko{go'b), etc. and x == ikjgota.

The analytic expression found for. k/gota by
solving the determinant of the coefficients in
Eq. (D.4) is very complicated and unenlightening.
Because of this, the method of solution was to use
a computer program to vary klgota until the deter­
minant was zero, and then to invert the seven by
seven upper right-hand corner matrix to find the
other amplitudes in terms of Eo.

Because ofthe large number (four) ofindependent
parameters, it is not possible to present exhaustive
results here. Figures 16-19 show how the disper­
sion equation and field amplitudes vary with the
different param~ters.

All of the results except for the frequency shift,
of Appendices Band C, may be applied directly to
the double helix. By calculating the dependence
of the phase velocity on tan ()a and tan ()b' it is also
possible to estimate frequency shifts.

These results have been tested on an experimental
double helix cavity. A one meter aluminum tube,
20-cm i.d., with two opposite parity helices was
built. The helices were wound of t in. copper
tubing, and held in place with nylon threads. The
radius of the inside helix to the center of the tubing
was 5.6 em, with a pitch of 1.3 em. The outside
helix had b = 8.3 em, and Pb = 2.6 em. Both
helices were shorted to the outer tube at the ends.
The propagation velocity was calculated by measur­
ing the frequencies of the nAI2 standing wave modes.
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