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THE ACCELERATION OF HEAVY IONSt
ROBERT S. LIVINGSTON

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

The history and present status of the acceleration of heavy ions is revi~wed. Some. of ~he factors influencing t~e

choice of accelerating systems for heavy ions are analyzed. A compans?n of relatIve IO~ source pe.rformanc~ IS
given, as is a discussion of the stripping estimates of the most recent Nlkola~v aver~ge Ion charge InterpolatIon
formula. Some considerations of the many new ideas for heavy ion acceleratIon are Included. The au~~or ho~es

that soon heavy ion science can obtain better accelerators to overcome a grave lack of needed capabIlIty WhICh
exists at present.

1. INTRODUCTION

The use of particle accelerators as instruments for
the study of nuclear science may be dated from the
year 1932 when first the Cockcroft-Walton and soon
thereafter the cyclotron were used to produce beams
of protons energetic enough to produce transmuta
tions. During the first few years after this opening
of the era of experimental nuclear science, the only
accelerator projectiles used were protons, deu
terons, and ex-particles. But before the end of this
first decade of infant nuclear science, the 1930s, the
idea of using heavy ions as projectiles was con
ceived. It was, however, some years hence before
successful acceleration of heavy ions produced a
useful tool for the nuclear physicist. During our
two most recent decades, the 1950s and 1960s, a
great variety of interesting and important nuclear
physics and nuclear chemistry has been success
fully undertaken using the techniques associated
\vith heavy ions. At the present time nuclear
scientists are genuinely aglow with many new and
exciting ideas for experiments which may have
results of great scientific, and possibly practical,
importance. Since the earliest days of accelerators,
the experiments which could be undertaken were
determined largely by the mass and energy of
particles which could be processed to useful
energies in the available accelerators. Even today
this is yet again the situation with the ideas and the
needs of nuclear scientists far outstripping the
capabilities of existing nuclear machinery. Because
of the great swelling of interest in recent years in
the possibilities for experimentation with ions much
heavier than those now commonly accelerated,
including most or all of the top end of the periodic
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table and certainly including uranium, many of the
world's governments are being besieged by scientists
on behalf of a bright array of different proposals
for accomplishing this. Because, at the present
time in the United States and in most of the other
cou~tries of the world, funds available for basic
research are being curtailed or withdrawn, rather
little practical response has been made to this
worldwide outcry for better and more powerful
heavy ion accelerators. Because of this present
rather unproductive situation, a great deal of
thought and study now is going into seeking a
method for accomplishing the acceleration of the
heaviest projectile masses to suitable energies at
low capital cost. As of the present there are many
intriguing and perhaps promising ideas but little
has yet been demonstrated with sufficient clarity to
appear credible to the nuclear science community
for the immediate future.

2. HISTORY

The importance of ions heavier than helium
for the study of nuclear phenomena was recognized
during the first decade of particle accelerators.
Alvarez(l) and Tobias undertook studies in the
37-in cyclotron at Berkeley and in 1940 demon
strated that 50 MeV C6+ ions could be detected. It
turned out, however, that the low intensities and
the contamination of light ion beams in these early
trials made nuclear experiments quite impractical.
It was in the second decade of particle accelerators
in 1950 that the first heavy ion nuclear reactions(2)
were observed, with beams of about 105 particles
per second of 120 MeV C6+ ions in the 60-in
cyclotron at Berkeley. Although these beams were
used successfully, they were not very well suited for
experimental work because of a very large energy



52 R. S. LIVINGSTON

spread in the beam and because of the very low
intensities available. There is general concurrence
that the mechanism for acceleration in the early
cyclotron work was first C2+ ions emerging from
the source (accelerated on the third harmonic of
the deuteron ion rotation frequency), and sub
sequently through gas stripping near the center of
the cyclotron formation of C6+ ions accelerated
approximately on the deuteron fundamental fre
quency. The wide physical extent of the area
occupied by the various sources of origin of the ions
then could account for the large energy spread
observed. Other cyclotrons which developed

beams of this elm of 1/6 to elm 1/2 system were the
180-cm cyclotron at Saclay,(3) the 156-cm cyclotron
at Birmingham,(4) and the 225-cmcyclotron at Stock
holm, Sweden, (5) the latter with unique variable
magnetic fields. The first accelerators in which
ions from a source were accelerated directly without
any intermediate stripping were the 63-in cyclotron
of Oak Ridge(6) giving 2.0 MeVju 14N3+ and the
120-cm cyclotron at Leningrad(7) at first producing
1.1 MeVlu later somewhat higher energy, also using
14N3+. The participants in this earliest work are
cataloged in Table I. The dates given are of the
earliest publication, for each respective laboratory.

TABLE I

Earliest heavy ion accelerators

Typical Extracted
Date Machine Location particle Energy beam

1940 37-in Cyclotron Berkeley 12C2+,6+ 50 MeV 8/sect
1950 60-in Cyclotron Berkeley 12C2+,6+ 100 MeV 105/sec
1953 225-cm Cyclotron Stockholm 12C2+,6+ 150 MeV lOll/sect
1953 63-in Cyclotron Oak Ridge 14N3+ 28 MeV 2,.."A
1953 ] 56-em Cyclotron Birmingham 12C2+,6+ 120 MeV
1955 180-cm Cyclotron Saclay 12C2+,6+
1956 120-cm Cyclotron Leningrad 14N3+ 16 MeV 0.5,.."A

t Internal beanl.

Subsequent to these early experiments two lines
of development were followed to obtain larger
beams of suitable energy and coherence. One of
these was to design, or adapt, a larger cyclotron
to run on a single charge state, as for example C4+,
in which this charge state is produced in the ion
source. An example of this was the I.5-m cyclotron
at the Kurchatov Institute(s) where C, 0, and N
particles were accelerated using ions directly from
a source, to about 8 MeVlu. The other was the
adaptation of the Alvarez-type linac to accelerate
heavy ions. The so-called Hilacs using this principle
were built at Berkeley(g) and at Yale. (g) Linear
accelerators of somewhat different designs were
built at Manchester(10) and Kharkov.(11) Machines
based on variations of these two approaches are
responsible for most of the present-day nuclear
research with heavy ions.

Dc machines can also be used to accelerate
heavy ions. Early work was done at Saclay and
at the Universities of Minnesota and Chicago,
especially with lithium ions to study very light
elements.(12) With the advent of tandem Van de
Graaffs in 1958 it became possible to get ions, heavier
than lithium, to energies of interest. The first heavy

ion work using a tandem was done at the Chalk
River Laboratory(13) in Canada. There are now
eight Emperor tandems(14) in various parts of the
world, which can give particles for example (with a
terminal gas stripper) of about 3.5 MeVlu for ~~S.

This is substantially below the barrier for uranium
but is still an interesting and useful energy for
targets of light elements. During the last 10 years,
a large new group of isochronous variable-energy
cyclotrons(I5) have been constructed. In principle
any of these cyclotrons can be adjusted to the
correct resonance conditions for partially stripped
heavy ions. As will become evident later, the
charge-to-mass ratio of the available ions deter
mines the maximum mass of particle which can be
accelerated to an energy above the Coulomb barrier
in a cyclotron ofgiven size.

3. PRESENT PERFORMANCE OF REAVY
ION ACCELERATORS

In the last fifteen years the powerful and dynamic
region known as heavy ion nuclear physics has
emerged; and yet more than perhaps any other
field of physics, it is one which has been limited
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during its whole history by the performance of
accelerators which support it. Tables II and III
summarize the accelerators which constitute the
bulk of today's heavy ion acceleration. The tables
are arranged to show in the left-hand column the
heaviest ion which each accelerator can produce
with an energy sufficient to interact with the heaviest
elements.

Note that all linear accelerators can accelerate
approximately up to 40Ar. Some typical perform
ance on carbon and nitrogen ions is also indicated
for each case. It should be noted that the average

current is quoted in both eftA, for electrical micro..
amperes, and pftA, for particle microamperes. It
is evident that the quotation of currents in a heavy
ion machine is unusually confusing as the charge
state is often not given, but the beam current is of
course larger in proportion to the extra charge
states being present. The author has tried to
advance the argument in other places that a new
unit of current standing for pftA, or particle
microamperes, should be given a name, perhaps
the Lawrence, in honor of the late cyclotron's
inventor. Note that 3 pJ.LA can be obtained from

TABLE II
Heavy ion machines operating during and after 1958

Typical external beam

Heaviest ion Average current
reaching Energy

6.0 MeVju Particle MeV ef-LA pf-LA

Heavy ion linear accelerators

Berkeley(9) i~Ar 12C5+ 120 15 3
Kharkov(ll) i~Ar 12C4+ 120
ManchesterOO) i~Ar 14N5+ 140 0.3 0.06
Yale(9) i~Ar 12C5+ 120 1 0.2

Dc machines(14)
25 EN tandems, 6MV ~He 12C4+ 30 0.25
13 FN tandems, 7.5 MV ~He 12C4+ 37 0.25
8t MP tandems, 10 MV 19B 12C4+ 50 0.25

t 5 in USA, 1 in Canada, 2 in Germany.

TABLE III
Heavy ion machines operating during and after 1958

Typical external beam

Heaviest ion Average current
reaching Energy

6.0 MeVju Particle MeV ef-LA pf-LA

Classical fixed frequency cyclotrons

Dubna, 310-cm(9
) ~~Zn 12C4+ 84t 80 20

Kurchatov, 150-cm(S) igNe 12C4+ 94 20 5
Tokyo, 160-cm(20) l~O 12C4+ 101 1.4 0.3

Isochronous cyclotrons
Dubna, 200-cm(16

) i~Ar 12C4+ 210 24 6
Harwell, VEC(7) igNe

14N4+ 98 30 7.5
12C4+ 118 5 1.25

Oak Ridge, ORICOS) igNe 12C4+ 118 5 1.25
Orsay, 200-cm(2U ~:Krt 14N5+ 125 1 0.2

t Not at full energy. t Anticipated.
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TABLE IV

Ion sources used in heavy ion accelerators

A set of data which intercompares the perform
ance of various sources has been compiled by
Bennett(30) and is presented here in slightly modified
form on a set of two tables. The data are from
published papers on bench tests of the various
respective sources.

The sources listed in Tables V and VI represent
a number of different designs, all but one, however,
being versions of a Penning discharge. In each the
discharge is initiated and maintained by a colli
mated beam of electrons oscillating between two
opposing cathodes through a positively charged
anode chamber in the presence of a magnetic field
of several thousand gauss, oriented parallel to the
axis of the device. The principal variations in the
design are illustrated in the different versions. In
some the cathodes are heated, either resistively
or by electron bombardment. These sources will
generally start at lower anode potential. In some
the anti-cathode floats at a negative potential close
to the applied potential. This feature gives some
design freedom as the need for an electrical connec
tion between ends of the source is eliminated.
Sources labeled 'cold cathode' have, in general,
different methods of cathode cooling so that
cathode temperature during operation may in fact,
due to ion bombardment, be rather high. In most
sources the ions are extracted at right angles to the
source and field axis. However, two cases are
shown for axial extraction where the ions are
brought out parallel to the magnetic field. In a
number of the sources, operation is pulsed, with
the anode potential being applied for usually a few
milliseconds and repeated several times per second.

Table V shows the performance of twelve differ
ent sources operating to produce highly charged
nitrogen beams. A perusal of this table reveals that
some 5 to 10 per cent of the current can be brought
to the four plus state or a QIA for nitrogen of0.285.

a linear accelerator, although currents are usually
lower than this. Each of the particles in the case
of linear accelerators are accelerated to about
10 MeV/u.

Next on the chart are listed the dc machines.
This tabulation is not intended to be complete,
but rather to show typical performance. It should
be pointed out that the EN and FN tandems are
limited to 3He for nuclear reactions on uranium
and the MP tandems to lOB. Of course, much of
the work done on the tandems consists of using
heavy ions below the barrier for Coulomb excita
tion and other experimental programs where the
full barrier energy is not required. A typical current
for l2C as is shown is 1/4 pftA.

Table III summarizes the situation with respect
to cyclotrons. First are shown three classical
fixed-frequency cyclotrons which do not have sector
type focusing. The Dubna 310-cm machine goes
to 64Zn and the others are as shown. The Dubna
machine probably holds the record for current as
may be noted, 20 pftA for l2C. And finally are
listed four isochronous cyclotrons which are
presently involved at least part of the time in
running heavy ions. The relative currents shown
are intended to be typical and not a hard evaluation
as to which machine produces the greatest current.
It is clear that 1 to 10 pftA of extracted beam is
fairly common. In the case of Orsay, more
recent information is that the ion current is above
1 eftA.

4. ION SOURCES

The design of heavy ion accelerators depends
crucially on the performance of an ion source. A
review of the performance and design of available
sources and the prospects for new sources is there
fore pertinent. Sources fall naturally into two
classes:

(1) Arc discharge sources ofeither the Penning(22)
or Von Ardenne(23) design. Generally these are
the types now used in operating machines.

(2) Sources using basically new or different
systems with the goal of achieving substantially
higher states of stripped ion species than can existing
sources. The performance of these new sources is
highly speculative at present.

Some of the principal investigators who have
developed ion sources which have run or are
running in various accelerators are listed in Table
IV.

Laboratory

Oak Ridge
Berkeley
Kurchatov
Dubna
Saclay
Orsay
Tokyo
Harwell

Date of earliest
publication

1954
1956
1957
1960
1960
1962
1968
1968

Investigators

Zucker and Jones<2-U
Ehlers, Anderson(25)
Morozov, Makov, Ioffe(26)
Pasyuk, et ale (27)

Papineau, et ale (28)

Basile, et ale (29)

Kohno, et ale (20)

Bennett, et ale (17)



TABLE VI

Perfornlance of heavy ion sources on krypton and xenon

Arc conditions

Pulse Repetition
Potential Current length rate

Source Authors Ion (volts) (amps) (msec) (cps) 2 4 6 9 10 11 12

Duoplasmatroll Ilgen(39) Kr 175 18 10 5.5 28.5 45.7 17.0 3.3
(Heidelberg, Xe 295 31 10 6.6 20.2 29.0 19.4 14.2 7.5 3.4 0.66

Unilac)

Penning Ghiorso, Kr 2000 1.5 2 8.3 14.9 16.5 19.2 16.2 13.9 5.8 2.5 2.0 0.17
(Berkeley, Main, and Xe 2000 1.5 2 6.7 11.4 12.2 13.8 16.5 12.7 12.0 6.9 4.2 2.5 0.8 0.4

Hilac) Smith PO)

Cold cathode

Penning Pasyuk, Kr 450 12.7 100 4.3 10.3 23.6 25.8 19.3 10.7 4.3 1.5 0.1 0.01
Hot cathode Tretiakov, Xe 600 13 100 1.8 5.5 14.8 16.6 17.5 16.6 12.9 11.0 2.4 0.7 0.2 0.05

and
Penning Gorbatchev{ll) Kr 2000 1.5 100 25.6 23.0 16.9 14.1 9.5 6.4 2.6 1.2 0.7 0.2

Cold cathode Xe 2000 1.5 100 23.6 19.6 16.5 12.5 9.9 6.4 5.7 3.1 1.7 0.9 0.2 0.1

Penning Bennett (3~) Kr 600 2.0 Continuous 9.0 26.1 32.7 17.0 9.1 5.0 0.78 0.26 0.03
(Harwell Xe 660 2.5 Continuous 0.8 7.1 20.9 21.0 19.4 14.6 11.2 4.9

V.E.C.)
Cold cathode

~---
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In one source with very short pulse lengths, more
than 10 per cent of the current was in the five plus
state. Other workers have in general not achieved
this level of performance.

Table VI shows the performance of five sources
producing highly stripped ions of krypton and
xenon. One may note that 2 to 5 per cent xenon 9
plus, QIA = 0.068 and 1 to 2 per cent krypton 9
plus, QIA = 0.107 can be achieved. Smaller
amounts of xenon 12 plus, QIA = 0.090, have also
been observed in two of the sources. Itis interesting
in the light of these performance data to review the
ionization potentials listed in Table VII. (42) We
have seen cases above for appreciable percentages
of the ion output being in states requiring between
200 and 300 V for removal of the last electron. If
this line of reasoning is valid, one might have
reasonable expectation of achieving at least
uranium 13+, QIA = 0.054, in the range to one
percent of total ion source current.

In summary arc discharge sources appear very
satisfactory for light ions up to neon or perhaps
argon. For heavier ions the achievable QIA seems
to decline with mass and will be no better than
about QIA ",-,0.05 in the region of uranium.
Significant improvement in arc sources still can
and no doubt will be made, but, in an effort to
achieve important advances in high performance,
a number of laboratories are investigating sources
invoking radically different principles.

A comprehensive review of these investigations
is beyond the scope of this paper, but four general
areas ofdevelopment may be listed.

1. Richard Levy and collaborators are develop-

ing a device(43) in which they inject electrons into a
toroidal vacuum chamber with an azimuthally
symmetric magnetic field in a manner such that a
cloud of electrons is formed creating a potential
well of ",-,400 kV. Heavy ions will be trapped in
this potential and are expected to reach rather high
ionization states. Intensity estimates suggest that
heavy ion currents could be of the order of 1013 ions!
sec of Kr20+ or 1011 ions/sec of U60+. There are
problems in extraction of these ions and in achiev
ing sufficiently high potentials and containment
times but these matters must be pursued experi
mentally.

2. Sources using intense laser pulses are being
studied at the laboratories in Dubna by members of
Flerov's staff and in France by Tonor(44) and
Rabeau. Ions of up to 6 or 7 plus have been
obtained and it is hoped that this number can be
raised considerably. However, because the repeti
tion rate for such a source is difficult to make very
large, it is unlikely that high intensity sources will
result from these investigations.

3. At Oak Ridge the thermonuclear research
group has studied a device known as ELMO.(45)
This is an rf cavity located between two magnetic
mirrors into which high power millimeter wave
length rf power is coupled and in which a high
temperature plasma is produced by electron
cyclotron heating. The electron density in the
5-10 keV energy range is of the order of 1012/cm3•

Useful currents of highly charged ions by single
impact ionization are predicted. Measurements
on the distribution of charge states of heavy ions
from this device are planned in the near future.

TABLE VII
Ionization potentials (eV)

Element
State

C Ne Ar eu Kr Xe U

I 11.3 21.5 15.8 7.7 14.0 12.1 4.8
II 24.4 41.1 27.6 20.3 24.6 21.1 12.8
III 47.9 63.4 40.9 36.8 36.9 32.1 19.6
IV 64.5 97.1 59.7 57.1 48.9 41.9 31.3
V 392.0 127.6 75.2 79.9 61.2 51.7 48.1
VI 490.0 158.0 91.2 103.0 74.2 61.6 64.9
VII 207.0 124.0 139.0 106.0 87.4 91.5
VIII 239.0 143.0 166.0 129.0 101.0 106.0
IX 1196.0 422.0 199.0 241.0 184.0 121.0
X 1362.0 479.0 232.0 280.0 210.0 136.0
XI 539.0 266.0 322.0 237.0 160.0
XII 618.0 368.0 365.0 265.0 177.0
XIII 686.0 401.0 414.0 295.0 212.0
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4. Donets and collaborators at Dubna are study
ing a source identified as EBIS. (46,47) Donets has
reported the observance of N6+, 0 7+, and Au19+.

He believes ultimately the source can reach 5 JLA
of U38+. In this source a high intensity electron
beam serves to provide for multistep ionization of
heavy ions. The heavy ions are trapped by a radial
potential depression induced by the electron beam
space charge and in the axial direction by means of
external potentials. The time of ion containment
is limited to about 20 msec by neutralization of the
electron beam space charge by residual gas ions.
The electron energy in the initial tests was 7 keV,
the electron beam density 8 ampjcm2

, and the
pressure 10-- 9 torr. A new test model of this source
providing increased primary electron current
density and improved vacuum is now being
assembled for test.

5. STRIPPING

An alternative method for obtaining ions in high
charge states consists of passing the ions through

solid or gaseous strippers. If suitable ion velocities
are available, very high charge states can be pro
duced, in general higher than with contemporary
gas discharge ion sources. Two basic limitation
of this technique are that only a fraction (~20 per
cent for heavy elements) of the emergent ions will
be in the desired charge state thus reducing
achievable intensity, and in the case of solid
strippers, intense beams tend to damage the foils
leading again to intensity limitations. Gaseous
strippers are, of course, not subject to damage but
in general produce charge states for heavy elements
which are considerably lower than those produced
in solids at equivalent energies.

Many experimental and theoretical investiga
tions of charge changing cross sections and
equilibrium charge distributions have been made,
although rather limited experimental work has been
done at the heaviest end of the periodic table. To
determine the most probable equilibrium charge
states in regions of ion atomic number and energy
not yet explored experimentally, it is necessary to
rely on empirical formulas such as developed by
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FIG. 1. Calculations by three formulas compared with measurements of the average charge of uranium ions
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Because the designs of some accelerator systems
depend rather crucially on the stripped states of
uranium, we have found it interesting to plot the
relations given in the three references, for atomic
number 92 for a solid stripper. These are shown in
Fig. 1 along with the experimental measurements
of average charge states for uranium reported by
Betz et al.{48} and by Grodzins et al.(51) To provide
a convenient method for estimating stripped
charge states, graphs of the most recent Nikolaev
and Dmitriev relationship are displayed in Fig. 2
showing the average charge as a function of ion
energy for a range of atomic numbers. A thorough
treatment of this complex subject is beyond the
scope of this review. For more complete informa
tion, the reader is referred to the recent literature on
stripping.

6. CYCLOTRONS

The development of the isochronous cyclotron
with controllable focusing and adjustable particle

parameters has made it an attractive means of
accelerating heavy ions. As the motivation
increases to obtain energetic ions of heavier and
heavier atoms, the principal requirement is for an
increase in the size of the cyclotron. This, of
course, becomes uneconomic beyond some definite
but perhaps not well defined magnitude. Consider
the relationship T = kQ2/A, where T gives the
particle energy, Q is the ion charge state, and A the
atomic mass of the projectile. This relation is a
convenient way of characterizing the size of a
cyclotron and is a reasonable approximation for
heavy ions below 10 MeV/nucleon, although it is
not precise for protons or other light particles in
the relativistic region. It has recently become the
custom to characterize the size of cyclotrons using
the number k as for example in Table VIII. As is
evident present day cyclotrons vary between k of
70 and k of 250. In Fig. 3 is shown a plot of k of
this relation plotted against Bp in kilogauss
centimeters. In the range of interest for heavy ion
cyclotrons, for reference, note that 5 x 103 kG em
will bend protons of 830 MeV energy and 9290
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TABLE VIII

Sonle heavy-ion cyclotron energy ratings
using k in the relation (T = k Q2/A)

Cyclotron k

Orsay, ALICE 70
Dubna, 200-cm 156
Dubna, 310-cm 250
Harwell 84
Indiana University 240
Oak Ridge 80

kG em, protons of 2.0 GeV energy. Thus it is
apparent that very large magnets are required to
correspond to a k of 4000. Figure 4 is intended to
demonstrate the requirements for accelerating ions
in various charge states. At the bottom of the
graph are indicated the charge states for typical
ions from different regions of the periodic table.
Note that 0.05 QIA could be Cr3+, HgIO+, or PU12+.
Any of these ions presumably can be made with
present day technology in arc-type gaseous dis
charge ion sources. For a cyclotron without an
injector or without stripping, for these heaviest ions
and lowest charge states, one then needs a k in the
vicinity of 2500 to 4000 depending on whether the
goal is 6 MeV or 10 MeV/u. As QIA of the ion
approaches 0.1, the k required for the cyclotron
comes down in the range 500 to 1000 and at 0.15 it
becomes even more modest. The dotted lines on the

graph refer to the scale on the right hand side with
k's from 0 to 400. As is well known, with light
ions, QIA in the range 0.25 to 0.35 can be readily
obtained. This accounts for why existing cyclo
trons which generally have k's below 100 are very
useful in this region. The new cyclotrons, being
planned and proposed, generally are providing k's
of 300 or above, and as is apparent, this calls for a
charge-to-mass ratio of at least 0.15. At present
such charge states have to be obtained by stripping
in a solid foil from a tandem Van de Graaff or
some other suitable accelerator. The studies of
selection, matching, and optimizing injector sys
tems and cyclotrons constitute a game which has
been going on at a rather frenzied pace in the
United States for more than a year.

The two graphs, Figs. 5 and 6, are intended to
show roughly what the weights of magnets would
be for different regions of the preceding figure.
The f number shown on these graphs is simply the
fraction of the magnet circle which is occupied by
a magnetic field. It is shown for four cases: f equal
to 0.3, 0.5, 0.7, and 1.0. The 1.0 case may be
regarded as 'for reference only' because a magnet
designed like this would have impractical access.
A magnet which would be practical would be the
line shown as 'conventional', which is for an
H-shaped yoke. The magnet weights were cal
culated(52) by a simple computer program in which
the gap was assumed to be 3 in, the field under the
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~ 000 1----.---~-.------.---~-__:;<fIC____---<--------------<---.-----------

o ~~'-------'---------"-------'-~----~---------="

o

FIG. 3. The size of a cyclotron may be expressed conveniently by
a number k from the formula T=kQ2/A, where Tis the kinetic energy
of the particle, Q is the charge state, and A is the atomic mass
number. The relation between this constant, k, and the magnetic
field-radius product is plotted.

A2
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FIG. 6. This is an extension of Fig. 3, in which
the lower portions of the scales have been ex
panded. These magnets would be applicable for
cyclotrons using highly stripped ions.

FIG. 4. The size of cyclotron necessary to produce
heavy ions of various desired energies. The scale
at the bottom gives examples of ions of various
masses with different hypothetical charge states to
illustrate the different regions of possible design and
operation. The dotted lines are for an expanded
scale for smaller cyclotrons using very high (Q /A)'s.
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The heavy ion linac or Hilac has for many years
been an enormously productive machine at several

7. LINEAR ACCELERATORS

poles 18 kG, the return path area equal to the pole
area, and suitable allowance of space for coils
provided. It is apparent that about 8000 tons of
steel would be required for a magnet reaching
7.5 MeV/nucleon with an ion source charge-to
mass ratio of 0.05.

Figure 6 is intended to survey the region of
interest for cyclotrons with injectors. An injector
might be another cyclotron or a dc accelerator or a
tandem. It is clear that the size of a magnet for a
cyclotron to cover acceleration of particles of
interest to energies well above the barrier will be
much smaller if with a special injector and a strip
ping foil between the injector it is possible to work at
higher Q/A. If one desires light particle capability
as well as heavy ion capability in the cyclotron, the
region f = 0.3 to.f = 0.5 is of greatest interest.

The maximum proton energy of any isochronous
cyclotron is limited by the resonance Vr = 2. Thus
the maximum energy of about 850 MeV represents
a real limit for protons in an isochronous cyclotron.
This corresponds to Bp of 5.1 x 103 kG-cm, or
k = 1240. Thus it is evident that magnets in the
1000 to 3000 or 4000 ton class are receiving a great
deal of attention for today's cyclotron proposals.

40003000

CONVENTIONAL MAGNET:
<8) = 20 kG

SEPARATED SECTOR
f= 0.3, 0.5, 0.7, 1.0:
8 max =18 kG !

2000
k

1000
OIK:..-----~--------'-----'---------l

o

8000 ~---- .. --I---

10,000 r-------,-----,------r~-__r_-____,

FIG. 5. Magnet weights have been calculated for
various size cyclotrons. The f values refer to the
fraction of the magnet circumference which is
occupied by pole pieces and magnetic field. The
lower f values are required to produce necessary
focusing for protons and other relativistic particles.
The f = 1.0 is for reference only as a lower limit.
Lack of access would prevent such a magnet from
being practical.
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laboratories. It has served as the vehicle for many
important discoveries in the heavy ion field. How
ever, as interest grows in accelerating ions in the
high mass portion of the periodic table, present
day Hilacs are no longer adequate. Three pro
posals for new or improved linear accelerators are
now in various stages of consideration or develop
ment. Each of these is designed to reach the
uranium region; that is bombarding uranium with
uranium with sufficient energy to cause nuclear
reactions. Scientists at Lawrence Radiation Labor
atory are proposing(53) to rebuild their linear

accelerator as shown in Fig. 7. This sketch shows
how the superHILAC will be fitted into the present
HILAC building. There will be an enlarged pre
stripper section designed to operate for a range of
elm's (0.042 to 0.15), the latter for use without a
stripper in the case of light ions. The present
experimental area will be moved to make room for
a 100-ft post-stripper. New experimental areas
will be provided in place of existing shop areas.
The design parameters for the superHILAC are
shown in Table IX.(54) Note that variable energy
in roughly 1 MeV/nucleon steps can be obtained

i ;~i~Ilm=-=-=tl CJTIO~
"~! '~ &.=.': 11.1

~_ "1ii"",--!_':_-_i_~~_-:~_-'_r~
to" 0..
27t)M'

""""~",lJww)

FIG. 7. A sketch of the superHILAC as it is planned to be fitted into the existing HILAC building at the
LRL. New pre-stripper and post-stripper tanks will be constructed extending into the present experimental
area. New areas for research will be placed in the present shop area.

TABLE IX
SuperHILAC Alvarez cavities. Preliminary design parameters

Pre-stripper

I_----a--______
Post-stripper (not to scale)

I : ;
T energy (MeVlu) 0.1125 0.58 1.2 1.2 2.61 3.47 4.66 6.36 7.56 8.60

{3 velocity 0.0155 0.0353 0.0505 0.0505 0.0744 0.0858 0.0993 0.1159 0.1262 0.1345

n cell number 0 84 141 0 26 37 50 66 76 84

L n {3;\ cell length (m) 0.062 0.141 0.202 0.202 0.295 0.341 0.395 0.461 0.502 0.535

E max. avo grad. (MV1m) 1.5(tilt) 2.0(flat) 2.0 1.6(tilt) 2.0(flat) 2.0 2.0 2.0 2.0 2.0

cf> syn. phase (deg.) -20,0 -20,0 -10,0 -10,0 -10'0 -10,0 -10,0 -10'0

Tank length (m) 8.30 9.78 18.08 6.44 3.52 4.81 6.88 4.84 4.17 30.66

Tank length (ft) 27.23 32.09 59.32 21.13 11.55 15.78 22.57 15.88 13.68 100.59

€ (elm) 0.042 (Heavy nuclei) Stripping 0.15-0.17 (Heavy nuclei)

0.15 (Light nuclei) No Stripping 0.15 (Light nuclei)

Frequency 73 MHz
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FIG. 8. A section of the dc injector for the superHILAC. Not shown on this sketch is a planned 'pressure
lock ~ to enable fast source changes in the terminal without disturbing the pressurized systelTI.

by shutting off various post-stripper sections.
Additional variation can be obtained by varying
the gradient tilt. The 2.8 MV injector is shown in
Fig. 8. A pressure lock is being designed to
facilitate rapid source changes.

A second linac which is being studied intensively
and which has been proposed for various applica
tions in the heavy ion field is the HELAC(55, 56)

being studied at the University of Frankfurt. The
scheme for this accelerator is illustrated in Fig. 9.
This may be described as a spiral-loaded-waveguide
in which standing waves are set up and in which a
sinusoidal electric field on the axis moves with a
phase velocity determined primarily by the relation
ship v = c(sj27Ta) where c is the velocity of light,

s
v =c-

2 -rrO

FIG. 9. A sketch of the spiral conductor which is
the key to the HELAC concept.

Injector

TABLE X

HELAC parameters

Helix Stripper Helix

108.48 MHz I 108.48 MHz

Energy (MeV/u) 0.13 1.4 4.5 7.0
Q/A (min) 11/238, 0.046 25/238, 0.105 25/238
Stage voltage (MV) 2.8 27.5 29.5 23.8
Length (m) 45 35 21.3
Number of sections 30 28 17
Power (MW) pulse 1.3 1.3 1.7
Voltage gradient (MVIm) 1.06 1.22 1.63
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a is the radius, and s the pitch of the helix; by
suitable design it is clear that an appropriate
velocity for heavy ions can in principle be obtained.
A number of electron and proton models have been
built at Frankfurt and their performance measured
experimentally. On the basis of this initial success
a heavy ion accelerator has been proposed with the
characteristics shown on Table X. The first
injector needs to be either a short Wideroe linac or
possibly a 3 MV dc machine. A HELAC structure
45 m long operating with a QIA as low as 0.046
would precede a gas stripper followed by two
sections of 108 MHz HELACS. The total number
of HELAC sections each a meter long would be 75.
The total pulsed power is about 4.3 MW. The
duty factor would be about 25 %. The two figures,
Fig. 10 and Fig. 11, are photographs of a typical
structure. In these photographs may be seen the
aluminum oxide support insulators which are
located at the nodes of the standing waves. The

view of the structure mounted inside its outer
container is shown on Fig. 11.

A third linear accelerator aimed at heavy ion
acceleration is the UNILAC.(57, 58) This is being
studied in Heidelberg by Professor Schmelzer and
his group, and is in a rather advanced state of
development. It may be noted in the tables on this
accelerator that there are a number of similarities
to the HELAC just discussed. This is more than
a coincidence as the developers of the HELAC have
endeavored to make their designs compatible with
the UNILAC parameters so that any piece of the
HELAC might be substituted for the appropriate
portion of the UNILAC. However, at the present
time, it appears that each project will proceed
somewhat independently. Note, as shown on Table
XI, that the UNILAC consists of a Wideroe
accelerator up to 1.4 MeVlu, a series of Alvarez
tanks up to 4.3 MeV/u, and then a series of single
cavities which can be independently phased to

FIG. 10. A photograph of the assembled HELAC structure.
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FIG. 11. A photograph showing the HELAC structure placed in its outer cylindrical casing.

TABLE XI

UNILAC parameters

.Single cavities Debuncher

I JE-
20 10

4.5 7.0

0.098 0.123

23.75

108.48

3.3

1.32

20

1.75

25/238

29.57

108.48

2

Source Buncher Wideroe Stripper Alvarez

c=H 8E-ITJ------
Length (m) 1 27 8

Energy (MeV/u) 0.012 1.4

p, vic 0.005 0.0546

QIA (min) 11j238

Stage voltage (MY) 0.253 30.05

f(MHz) 27.12

Power (MW) pulse 1

Mean accel. field (MV1m) 1.23
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FIG. 12. A sketch of the system proposed for the UNILAC. It consists of four basic elements~ injector,
Wideroe linac, Alvarez linac, and a series of single gap separately phased cavities.

provide energy variation up to 7 MeV/u. The
frequency of this linac, it may be noted, is, not by
coincidence, identical with the HELAC; it is rather
the source of the HELAC frequency selection.
The peak power here is about 6.3 MW. A sketch
of this machine is shown in Fig. 12 where one can
readily identify the various components. This
figure is approximately to scale. The plan as of
late 1969 is that this machine will be built and
installed at a new German federal laboratory to be
established at Darmstadt, midway between Heidel
berg and Frankfurt.

8. DC ACCELERATORS

Dc accelerators have historically played an
important role in the acceleration of a wide variety
of particles. Because of the characteristics of
stripping cross sections, it turns out that dc
accelerators become especially attractive to serve
as heavy ion injectors if the terminal voltage can
be in the region of 15 to 20 MV. The development
in the United States of the new 16 to 20 MV TU
tandems and the 30 MY unit under study in
England make this a promising possibility. An
interesting version of this approach is embodied in
the HILAB proposal,(59) a plan to combine a new

TU tandem with an existing Emperor tandem. A
sketch of the proposed arrangement is shown in
Fig. 13. The scheme here is to use negative ions
stripped at the center of the TU with a gas stripper
and then stripped again at a single foil stripper at
ground potential. The beam subsequently can be
sent to the terminal of the MP with an additional
10 MY multiplied by the charge state. It is
alternately possible to do experiments using a 90°
analyzing magnet and the switching magnet shown
with the tandem. The TV's nominal rated terminal
voltage is 16 MY but preliminary tests by the High
Voltage Engineering Corporation recently show(60)
that it may be able to go to 20 MY or even higher.
A feature of such machines as this is the gigantic
container pressure vessel which is pictured under
construction recently in Burlington, Massachusetts,
Fig. 14. Figure 15 gives the approximate per
formance which might be expected under various
assumptions from this accelerator. The barrier for
uranium for various Z's is identified in the appro
priate line and the tandem accelerating various Z
projectiles with 16 MY on the terminal and 20 MV
on the terminal are shown. Uranium can be
bombarded only up to approximately Z of 40 or so
in this scheme. However, it is possible by adding
extra foils which were indicated on Fig. 13 that one
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FIG. 13. The proposed arrangement for the HILAB showing the TO tandem feeding heavy ions to the
experimental terminal in the MP tandem. Alternative stripper locations are indicated.

FIG. 14. A photograph of the installation of the giant pressure vessel for the TU tandenl during
installation at Burlington, Massachusetts.
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FIG. 15. The energies of heavy ions in the HILAB
arrangement are shown for different possible
operating potentials. For a 20 MV terminal
potential, Z = 40 heavy-ions can penetrate the
Coulonlb barrier for uranium.

could go somewhat higher. While this is thought
to be a very useful interim facility or even
permanent facility in the intermediate energy
range, it is not thought to be an answer for a

universal accelerator where any projectile can
be accelerated against the heaviest elements.

9. HYBRID TANDEM-CYCLOTRON
ACCELERATORS

Many laboratories and universities have reviewed
the possible schemes for achieving a complete
spectrum of high energy heavy ions. A substantial
number of groups have concluded that a combina
tion dc tandem coupled to an isochronous cyclotron
will give the highest and most versatile perform
ance. Table XII gives the characteristics of some
of the principal proposals in the United States.
The differences in these proposals reflect varying
research interests, specialized accelerator experience,
and results of optimization studies. In Fig. 16 is
shown the relationship between cyclotron size and
terminal voltage of injector. The cyclotron size cor
responds to an energy for heavy ions of 7.5 MeVlu.

The comparative total costs using high and low
injection energies have been studied by various
groups. Studies at ANL(16) have shown that the
total costs are nearly constant over the injection
energy range of 10-15 MV. The choice of injector
voltage thus depends substantially on other factors.

The general arrangement of a hybrid tandem
cyclotron is illustrated in Fig. 17. This shows the
Argonne National Laboratory proposed beam
experiment arrangement. A schematic of a cyclo
tron is shown in Fig. 18. This is the four-sector
cyclotron plan(62) as proposed by the Oak Ridge
National Laboratory.
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TABLE XII

Characteristics of some proposed hybrid heavy ion accelerators

Argonne National
Laboratory

Rochester, Brookhaven,
Los Alamos and

Indiana University
Maryland
University

Michigan State
University

Oak Ridge
National

Laboratory

Cyclotron
Number of sectors 6 4 4t 6 4
Sector angle, degrees 20° 36° .-..24° 45°
Spiral none none weak none
k, T = kQ2jA 420 240 185 720 330

Injector 16MV various cyclotron + 9 MV tandem 16MV
tandem tandems 9 MV tandem or cyclotron tandem

Heavy ion source negative negative negative negative, tandem negative and
positive, cyclotron positive

Uranium ion energy (MeV) 10 .-..6 .-..10 .-..9 7.5
Proton energy (MeV) 350 200 140 600 300

t Not separated sector

A3
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FIG. 16. The Bp and energy constant of a cyclotron
to accelerate uranium ions to 7.5 MeVlu, as required
for varying terminal potentials of a tandem Van de
Graaff injector.

o 0

o 0

o

o

~-y

>-
~-y a::....

~

~-y
2
~

J:
0

1

//
/ .'

//'

/ /,

TIME OF /,',
FLIGHT AREA /,

/>
i<j

a I
L---.J_.l--.....L--L-~___L._..I...__.....L.___ll.__1_ ___L_ _____!_ ___l ! :CYCLOTRON

~~.......;.;...:---..;....o.:.-..o...:.e,....,..;I71~ I WORK I
• L ~E~ -1 SHOP

,', '/;'// ~. ,/' ~:ENM:LY
::,~; :
/.

.. "

Ir

50
I

f •• t

TANDEM

MOVABLE CONCRETE
BLOCK

CONCRETE

EARTH

TRAILER
PARK

o
I

EE
o
ffiE

T.U. WORK
AREA

ION
SOURCES

DATA
DOCK ROOMS

FIG. 17. Plan view of building and general arrangement of TU tandem injecting into a six-sector cyclotron.
Auxiliary injector for light particles permits independent operation of the tandem when desired. Possible
beam analyzing system and shielded experiment rooms are indicated. From ANL Midwest Tandem
Cyclotron Proposal.



ACCELERATION OF REAVY IONS

EXTRAmD UGHT
ION BEAM

~

20 40 60
! I ! I ! I

I I j I I I I I
• 10 120 160 CM

INJEcrED BEAM

69

FIG. 18. Plan view of the separated sector heavy ion cyclotron. An external injection system and two
separate beam extraction systems are indicated. From ORNL APACHE Proposal.



70 R. S. LIVINGSTON

10. ELECTRON RING ACCELERATOR

T~e electron ring accelerator belongs to a
relatIvely new class of accelerators which has come
under investigation during the last few years. In
the Soviet Union it has been designated 'the
Collective Method of Ion Acceleration' and is being
studied by Sarantsev(63) and collaborators at Dubna.
In the USA it is usually called the 'Electron Ring
Accelerator' and is under study at the Lawrence
Radiation Laboratory.(64) A sketch is shown of
t~e principal features of the electron ring device,
FIg. 19. In this machine an intense beam of
ele~trons is injected into the ring in a weak mag
netIc field. Following this the magnetic field
intensity is increased, the ring compresses, and its
kineti~ energy increases. Finally, the magnetic
field IS caused to be asymmetric allowing the
ele~tron ring to drift out into a weaker field region.
ThIS causes the electron ring to expand and to
acce~erat.e converting some azimuthal energy into
longItudInal energy. Alternatively, or subse
quently, the electron ring can be accelerated
longitudinally with a series of electric fields suitably
phased. Some preliminary operating data on the
electron rings which have been run during 1969 are

shown on the next two figures. In Fig. 20 are
shown some of the operational sequences of the
electron ring accelerator. As the field rises to
17 kG, the energy of the ring increases to 18 MeV
and the major radius of the ring decreases to 3.5 cm.
The time scale is 500 JLsec. In Fig. 21 are shown
photographs of some diagnostic observations. The
dimensions of the compressed ring can be seen
from the synchrotron light, 1.6 mm axially and
2.3 mm radially. The lifetime of the ring was about
7 milliseconds in these observations, as seen from
the radiation. This limit is believed due to crossing
the n ~ 1 region as the magnetic field starts to
decay.

At Yerevan in early September 1969, Sarantsev(65)
reported that his group at Dubna has succeeded in
accelerating Nitrogen3+ to 4 MeVlu. He stated
that an intensity of 108 atoms per pulse has been
obtained. The proof of this result was through the
nuclear reaction

N +Ce-+Tb
~

oc

Important questions which remain for the electron
ring accelerators are the intensity which can be
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FIG. ~9. A sketch of an electro.n ring apparatus ~tudied at L.a~rence Radiation Laboratory. After injection
of an Intense bea~ o~ electrons In a weak magnetic field, addItIonal coils are activated and the energy of the
trapped electron nng Increases.
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FIG. 20. The sequence of operations in the electron
ring accelerator are analyzed. Over a 500 fLsec
period, the field is raised to about 17 kG, the radius
of the ring decreases to 3.5 cm and the electron
kinetic energy increases to 18 MeV.

1
lcm

1

~ ~l msec

(c)

r---....-

N
1

FIG. 21. Diagnostic information on the ERA is
obtained. The upper traces in (a) and (b) are the
22 GHz microwave signals; the lower traces are
X-ray signals. In (c) the synchrotron light shows the
dimension of the ring cross section to be a few
millimeters. The ring studied here is stable for more
than 5 m/sec.

12. CHARGE CHANGE ACCELERATOR

A novel scheme for the acceleration of heavy
ions which is known as the charge change acceler-

electrons from nitrogen ions has been observed
and energies in excess of 1 MeVju have been
observed.(66) It is possible that continued develop
ment may lead to higher charge states and higher
accelerated energies.
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achieved and the emittance of the beam which can
be extracted from the device. The hope is that an
inexpensive high performance accelerator can be
developed through use of these principles of
collective effects.

11. ELECTRON BEAM ACCELERATORS

Intense relativistic beams of electrons have
recently become available in the technology. These
beams are pulsed and in the range of 20,000 to
200,000 amp at 0.3 to 10 MeV in energy. The
pulse duration may vary in the vicinity of 5 to 50
nanoseconds. It is possible that such intense
electron beams may produce highly stripped ions
and indeed may cause acceleration of such ions.
Several groups in the United States are studying
this technology and the associated phenomena.
Already observations of the stripping of a few
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10

0/2

the direction of the ions and send them back
through the high voltage region with multiple
traversals. The average energy gain is given by the
difference in the equilibrium charge states in the
gas and solid strippers multiplied by the potential.
Monte Carlo calculations have been performed to
develop further information on the performance of
the machine. One plot of Monte Carlo calcula
tions, giving the energy achieved as a function of
the size of the solid stripper, is shown, Fig. 23. If
the solid stripper is too large, as at the top, then
particles can acquire strong transverse oscillations
and are lost in the accelerator. If the strippers are
too small, however, some of the particles will miss
the stripper and then the energy will not be as high
as optimum. Note that the computed energy
achieved varies up to 5 GeV. The principal
problems in the accelerator are the design of
suitably achromatic mirrors and development of
solid strippers which will have adequate lifetimes.
These problems are both under investigation now
at the Max-Planck Institute.

7
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2 MAGNETIC MIRRORS
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FIG. 22. A sketch of the basic features of the
charge-change method of accelerating heavy ions.

ator(22) is being developed by Professor Hortig at
the Max-Planck Institute in Heidelberg. This
rather intriguing device is shown in a sketch in
Fig. 22. A tandem accelerator with a negative
terminal potential of about 4 or 5 million volts has a
gas stripper at high potential and 2 solid strippers,
one at each end at ground potential. An achro
matic magnetic mirror system is provided to reverse

L(E}

13. SYNCHROTRONS

Perhaps the luost obvious method of reaching
large energies.> 6 MeVlu is through the synchro
tron. Modern alternating gradient designs give by
far the lowest cost per unit of final field-radius
product. The chief technical problem to be solved
in such a design is the very high vacuum w~ich

must be maintained for the long orbit paths. The
principal uses for such an energy range are expected
to be in the biological or medical fields. When
sufficient motivation develops, it seems like a
promising avenue to pursue. The synchrotron
being a pulsed device means that the final mean
current achievable is inherently somewhat lower
than in cyclotrons, linacs, or tandems. However,
for biological research the achievable intensity
probably matches the research requirements very
satisfactorily. Because of its very large magnetic
field-radius product, a synchrotron can also be
used for acceleration of low charge state ions (e.g.
uranium 12 plus) to energies in the region of
10 MeV/u. The stringent vacuum requirements are
still applicable and intensities would generally be
lo\ver than with cyclotrons and linear accelerators.
A thorough study of a heavy ion synchrotron
systenl was conducted at Lawrence Radiation
Laboratory recently under the name Omnitron. (68)
Even more recently proposals to convert(69) the
Princeton Pennsylvania Accelerator, a 3 GeV rapid
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FIG. 23. Monte Carlo calculations of energy
achieved by charge changing with various sizes of
solid strippers.
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14. SUPERCONDUCTING LINACS

one to two years and that its energy can be extended
to perhaps 8 GeV by incorporating multiple
traversals of the accelerator.

A limited amount of nought has been given by
the Stanford group to the design of proton and
heavy ion superconducting linacs. These would,
of course, differ somewhat from the electron linacs
but would follow in most ways the same general
approach. The section of a possible cavity for a
heavy ion linac operating at 650 MHz is shown in
Fig. 24. One plan would be to have somewhere
between 75 and 300 such cavities independently
phased so that the linac can be adjusted for different
velocity profiles.

An alternative idea is the use of a superconduct
ing version of the Helac, the ambient temperature
version of which was described in an earlier section
of this report. Some development work is now
being started at Stanford University on measuring
the characteristics of helical structures of lead plated
copper and eventually of niobium structures.
It is much too early to evaluate the relative merits
of these alternatives for superconducting heavy ion
accelerator design.

One problem which is frequently raised with
respect to superconducting linacs is the feasibility
of control under high beam loading. Figure 25
shows the field probe signal and the input power

FIG. 25. Oscilloscope traces showing effect of
regulating circuits as a 50 p,A beam comes on.
The field probe signal trace is at the top, the
klystron input power at the bottom.
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FIG. 24. A section of possible superconducting
niobium cavity for a heavy ion linac.
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A subject of much current interest and optimism
is that of superconducting accelerators for heavy
ions. The group under Fairbank and Schwettman
at Stanford University has been studying super
conducting linacs(7o) intensively for several years.
At the present time, the design of a 2 GeV super
conducting electron linac is well along. It will be
housed in a 500 ft tunnel, 30 ft underground. This
tunnel has been completed. The experimental
station at the end of the tunnel is now being erected
-a massive structure with a concrete roof 7 ft
thick. The production cavities are now being
fabricated, as is the cryogenic equipment. It is
expected that this accelerator will be operating in

cycling synchrotron, to heavy ion acceleration have
been made. The PPA proposal is described in a
paper elsewhere in this issue.
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as the beam comes on in an electron linac test to the growing awareness of the possibility of the
cavity with a beam of approximately 50 p.A. From existence of the stable superheavy elements at
the flatness of the upper trace, it appears here that atomic numbers of 114, 124, and 126. It was
regulation to a few parts in 104 can be readily reinforced by a general acceptance which spread
accomplished. The Stanford people have expressed through the nuclear science community that heavy
the belief that a 60 MV proton linac could be built ions are effective and underexploited tools ofnuclear
for perhaps about 1 million dollars. The cost of a investigations. During the summer of 1969 some
heavy ion linac would depend on more detailed 54 different possible proposals or studies were
design development and on whether it is desired to screened in an attempt to survey and review all of
go to full energy without stripping. This would the pertinent activity. The following tabulation,
require some 300 cavities and it would, of course, Tables XIII and XIV, show the summation of this
cost considerably more. The long-range outlook survey. Of necessity this is a continually changing
for superconducting heavy ion linacs is thus not and progressing scene. It is obvious that many
easy to assess. In the opinion of the Stanford modifications of plans and intentions will be made
group, with the completion of the first phase of in the future; some of these presumably may
their 2 GeV linac, the full technology will be already be in effect.
thoroughly demonstrated. They would then take
the position that it will be rather straightforward
to move into such fields as the heavy ion linac.

15. PROPOSALS FOR NEW
i\CCELERATORS

During 1968 and 1969 the explosively grow
ing interest in the acceleration of heavy ions
manifested itself in a flood of new projects and
proposals. This was due in considerable measure

It is clear that there are many alternative methods
of heavy ion acceleration which are both feasible
and practical. At the present time, with the
world's existing accelerators, it is not possible to
accelerate above the Coulomb barrier with pro
jectiles heavier than about mass forty; thus an
enormous unexplored region of nuclear pheno-

TABLE XIII

Heavy ion projects

Systen1

Cyclotron, isochronous without
injector

Electrostatic, tandem

Linear accelerators

Synchrotrons

New type accelerators

Inadequate information

Place

Cal. Tech.
Dubna
Dubna

Burlington, HVEC
Cambridge, MIT
Rutherford

LRL-Berkeley
Frankfurt U.
Darmstadt-Heidelberg U.
Strasbourg U.
Lyon, France

LRL-Berkeley
Prin-Penn

Heidelberg
Stanford
Cal. Tech.

Marburg U., Germany
Yale D., U.S.A.

Features

4-sec (Maryland)
Conversion to 400-cm
8-meter

MP +TV tanden1s
TV tandem
30-MV terminal

Conversion to superHILAC
Helical linac
Wideroe-Alvarez linac

Omnitron
Inject. and n10difications

Charge-change accel.
Superconducting linac
Superconducting linac

Status

Proposal
Design
Study

Construction
Proposal
Study

Construction
Study
Design
Study
Study

Study
Proposed

Study
Study
Study
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TABLE XIV

Heavy ion projects. Isochronous cyclotrons with injectors

Energy and particle
Place Status (MeVju) Cyclotron Injector

Argonne Proposal 350 p; 10 U 6-sector TU tandem
Bohr Institute Study
Brookhaven Proposal 50 p; 5U 4-sec (Ind) 2 MP tandems
Carnegie-Mellon Study 20U conversion, fm linac
Florida State Study 7.5 U 6-sec (MSU) FN, MP tandem
Indiana University Study 4-sector tandem
Karlsruhe Study
Los Alamos Proposal 100 p; 6U 4-sec (Ind) FN tandem
Michigan State Proposal 600p; 9.0D 6-sector cyclotron or tandem
Oak Ridge Proposal 300 p; 7.5 U 4-sector TU tandem
VCLA-Group Study 4-sector two-gap cyclotron
V Maryland Study IOU 4-sector tandem + 4-sec
U Rochester Proposal 6U 4-sec (Ind) MP tandem

mena awaits, impregnable but inviting to many
hundreds of the world's nuclear physicists and
nuclear chemists. All of the necessary techniques
are now available to build new powerful and
versatile machines. Both the new linacs and the
hybrid tandem-cyclotrons, described in the fore
going, can reach through and to the top of the
periodic table. The linacs, in general, will lack
certain versatility for extended energy range
studies, kilovolt width precision beams, high energy
helium 3, deuterons and protons, and the multiple
combination uses (two different beams at once, one
from the tandem and one from the cyclotron).
However, the upgraded linac is the least expensive
and the fastest route to the acceleration of uranium.

The more radical methods, charge-change, elec
tron ring, or superconducting linac may, in five
years, emerge as superior or less expensive heavy
ion routes. New super-ion sources may convert
existing cyclotrons to more powerful producers of
heavy ions.

However, only one obstacle at present is holding
back an immediate new great forward stride in
science. Hopefully soon some government will be
able to provide the financial resources to pluck the
succulent plum which is dangling before the eyes
of the world's expectant scientists.
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