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Abstract

The large size of modern software systems has led to an increase in the complexity
of the interaction between a system's code, its input, and its output. I propose the
following classifications for the regions of a system's input:

* Critical control: data that influences the internal operation and output of the
system.

* Critical payload: data that heavily contributes to the output of the program
but does not substantially influence the internal operation of the program.

* Benign control: data that influences the internal operation of the system, but
does not contribute to the output of the system.

* Benign payload: data that neither contributes to the output nor substantially
influences the internal operation of the program.

In this thesis, I present Chaos, a system designed to automatically infer these
classifications for a program's inputs and code. Chaos monitors the execution trace
and dynamic taint trace of an application over a suite of inputs to determine how
regions of the programs's code and input influence its behavior and output. This thesis
demonstrates the accuracy of Chaos's classifications for a set of imaging applications
and their support libraries.

These automatically inferred classifications are relevant to a variety of software en-
gineering tasks, including program understanding, maintenance, debugging, testing,
and defect correction triage.
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Title: Professor
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Chapter 1

Introduct ion

A program's input often contains two kinds of data: control, which influences aspects

such as the invoked functionality or interpretation of subsequent parts of the input,

and payload, which contains the data that the program directly processes to generate

the output. In data container formats (e.g. image, audio, and video), control data

specifies meta-properties such as data layout, the type of compression algorithm, and

the dimensions of the output. Payload data, on the other hand, often manifests itself

as data processing parameters or the raw data for processing.

A program typically defines many precise invariants about the content of control

data. As the program processes these inputs, violations of these invariants can lead

to large, discontinuous changes in the behavior of the program. For instance, an

invalid piece of control data may cause the program to invoke incorrect functionality.

On the other hand, programs typically define few invariants about the content of

payload data. Because this data represents the raw, unprocessed output (e.g. an

image's contents), a program often has a similar behavior over the domain of possible

payload data values.

The difference between a program's behavioral sensitivity on control data versus

payload data suggests that some data is more critical to the behavior and output of

the program than other data. More specifically, a corruption to a critical piece of data

can make a program crash, invoke the wrong functionality, or produce a significantly

distorted output. On the other hand, a corruption to a benign piece of data can have



a relatively benign effect on the behavior and output of the program. For example,

a benign piece of data may affect a relatively small portion of the output, such as a

single pixel in an image. Therefore, a corruption of such data may lead to a small

amount of corruption in the output.

Although a program's behavioral sensitivity to a piece data may identify the data

as critical, it does not entirely identify every piece of critical data in a program's input.

For example, it may be the case that a large behavioral change represents logging or

other functionality that has a benign effect on the program's output. Additionally,

certain regions of payload data may have a larger contribution to the program's output

than other payload regions. For instance, a paletted image is an image in which each

pixel value is encoded as an index into a color palette table. Each entry in the color

palette table specifies an appropriate color value. In such images, a corruption of the

index for a single pixel will have a relatively benign effect on the output because only

that single pixel value will be corrupted. However, a corruption of the color palette

table will be critical because every pixel in the image makes a reference to this table.

These examples suggest that a particular piece of data can be separately identified

as either control or payload and also as critical or benign. This defines the following

ontology for a region of the input to a program:

* Critical control: data linked to behavioral changes that produce large changes

in the output. Structural information, such as embedded field sizes, are pieces of

critical control data because the program will be unable to continue processing

the input if the structural information is incorrect.

* Critical payload: data that heavily contributes to the output of the program

but does not substantially influence the behavior of the program. The color

palette table of a paletted image critically determines the quality of the final,

outputted image.

* Benign control: data linked to behavioral changes that produce little to no

changes in the output. Fields that designate the existence of irrelevant func-

tionality (i.e. embedded comments that indicate which software package created



the file) may change the observed behavior of the program, but these behavioral

changes have a benign effect on the program's output

* Benign payload: data that neither contributes to the output nor substan-

tially influences the behavior of the program. For uncompressed data, such as

raw images or plain text, localized changes to the input will produce localized

changes in the output. Further, such changes will not alter the behavior of the

program.

These data classifications are an artifact of the way a program uses a piece of data.

Because the behavior of a program is given by its source, these data classifications

correspond to pieces of code in the program.

* Initialization and Cleanup: Most applications have pieces of code that deal

with no part of the input. This code often handles initialization and cleanup of

global data structures.

* Parsing, Verification, Sanitation: Code associated with input parsing, ver-

ification, and sanitation will touch all types of input. This code will critically

determine the behavior and output of the application because the application

will reject inputs that violate structural or semantic constraints. Sanitation

code may be benign because it may implement techniques to cleanse an input

that violates structural or semantic constraints.

* Feature Sorting: Many binary container formats consist of a sequence of

commands. Each command is minimally specified by a type and command

length; the rest of the command specifies command-specifc data. An application

for such a format will first read a command and then use the command's type

to determine which piece of the functionality to invoke. The code that directs

commands to sub-components touches control data. This code is critical because

an error in these regions of code may cause the program to invoke the wrong

functionality. The code that implements each sub-component may be either



critical or benign. For example, some sub-components may be benign because

they implement functionality that has no effect on the output.

* Payload processing: Code that implements compression and decoding schemes

often touches the entirety of the payload data that the program uses to generate

an output. This type of code is critical to the output quality of the application

because it is responsible for generating the entire output. However, a program

may also contain benign pieces of code that generate only small portions of the

entire input.

These code distinctions give software developers a better understanding of their

system. Errors in control code and payload code typically manifest themselves as

distinct failures [28]. Errors in control code typically cause the program to diverge

dramatically from its desired behavior. Possible symptoms include the inability to

process the input at all or the invocation of the incorrect functionality. Errors in

payload code tend to be more subtle, typically an anomaly in the content as it is

presented to the user. Understanding this distinction can help developers more accu-

rately diagnose and eliminate program defects.

Developers often find themselves with more defects than they can reasonably at-

tempt to correct. Because, in general, defects in benign code tend to have less drastic

consequences on the overall execution than do defects in critical code, understanding

the differences between these two kinds of code and the roles they play in the system

can help developers make better decisions about which defects to fix first.

This thesis presents Chaos. Chaos gives developers an automated tool to infer

the control versus payload and critical versus benign distinctions of a program's code

and input. Given a program and an input, Chaos produces the following:

* Input Specification: It produces a chunking of bytes in the input to seman-

tically grouped fields.

* Input Classification: It produces, for each field of the input specification, a

classification of whether the field is control or payload and critical or benign.



* Code Classification: It produces, for each executed block of source code, a

classification of whether the block is control or payload, critical or benign, or a

mixture of classifications.

Chaos first uses automated input specification inference to produce a mapping

from input bytes, to semantic fields. Chaos then uses automated, directed fuzzing to

explore the behavior of the program. By observing how drastically the behavior of

the system changes as a result of a change to an input field, Chaos determines if the

field is control or payload. By analyzing how much the program's output depends

on each field, Chaos determines if a field is critical or benign. After Chaos classifies

each field in the input, it uses dynamic taint tracing to identify which code blocks

reference which fields. Chaos produces a classification for each block by aggregating

the classifications for the fields each block references.

This thesis makes the following contributions:

* Concept: This thesis proposes and explores the concept that control versus

payload and critical versus benign distinctions for data and code represent a

productive classification in current software development practices.

* Technique: This thesis presents Chaos, a novel system designed to automati-

cally infer the control versus payload and the critical versus benign distinctions

for a program's input and code. Chaos uses execution monitoring, dynamic

taint tracing, automatic input specification inference, and behavioral distance

measurement to produce its classifications.

* Results: This thesis gives a detailed analysis of the quality Chaos's classifi-

cations by discussing how they correspond to the design and implementation of

real programs.

Chapter 2 gives an overview of the components in Chaos's design. Chapter 4

describes, in detail, the design and implementation of each of Chaos's components.

Chapter 5 provides an experimental evaluation of the quality and applicability of

Chaos's classifications. Chapter 6 discusses the related work.



Chapter 2

Motivation

This chapter uses an example application and file format to motivate the utility and

design of Chaos.

Figure 2-1 gives an abbreviated specification of the Portable Network Graphics

(PNG) file format [1]. PNG is a popular image format that many image viewers, web

browsers, and image manipulation tools support.

Every PNG file begins with a fixed sized header and continues with an arbitrary

number of variable-length data chunks. A predetermined, fixed-format chunk ends

the list of chunks. I have omitted this chunk from Figure 2-1 for brevity. The file

header contains the data required to load a basic PNG file. The first seven bytes of

the header contain a magic constant that identifies the file as a PNG image. The rest

of the header contains the image's height, width, and encoding type.

Each additional chunk specifies new information about the contents of the image.

At the very least, each chunk provides its length, a tag indicating the type of the

chunk, and a checksum that ensures the integrity of the chunk's data. These fields

allow an application to navigate an entire file without knowing the exact layout of

every chunk. The structure of the rest of the chunk is specific to the data that the

chunk contains.

The time chunk provides a timestamp for the creation date of the image. The

gamma chunk indicates to the image renderer that gamma correction needs to be

applied to the image. Gamma correction transforms the luminance of each pixel



in an image in accordance with a given gamma parameter. The final data chunk

contains the compressed picture content of the image.

The official reference implementation for loading PNG images, libpng, encom-

passes some 25KLOC. There are a number of situations in which a libpng developer

may want to better understand how the libpng system behaves. For instance, a new

developer, charged with implementing a new feature, may want to understand how the

existing behaviors of a 25KLOC system interact with the desired behavior required

to implement the new feature. In this scenario, there are a number of properties of

the system and its input that could help the developer understand how to implement

the new feature.

* Specification: Given a binary input, the developer may want to know which

bytes of the input belong to the same semantic field. For instance, the developer

may want to know that bytes 30-34 represent the length field of the time chunk.

* Input Localization: Given an input specification, the developer may want to

know which functions manipulate which fields of the specification. For example,

the developer may want to know that the png_set_time function processes the

value of the time chunk.

* Criticality: Given an input specification, the developer may want to know

which fields determine the behavior and output of the application. For example,

the developer may want to know that the checksum embedded in the header

chunk must match the checksum of the header chunk data that the png_crc32

function computes. If the checksums do not match, the library will not attempt

to load the rest of the input. Therefore, the checksum embedded in the header

is critical to the behavior and output of the application. On the other hand, if

the checksum embedded in the gamma does not match its computed checksum,

then the library will still attempt to load the rest of the input. Therefore, the

checksum of the gamma chunk has a benign effect on the behavior and output

of the application.



struct png {
struct header {

char magic[] = {0x89, Ox50, ...};
int width;
int height;

byte interlacing;

int crc;

struct time {
int length;

char tag[] = "tIME";

int value;

int crc;

}
struct gamma {

int length;

char tag[] = "gAMA";

int gamma;

int crc;

}
struct data {

int length;

char tag[] = "IDAT";

byte data[length - 8];

int crc;

}

Figure 2-1: An abbreviated specification of the Portable Network Graphics file format



Chaos provides developers with a set of components that will automatically infer

these properties for an application and its input.

* Input Specification Generator: determines the structure of semantic fields in a

binary input.

* Field Classifier: classifies each field in the specification as control (i.e. the

field influences the behavior of the application) or payload (i.e. the field does

not influence the behavior of the application). The Field Classifier also classifies

each field as critical (i.e. the field substantially influences the behavior or output

of the application) or benign (i.e. the field does not substantially influence the

behavior or output of the application).

* Code Classifier: determines, for each basic block in the program's code, which

fields in the input that the block references. The Code Classifier also classifies

each basic block as either control or payload and either critical or benign.

ii_;



Chapter 3

System Design

Figure 3-1 depicts Chaos's high-level design. Chaos is composed of an Execution

Monitor that monitors the behavior the application, an Input Specification Genera-

tor that produces a structural specification of the input, a Fuzzer that explores the

behavior of the application as it responds to changes to its input, a Field Classifier

that produces classifications for the application's input fields, and a Code classifier

that produces classifications for the application's code.

3.1 Execution Monitor

Figure 3-2 depicts the inputs and outputs of the Execution Monitor. The Execution

Monitor takes an application and a test input. The Execution Monitor runs the

application on the input and records the application's execution trace and dynamic

taint trace.

* Execution Trace. The execution trace of an application is the sequence of

function call and branch instructions executed during the run of the program.

Each entry in the execution trace contains a reference to the executed function

call or branch instruction and reference to the function or basic block to which

control flow transfered.



program input

input specifcation field classifications code classifications

Figure 3-1: System design

program input

execution dynamic taint
trace trace

Figure 3-2: Execution Monitor

* Dynamic Taint Trace. The dynamic taint trace of an application is the

sequence of executed instructions that were affected by the input. Each entry

in the dynamic taint trace contains a reference to the executed instruction and

the list of input bytes that affected the instruction.

3.2 Input Specification Generator

Figure 3-3 depicts the inputs and output of the Input Specification Generator. The

Input Specification Generator groups consecutive bytes of the application's input

into fields. The Input Specification Generator first uses the dynamic taint trace to



dynamic taint
trace

input specification

Figure 3-3: Input Specification Generator

determine which instructions each byte of the input affects. The Input Specification

Generator then groups fields according to the heuristic that bytes that are adjacent

in the input and affect the same operations in the application are in the same field.

3.3 Fuzzer

program
input

specification
input

perturbed trace
suite

Figure 3-4: Fuzzer

Figure 3-4 depicts the inputs and outputs of the Fuzzer. The Fuzzer provides

Chaos with a means to explore the behaviors of the application on a suite of inputs

that are similar to the original input. The Fuzzer generates a new, randomly fuzzed

input for each field in the input specification. More specifically, each perturbed input

is the same as the original input except for the value of a single field. The Fuzzer



uses the Execution Monitor to record the execution trace of the application as it runs

over each perturbed input; this produces a suite of perturbed execution traces.

3.4 Field Classifier:

dynamic taint
trace

execution peturbed trace
trace suite

Field Classifier

field
classifications

Figure 3-5: Field Classifier

Figure 3-5 depicts the inputs and outputs of the Field Classifier. The Field Clas-

sifier classifies each field of the input specification as either control or payload and

either critical or benign. The Field Classifier uses behavioral distance and output

dependence to compute its classification for a field.

* Behavioral Distance: The behavioral distance describes how similar one ex-

ecution is to another. A behavioral distance of 0 means that both runs of the

application executed the exact same functionality. A behavioral distance of 1

means that each run of the application executed entirely different pieces of func-

tionality. The Field Classifier compares the execution of the program on the

unperturbed input to each perturbed execution by computing the behavioral

distance between their two execution traces. Because the Fuzzer creates each

perturbed execution by changing a single field of the input, the Field Classifier

assigns the behavioral distance of a perturbed execution to the field associated

with that execution.



The Field Classifier clusters all the behavioral distances observed among the

fields into two clusters. The first cluster consists of all fields that have a be-

havioral distance close to 0 (i.e. close to the original execution); these fields

are given a payload classification. The fields in the second cluster are those

with a large behavioral distance; these fields are labeled as critical control. As

discussed in Section 5.4, Chaos labels all control fields as critical.

e Output Dependence: The Field Classifier inspects the dynamic taint trace

of the original, unperturbed execution to compute a field's output dependence.

The output dependence of a field is the percentage of the operations involved

in the computation of the output that are affected by the field.

The Field Classifier uses output dependence to determine if a payload field is

critical or benign. If a field has an output dependence greater than .1 (i.e. it

affects 10% or more of the operations involved in computing the output), then

the Field Classifier classifies the field as critical. Otherwise, the Field Classifier

classifies the field as benign.

3.5 Code Classifier

dynamic taint field
trace classifications

Code Classifier

code
classifications

Figure 3-6: Code Classifier

Figure 3-6 depicts the inputs and outputs of the Code Classifier. The Code Clas-

sifier uses the Field Classifier's results to compute a classification for each executed



block in the application. The Code Classifier inspects the dynamic taint trace from

the execution of the application on the unperturbed input to determine which basic

blocks reference which fields of the input. For each basic block, the Code Classifier

collects the classification for each field that the basic block references. The Code

Classifier then assigns the basic block the classification that occurs most frequently

among its fields. Basic blocks that do not have a single, dominant classification are

reported as mixed usage.



Chapter 4

Implementation

As discussed in Chapter 3, Chaos consists of an Execution Monitor, an Input Spec-

ification Generator, a Fuzzer, a Field Classifier, and a Code classifier. This chapter

discusses the design and implementation of each component.

4.1 Execution Monitor

As described in Section 3.1, the Execution Monitor records an application's execution

trace and dynamic taint trace while the application runs on an input. Chaos uses

the execution trace to compute the behavioral distance between two executions of the

application on two similar inputs. Chaos uses the dynamic taint trace to generate the

input specification, determine output dependence, and to classify basic blocks in the

application's source. Each trace can be viewed as a sequence of events where each

event corresponds to an executed instruction. Section 4.1.1 discusses the individual

events in the execution trace and Section 4.1.2 discusses the individual events in

the dynamic taint trace. Sections 4.1.3 and 4.1.4 discuss the Execution Monitor's

implementation.



4.1.1 Execution Trace

There are a number of ways in which one can represent an application's execution

trace. For example, one can describe the execution trace as a set or a sequence of

executed modules, functions, basic blocks, or branches. I have chosen to represent the

execution trace by the sequence of executed functions and branches. The execution

trace consists of the following events:

* Function call: A function call event corresponds to the execution of a function

call instruction. The event records the function invoked by the instruction.

* Branch: A branch event corresponds to the execution of a branch instruction.

The event records the basic block to which the instruction jumped.

These two different events allow Chaos to inspect the both the coarse (function

call) and fine (branch) behaviors of an application.

4.1.2 Dynamic Taint Trace

Most dynamic taint tracing implementations only track enough information to de-

termine whether or whether not an external source of input taints an operation in

the execution of a program [24, 29, 10, 27, 17]. These taint tracing implementations

assign a single boolean value to each operation in the program. Chaos, on the other

hand, requires more precise information. Chaos's Input Specification Generator and

Code Classifier need to be able determine which inputs and which offsets of those

inputs affect an operation. To support this, the Execution Monitor associates the

output of each operation in the program with a taint item. A taint item identifies a

collection of inputs and offsets into those inputs. During the execution of an appli-

cation, the Execution Monitor can associate an operation's output with one of the

following taint items:

* Taint Object: a source of input to the application. A taint object is given by a

string that names the origin of the object. In the case of a file, this string is the



name of the file. In general, a taint object can be a file, a socket, or a memory

buffer.

* Taint Tag: an offset into a taint object. A taint tag is given by a reference to

a taint object and an integer that indicates the offset into the taint object.

* Taint Range: a range of offsets into a taint object. A taint range is given by

a reference to a taint object and two integers that indicate the beginning and

the end of the range of offsets. A single taint range more efficiently represents

a large collection of contiguous offsets than a collection of taint tags.

* Taint Set: a union of taint objects, tags, ranges, or other taint sets. A taint set

is given by a list of references to its constituent taint items.

Each event in the dynamic taint trace consists of a taint item and a reference to

the operation in the program for which the Execution Monitor generated the taint

item. Section 4.1.3 describes how the Execution Monitor creates and manages taint

items for each operation in the program.

4.1.3 Instrumentor

Without hardware support for execution monitoring or dynamic taint tracing, the

Execution Monitor must instrument the source or binary of the application with

additional code that generates the execution trace and dynamic trace.

I implemented a static source code instrumentor built on top of the Low Level

Virtual Machine (LLVM) compiler infrastructure [18]. LLVM provides a language

and platform independent Intermediate Representation (IR), an introspection library,

and an extensible compiler that makes it possible to easily manipulate and generate

native code for applications compiled to the LLVM IR. Though Chaos's workflow

currently relies on having the source of an application, the instrumentor could target

any language, including assembly language, for which an LLVM IR translator exists.

The LLVM project currently provides translators for x86 assembly, C, C++, Microsoft

Intermediate Language (MSIL), Java bytecode, Fortran, and Ada.



The instrumentor modifies the source of the application to produce a new, in-

strumented application. The instrumentor instruments function call, branch, load,

and store instructions with code to emit events to the execution trace and to manage

taint items. For all other types of operations in the program, the instrumentor uses a

static taint analysis to determine which operations should be instrumented with code

to emit an event to the dynamic taint trace.

* Function Call. The instrumentor instruments each function call instruction

in the application with code that records a function call event to the execution

trace. The instrumentation code also transfers taint items for the caller's ar-

guments to the callee's parameters and transfers the taint item for the callee's

return value to the caller.

* Branch. The instrumentor instruments each branch instruction in the appli-

cation with code that records a branch event to the execution.

* Load. The instrumentor instruments each load instruction in the application

with a read barrier. The read barrier transfers the taint item for the contents

of the load's source memory address to the load's destination operand.

* Store. The instrumentor instruments each store instruction in the application

with a write barrier. The write barrier transfers the taint item for the store's

source operand to the contents of store's destination memory address.

Static Taint Analysis

To record the dynamic the taint trace, the instrumentor must insert instrumentation

code at each operation in the program that may be tainted by the input. At runtime,

the instrumentation code takes the union of the operation's inputs and creates a new

taint set for the operation's output.

In a naive implementation, the instrumentor could instrument every operation in

the program. However, this approach would lead to unnecessary overhead for opera-

tions that are never tainted by the input. For example, programs compiled without



optimization may store the results of many constant operations; these operations are

never tainted by the input and, therefore, do not need to be instrumented. This

technique would also lead to unnecessary overhead for operations that are tainted by

the same regions of input. Many of the operations in a single function can be tainted

by the same regions of input. A naive instrumentor would create new taint sets for

each of these operation when, in fact, each operation could share a single taint set.

For each function, the instrumentor uses a static analysis to identify the set of

local taint sources that taint each operation in the function. A function's local taint

sources consist of the function's parameters, return values from any function calls,

and values loaded from pointers to memory. The instrumentor uses these sets as

follows:

* If an operation is not tainted by a local taint source, then the instrumentor does

instrument the operation.

* If two operations are tainted by the same local taint sources, then the instrumen-

tor will reuse one operation's taint set as the taint set for the other operation.

The taint analysis calculates the set of local taint sources that affect an operation

with an intra-procedural dataflow analysis. The taint analysis does not propagate

taint through control flow or pointer arithmetic operations. Therefore, the taint

analysis does not track control or indirect data dependencies. Section 5.4 discusses

the effects of ignoring control and indirect dependencies on Chaos's classifications.

4.1.4 Runtime

In addition to an instrumentor, the Execution Monitor also contains a runtime. The

runtime consolidates the majority of the logic required to access and manage the

execution trace and the dynamic taint trace. Each fragment of instrumentation code

typically contains at least one call into the runtime. The runtime is instrumentor-

oblivious and could be used to support instrumentors built upon other instrumen-

tation frameworks, such Valgrind [23], Pin [21], and DynamoRIO [5]. The runtime

provides the Execution Monitor with the following components:



* Trace Manager. The Execution Monitor uses a trace manager to insert events

into the execution trace and the dynamic taint trace.

* Shadow Registers. The Execution Monitor uses shadow registers to store

taint items for the machine registers of the application.

* Shadow Memory. The Execution Manager uses a shadow memory to store

taint items for each memory address in the application.

* Shadow Stack. The Execution Monitor uses a shadow stack to maintain taint

items for each frame in the application's call stack.

* Shadow File System. The Execution Monitor uses the shadow file system to

automatically identify the external inputs to the application.

* Library Shim. The Execution Monitor uses a library shim to intercept calls

to C standard library functions.

The following sections discuss the design, implementation, and use of each of the

runtime's components.

Trace Manager

At its core, the trace manager maintains a large buffer of events. The trace manager

provides an API that allows the Execution Monitor to add function call, branch, and

dynamic taint events to the buffer. As the Execution Monitor adds events to the

buffer, the trace manager first serializes and compacts the buffer. The trace manager

then directs the buffer either to disk or to one of Chaos's analysis components (e.g.

the Input Specification Generator). Section 4.1.5 discusses how Chaos directs the

execution trace and the dynamic taint trace to its analysis components.

Shadow Registers and Shadow memory

For each operation the program, the Execution Monitor must track the taint items

for the operation's inputs and outputs. The Execution Monitor uses shadow registers



to hold taint items for inputs and outputs that reside in machine registers. The

Execution Monitor uses shadow memory to hold taint items for inputs and outputs

that reside in memory.

Shadow Stack

The Execution Monitor must be able to mimic the call stack behavior of an appli-

cation. More specifically, applications compiled for LLVM may use the call stack to

preserve registers, pass arguments, and receive a return value when the application

makes a function call. Similarly, the Execution Monitor uses a shadow stack to pre-

serve taint items for the machine registers, pass taint items for the arguments to a

function call, and receive the taint item for the return value of a function call.

Shadow File system

The Execution Monitor uses the shadow file system to automatically identify the ap-

plication's external inputs. The shadow file system provides a mechanism to intercept

calls to the following UNIX file system calls:

* open: serves an application's request to open a file; open takes a filename as

a parameter and returns a unique handle as a result. On call to open the

Execution, Monitor allocates a taint object that identifies the opened file as a

source of external input to the application.

* read: serves an application's request to read an opened file; read takes a handle

to a file, an integer that indicates the number of bytes to read from the file,

and a pointer to a memory buffer in which to store the bytes from the file. On

a call to read, the Execution Monitor first determines which taint object the

handle represents. The Execution Monitor then inserts a sequence of taint tags

into the shadow memory at the address of the memory buffer; the sequence of

taint tags corresponds to the sequence of offsets for the bytes that were read

from the file.



* write: serves an application's request to write to an opened file; write takes

a handle to a file, an integer that indicates the number of bytes to write to the

file, and a pointer to a memory buffer that gives the source of the bytes to write

to the file. On a call to write, the Execution Monitor reads the taint items

from the shadow memory location of the memory buffer and records that the

taint items were outputted by the application.

* mmap: serves an application's request to map a file to a region of memory; mmap

takes a handle to a file, an integer that indicates the number of bytes to map,

and an address at which to map the file. mmap can also generate a mapping

address if one is not passed as a parameter. On a call to mmap, the Execution

Monitor inserts a sequence of taint tags into the shadow memory at the mapping

address; the sequence of taint tags corresponds to the sequence of file offsets

that were mapped.

Library Shiming

To gain a complete representation of the behavior of the application, the Execution

Monitor must be able to observe the entire execution trace and dynamic taint trace

of an application. Though the Execution Monitor instruments every function in the

application's source, an application may invoke functions in a support library for

which the source is not available. In the case of the C standard library, the runtime

provides the Execution Monitor with a suite of functions that emulate the execution

trace and dynamic taint trace of several functions. For example, the runtime provides

emulations for memcpy and memset.

4.1.5 Architecture

Recording the execution trace and dynamic taint trace of an application imposes a

significant overhead on the execution of an application. For one of the benchmarks

presented Chapter 5, a complete run of Chaos, which includes the Fuzzer, required

500 monitored runs of the application. The execution trace and dynamic trace of an



short-running application (i.e. one to five seconds) can be tens of megabytes in size.

Therefore, a complete run of Chaos can generate multiple gigabytes of data.

Writing these execution traces and dynamic taint traces to disk would consume

a large amount of disk space and, more importantly, bottleneck the execution of the

application to the performance of the computer's I/O system. Instead, the Execution

Monitor implements a modular, streaming architecture. The Execution Monitor's

architecture specifies that any consumer of an execution trace or a dynamic taint

trace be given as a module to the system. During the execution of an application, the

Execution Monitor will then dynamically stream execution trace events and dynamic

taint trace events to the given modules. This architecture provides two performance

improvements :

* I/O performance: in this architecture, the Execution Monitor need not write

traces to disk because these traces can be kept in memory.

* Concurrency: On a multi-core machine, this architecture reduces the overhead

of execution monitoring and analysis by allowing analysis modules to run con-

currently with the application. Chaos also uses this architecture to concurrently

monitor and analyze multiple inputs.

The following sections describe each of Chaos's analysis components. Each com-

ponent is a module in the Execution Monitor's architecture.

4.2 Input Specification Generator

The Input Specification Generator infers a specification of the semantic fields of the

input. This input specification provides the Fuzzer with an effective mechanism to

reduce the search space of possible inputs. More precisely, the input specification en-

ables the Fuzzer to generate inputs by perturbing multiple bytes at a time (as opposed

to perturbing a single byte at a time). This is not possible without a specification

because perturbing bytes that belong to multiple semantic fields will cause Chaos to

report inaccurate classifications.



The Input Specification Generator uses the heuristic that if two adjacent bytes

appear together in operations of the program, then the two bytes should be grouped

into the same field.

Let Oi denote the set of operations affected by byte i of the input. The Input

Specification determines this set by inspecting the dynamic taint trace generated by

the Execution Monitor. For two adjacent bytes in the input, i and j, let Pij, the

probability that byte i and byte j belong to the same field, be given by the Hamming

distance between their sets of affected operations:

I O A ojPi -= (4.1)

This heuristic derives from the observation that bytes from the same field will

affect the same operations in the execution of the program. Heuristics based on refer-

ence locality fail to capture fields that are not accessed sequentially. For instance, ap-

plications with large, compressed data fields in their inputs have highly non-sequential

access patterns; these applications intersperse accesses to the field with accesses to

compression tables. On the other hand, this heuristic does not accurately infer fields

with bytes that do not affect the same operations. For example, this heuristic will

not infer that a null-terminated string is a single field. However, for the benchmarks

and results presented in Chapter 5, this shortcoming is not a problem in practice.

4.3 Fuzzer

The Field Classifier's ability to determine control and payload distinctions depends

on the Fuzzer's ability to systematically explore the behavior of the application. As

discussed in Chapter 2, Chaos first establishes a baseline for the behavior of an

application by monitoring the behavior of the application as it executes on the original

input. Chaos then explores the behavior of an application by using a Fuzzer to create

a suite of similar inputs. Chaos then observes the behavior of the application for

each of the similar inputs. This approach relies on the Fuzzer's ability to generate

perturbed inputs that exercise different behaviors in the application.
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The Fuzzer uses the Input Specification Generator's specification to reduce the

search space of perturbed inputs. For each field in the specification, the Fuzzer creates

a new perturbed input by selecting a new value for the field. The Fuzzer samples

values for the field randomly. This technique is know as random fuzzing.

Random fuzzing may not find values that trigger new behaviors. As discussed

in Section 5.4, random fuzzing will not likely produce a behavior if the behavior is

triggered by only a small number of values in the entire domain of values for a field.

To address this issue, the Fuzzer first selects an extremal value for a field. An extremal

value is a value with all its bits set to zero or one. Extremal values have been shown

to push applications towards outlier behaviors [13].

4.4 Field Classifier

As described in Section 3.4, the Field Classifier classifies each field in the input specifi-

cation along two dimensions: control or payload and critical or benign. Section 4.4.1

discusses how the Field Classifier classifies each field as either control or payload.

Section 4.4.2 describes how the Field Classifier classifies each field as either critical

or benign.

4.4.1 Classification of Control and Payload Fields

As described in Chapter 1, Chaos classifies input fields that heavily influence the

behavior of the program as control; input fields that do not heavily influence the

behavior the program are payload. For each field in the input specification, the Field

Classifier uses the behavioral distance between the execution of the application on

the original input and the execution of the application on an input with a perturbed

value for the field to quantify how much a field influences the behavior of the program.

For a run of the application, i, let Bi denote the set of executed basic blocks. The

Field Classifier determines this set by inspecting the branch events of the execution

trace. Let Dij, the behavioral distance between runs i and j of the application, be

given by the Hamming distance between the two sets of basic blocks:



D. - (4.2)
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Although Hamming distance makes no considerations for the sequence in which the

basic blocks were executed, the results presented in Chapter 5 prove that Hamming

distance effectively identifies large changes in the behavior of the application.

After computing the behavioral distance for each field of the input specification,

the Field Classifier uses hierarchical agglomerative clustering to cluster the fields

based on their behavioral distance.

Hierarchical agglomerative clustering is a well-known clustering technique[30]

The hierarchical agglomerative clustering algorithm first assigns each field to its own

cluster. The Field Classifier adds an additional dummy field that has a behavioral

distance of 0. The algorithm then iteratively merges clusters that are close together.

This iterative process produces a dendrogram, or binary tree, where each node of the

tree represents a cluster that was produced during the merging process. Each leaf

node represents a cluster containing a single field while the root node represents a

cluster containing all the fields. The Field Classifier selects the two children of the

root node as its control and payload field clusters. Input fields that are grouped into

the same cluster as the dummy field are classified as payload while input fields in the

other cluster are classified as control.

4.4.2 Classification for Critical and Benign Fields

As described in Section 3.4, the Field Classifier classifies fields that contribute heavily

to the output of the application as critical; fields that do not contribute heavily to

the output of the application are benign.

As discussed in Section 5.4, the contents of control fields do not, in general, con-

tribute directly to the operations involved in the computation of the output. Instead,

their contribution to the output is captured by the control dependencies of the ap-

plication. Because the Execution Monitor does not track control dependencies, the

Field Classifier cannot directly calculate their contribution to the output. However,



the results presented in Chapter 5 indicate that large changes in the behavior of

the program typically do lead to large changes in the output. Therefore, the Field

Classifier classifies all control fields critical.

For each payload field in the input specification, the Field Classifier uses output

dependence to estimate a field's contribution to the output of an application. The

Field Classifier determines output dependence by inspecting the dynamic taint trace.

The Field Classifier classifies all payload fields that have a output dependence greater

than .1 as critical. Payload fields with a output dependence less than .1 are classified

as benign.

4.5 Code Classifier

The Code Classifier classifies each executed basic block in the application. The Code

Classifier inspects the dynamic taint trace of the application to determine which

basic blocks in the application reference which fields of the input. For each basic

block, the Code Classifier collects the field classifications for the fields that the basic

block references. Basic blocks that reference fields of a single, dominant classification

are given that dominate classification. Blocks that do not have a single, dominate

classification are classified as mixed usage.



Chapter 5

Evaluation

As described in Chapter 1, Chaos takes an application and an input to the application

and produces the following:

* An input specification that groups the bytes of the flat, binary input into se-

mantic fields.

* For each field in the specification, a classification of whether that field is critical

or benign to the behavior and output of the application.

* For each executed block of code in the application, a classification of whether

that block is critical or benign to the behavior and output of the application.

This section provides an experimental evaluation of the quality of Chaos's field

and code classifications for five benchmarks. To evaluate the quality of these clas-

sifications, I performed an experiment to compare the quality of Chaos's automated

classifications to the classifications of an application-specific test oracle. For each

benchmark, I derived the classifications of the application-specific test oracle as fol-

lows:

1. I ran the system over five inputs to produce field and code classifications.

2. For each input, I generated n new perturbed inputs where each input differs at

a single byte. I then ran the application on the n perturbed inputs to produce

n perturbed outputs.
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3. For each perturbed output, I used the application-specific test oracle to deter-

mine how much the perturbed output differs from the original, unperturbed

output. The test oracle takes the unperturbed output and a perturbed output

and produces a metric that describes the distortion between the two outputs.

For this experiment, I used a normalized Hamming distance calculation on the

bytes of the two outputs. This metric is a value on the interval [0, 1]; 0 means

that the two outputs are identical and 1 means that the outputs differ at all

bytes.

4. I set a distortion threshold of .1 and classified all bytes with a distortion above

the threshold to be critical.

To compare the quality of Chaos's field classifications, I check the number of clas-

sifications on which Chaos and the application-specific test oracle agree. Section 5.1

discusses the benchmarks used in the experiment, Section 5.2 discusses the classifica-

tion results for each benchmark's fields, and Section 5.3 discusses the classifications

results for each benchmark's code.

5.1 Benchmarks

name description size
libjpeg image file format 35 KLOC
libpng image file format 25 KLOC
giflib image file format 5 KLOC
imlib2 image manipulation library 39 KLOC
zlib compression file format 11 KLOC

Table 5.1: Benchmarks

Table 5.1 lists the benchmarks considered for evaluation. The PNG, JPEG, and

GIF benchmarks are 3 widely used image file formats. The zlib benchmark is a widely

used compression library that is the basis of PNG's image compression. The imlib2

image manipulation library gives me a common interface with which to exercise the

behavior of an example program over each image file format. The example program



critical control critical payload benign payloadbenchmark
correct missed correct missed correct missed

png 1458 0 8122 18 451 5
gif 54 5 6897 1412 2149 18
jpeg 695 0 4428 1831 542 27

Table 5.2: Byte classifications for image benchmarks

for this experiment takes an input image and converts it to the bitmap file format

(BMP). Using a common front-end across multiple benchmarks allows me to also

report Chaos's classifications for the code within the front-end (Section 5.3.4)

5.2 Field Classifications

Table 5.2 presents Chaos's results for determining the critical control, critical payload,

and benign payload classifications for each benchmark. As discussed in Section 5.4,

Chaos currently does not make a distinction between critical and benign control fields;

Chaos marks all control fields as critical. A manual inspection of the inputs available

for test revealed that none of the inputs had benign control fields. Therefore, I do

not report the results for this classification as it is not applicable.

Under each classification type listed in in Table 5.2, there are two columns. The

first column, labeled "correct", presents the number of bytes on which Chaos's clas-

sification agreed with that of the test oracle. The second column, labeled "missed",

presents the number of bytes on which Chaos's classification did not agree with that

of the test oracle.

In general, Chaos performs well on critical control and benign payload classi-

fication. Chaos's accuracy for critical payload bytes is significantly lower than its

accuracy for critical control and benign payload bytes. As discussed in Section 4.4,

Chaos classifies an input field as critical if, according to the dynamic taint trace, it

affects more than 10% of the operations in the calculation of the output. However,

the accuracy of this classification scheme depends on how the program computes

the output. For example, the JPEG benchmark uses bytes of the input in pointer

arithmetic (i.e. array accesses). Because Chaos does not track the indirect data



dependencies induced by pointer arithmetic, the output dependence calculation for

these bytes underestimates the contribution of these bytes to the output. Therefore,

Chaos incorrectly classifies 30% of JPEG's critical payload bytes as benign.

Figures 5-5, 5-6, and 5-7, depict the test oracle distortion, behavioral distance,

and output dependence for the PNG benchmark. Figures 5-8, 5-9, and 5-10, and

Figures 5-11, 5-12, and 5-13 present the same for the GIF and JPEG benchmarks,

respectively. A comparison of the graphs for each benchmark reveals how Chaos's

uses behavioral distance and output dependence to model different aspects of the test

oracle's observed distortion .

* Test Oracle Distortion: The first graph in each series plots test oracle distortion

on the y-axis as a function of the position of the corresponding perturbed input

byte on the x-axis. In these graphs, each region of the input exhibits one of the

following types of distortion:

1. Complete Distortion: the program either produces no output or an output

that is different at all bytes. In these regions, test oracle distortion equals

one.

2. Partial Distortion: the program produces an output that is different at

some, but not all, bytes. In these regions, test oracle distortion is greater

than zero but less than one.

3. No Distortion: the program produces exactly the same output. In these

regions, test oracle distortion is zero.

Chaos's uses behavioral distance and output dependence to model complete

distortion, partial distortion, and no distortion.

* Behavioral Distance: The second graph in each series plots the magnitude in

behavioral change observed by Chaos on the y-axis as a function of the position

of the corresponding perturbed input byte on the x-axis. These graphs validate

the three hypotheses about application behavior that motivated Chaos's design:



1. The behavioral space of an application is bifurcated between large and small

deviations in the behavior of the application. In each graph, there is a large

gap in the behavioral distance between regions of high behavioral distance

(greater than .4) and regions of low behavioral distance (less than .4).

2. Large deviations in the behavior of an application lead to large deviations

in the output. For every region of the input with a behavioral distance

greater than .4, the test oracle observes a near-complete distortion of at

least .9 (90% of the output's bytes are different). Chaos classifies these

regions as critical control.

3. Behavioral distance does not account for all distortion. In each graph, there

is large range of the input over which the program does not behave differ-

ently, but the test oracle still observes partial distortion. Chaos classifies

these regions as payload and then uses output dependence to determine if

they are critical or benign.

* Output dependence: The third graph in each series plots output dependence as

a function of each byte in the file. With the exception of the JPEG benchmark,

test oracle distortion directly correlates with output dependence in regions of

the input where the test oracle observes partial distortion but the application

does not behave differently. If Chaos observes that output dependence of an

input region exceeds .1, then Chaos classifies that region as critical payload.

Otherwise, Chaos classifies the region as benign payload because it neither

influences the behavior nor the output of the application.

In general, Chaos uses an accurate and intuitive model of test oracle distortion to

classify fields. A critical control classification means that the application's behavior

and output critically depend on the value of the field. A critical payload classification

means that the field does not influence the behavior of the application but the quality

of the output critically depends on the value of the field. A benign payload classi-

fication means that neither the application's behavior nor the quality of the output

depends on the field.



5.3 Code Classifications

Chaos provides a critical control, critical payload, or benign payload classification for

each basic block of an application. To investigate the validity of these classifications

for my benchmarks, I performed a manual inspection of each executed function to

determine if there was a single classification for each of its blocks. If a function had a

mixture of classifications among its blocks, I recorded that function as "mixed usage."

In general, Chaos's code classifications are correct and each classification attaches a

distinct behavioral role to each function.

* Critical Control: functions that maintain the application's data structures or

select which features of the application to invoke.

* Critical Payload: functions that directly compute the output.

* Benign Payload: functions that implement irrelevant functionality; these func-

tions do not affect the final output of the application.

* Mixed Usage: functions that are used as utilities in the program. These func-

tions appear in multiple contexts and, in each context, touch a different type of

data.

Sections 5.3.1, 5.3.2, 5.3.3, 5.3.4 discuss concrete examples of Chaos's code classi-

fications for each benchmark.

5.3.1 PNG and zlib

Critical Control: Figure 5-1(a) lists the PNG and zlib functions that Chaos clas-

sified as critical control. The functions prefixed by png_handle and png_set each im-

plement a particular feature of the specification. png_handle_IHDR, and png_get_IHDR,

read a PNG file format's initial, mandatory header and allocate the library's initial

data structures. The png_handle_PLTE, png_set_PLTE, and png_expand_palette

functions allocate and build the palette for a paletted image. For both the header

and palette functions, if any data corruption occurs, the function will be unable to



function name
png-memcpycheck
png_handle_IHDR
png-setIHDR
png_get IHDR
pngreadimage
png_do _expand _palette
png_doread_transformations
png_doreadfiller
png_handle_PLTE
png-set_PLTE
pngset_tRNS
pnghandletRNS
png_handletRNS
png.read_startrow
png.readfilterrow

(a) Critical Control

function name
pngset_tIME
png_handle_tlME
png_handle_gAMA
png_set_gAMA
pngsetgAMAfixed
pngreadend
pngset_pHys
pnglhandle_IEND
png_handle_pHYs

(c) Benign Payload

Figure 5-1: PNG and

function name
inflate_table
inflatefast
inflate
pngreadrow
png_readfinishrow
updatewindow

(b) Critical Payload

function name
pngcrc_read
png_crc_error
png_get_uint_31
png_read_data
png_default-read_data
png_check_chunkname
png_readchunk_header

(d) Mixed Usage

zlib code classifications

continue in processing the input. png_memcpy_check uses critical data about the

length of various fields to allocate memory buffers. Corruptions to the data that

flows to png_memcpy_check may violate implicit invariants about the intended size

of the allocated buffer and lead to uninitialized reads or out of bounds writes.

Critical Payload: Figure 5-1(b) lists the PNG and zlib functions that Chaos classi-

fied as critical payload. These functions are responsible for decompressing the image's

main content. png_read_row and png_read_finish_row direct compressed image

data from the input file to zlib's inflate_table, inf late_fast, and inflate func-

tions. These functions touch little control data and spend the majority of their time



function name function name
DGifGetLine DGifDecompressLine
DGifGetImageDesc DGifDecompressInput

(a) Critical Control (b) Critical Payload

function name
DGifGetWord
(c) Mixed Usage

Figure 5-2: GIF code classifications

funneling and uncompressing raw payload data. These functions are critical because

the entirety of the application's output is directed through these functions. Therefore,

small errors in these functions can lead to global perturbations in the output.

Benign Payload: Figure 5-1(c) lists the PNG and zlib functions that Chaos clas-

sified as benign payload. These functions implement optional functionality in the

specification. The example program requires a very small portion of the total func-

tionality offered by the PNG library. Because of this, timestamps (png_set_tiME and

png_handle_tlME) and physical device parameters (png_set_pHys) neither change

the behavior of the example program nor effect changes in the output. Faults in

these regions of code will not compromise the output of the program provided that

the program can still execute through the fault. png_read_end and png_handle_IEND

handle the final, delimiting end chunk. Though the PNG specification mandates that

a PNG file be delimited by an end chuck, the PNG library will still return an output

if reaches the end of the input and does not find an end chunk.

Mixed Usage: Figure 5-1(d) lists the PNG and zlib functions that had a mix-

ture of classifications. These functions are common utility functions. The PNG

library computes a checksum for every chunk in the PNG data stream. Therefore,

pngcrcread and png_crcerror, which are responsible for checksum checking, will

touch every piece of data in the input. png_read_data, png_default_read_data,

and png_get_uint_31 are file reading utility functions.

_1



5.3.2 GIF

Figure 5-2 lists the code classifications for the GIF benchmark. Chaos reports a small

number of functions for the GIF benchmark because it is a simple format that does

not provide the same level of extensibility as PNG and JPEG. GIF's critical control

functions are responsible for parsing the image description header and coordinating

the movement of uncompressed output to destination buffers. Both of these tasks

require manipulating the critical data associated with the image's dimensions and

encoding. Like the PNG file format, GIF's decompression functions are critical pay-

load and faults in these areas will lead to corruptions in the entire image. GIF's single

mixed usage function is a utility function that reads raw bytes from the input.

5.3.3 JPEG

Chaos's classifications for the JPEG library mirrors the results of its analysis for

the PNG library. Figure 5-3 shows that critical control data tends to flow to func-

tions that implement functionality related to either the structure of the input or the

initialization of data structures and processing parameters. allocate_large and

allocate_sarray use the image dimensions to allocate buffers for decompression.

j initdmain_controller initializes the state of parsing engine. In several locations

in the library, jdiv_round_up is used to round off the image's dimensions. JPEG's

critical payload functions are related to decoding and performing image transforma-

tions. These functions serve a similar role to the decompression functions found in

GIF and PNG and can, similarly, globally perturb the output if they encounter a

fault. JPEG's mixed usage code is dedicated to navigating the structure of a JPEG

file. These functions touch most of the structural information in the file and also

touch large regions of benign data.

5.3.4 imlib2

Figure 5-4 lists the few imlib2 functions used by the example program. To load

an image, imlib2 dynamically loads a parsing module for the image format. The
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(a) Critical Control

function name
examine_app0
examine_appl4

(c) Benign Payload

function name
alloclarge
allocsarray
allocsmall
free_pool
jpeg_calc_output _dimensions
jinit_dmain_controller
start_pass_huff_decoder
process_data_simple-main
jpegfinish_decompress
jpegmake_d_derived_tbl
jdivround_up
start_input_pass
start_pass_merged_upsample
start_pass_upsample
consume-markers
jinit master_decompress
jinit merged_upsampler
jinit_upsampler

function name
get_interesting_appn
next _marker
read_markers
skipinput_data
skip_variable

(d) Mixed Useage

Figure 5-3: JPEG code classifications

module delegates the majority of the image loading work to the format's reference

implementation. As a result, the example program exercises only a few of imlib2's

functions. imlib_LoadImage is the main API function used to load images. It is

critical control because it checks certain validity constraints on the image and if

these checks fail, the program produces no output. The load, WriteleByte, save,

and imlibimagequery_pixel functions all reference a combination of critical and

payload data. imlibimage query_pixel obtains a mixed use classification because

it uses control data to index into the input's critical payload data.

function name
decode-mcu
jpeghuffdecode
jpegfill_bit_buffer
jpegidctislow
(b) Critical Payload



function name
function name load
imlibLoadlmage WriteleByte
WriteleLong save
(a) Critical Control imlib-imagequerypixel

(b) Mixed Useage

Figure 5-4: Imlib2 code classifications

5.4 Discussion

This section discusses a number of the issues and limitations of my experimental

methodology and the quality of Chaos's classifications. The experimental method-

ology I adopted is designed to present Chaos's classifications about application-

specification behavior as objectively as possible. The quality of Chaos's classifications

depends on a number of limitations in its technical components. These limitations are

due to a need to find a trade-off between engineering effort and classification quality

for a number of technical problems that are in active areas of research.

5.4.1 Methodology

Multimedia binary formats maintain well-defined specifications that give precise de-

scriptions of file structures, data types, and supported features. While these spec-

ifications are concise, their interpretation within a particular application may be

ambiguous. As shown in the results for my benchmarks, an application may ignore

parts of a specification that have no meaning within the application's context. In the

presence of application-specific interpretations of a standardized format, automati-

cally checking the quality of Chaos's distinctions against a known standard would be

unreasonable as the result of such an experiment would be subject to the application's

interpretation of the standard. Instead, I have adopted a methodology that checks

Chaos's classifications against an application-specific test oracle.



5.4.2 Benchmark Selection

The PNG, GIF, and JPEG file formats are interesting benchmarks to study because

the reference implementations for these file formats will, in certain circumstances,

ignore the inconsistencies of an input and still generate an output. While the quality

of this output is entirely dependent on the nature and location of the inconsistency,

these applications allow me to investigate a wide range of their behaviors. Some

applications, on the other hand, are designed to not tolerate input inconsistencies.

For instance, many binary format implementations use checksums to guard against

data corruption. If an implementation chooses to not generate an output if the input's

checksum is inconsistent, then Chaos will report that every field of the input is critical

control. While this classification is correct, these implementations would not allow

me to explore critical and benign payload behaviors.

5.4.3 Input Specification Coverage

Due to the nature of dynamic analysis, the experimental results only hold for the

set of inputs considered for the experiment. In particular, judging the quality of

inference for input-driven approaches requires a notion of input specification coverage

and program code coverage. To address this issue, all inputs for the experiments are

taken from a custom-built, automated web spider. This spider crawls the internet

looking for files of the specified formats. When the spider finds a candidate input, it

computes a content hash and a structural hash. The content hash encodes the exact

content of the image and allows the spider to quickly filter identical images. The

spider computes the structural hash by parsing the input and hashing the input's

parse tree. To ensure that no two inputs exercise the exact same path through the

system, I chose each input for the experiment to have a different structural hash.

5.4.4 Random Fuzzing

Chaos's ability to identify large changes in the behavior of the application relies on the

Fuzzer's ability to generate inputs. One of the main drawbacks of random fuzzing is



its inability to quickly and reliably enumerate the entire input domain. While Chaos

uses automatic field identification to reduce the search space of all possible inputs,

it is still subject to random fuzzing's inability to efficiently find rare behaviors. For

instance, if a system has a behavior that occurs only if a particular 32-bit integer

in the input is one of k values, then random fuzzing has a k chance of producing

that value. Incorporating a smart concolic tester, such as Klee, SAGE, or SmartFuzz,

would allow Chaos to enumerate these rare conditions more quickly [7, 16, 22].

5.4.5 Lack of Output Dependence Distancing

Chaos currently determines a field's output dependence classification from the execu-

tion log of the original, unperturbed input. However, this technique does not account

for the fact that perturbing a field may induce large changes in the composition of

the output. Namely, a change to a field may mean that a different part of the input

is used to compute the output. Dynamic taint tracing imposes a significant overhead

on top of basic execution monitoring. For a file of length n, if Chaos is configured

to take k samples for each field and the input specification generates a poor field

specification, then Chaos may need to execute k x n inputs. Recording and running

this many examples is slow with dynamic taint tracing enabled. Therefore, in the in-

terest of performance, Chaos does not run dynamic taint tracing on perturbed inputs.

This decision precludes an output dependence distancing algorithm that can better

estimate how drastically the output composition changes. For compressed images,

such an algorithm would better capture the existence of indirect dependences that

are induced by tainted pointer computations.

5.4.6 Stateless Behavioral Distancing

As described in Section 4.4.1, Chaos uses a Hamming distance metric on the set of

executed blocks to compute the behavioral distance between two executions. Ham-

ming distance weighs behavioral distance by code size and does not account for the

order in which blocks are executed. While Chaos shows that this can be a good ap-
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Chapter 6

Related Work

The distinction between critical and benign regions of an application and its input

has long been recognized by researchers. Rinard et al. conducted a study of two

applications to determine the applications' forgiving and unforgiving regions [28].

The forgiving regions of an application are regions of the application's code in which

the application can tolerate errors. The unforgiving regions of an application are

regions of the application's code in which the application cannot tolerate errors. In

their study, the researchers used software fault injection to simulate faults in a video

player and an email client. The researchers found that the forgiving regions of the

applications corresponded to regions of code that handled the image contents of the

video or the text contents of an email. The unforgiving regions of the applications

corresponded to regions of code that manipulated the metadata of the video and

email. For instance, the researchers observed that a fault inserted into the code that

handles the metatdata of a video caused the video player to completely lose track of

its place in the input stream.

Pattabiraman et al. have developed Samurai, an implementation of a novel mem-

ory model called critical memory [26]. Critical memory separates a program's heap

into two conceptual heaps: a critical heap and non-critical heap. The critical heap

contains objects that are critical to the functionality of the application. A non-critical

heap contains objects that are not critical to the functionality of the application.

Samurai provides programmers with an explicit API to manually allocate objects in
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the critical heap. Samurai then uses object replication and error-correction guard

objects allocated in the critical heap from memory corruption.

In their analysis of the utility of the critical memory abstraction, Pattabiraman

conducted an experiment in which they compared the failure rate of an application

compiled with and without Samurai. In the presence of memory corruptions to critical

data, the version of the application built without Samurai suffered failure rates in

excess of 50% while the version compiled with Samurai had a failure rate of 0. In the

presence of memory corruptions to non-critical data, the application suffered failure

rates of approximately 2%. This experiment confirmed their hypothesis that certain

pieces of data are more critical to the functionality of the application than others.

Both of these research projects confirm that there exists both critical and non-

critical behaviors in an application. Namely, there are regions of code and data on

which an application's behavior and output critically depend and there are regions

of code and data on which an application's behavior and output does not critically

depend. In non-critical regions of data and code, the application can better tolerate

memory corruption and programmer error. Chaos compliments the work done by

these projects in that it is, to my knowledge, the first system to automatically identify

the critical regions of an application's code and inputs.

6.1 Input Specification Inference

A number of researchers in computer systems security are actively working on methods

for automatic input specification inference[6, 20, 8, 9]. These approaches are designed

to produce input specifications for reverse engineering, testing, and intrusion detec-

tion. Like Chaos, these tools use an application's execution trace and dynamic taint

trace to infer a specification of an input.

Chaos's generated input specifications are not as detailed as those provided by

these tools. These tools are designed to generate expressive specifications that de-

scribe nested structures and field alternations. Chaos's specifications are primarily

designed to reduce the search space of fuzzed inputs. Although a more expressive



specification could allow Chaos to explore more behaviors of an application, the re-

sults of this thesis show that Chaos can already identify critical behaviors.

6.2 Fuzzing

Automated fuzz testing has become an effective means for testing programs. A fuzzing

technique can be categorized by the amount of information it needs to know about

the program and its input.

Random blackbox techniques require neither access to the source of the program,

nor a specification of the structure of the input. A random blackbox tester generates

test inputs by either mutating an existing test or generating a test from scratch.

Random blackbox testing is known to be an inefficient technique to generate inputs

because it will generate many structurally or semantically inconsistent inputs that

the application will quickly reject. Random blackbox testing may also generate many

tests that exercise the exact same execution path in the program.

Random block-based blackbox and random grammar-based blackbox fuzzing tech-

niques use an input specification to generate inputs. Block-based fuzzers use a spec-

ification of the blocks, or fields, of an input to reduce the search space of inputs

by fuzzing an input a block at a time[2]. Grammar-based fuzzers use a grammar

that gives a specification of the set of legal inputs to an application. While a block-

based approach will allow the fuzzer to fuzz multiple bytes, or blocks, of an input

at a time, the generated inputs may still have inconsistencies. For example, a block

that specifies the length of another field may be inconsistent with the length of the

other field if the two fields are not fuzzed together. Grammar-based approaches avoid

generating inconsistent inputs by only generating inputs that are, according to the

grammar, legal. However, manually developing a grammar for an application may be

time consuming.

Whitebox fuzzing techniques generate inputs by symbolically executing an appli-

cation; this process requires the source or binary of the application. During symbolic

execution, a whitebox fuzzer collects the set of conditional predicates, or constraints,



that describe each symbolically executed path in the program. A whitebox fuzzer

then solves the set of constraints to produce an input that exercises the path. White-

box fuzzers can achieve high rates of code coverage if one can afford the large expense

of symbolic execution and constraint solving [7, 16, 22, 15].

Other researchers have also proposed hybrid techniques that combine a number

of these techniques [13, 25].

Chaos uses random block-based blackbox fuzzing to generate its suite of perturbed

inputs. This technique provides an easily implementable way for Chaos to explore

the behaviors of an application. Chaos's approach is adequate because Chaos is not

designed to find bugs in applications. Oftentimes, bugs are hidden in the subtle,

fine-grained behaviors of an application. Chaos, instead, seeks to identify critical

control behaviors. As shown in this thesis, these behaviors manifest themselves as

large, coarse changes in the behavior of the application. However, Chaos's design

is amenable to any sufficiently efficient fuzzing technique. In particular, a whitebox

fuzzing technique may allow Chaos to identify fine-grained changes in the behavior

of an application.

6.3 Behavioral Distancing

Security researchers have long investigated the notion that the occurrence of an

anomalous behavior in a large software system can be indicative of an attack on

the system. Researchers have enumerated a number techniques that use execution

monitoring (i.e. system call and system call arguments) to build a model of the nor-

mal behavior of an application. These models range from simple Hamming distance

calculations to stateful, probabilistic models[11, 32, 14, 31, 4].

Software analysis researchers have also used behavioral modeling to find bugs in

applications. The CBI project uses a collaborative community to distribute applica-

tion monitoring over a number of hosts. CBI collects the monitoring information of

each host and then uses statistical analysis to correlate bugs with anomalous behav-

iors in the application[19].



Ammons et al have used the execution traces of library usage to infer specifications

about API usage patterns. A specification is given by a probabilistic finite state

machine that, when given a candidate trace, can determine the probability that the

trace is a valid use of the API. Others have since extended these approaches to infer

fine-grained behavioral patterns in large systems [3, 12].

Chaos's goal differs from the mentioned systems in that it is designed to detect

large behavioral differences rather than model the likely behaviors of a program.

Chaos uses Hamming distance to describe the distance between executions because it

provides an easily implementable technique to identify large changes in behavior. In

contrast, researchers in these other domains need to model small changes in behaviors

because bugs and intrusions are often identified by small changes.



Chapter 7

Conclusion

As discussed in Chapter 1 and shown in Chapter 5, the code and input of a program

can be productively classified along two dimensions: control or payload and critical

or benign.

Regions of critical control code and data are critical to the behavior and output of

the program because errors in these regions can cause the program to invoke incorrect

functionality or crash, producing no output. Regions of critical payload code and

data are critical to the output of the program because errors in these regions can

lead to substantial distortion in the output of the program. In benign control and

payload regions, errors may not cause the program to behave differently or produce

a substantially different output provided that the program an execute through the

error.

Chaos gives developers an automated tool to infer control versus payload and

critical versus benign distinctions for a program's code and input. Developers can

use Chaos's classifications to more quickly identify the source of errors in the pro-

gram and, once found, prioritize fixing errors that are potentially more critical to the

behavior and output of the application. Although researchers and developers have

long understood that some regions of a program and its input are more critical to

the behavior and output of an application, to the best of my knowledge, Chaos is the

first system designed to automatically identify these regions.
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