The ATLAS Search for Supersymmetry and its Connection to Dark Matter

PPC 2008 2ND INTERNATIONAL WORKSHOP ON THE INTERCONNECTION BETWEEN PARTICLE PHYSICS AND COSMOLOGY

Sven Vahsen (Lawrence Berkeley Lab) for the ATLAS Collaboration

Is the Dark Matter Supersymmetric?

• What can we learn from the LHC?

How the LHC can help

- If new physics discovered at LHC
 - WIMP DM candidate?
 - What fraction of DM?
- Try to measure enough to compute
 - Mass m_{WIMP}
 - Cross-section $\sigma_{WIMP-nucleon}$
 - Relic density Ω_{WIMP}
- Compare with
 - Astro Particle Physics (m, σ)
 - Experimental Cosmology $\Omega_{WIMP} = \Omega_{DM}$?

Potential for major impact on our understanding of Dark Matter! Will discuss ATLAS prospects if new physics is SUSY

The Standard Model of Particle Physics

Three Generations of Matter

- Successful theory of fundamental interactions since early 1970s
- Survived numerous experimental tests
- Only Higgs missing
- LHC built to look for Higgs and Physics beyond the Standard Model...

Supersymmetry (SUSY)

- Well motivated extension of the Standard Model
- Standard Model particles have supersymmetric partners
 - Differ by 1/2 unit in spin
- EW-gaugino+higgsino mixing \rightarrow 2 charginos $\tilde{\chi}^{+/-}_{1,2}$ 4 neutralinos $\tilde{\chi}^{0}_{1,2,3,4}$

Why We Like SUSY

- Keeps corrections to Higgs mass small. Requires wino and stop masses ~ few hundred GeV
- Unifies gauge couplings at large Q². Requires sparticle masses
 ~ few hundred GeV
- Can provide plausible WIMP Dark matter candidates.
 Cosmological arguments prefer WIMP mass ~ hundred GeV
- Highest mass limits from Tevatron ~ 300 & 400 GeV (gluinos, squarks)

R-Parity, Stable LSP

- Consider only R-parity conserving SUSY models
- Even number of SUSY particles for every vertex
 - SUSY particles always produced in pairs
 - Get decay chains as below
 - Lightest SUSY particle (LSP) cannot decay, hence potential WIMP Dark Matter candidate

mSUGRA and dark matter

Will the LHC be a SUSY Factory?

- If SUSY exists at the TeV scale, expect copious production of squarks and gluinos
- Just QCD, nearly independent of SUSY model
- σ (pp \rightarrow SUSY) calculated at NLO
- $\sqrt{s}=14$ TeV, $m_{SUSY} \sim 0.5-1.0$ TeV $\rightarrow \sigma_{pp \rightarrow SUSY} \sim 1-100$ pb

References: Beenakker, Höpker, Spira, Zerwas, 1995, 1997; Beenakker, MK, Plehn, Spira, Zerwas, 1998; Baer, Hall, Reno, 1998; Beenakker, Klasen, MK, Plehn, Spira, Zerwas, 2000; Berger, Klasen, Tait, 1999-2002; Beenakker, MK, Plehn, Spira, Zerwas, 2006

Sven Vahsen

Tevatron \rightarrow **LHC**

- Win twice when moving to LHC
 - σ_{SUSY} increases 20000(!) for m_{gluino}=400 GeV
 - S/B improves
- SUSY-discovery challenge
 - reject SM by factor of $\sim 10^{11}$
 - understand SM events that survive SUSY selection

- Two sparticles initially
- Cascade decays down to LSP: jets, leptons
- LSP escapes undetected: *large* E_T^{miss}

Canonical SUSY signature: E_T^{miss}, high-p_T jets, often leptons

Generic SUSY signature: Missing E_T + jets

• Event selection

- Jets 1,2 with p_T >100 GeV
- Jets 3,4 with $p_T > 50 \text{ GeV}$
- $E_{T}^{MISS} > 100 \text{ GeV}$
- E_T^{MISS} > 0.2 Meff
- Transverse Sphericity > 0.2
- veto isolated leptons
- Plot Effective Mass variable

 $- M_{eff} = \Sigma |p_T^i| + E_T^{miss}$

Events with several hard, (often miss-measured) QCD jets: Monte Carlo predictions have large systematic uncertainties

Excess at large M_{effective} potential discovery of SUSY

Measuring SUSY Backgrounds

- Estimate Standard Model background passing SUSY selection using data-driven techniques
- Example: Select Z→II and replace charged leptons by neutrinos

L ~ 1 fb⁻¹: SUSY Discovery Potential

- Full simulation of backgrounds
- Includes expected systematic (JES, background estimation)
- Good chance of finding TeV scale SUSY with 1fb⁻¹ of data
 - Dream scenario!
- SUSY at higher mass scales could still show up later, but would make detailed studies difficult

L > 1 fb⁻¹: What exactly did we discover?

- Inclusive studies provide first hints of where in SUSY parameters
 - $-- {\rm M}_{\rm effective} \rightarrow {\rm Mass \ scale}$
 - Relative Significance in 0,1,2 lepton channels $\rightarrow m_0, m_{1/2}$
 - 3^{rd} generation $\rightarrow tan\beta$
- Is it really SUSY? → want spin, hard at LHC. See talk by Martin White this afternoon.

Mass reconstruction

 Most promising: Opposite sign, same flavor di-leptons from single neutralino decay

- Subtract background (from Standard Model and SUSY itself) using flavor information
 - $e^+e^- + \mu^+\mu^- e^+\mu^- e^-\mu^+$ (after efficiency correction)
- Low background, relatively high statistics

Position of mass-edge sensitive to combination of sparticle masses

$$m_{\ell\ell}^{\text{edge}} = m_{\tilde{\chi}_2^0} \sqrt{1 - \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}_2^0}}\right)^2} \sqrt{1 - \left(\frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{\ell}}}\right)^2}$$

Fitting for edges after flavor subtraction

Method sensitive to any sleptons lighter than 2nd neutralino

Just add quarks

- Use same dilepton events, similar mass-edge extraction w/ m_{lg} and m_{llg}
- Use position of all edges to fit for sparticle masses

	Measured	Monte Carlo
	$[\text{GeV}/c^2]$	$[\text{GeV}/c^2]$
$m_{\tilde{\chi}_1^0}$	$88 \pm 60 \mp 2$	118
$m_{\tilde{\chi}^0_2}$	$189\pm60\mp2$	219
$m_{\tilde{q}}$	$614\pm91\pm11$	634
$m_{ ilde{\ell}}$	$122\pm61\mp2$	155
Observable		
	$[\text{GeV}/c^2]$	$[\text{GeV}/c^2]$
$m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}$	$100.6 \pm 1.9 \mp 0.0$	100.7
$m_{\tilde{q}} - m_{\tilde{\chi}_1^0}$	$526\pm34\pm13$	516.0
$m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}$	$34.2 \pm 3.8 \mp 0.1$	37.6

mSUGRA bulk region, 1 fb⁻¹

- Fit assumes we know mass hierarchy, e.g. from di-lepton edge shape
- Otherwise model-independent
- Need more data for precise masses
- Quite sensitive to mass differences

Assuming model known - can we extract model parameters early on?

- Input data: kinematic edges
 - Dilepton, (Di)lepton+jet, $\widetilde{q}_R \rightarrow \widetilde{\chi}^0_1 q$
- Scan of mSUGRA parameter space
- Pseudo Experiments + Fit
- *A*₀ not well constrained, μ ambiguity
- Even in highly constrained model, ambiguous parameter determination with 1fb⁻¹

mSUGRA bulk region, 1 fb⁻¹

Parameter	SU3 value	fitted value	exp. unc.	theo. + exp.			
				unc.			
$\operatorname{sign}(\mu) = +1$							
$tan \beta$	6	7.4	4.6	-			
M_0	100 GeV	98.5 GeV	$\pm 9.3 \text{ GeV}$	$\pm 9.5 \text{ GeV}$			
$M_{1/2}$	300 GeV	317.7 GeV	$\pm 6.9 \text{ GeV}$	$\pm 7.8 \text{ GeV}$			
A_0	-300 GeV	445 GeV	$\pm 408 \text{ GeV}$	-			
$\operatorname{sign}(\mu) = -1$							
$tan \beta$		13.9	± 2.8	-			
M_0		104 GeV	$\pm 18 \text{ GeV}$	-			
$M_{1/2}$		309.6 GeV	$\pm 5.9 \text{ GeV}$	-			
A_0		489 GeV	$\pm 189 \text{ GeV}$	-			

Ultimate LHC precision (300 fb⁻¹)

- SPS1a Snowmass Point (mSUGRA bulk)
- older work using fast simulation
- kinematic endpoints using leptons, Taus, jets, b-jets

Polesello, Tovey JHEP 0405 (2004) 071

		Errors						
Variable	Value (GeV)	Stat+Sys (GeV)	Scale (GeV)	Total				
$m_{\ell\ell}^{max}$	83.37	0.03	0.08	0.09				
$m_{\ell\ell q}^{max}$	457.55	1.4	4.6	4.8				
$m_{\ell q}^{low}$	321.28	0.9	3.2	3.3				
$m_{\ell a}^{h \hat{i} g h}$	400.63	1.0	4.0	4.1				
$m_{\ell\ell q}^{min}$	220.81	1.6	2.2	2.7				
$m_{\ell\ell b}^{min}$	199.48	3.6	2.0	4.2				
$m(\ell_L) - m(\tilde{\chi}_1^0)$	109.18	1.5	0.1	1.5				
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	279.07	2.3	0.3	2.3				
$m_{\tau\tau}^{max}$	86.03	5.0	0.9	5.1				
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_1^0)$	517.22	2.3	5.2	5.7				
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	452.62	10.0	4.5	11.0				
$m(\tilde{g}) - m(\tilde{b}_1)$	96.98	1.5	1.0	1.8				
$m(\tilde{g}) - m(\tilde{b}_2)$	72.75	2.5	0.7	2.6				
300 fb ⁻¹								

Ultimate LHC precision (300 fb⁻¹)

• mSUGRA parameters well constrained at 300 fb⁻¹ \rightarrow calculate m_{χ} , σ_{χ} , Ω_{χ}

Comparing with Direct Detection

- Calculate neutralino mass m_{γ} and cross section σ_{χ -nucleon
- Compare with direct detection ٠

0⁻⁴²

MS II 20

Same WIMP in lab and space?

Comparing with Observational Cosmology

- Calculate neutralino relic density
- Precision comparable to that from cosmology: $\Omega \chi = \Omega_{DM}$?

- $\Omega \chi h^2 = 0.192 \pm 0.005$ (stat) ± 0.006 (sys)
- What fraction of the dark matter is neutralinos?

(simulated point is pre-WMAP)

Caveat: this precision depends on assuming very constrained SUSY breaking scenario. In more general scenario: much looser constraints.

Sven Vahsen

Model Independent Approach I

- In calculations of m_{χ} , σ_{χ} , Ω_{χ}
 - mSUGRA unification assumption constrains
- MSSM analysis not assuming specific SUSY breaking scenario needs more measurements
- e.g. to calculate Ω_{γ} need
 - LSP mass
 - LSP mixing matrix
 - to establish which processes are relevant to LSP annihilation...
 - …and measure them

- SPA mSUGRA bulk region point, analyzed as MSSM
- Less restrictive on Ω_χ: precision
 ~ 10-20% at 300 fb⁻¹

Model Independent Approach II

- Several mSUGRA points also analyzed as MSSM to evaluate LHC + ILC prospects by Baltz et al.
- Bulk region, 300 fb⁻¹:
 - $\Omega_{\chi} \text{ precision in agreement}$ with Polesello et al.
 - σ_{χ-nucleon} not well constrained, as it depends on heavy Higgs mass (not observable at LHC in this model)

Less favorable scenarios

- mSUGRA bulk region points discussed are LHC friendly scenarios
- Caveat1: Situation may be less ideal, even with low SUSY mass scale
 - High $tan\beta \rightarrow Tau's$ dominate
 - Small mass-gaps \rightarrow very soft leptons
 - If slepton too heavy, depend on other χ^0_2 decays

$$\begin{array}{rcl} \tilde{\chi}_2^0 & \rightarrow & \tilde{l}l, \\ \tilde{\chi}_2^0 & \rightarrow & \tilde{\nu}\nu, \\ \tilde{\chi}_2^0 & \rightarrow & h^0 \tilde{\chi}_1^0, \\ \tilde{\chi}_2^0 & \rightarrow & Z^0 \tilde{\chi}_1^0, \\ \tilde{\chi}_2^0 & \rightarrow & l^+ l^- \tilde{\chi}_1^0 \end{array}$$

- Caveat2: Part of SUSY particle spectrum could be heavy
- Several scenarios considered in Baltz, Battaglia, Peskin, Wizansky PRD74:103521 (2006)
- Progress will depend on SUSY scenario Nature has chosen

Conclusion

- If SUSY at TeV-scale, LHC discovery possible with ~1fb-1

 In this case, rates at LHC would be high, allowing detailed studies in large number of final states
- To calculate $m_{\chi}, \sigma_{\chi}, \Omega_{\chi}$, need to understand much of SUSY phenomenology

— Model assumptions can reduce needed measurements

- Degree of progress at LHC will depend on Nature's benevolence in breaking SUSY
- Favorable scenarios suggest precise calculations of m_{χ} , σ_{χ} , Ω_{χ} possible with ~300fb⁻¹ of data
- When combined with Astroparticle & Cosmology measurements, this would reveal the relation of the SUSY LSP to the dark matter