LHCb 2008-026
LPHE 2008-004

|dentification of Ghost Tracks using a
Likelihood Method

M. Needham
Laboratoire de Physique des Hautes Energies,
Ecole Polytechnique &krale de Lausanne

May 28, 2008

Abstract

The implementation of an algorithm based on a likelihood method to
discriminate between real and ghost tracks is described. This algorithm is
shown to perform slightly better than a cut on tpréndof.

1 Introduction

The high track densities expected in the LHCb detector present a challenging envi-
roment for track reconstruction. During the pattern recognition step many pseudo-
random combinations of hits, refered to as ghosts, are formed. The efficiency of
LHCDb tracking algorithms are limited by the number of ghosts that can be tol-
erated. This is particularly true for luminosities higher than the nominal LHCb
running value of2 x 10%? cm~2s~!. In this note a likelihood based method to
identify ghost tracks is presented. Such an approach is easy to implement and
generic.

The layout of this note is as follows. First, the algorithm is described. Next the
performance for long tracks is summarized for luminosities up te 20" cm—2s™!

and compared to a simple cut on tR&ndof. The performance for other track
types is then discussed. Finally, the implementation in the LHCb software is de-
scribed in an appendix.

2 Algorithm

Ghost tracks are characterized by having a low probability’dfom the track fit

and missing hits [1]. In addition, ghosts due to spillover from previous crossings
can be distinguished by having lower deposited energy in the silicon detectors. To
create a discriminant this information is combined into a log-likelihood using the
approach described in [2]. For each detector layer it is checked whether the track
is expected to give a hit. A binomial counting term is then calculated according to
the number of hits found (n) compared to the number expected (N). This gives a
contribution to the log-likelihood:

|

InL = lnﬁ + nlne + (N —n)in(1l —¢) (1)
wheree is the product of the detector efficiency and the efficiency to add the
hit to the track. For the silicon detectors similar counting terms are added to
the likelihood based on how many hits with the high threshold bit are observed
compared to the number expected based on the total number of clusters on the
track. Table 1 - 2 summarize the efficiencies assumed for the various types of
tracking hits.

For the Outer Tracker the cell efficiency decreases towards the wall of the straw
and a layer is insensitive to tracks that pass through the gap between two cells.

2

Term | Probability (¢€) Source

Velor 0.97 PatChecker

Velo ¢ 0.94 PatChecker
1T 0.9 LHCb note 2007-024
IT 0.99 LHCDb note 2007-024
oT 0.94 PatChecker

Table 1: Probabilities assumed for the various counting terms.

Term | Probability (¢) | Spillover Probability (€) Source

Velo 0.99 0.10 Private code
TT 0.91 0.16 LHCDb note 2007-024
IT 0.94 0.06 LHCb note 2007-024

Table 2: Probabilities assumed for the counting terms related the high threshold
bit. For comparison the corresponding numbers for spillover clusters are shown.

Therefore, in layers with missing hits the track trajectory should be such that it
has large distance to the centre of the straw. This leads to a term in the likelihood
of the form [2]:

L =0.261 + exp(5.1r — 11.87) (2)

where r is the distance of the track from the wire. This contribution is shown in
Fig 1.

Finally, the probability ofy? given by the track fit is added to the likelihood.
For real tracks this contribution has the form shown in Fig. 2. The accumulation
of tracks with low probability ofy? generates a long tail in the log-likelihood
distribution. Potentially, this spoils the performance of the algorithm. In [1] it was
suggested to de-weight this contribution by a factor that is empirically determined
to be around three. Another approach, which will be investigated here, is to use
the shape of the distribution in Fig. 2. This can be modeled Byumnction :

1

o) =z u2)p“1’1(1 —p)"

with v; = 0.63 andu, = 0.86. The contribution of they? to the likelihood is
then:

p(x?)
L= /0 B(p(x*))dp 3)

225
200 E
175 E
150 F
126 F
100 E
75 E
50 E
25 E

0 E |-': PRI I T RO SRR N AN T SO T N N A TN R TR NN SO T S R N
0 0.05 0.1 0.15 0.2 0.25

Distance from wire r (cm)

Figure 1: Histogram of the distance of the track trajectory from the wire, for OT
cells that did not give a hit; the parametrization used in the likelihood calculation
is superimposed.

Mean 0.4108
RMS 0.3153
30000 Skewness 0.2605
I Kurtosis -1.256
25000{—
20000{—
15000{—
10000{—
e

Figure 2: Probability ofy? for long tracks. The dotted line is the result of a fit to
a g function.

3 Results

The performance studies were done using the following data samples:

e A sample of 24000 B — J/¢4(u"pu~)Ks(m™n~) events generated at the
default LHCb luminosity o x 1032 cm2s71.

e Samples of 500 inclusive b events generated at luminosities of 5, 8, 10 and

4

20 x10%2 cm~2s71,

All the samples were reconstructed with Brunel v31r11.

3.1 Long Track Studies

For these studies the definitions of long track acceptance, efficiency and ghost rate
given in [1] were used. Fig. 3 shows the likelihood distribution for real long tracks
within the LHCb acceptance and ghosts. A clear separation is observed. From this
plot it seems that there is a component of the ghost’s that look like the real tracks.
This is consistent with the observation [3] that there is some fraction of the ghost
rate due to real tracks, which are not correctly associated to Monte Carlo truth.

10°E

10°E

107E

0
likelihood

Figure 3: Likelihood distribution for reconstructed long tracks within the LHCb
acceptance (solid line) and ghosts (points).

Fig. 4 shows the efficiency versus ghosts rate for the various cuts on the likeli-
hood method and also for a cut on th&ndof. It can be seen that the difference

in performance of the two methods is small. This shows thatyfifedof is al-
ready a powerful discriminant and that the additional gain in performance from
the likelihood technique is small. In Fig 5 the effect of re-weightingtheontri-
bution according to Equation 3 is shown. The effect of the re-weighting is small.
Therefore, this approach will not be considered further in this hote

1The approach used in [2] of simply dividing tly& contribution by three was also studied. It
was also found to have only a small effect on the results.

5

Ghost rate
o)
I IS
R
g 5. -

I

0.08 —

0.06 [— e

e . ,..‘-v»v—.r>r..‘.7 CRATSTTILe

0.02 —

0 11 l 11 1 l 11 | l 11 | l 11 | l 11 | l 11 | l 11 | l 11 | l 11 | l 1
072 074 076 078 08 08 08 08 08 09 092
Efficiency

Figure 4: Efficiency versus ghost rate as a function of a cut orythedof (black
triangles) and the likelihood (red points). The points ontAdof graph from

left to right correspond to cuts at 1.5, 2, 2.5, 3, 4, 6, 8, 10,005,Those on the
likelihood graph correspond to cuts at -10, -20, -30, -40, -50, -60, -70, -80, -90,
-100 , —oc.

Ghost rate
o)
N} S
[T
@ ¢

I

0.08 —

0.06 [— ey

o "'“““f.,',’ff..’.”

0.02 —

0 sl b b b b b b b L
072 074 076 078 08 08 084 08 08 09 092
Efficiency

Figure 5: Efficiency versus ghost rate as a function of a cut on the likelihood (red
points) and the case of reweighting the contribution from the tpégKk) with a 3
function (black triangles).

3.2 Performance as function of luminosity

The performance of the likelihood method and t{féndof cut have also been
compared as a function of luminosity. Based on the studies in the previous section
it was decided to apply a cut on thé/ndof at 6 or a cut on the likelihood at
-60. In both cases at a luminosity dfx 103? cm~2s™! this reduces the ghost
rate t010.4 % for a1 % loss in efficiency. The efficiency versus luminosity is
shown in Fig. 6. For both methods, compared to the case of no cut, an increasing
loss in efficiency is observed at higher luminosities. Due to the larger hit density
there is an increased probability to wrongly assign hits to a track. This leads
to a degradation of the fit quality which can be seen in Fig. 7 where the mean
probability ofy? is observed to decrease as the luminosity increases.

Fig. 8 shows the ghost rate versus luminosity. For luminosities ativem2s!
the likelihood method gives a lower ghost rate thanthédof cut.

85—

80~ _a Efficiency (Defaut)
- --¥ - Efficiency (x2 cut)

75? - @ - Efficiency (likelihood)

70 vl b L b L L b L L Ly
2 4 6 8 10 12 14 16 18 20

Luminosity [10%cm2s7]

Figure 6: Efficiency versus luminosity. Note the suppressed scale.

3.3 Performance for other track types

Since the algorithm is generic it can be applied, without modification, to the out-
put of other tracking algorithms. Fig 9 - 11 show the results for the Downstream
tracking [4], the Velo-TT tracking [5] and the standalone T-seeding based on the
Tsa reconstruction framework [2, 6, 7]. It can be seen that in all cases the al-
gorithm allows the ghost rate to be reduced for a small loss in inefficiency. As

7

mean p(x?)
o
&
i

0.15—
0.1
0.05—

0 co b by by b P Py b b by Laas

2 4 6 8 10 12 14 16 18 20
Luminosity [10%%cm2s7]

Figure 7: Mearp(x?) versus luminosity.

$ 100p
90
80
70— —m— Ghost rate (Default)

--¥ - Ghost rate (x? cut)

60—
E - .@ - - Ghost rate (likelihood)

50

30—
20

10

0 co b b by b P Py b b by a Ly

6

Luminosity [10%%cm2s7]

Figure 8: Ghost-rate versus luminosity.

was seen for the case of the long tracking the power of the algorithm is diluted
by the tail in the probability of¢? distribution. The biggest separation of power

is seen for the Tsa seeding and the least for the Velo-TT tracking. The fact that
poor separation is seen in the latter case is not surprising. First, this track type
provides limited information since it is formed only from Velo and TT hits. In

addition, inside the algorithm the track fit is run and used to discriminate between
competing candidates. This means that internally the algorithm already cuts on

one of the quantities used in the likelihood. However, the fact that some separa-
tion is seen indicates that the use of the available information by the algorithm is
not optimal. Therefore, the performance could be improved by implementing a
competition between candidates based on the likelihood

Ghost rate

o
N
a1

T

02| ;

0.05—

0 v vy b by by by O'H\\\HH\HH\HH\HH\HHIH
-100 -80 -60 -40 -20 0 0.45 05 0.55 06 0.65 0.7 0.75
Likelihood Efficiency

Figure 9: Likelihood for ghosts (points) and real (solid) tracks for the Downstream
Tracking algorithm (left) and efficiency versus ghost rate (right). The points from
left to right correspond to cuts at -6, -8 , -10, -15, -20, -30, -40, -50,-69,

4 Summary

In this note an algorithm for discriminating between real and ghost tracks based
on a likelihood technique has been studied with simulated data. It has been shown
that this approach leads to an improvement in the discrimination between real
and ghost tracks compared to a simple cut omttadof of the track. However,

the improvement is small because tféndof is already a powerful discriminant.
With real data the power of thg?/ndof may be reduced because of incorrect
modeling of hit resolution and material in the detector. In this case the likelihood
approach, by adding more information could be more performant.

Ghost rate

o o o

= 5 &

T T T
“

o
o
5
T

o
jay
T T T T T T T T

0.08—
0.06(—
0.04—

0.02f—

e b b by a by a Lo
0.075 0.08 0.085 0.09 0.095 01

likelihood Efficiency

Figure 10: Likelihood for ghosts (points) and real (solid) tracks for the Velo-TT
algorithm (left) and efficiency versus ghost rate (right). The points from left to
right correspond to cuts at -6, -8 , -10, -15, -20, -30, -40, -50, -6&;. Nota
Bene the low efficiency of this algorithm is because VELO track segments used
in the long tracking are excluded before the algorithm is run whilst the efficiency
is normalized to all tracks in the Velo-TT acceptance.

In both approaches the performance is limited by the tail in the probability of
x2/ndof distribution. A better treatment of this tail would lead to improved per-
formance. Two effects are known to contribute to this tail:

e Wrongly resolved L/R signs in the Outer Tracker [1].

e Wrongly assigned hits from nearby tracks (Section 3.2).

Further work is needed to improve the treatment of both effects in the track fit.

References

[1] M. Needham. Performance of the LHCb Track Reconstruction Software.
LHCb-note 2007-144.

10

Ghost rate
o
8
T
-

oo7f-
oos |-
oosf-
A

003

[y
l-_IIIIIIIIIIIIIIIIIIIII O-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
-100 -80 -60 -40 -20 0 078 08 082 084 08 08 09 092 094
Likelihood Efficiency

Figure 11: Likelihood for ghosts (points) and real (solid) tracks (left) and effi-
ciency versus ghost rate (right) for the Tsa seeding algorithm. The points from
left to right correspond to cuts at -10, -15, -20, -25, -30, -35, -4&;

[2] R. Forty M. Needham. Standalone Track Reconstruction in the T-Stations.
LHCb-note 2007-022.

[3] M. Needham. Classification of Ghost Tracks. LHCb-note 2007-129.
[4] O. Callot. Downstream Pattern Recognition. LHCb-Note 2007-026.
[5] O. Callotet. al. VELO-TT track reconstruction. LHCb-note 2007-010.

[6] R. Forty and M. Needham. Updated Performance of the T seeding. LHCb-
note 2007-023.

[7] M. Needham. The Tsa Reconstruction Framework. LHCb-Note 2007-037.

11

A Implementation of the Likelihood tool

The algorithm described above has been implemented as a tool in the TrackTools
package. The code fragments below illustrate how to get and use the tool:

#include ‘‘Tracklnterfaces/ITrackManipulator.h’’

I/l get the tool

ITrackManipulator likTool = tool<lTrackManipulator>(‘‘TrackLikelihood’");
/] use it

Track aTrack;

double lik = likTool —execute (aTrack);

For a long track the calculation takes 0.5 ms on a 64 bit 2.8 GHz Opteron proces-
sor.

Internally the tool delegates the task of calculating the number of expected hits
to two tools: thelHitExpectation in the case of IT, TT and OT and thgelo-
Expectation tool for the VELO. These tools are described in Appendix B. The
quality of the results given by these tools depends on \Bletesare present on

the Track. Therefore, the accuracy of the result will be higher in Brunel where
Statesat the z positions of all measurements are present. In addition, the infor-
mation on the number of hits in the Silicon detectors above the high threshold is
extracted from thévieasurementson the track — which are not stored on the
DST. These considerations mean the algorithm is run in Brunel and the output
added to theéextralnfo map of the track class by thEackAddLikelihood al-
gorithm and stored on the DST. For completeness the number of hits expected in
each of the tracking detectors are also stored. The following code fragment show
how gets and use this information from the track:

Track aTrack;
double lik = likTool —info (LHCb:: Track:: Likelihood , 9999);
if (lik < cutValue){
/I likely to be a ghost
}

12

B Expected Hit Tools

Two interfaces have been written that allow the number of expected hits in the
tracking detectors to be estimated. The first is used by the OT, IT and TT and has
the interface below:

class IHitExpectation: virtual public IAlgTool{
public:

/xx small struct returning hit info....
*/
typedef struct {
unsigned int nExpected;
unsigned int nFound;
double likelihood;
} Info;

/1l Retrieve interface ID
static const InterfacelD& interfacelD (){ return IID_IHitExpectation ;}

/++ Returns number of hits expected, from zFirst to inf

x @param aTrack Reference to the Track to test

x @return unsigned int number of hits expected

*/

virtual unsigned int nExpected (const LHCb:: Track& aTrack) const = O;

/++ Returns number of hits expected

x @param aTrack Reference to the Track to test
* @return Info info including likelihood

*/

virtual Info expectation (const LHCb:: Track& aTrack) const = 0;

As can be seen two methods are defined in the interface. The first simply returns
the number of hits expected in a given detector. The second returns a structure,
which contains the number of expected hits, the number found and the likelihood
contribution.

For the VELO a second interfacé/€loExpectation) is used. This allows the
number of r an@ hits that are expected to be calculated separately. For the VELO
account must be taken of the fact that stations can be missed because the particle is
the product of a hyperon decay occurring after the start of the VELO acceptance.
The interface below takes account of these requirements and in addition provides
methods that allow to calculate how many stations the particle traverses before the
first hit seen on the track. The interface is as follows:
class IVeloExpectation: virtual public I1AlgTool{
public:

/«+ Helper struct

*/
typedef struct{

13

unsigned int nR;
unsigned int nPhi;
} Info;

/1l Retrieve interface ID
static const InterfacelD& interfacelD (){ return IID_IVeloExpectation ;}

/++ Returns number of hits expected, from zFirst to endVelo
* @param aTrack Reference to the Track to test

x @return number of hits expected/

virtual int nExpected (const LHCb:: Track& aTrack) const = 0;

/++ Returns Info on hits expected, from zFirst to endVelo
x @param aTrack Reference to the Track to test

* @return Info */

virtual IVeloExpectation::Info

expectedInfo (const LHCb:: Track& aTrack) const = 0;

/++ Returns number of hits expected, from zStart to zStop
*+ @param aTrack Reference to the Track to test
%+ (@param zStart-—> start of scan range
* @param zStop-—>end of scan range
* @return number of hits expected/
virtual int nExpected (const LHCb:: Track& aTrack ,
const double zStart ,
const double zStop) const = 0;

/xx Returns Info on hits expected, from zStart to zStop

x @param aTrack Reference to the Track to test
%+ (@param zStart-—> start of scan range
* @param zStop-—>end of scan range
x @return Info %/
virtual IVeloExpectation::Info
expectedIinfo onst LHCb:: Track& aTrack ,
const double zStart ,
const double zStop) const = 0;

/+* Returns number of hits missed, from zBeamLine to firstHit
x (@param aTrack Reference to the Track to test

* @return number of hits missed before first hit/

virtual int nMissed (const LHCb:: Track& aTrack) const = 0;

/xx Returns number of hits missed, from z to firstHit
*+ (@param aTrack Reference to the Track to test
* (@param z——> start of scan range
% @return number of hits missed before first hit/
virtual int nMissed (const LHCb:: Track& aTrack,

const double z) const = 0;

/xx Returns true if track passses thro a given sensor
*
*+ @param aTrack Reference to the Track to test
@param sensorNum——> sensor number
* @return true if inside sensorx/
virtual bool islnside (const LHCb:: Track& aTrack,
const unsigned int sensorNum)const = 0;

14

