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Abstract

An important topic in wireless networking is the development of reliable algorithms
for environments suffering from adversarial interference. This term captures any type
of channel disruption outside the control of the algorithm designer—from contention
with unrelated devices to malicious jamming. In this thesis, we provide four contri-
butions toward a comprehensive theoretical treatment of this topic.

First, we detail a formal modeling framework. This framework is general enough
to describe almost any radio network studied to date in the theory literature. It can
also precisely capture the often subtle details of adversarial behavior. In addition, we
prove a pair of composition results that allow a layered strategy for designing radio
network algorithms The results can be used to combine an algorithm designed for a
powerful channel with an implementation of this channel on a less powerful channel.

Next, we formalize adversarial interference with the definition of the ¢-disrupted
channel. We then define the more powerful (¢,b,p)-feedback channel, and provide
both a randomized and deterministic implementation of the latter using the former.
To emphasize the utility of this layered approach, we provide solutions to the set
agreement, gossip, and reliable broadcast problems using the powerful feedback chan-
nel. Combined with the implementation algorithms and composition results, this
automatically generates solutions to these problems for the less powerful, but more
realistic, t-disrupted channel.

Finally, we define a variant of the modeling framework that captures the attributes
of an ad hoc network, including asynchronous starts and the lack of advance knowledge
of participating devices. Within this new framework, we solve the wireless synchro-
nization problem on a t-disrupted channel. This problem requires devices to agree on
a common round numbering scheme. We conclude by discussing how to use such a
solution to adapt algorithms designed for the original model to work in the ad hoc
variant.

Thesis Supervisor: Nancy Lynch
Title: NEC Professor of Software Science and Engineering
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Chapter 1

Introduction

The increasing importance of wireless networking is beyond dispute. Long-range cellu-
lar links bring data packets to billions of mobile phones. Medium-range technologies,
such as the 802.11 family of protocols [1], introduced high-speed wireless networking
to millions of homes and offices. And short-range protocols, such as Bluetooth [11]
and Zigbee [5], eliminate the need for wires in connecting nearby devices. To name
just a few examples. David Leeper, the chief technical officer for wireless technologies
at Intel, described this trend as follows:

Economic forces and physical laws are driving the growth of a new wire-
less infrastructure that will become as ubiquitous as lighting and power
infrastructure are today [66].

With any rapidly-growing technology trend, however, comes new issues to be
addressed. In this thesis, we carve out and tackle one of these issues from among the
many facing our community: the design and analysis of reliable protocols in unreliable
radio network settings.

The Trouble with Open Airwaves. In a 2007 paper [43], a research team led
by Ramakrishna Gummadi asked a simple question: What is the impact of RF in-
terference on the increasingly crowded unlicensed bands of the radio spectrum? They
setup an 802.11 access point and connected a laptop client. They then introduced
several common sources of radio interference, including a Zigbee node, cordless phone,
and two different types of malicious jammers. They found that even “relatively small
amounts” of RF interference can result in “substantial performance problems for com-
modity 802.11 NICs.” They were able, for example, to disrupt a link with a signal
1000 times weaker than the 802.11 signal, and shut down a network running multiple
access points on multiple channels, using only a single interferer. Changes to standard
operational parameters, such as CCA threshold, bit rate, and packet size, could not
eliminate these effects.

This result underscores an important reality: much of the future of wireless com-
puting will unfold in the unlicensed bands of the radio spectrum. Furthermore, these
bands are increasingly crowded and vulnerable. Designers of protocols that use the
unlicensed bands must take into account a variety of interference sources, including:
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o Selfish devices that use the band without consideration of other protocols.
e Malicious devices that actively try to prevent communication.

e Electromagnetic interference from unrelated sources (e.g., military radar, mi-
crowaves, and medical equipment).

For simplicity, we will refer to this diversity of disruption with the generic term
adversarial interference, because its behavior is unpredictable and falls outside of the
control of the individual protocol designer.

The Gap Between Systems and Theory. The systems community has been
attacking adversarial interference from multiple angles, including hardware solutions
(e.g., more resilient, spread spectrum-style signal encoding [3, 78]), regulatory so-
lutions (e.g., additional rules for the proper use of the relevant bands [76]), and
systematic solutions based on new approaches to wireless networking (e.g., cognitive
radios [69, 64, 62, 63, 4]).

There has also been recent interest in the problem of jamming at the link layer and
above; c.f., [13, 71, 48, 44], which analyze specific link and network layer protocols,
highlighting semantic vulnerabilities that can be leveraged to gain increased jam-
ming efficiency. As mentioned, improved spread spectrum techniques, such as FHSS
and DSSS, are designed with unpredictable interference in mind [3, 78]. Frequency-
hopping schemes are also used to circumvent such disruption [80, 81, 11]. And in
the sensor network community, a growing body of work addresses the detection (and,
perhaps, subsequent destruction) of jamming devices [83, 84, 67].

The theoretical distributed algorithms community, by contrast, lags in their study
of this increasingly important topic. As detailed in Section 1.1, although theoreti-
cians have studied distributed algorithms for radio networks since the 1970’s, the first
papers to address adversarial behavior in these networks did not appear until 2004.
The community currently lacks the theoretical models that allow a formal study of
what can and cannot be solved in a radio network model suffering from adversarial
interference. And as the history of distributed algorithms has taught us, the mathe-
matical realities of such questions have a way of defying our intuition (e.g., the FLP
result which proved the impossibility of consensus in an asynchronous system with
one failure [34]).

Reducing the Gap. In this thesis, we aim to reduce this gap between theory and
practice. A detailed description of its contributions can be found in Section 1.2. Here
we provide only a brief overview of its results.

First, we describe a formal modeling framework for the study of distributed
algorithms in radio networks. This framework allows for a precise, probabilistic,
automaton-based description of radio channels and algorithm behavior. It includes
formal notions of problems, solving problems, and implementing one channel using
another channel. It also includes a pair of composition results that facilitate the
combination of multiple simple components toward the goal of solving complex prob-
lems.
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Using this framework, we formalize the t-disrupted radio channel, which captures
a single-hop radio network suffering from the the type of adversarial interference
described above. We first introduced this model in 2007 [31], and it has since become a
popular topic of study [32, 81, 40, 30, 68, 80, 74]. The t-disrupted channel provides the
devices access to a collection of F > 0 separate communication frequencies, up to t <
F of which can be disrupted in each round by an abstract adversary. This adversary
does not necessarily model a literal adversarial device. Instead, it incarnates the
diversity of possible interference sources experienced in an open network environment.
To the best of our knowledge, this is the first formal channel model to capture the
unique traits of this increasingly relevant setting.

As evidenced by the complexity of the algorithms featured in our previous studies
of t-disrupted radio channels [31, 32, 40, 30], solving problems in this model can
prove difficult. With this in mind, we introduce the more powerful (¢, b, p)-feedback
channel. This channel behaves like a t-disrupted channel enhanced to provide feedback
to the processes about what was received on all frequencies during the current round.
(Specifically, it guarantees that with probability p, at least n — b devices receive
the feedback.) We then describe two implementations—one randomized and one
deterministic—of a (¢, b, p)-feedback channel using a ¢-disrupted channel.

With the feedback channel defined and implemented, we next describe solutions
to the set agreement, gossip, and reliable broadcast problems using this channel.
When these algorithms are composed with our feedback channel implementation algo-
rithms, we automatically generate complementary solutions for the ¢-disrupted chan-
nel. These examples highlight the utility of our layered approach to algorithm design
in difficult radio network settings.

We conclude by introducing a variant of our modeling framework that captures
the unique properties of ad hoc radio networks. We then define and provide a solution
to the wireless synchronization problem in such an ad hoc network with a ¢-disrupted
channel. This problem requires an unknown number of processes, activated (poten-
tially) in different rounds, to agree on a global round numbering. We discuss how
these solutions can be used to adapt algorithms designed for a non-ad hoc network
(e.g., our feedback channel implementation algorithms) to work in this ad hoc setting.

1.1 Related Work

In this section we summarize the existing theoretical work on radio networks with
adversarial behavior. In Section 1.5, we present a extended review of related work in
the radio network field.

1.1.1 Early Results Concerning Adversarial Behavior

As mentioned, the theoretical distributed algorithm community has only recently
devoted attention to the development of bounds for wireless networks with adversarial
behavior. The first work in this direction was the 2004 paper of Koo [54], which studies
Byzantine-resilient reliable broadcast. Koo assumed the devices are positioned on an
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infinite grid. He further assumed that at most some bounded fraction, ¢, of any
device’s neighbors might suffer from Byzantine faults—allowing them to deviate from
the protocol. The faulty devices, however, are restricted to broadcasting on a TDMA
schedule that prevents collisions. It is also assumed that source addresses cannot be
spoofed.

Koo proved that reliable broadcast—the dissemination of a message from a distin-
guished source device to all other devices—is possible only for ¢t < 3 R(2R+ 1), where
R is the transmission radius of devices on the grid (using the Ly distance metric).
In a 2005 paper, Bhandari and Vaidya [10] proved Koo’s bound tight by exhibiting
a matching algorithm. In 2006, Koo, Bhandari, Katz, and Vaidya [55] extended the
model to allow for a bounded number of collisions and spoofed addresses. Assuming
these bounds are known, they exhibited an upper bound that is less efficient but
tolerates the same fraction of corrupted neighbors as in the original model.

Others have also considered models with probabilistic message corruption. Drabkin
et al. [33] allowed Byzantine devices to interfere with communication; each honest
message, however, is successfully delivered with some non-zero probability, and au-
thentication is available via public-key cryptography. Pelc and Peleg [77] also assumed
that messages may be corrupted (or lost) with some non-zero probability.

In [39, 42], we considered a single-hop model with an external adversary. In
contrast to previous work, we did not constrain adversarial behavior—allowing both
the jamming and overwriting of messages. This is the first work, to our knowledge,
to consider an unrestricted adversary in a wireless context. Such an adversary, of
course, can prevent any non-trivial coordination by simply broadcasting continually—
jamming the channel.

We turned our attention, therefore, to the efficiency of the adversary, produc-
ing tight bounds on the jamming gain—a term taken from the systems community
that we use to describe the minimum possible ratio of honest broadcasts to adver-
sarial broadcasts that can prevent termination. Specifically, we showed a gain of 2 is
fundamental for reliable broadcast, leader election, k-selection, and consensus. The
implication: regardless of the protocol, the adversary can always prevent termination
while expending at most half the number of broadcasts as honest players.

In recent work, Awerbuch et al. [7] considered a similar problem. They assumed
an adversary that can jam a single-hop wireless network for a (1 — €) fraction of the
rounds. They produced an efficient MAC protocol that achieves a constant through-
put on the non-jammed steps, even when only loose bounds on € and the number of
devices are known.

1.1.2 The t-Disrupted Radio Channel

The t-disrupted radio channel highlighted in this thesis was first introduced by Dolev,
Gilbert, Guerraoui and Newport [31]. In this paper, we studied the gossip problem. In
a break from previous models, we replaced temporal restrictions on the adversary with
spatial restrictions. Specifically, we allowed the adversary to cause disruption in every
round. We assumed, however, that devices have access to F > 1 frequencies, and the
adversary can participate on only up to t < F frequencies per round. If the adversary
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broadcasts on a frequency concurrently with an honest device, both messages are
lost due to collision. This adversary does not necessarily model a literal malicious
device (though it could); it is used an abstraction that incarnates the diversity of
unpredictable interference sources that plague crowded radio networks.

In [31], we focused on deterministic oblivious gossip algorithms, and produce a
tight bound of ©(Z) rounds for disseminating (1 — €)n rumors for ¢t = 1. For t > 1,

we described an oblivious upper bound that requires O("j;:;l ) rounds, and proved that

for the worst case of € = t/n, any deterministic oblivious solution requires ( til) /( tfl)
rounds. It remains an open question to generate lower bounds for larger € values; i.e.,
smaller numbers of rumors needing to be disseminated.

In [32], we returned to this model but now allow for randomization. We gener-
alized gossip with a problem we call Authenticated Message Exchange (AME), which
attempts to disseminate messages according to an arbitrary “exchange graph”— a
graph with one node for each device and edges describing the messages to be ex-
changed. We presented -AME, a “fast” solution to AME that requires ©(| E|t*>logn)
rounds, where |E| describes the edge set of the exchange graph. Initializing this proto-
col with a complete graph, we can solve gossip for € = t/n in ©(n*t*logn) rounds—a
significant improvement over the exponential bounds of [31].

In [40] we closed our study of gossip by analyzing the open case of adaptive
deterministic solutions. We showed that for F = Q(¢?), there exists a linear-time
solution for gossip with € = ¢/n This is a significant improvement over the exponential
bounds for the oblivious case and, surprisingly, an improvement over the general
randomized solution of [32]. (The randomized solution is optimized for the worst-case
t = F — 1, for smaller ¢ there exist simpler randomized algorithms that match this
linear bound.) For larger ¢, however, the performance of the adaptive deterministic
solutions degrade to exponential, opening a major gap with the randomized solution.

The strategies used in our feedback channel emulation algorithms of Part II, and
the agreement, gossip, and reliable broadcast solutions of Part III, are inspired by
the techniques deployed in these gossip papers.

Recently, other researchers have begun to study the ¢-disrupted setting. Meier
et al. [68] proved bounds for the minimum time required for two devices to commu-
nicate on an undisrupted frequency. (Their setting differed slightly from ours in that
they assumed that the processes did not know ¢ in advance.) Strasser et al. [81, 80]
studied the t-disrupted channel from a more practical perspective, proposing efficient
schemes for establishing shared secrets and reassembling large messages divided into
small packets for transmissions. Jin et al. [74] also studied practical realizations of
the setting—with a focus on the issues introduced by real radios.

1.1.3 Other Results

In [30], we modified our model to allow processes to be activated in different rounds.
We also eliminated the assumption that processes know the number of participants
in advance. In this more difficult ad hoc setting, we solve the wireless synchronization
problem, which requires processes to agree on a global round numbering.
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We presented three main results in this paper. The first is a lower bound of

log®n Fi
1
2 ((F—t)loglog(n) + F—t ogn)

rounds for some process to learn the global number.
The second result is an upper bound, which we call the Trapdoor Protocol, that
almost matches the lower bound with a running time of

F 9 Ft
O(]___tlog n—l-f_tlogn)

rounds.
The third result is an adaptive algorithm we call the Good Samaritan Protocol,

that terminates in
O (t'log’ n)

rounds in good executions; that is, when the devices begin executing at the same time,
and there are never more than ¢’ frequencies disrupted in any given round, for some
t' < t. In all executions, even those that are not good, it terminates in O (.7-' log® n)
rounds.

In Part IV, we present a formalization of the ad hoc model studied in the paper.
We also present a detailed description and proof of the Trapdoor Protocol.

Our experience with these results emphasized the difficulty of describing a com-
munication model that includes adversarial behavior. For example, a subtle question
that arose in our analysis of gossip was the dependencies between the adversarial and
algorithmic decisions. For example, if a process chooses a frequency at random in
round 7, does the channel adversary know this information before selecting frequencies
to disrupt? Motivated by these subtle questions, in [73] we detailed the formal radio
network modeling framework also presented in Part I of this thesis. As mentioned
earlier in this introduction, the framework includes an automaton-based description
of radio channels and algorithm behavior, formal notions of problems, solving prob-
lems, and implementing one channel using another channel, and a collection of useful
composition results.

1.2 Contributions

As described in the introduction, this thesis provides four main contributions to
the theoretical study of distributed algorithms for unreliable radio channels: (1) a
formal modeling framework; (2) the implementation of the powerful (¢, b, p)-feedback
channel using a realistic t-disrupted radio channel; (3) the solving of set agreement,
gossip, and reliable broadcast using a feedback channel (which, when coupled with
our composition results, produce solutions for the t-disrupted channel as well); and
(4) the ad hoc variant of our model, and a solution to the wireless synchronization
problem that can be used to mitigate the difficulties of this setting.
In the following four sections, we describe each of these contributions in detail.
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1.2.1 A Formal Modeling Framework for Radio Networks

The vast majority of existing theory concerning radio networks relies on informal
English descriptions of the communication model (e.g., “If two or more processes
broadcast at the same time then...”). This lack of formal rigor can generate sub-
tle errors. For example, the original BGI paper [8] claimed a (n) lower bound for
multihop broadcast. It was subsequently discovered that due to a small ambiguity
in how they described the collision behavior (whether or not a message might be
received from among several that collide at a receiver), the bound is actually loga-
rithmic [9, 58]. In our work on consensus [21], for another example, subtleties in how
the model treated transmitters receiving their own messages—a detail often omitted
in informal model descriptions—induced a non-trivial impact on the achievable lower
bounds. And as mentioned in Section 1.1, in studies of adversarial behavior in a
radio setting {10, 55, 42, 31, 32, 7, 41], informal descriptions of the adversary’s power
prove perilous, as correctness often rests on nuanced distinctions of the adversary’s
knowledge and capabilities. For example, when the adversary chooses a frequency to
disrupt in a given time slot, what is the exact dependence between this choice and
the honest processes’ randomization?

Informal model descriptions also prevent comparison between different results.
Given two such descriptions, it is often difficult to infer whether one model is strictly
stronger than the other or if the pair is incomparable. And without an agreed-
upon definition of what it means to implement one channel with another, algorithm
designers are denied the ability to build upon existing results to avoid having to solve
problems from scratch in every model variant.

The issues outlined above motivate the need for a radio network modeling frame-
work that allows:

precise descriptions of the channel model being used,;

a mathematical definition of a problem and solving a problem;

a mathematical notion of implementing one channel using another (perhaps
presented as a special case of a problem); and

composition theorems to combine algorithms designed for powerful channels to
work with implementations of these powerful channels using weaker channels.

In this thesis, we present a modeling framework that accomplishes these goals. In
more detail, this framework focuses on the system, which includes three components:
the channel, the algorithm, and the user (see Figure ?7). We briefly describe each:

The Channel

The channel is a probabilistic automaton that receives messages and frequency assign-
ments as input from the algorithm and returns the corresponding received messages.
Using this formalism, we can easily provide an automaton definition that captures
the standard radio channel properties seen in the existing literature; for example, a
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Figure 1-1: A system including environment F, algorithm A (which consists of n
processes, A(1),...,A(n)), and channel C.

channel that respects integrity, no duplication and throws out all messages if two or
more are broadcast concurrently. Such definitions can be extended to include col-
lision detection information of varying strength; for example, as in [21]. Because
the channel automaton is probabilistic, we can also capture probabilistic guarantees;
for example, on whether messages are corrupted or lost due to collision. Finally, as
demonstrated in the systems examined in this thesis, an arbitrary automaton-based
definition allows the modeling of powerful adversaries that have access to complete
send and receive histories.

The Algorithm

The algorithm is a mapping from the process identifiers to processes, which are proba-
bilistic automaton that describe process behavior. Each process automaton is defined
by its state set, a transition function, a message generation function and an output
generation function. The message generation function generates the message to be
passed to the channel in a given round. The output generation function generates any
output values to be passed up to the environment. The transition function evolves
the state based on messages and environment inputs received during that round. We
also describe a useful pseudocode convention that allows for compact, intuitive, and,
most importantly, unambiguous process definitions.
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The Environment

The environment is a probabilistic automaton that sends and receives I/O values from
each of the processes described by the algorithm. We use the environment formalism
to precisely describe the interaction of an algorithm with the outside world. This
allows for formal problem definitions that can encompass concerns of well-formedness
and timing-dependencies—that is, we can define both problems that require tight
correspondence with the rounds number and those that are agnostic to how many
rounds are used.

Our modeling framework also includes the following additional useful definitions and
theorems:

Problems

We formalize the concept of a problem as a mapping from environments to sets of I/O
trace probability functions (i.e., a function from traces to probabilities).! We say an
algorithm A solves a problem P with a channel C, only if for every environment &,
the trace probability function generated by the system (C, A, &) is in P(E).

The mapping-based definition allows us to capture well-formedness properties that
an environment must satisfy. For example, we can define a problem to map environ-
ments that do not satisfy a given well-formedness property to the set of all trace
functions; in effect saying that if the environment is misbehaved then all algorithms
solve the problem with that environment. The mapping to a set of distributions allows
non-determinism in the problem definitions (notice: the channel, process, and envi-
ronment automata are probabilistic but not non-deterministic), and the use of trace
probability functions instead of singleton traces allows us to capture probabilistic
behavior in our problems.

Channel Implementation

Our modeling framework allows us to capture a formal notion of channel implemen-
tation. That is, given a channel automaton C, we show how to transform it into a
problem P that captures precisely what it means for an algorithm to emulate the
behavior of C (in this emulation, messages are passed back and forth through the
algorithm’s I/O interface). This ability to implement channels using other channels
is a crucial issue in radio networks. Indeed, from a theoretical perspective, this is the
problem solved by the wireless link layer—it takes a poorly behaved “realistic” chan-
nel and tries to implement, from the point of view of the network layer and above,
a channel that is better behaved. As discussed in the upcoming sections, this link
layer approach is the strategy we adopt to tame channels suffering from adversarial
interference; we transform them into a better behaved channel before attempting to
solve hard problems.

1These functions are not distributions, as their domain includes finite traces and extensions of
these same traces.
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Figure 1-2: The composition algorithm A(B, C), where B is an algorithm that solves
a problem, and C is an algorithm that emulates a channel.

Among other questions this result makes tractable is the comparison of different
communication channel properties. If, for example, you could show that channel C
can implement C’, but C’ cannot implement C, you could claim that C’ is weaker
than C. Such meaningful comparisons are impossible without a formal definition of
channels and channel implementation.

Composition

Our modeling framework also includes two channel composition theorems. The first
proves that if an algorithm solves a problem P with some channel C, and another
algorithm implements channel C using channel C’, then we can construct a composition
algorithm that solves P on C’ (see Figure 1-2). The second theorem shows how to
compose a channel implementation algorithm A with a channel C to generate a new
composition channel C' (see Figure 1-3). We prove that A using C implements C'.
This result is useful for proving properties about a channel implementation algorithm
such as A.

These theorems, of course, are a crucial addendum to our formal notion of channel
implementation. The purpose of implementing a better-behaved channel using a
more difficult low-level channel is to allow the algorithm designers to program for the
former. These composition theorems formalize this intuition, providing the necessary
theoretical link between the algorithms, the high-level channel implementations, and
the low-level channel below.
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Figure 1-3: The composition channel C(A¢,C"), where A¢ is a channel implementa-
tion algorithm, and C’ is a channel.

1.2.2 Feedback Channel Implementations

The main realistic channel studied in this thesis is the t-disrupted channel. Recall,
this channel captures a single-hop radio network suffering from adversarial interfer-
ence. It is comprised of F separate communication frequencies. During each round,
each device chooses one frequency on which to participate. An abstract interference
adversary can disrupt up to t < F of these frequencies per round. Much of our exist-
ing work in this model focused on the gossip problem (31, 32, 40], producing efficient
algorithms that are, unfortunately, complicated to both describe and prove correct.
We attack such complexities—which seem intrinsic to the ¢-disrupted setting—by im-
plementing a better-behaved high-level channel on the ¢-disrupted channel. We then
design algorithms to work on this more tractable high-level option.

Specifically, we define the (¢, b, p)-feedback channel as the appropriate high-level
channel to consider. This channel behaves like a t-disrupted channel that provides
feedback to the devices regarding what was received on all F frequencies. We describe
both a deterministic and a randomized implementation of this feedback channel using
a low-level ¢t-disrupted channel.

Below we define the feedback channel and summarize the main ideas behind our
randomized and deterministic implementations.

The (t,b, p)-Feedback Channel

The (t,b, p)-feedback channel behaves like a ¢-disrupted channel with the following
exception: some devices receive on all F frequencies simultaneously while others
simply receive L. In contrast, on a ¢-disrupted channel, a process can participate on
only one frequency per round.

Formally, we say that with probability greater than or equal to p, at least n — b
of the n devices succeed in receiving on all channels simultaneously. For example, a
(t,0,1)-feedback channel is a t-disrupted channel in which all devices receive on all
frequencies during all rounds.
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To motivate this definition, we note that a key strategy for tolerating an interfer-
ence adversary, is to communicate on more frequencies than can be simultaneously
disrupted; this idea, for example, forms the core of our gossip solutions [31, 32, 40].
The difficulty of this approach, however, is coordinating the actions of the honest
devices—that is, keeping a consistent view of who avoided a disrupted frequency,
and who did not, in the previous rounds. Without this information, it is hard to
schedule future broadcast rounds without having the honest devices contend among
themselves. The feedback of the feedback channel eliminates this challenge, allowing
the algorithm designer to focus on the concerns specific to the problem at hand.

The Randomized Implementation

We present the RFC,, algorithm, which is a randomized implementation of a (¢,0,1—
#)—feedback channel that requires

Fle
e (]___.tlogn)

real rounds for each emulated round of the feedback channel. This algorithm uses a
listener/dissemination strategy. In each emulated round of the feedback channel, a
single distinguished listener device is stationed to receive on each frequency. After
the scheduled broadcasts complete, the devices choose frequencies at random and
the listeners broadcast what they received during the first round with a constant
probability. We prove that this period of random frequency hopping is long enough
to disseminate information from the listeners to all the devices in the system, with
high probability.

The Deterministic Implementation

We also present the DFC; js algorithm, which is a deterministic implementation of a
(t,t,1)-feedback channel that requires

e (F*|M|)

real rounds for each emulated round of the feedback channel, where |M| is the size
of a novel combinatorial object called a multiselector (these are formally defined and
bounded in Chapter 2, and informally described below). The value of |M| varies,
depending on both the size of ¢ compared to F, and whether the proof of the multi-
selector’s size is existential or constructive. The smallest value for |M| considered in
this thesis, which corresponds to ¢t < v/F and an existential proof, is O(tlog (n/t)),
giving DFC} s a runtime of:

© (F*tlog (n/t))

The largest value for |M| considered in this thesis, which corresponds to t > VF and
a constructive proof, is O(t' log’ (n)), giving DFC} y a runtime of:
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© (F*t'log’ (n))

This algorithm uses a similar listener/dissemination strategy. It cannot, however,
rely on the random hopping approach of the randomized solution—in this case we
assume no random information. To circumvent this difficulty we recruit many listeners
for each frequency. To disseminate feedback for a given frequency f, we position a
listener from f on each frequency, and have them continually broadcast what they
heard on f. We will then have the other devices receive on a shifting pattern of
frequencies in an attempt to receive at least one of these equivalent information
messages.

This leaves us with the problem of determining an efficient receiving schedule for
the non-listener devices. Here we make use of multiselectors. A non-trivial general-
ization of the selector [28, 49, 59]—a structure used in the design of single-frequency
radio network algorithms—the multiselector is a sequence of mappings of devices to
frequencies, first defined and constructed in [40].

A multiselector guarantees that for all subsets of a certain size, there exists a map-
ping that splits the subset elements onto distinct frequencies. By listening according
to an appropriately parameterized multiselector, we ensure that most devices receive
the information (i.e., evade disruption at least once).

We repeat the above procedure of having a group of listeners broadcast on unique
frequencies, while the other processes receive according to a multiselector, for all of
the listener groups, allowing most devices to acquire the needed feedback knowledge.
(This description elides some of the subtle issues tackled by the DF'C' algorithm—such
as handling listeners devices have a message to broadcast.)

1.2.3 Set Agreement, Gossip, and Reliable Broadcast Solu-
tions

To prove the utility of the (t,b, p)-feedback channel we present algorithms that use
this channel to solve set agreement, gossip, and reliable broadcast—three fundamental
building blocks for distributed communication and coordination.

Consider, for example, the simple solution to k-set agreement, using a feedback
channel, described in Figure 1-4. (For an explanation of this pseudocode format,
see Section 7.2.) Whereas this problem would be difficult to solve on a t-disrupted
channel, the feedback provided by our the feedback channel enables a simple solution.

In this example algorithm, k+1 > ¢ devices transmit on different frequencies. All
devices then decide on the smallest value received, if they succeed in hearing from
all frequencies, and otherwise they decide their own value. With probability p', at
most k' do not receive on all frequencies—the rest decide the same minimum value
derived from their common feedback. Provided that k' < k, with probability p’, no
more than k values will be decided.

After providing a formal proof of the set agreement problem, and the correctness
of our solution, we proceed to describe solutions to both (v,d)-gossip and (c,p)-
reliable broadcast. The (v, §)-gossip problem is a generalization of all-to-all gossip
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Local state for Process i:
m, € V UL, initially 1.
fi € [F), initially 1.

For round r = 1:
I, —« INPUT,()
if (¢ <t+1) then
m; « L,[p]
fie—i
BCASTi(fi,mi)
N, «— RECV;()
if (N; = L) then
O.[p) < Ii[p]
else
O;[p] — min(N;)
OUTPUT;(0O,)

Figure 1-4: Solving k-set agreement, with probability at least pagree, using a (¢, k', p’)-
feedback channel, with k' < k, p’ > pagree: code presented for process i.

that requires devices to disseminate at least (1—v)n of the n rumors to at least (1—4)n
devices. And the (c,p)-reliable broadcast problem is a generalization of standard
reliable broadcast that requires, with probability p, for messages to disseminate to at
least m — ¢ of the receivers.

Our solutions for gossip and reliable broadcast are more involved than the toy
example of set agreement. But in both cases, the power of the feedback channel
significantly reduces their potential complexity. By combining these results with
our feedback channel implementation algorithms and our composition theorems, we
generate solutions that work on with a ¢-disrupted channel.

1.2.4 Ad Hoc Networks and Wireless Synchronization

The main model we consider in this thesis assumes that all devices start during the
same round. It also assumes that n, the total number of participating devices, is
known in advance. These assumptions simplify the development and verification of
algorithms. In real deployments, however, these assumption do not necessarily hold.
This is especially true for ad hoc networks.

In the final part of our thesis, we loosen our model in two ways:

1. Devices do not necessarily start during the same round.

2. Device know only a loose upper-bound on the total number of devices that will
eventually participate.

We call this the ad hoc radio network model. In this model, we tackle the wireless
synchronization problem which requires devices to agree on a global round numbering.
In more detail, this problem requires all active devices to output a value from N, =
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{L} UN in each round. Once a device outputs a value from N, it must never again
output L. We require that devices output values from N in increasing order, with
each value exactly 1 larger than its predecessor. Finally, we require that all non-_L
values output during a given round must be the same and that all devices eventually
stop outputting L. At a high-level, this problem requires devices to agree on a round
number.

We describe and prove correct a solution to the wireless synchronization problem.
This algorithm runs on a ¢-disrupted channel in an ad hoc setting, and guarantees
that every device synchronizes within

F 9 Ft
1
(0] (]___tlog n—i—]___t ogn)
rounds of being activated. We then discuss a strategy for using such a solution to

adapt non ad hoc algorithms to this model. At a high-level, the strategy can be
summarized as follows:

1. Divide up rounds into epochs of length z, for some constant x. Let each new
epoch start at the rounds in E = {r | r mod z = 0}.

2. Once a process is started and synchronizes to the current round number (i.e.,
stops outputting L) it considers itself a “participant.”

3. At each round in E, all participants run a simple, fixed-round announcing pro-
tocol to disseminate the set of participants. A simple announcing protocol might
have participants select frequencies at random and then broadcast their id with
a reasonable probability.

4. During the rounds after the announcing protocol and before the next epoch
begins, all participants who participated in the full announcing protocol can
emulate the original radio network model, starting from round 1.

We claim this strategy could potentially be formalized to allow us to run a fixed-length
emulation of a synchronous start-up model every z rounds. During this emulation
we could execute, for example, our feedback channel implementation and arbitrary
protocols—e.g., broadcast, consensus, gossip—on top of the feedback channel.

1.3 Overview of Thesis Chapters

To simplify navigation of this thesis, we provide below a roadmap to the chapters
that follow. In Section 1.4 we describe several alternate paths through these chapters
for readers who are more interested in the algorithms of the later parts, and less
interested in the formal modeling details presented in the early parts.

Chapter 1: Introduction. This chapter contains the introduction that you are
currently reading.
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Chapter 2: Mathematical Preliminaries. This chapter contains the basic math-
ematical notation, definitions, and theorems that are used throughout the thesis.

Part I: Channel Models

Chapter 3: Model. This chapter contains the basic model definitions, including
the specifications of an environment, algorithm, channel, execution, and trace.

Chapter 4: Problems. This chapter contains the formal definition of a problem
and what it means to solve a problem. It also specifies delay tolerance, an important
problem constraint, and details what it means for a channel to implement another
channel.

Chapter 5. Composition. This chapter contains our two main composition re-
sults. The first concerns the composition of a problem-solving algorithm with a
channel implementation algorithm to produce a new algorithm. The second concerns
the composition of a channel implementation algorithm with a channel to produce a
new channel.

Chapter 6. Channels This chapter contains formal definitions of the t-disrupted
and (t, b, p)-feedback channel properties studied throughout the rest of the thesis. It
also includes definitions of the partial collision and total collision properties, both of
which are used frequently in existing work on radio networks.

Part II: Algorithms for Implementing a Feedback Channel

Chapter 7: Preliminaries. This chapter contains some notation that will prove
useful throughout Part II. It also defines the pseudocode template that we use to
efficiently and precisely describe our process definitions for the remainder of the thesis.

Chapter 8: The RFC.; Randomized Channel Algorithm. This chapter con-
tains the description and correctness proof for our randomized implementation of a
feedback channel.

Chapter 9: The DFC; ) Deterministic Channel Algorithm. This chapter
contains the description and correctness proof for our deterministic implementation
of a feedback channel.

Part III: Algorithms for Solving Problems Using a Feedback
Channel

Chapter 10: Preliminaries. This chapter contains some notation and definitions
that will prove useful throughout Part III.
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Chapter 11: k-Set Agreement This chapter contains the description and correct-
ness proof of the SetAgree; algorithm, which solves set agreement using a feedback
channel.

Chapter 12: (,0)-Gossip This chapter contains the description and correctness
proof of the FastGossip, ., algorithm, which solves (7, §)-gossip using a feedback
channel.

Chapter 13: (c,p)-Reliable Broadcast This chapter contains the description
and correctness proof of the RBcast,,x algorithm, which solves (c, p)-gossip using a
feedback channel.

Part IV: Ad Hoc Networks

Chapter 14: Preliminaries. This chapter contains some notation and definitions
that will prove useful throughout Part IV.

Chapter 15: The Ad Hoc Radio Network Model. This chapter contains the
formal definition of the ad hoc variant of our radio network model.

Chapter 16: The Wireless Synchronization Problem This chapter contains
the description and correctness proof of the Trapdoor; algorithm, which solves the
wireless synchronization problem using a ¢-disrupted channel. It also discusses the
use of such a solution to overcome the difficulties of an ad hoc setting.

1.4 Two Alternative Paths Through this Thesis

For the reader more interested in the algorithms of Parts II, III, and IV, and less
interested in the modeling details of Part I, we present two alternative paths through
this thesis.

Path 1: No Formal Model Details. The first path bypasses most of Part I to fo-
cuses on the basic ideas behind the algorithms of the later parts. A reader interested
in this path should start by reading the mathematical preliminaries in Chapter 2,
and the informal descriptions of the t-disrupted and (t, b, p)-feedback channels in Sec-
tion 6.2. The reader can then proceed to the algorithms presented in Parts II and
III. For each of these algorithms, the problem overview, pseudocode and algorithm
overview should be easily understandable without knowledge of the formal model.
The formal problem definitions and correctness proofs, however, will be difficult to
follow without this knowledge. It is advised, therefore, that the reader following
this path should skip these definitions and proofs. The reader should then proceed
to Part IV. The summary included at the beginning of this part provides a high
level overview of the ad hoc variant of our modeling framework that is presented in
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Chapter 14. The reader should read the overview but then skip the details of Chap-
ter 14 and continue on to the wireless synchronization problem solution presented
in Chapter 15. As with the preceding algorithms, the reader should read the prob-
lem overview, pseudocode, and algorithm description, but skip the formal problem
definition and algorithm correctness proofs.

Path 2: Only Essential Formal Model Details. The second path is designed
for the reader who wants to understand the correctness proofs for the algorithms,
but is willing to trust that the composition results are correct. This reader should
read the thesis chapters in order, skipping Chapter 5. Though avoiding only a single
chapter might not seem to save much complexity, the reader following this path should
take comfort in the knowledge that Chapter 5 is arguably the most complex of those
included in this thesis.

1.5 Additional Related Work

In Section 1.1 we surveyed the related work most directly connected to the results of
this thesis. In this section, we adopt a wider perspective, and survey the full history
of the theoretical study of radio networks. We begin with the earliest radio data
network protocols of the 1970’s and end with the 2004 paper that opens Section 1.1.

1.5.1 Early Work on Radio Networks

Early interest in radio data networks dates to 1970 with the development of the
ALOHA protocol [2]. Originally conceived for communication between the Hawai-
ian Islands, ALOHA had devices send data packets as they arrived. If they fail to
receive an acknowledgment from the destination they can attempt a retransmission
after a random interval. Roberts [79] later refined the protocol to include communi-
cation slots. The resulting slotted scheme can be modeled and analyzed as a Markov
chain. As Kaplan [50] established, the resulting chain is non-ergodic—as the arrival
rate increases, the system descends into instability. It was shown, however, that for
any arrival rate A < 1/e it is possible to dynamically adjust the packet broadcast
probability to ensure stability [45].

This model was generalized as a single-hop multiaccess channel with collisions and
transmitter collision detection. In the late 1970’s and into the 1980’s, research on these
channels turned to more advanced algorithms that could overcome the arrival rate
limitation of the ALOHA-style random back-off solutions, namely splitting algorithms,
which increased maximum ) values to as high as .587; c.f., [14, 46, 82]. This class of
solution uses a more advanced back-off strategy in which the set of collided messages
is repeatedly divided until it reaches a size that succeeds.

Kleinrock and Tobagi [52] introduced the concept of carrier sensing—allowing
devices to detect channel use before attempting a broadcast. The simple slotted
ALOHA style protocols could be modified to use this new capability and subsequently
perform competitively with the more complicated splitting algorithms.
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See Gallager’s 1985 paper on multiaccess channels for a more technical overview
of these early results [36].

1.5.2 The Modern Radio Network Model

The work on radio channels that dominated the 1970’s and 1980’s focused on an
idealized single-hop model with transmitter collision detection. Researchers assumed
all devices were generating messages at a fixed rate, and they pursued the goal of
achieving stable throughput. Much of the modern theoretical analysis of radio net-
works differs from this model into two key points. First, the transmitter collision
detection is removed in favor of either no detection or the basic ability for a receiver
to distinguish between silence and collision. Second, the model of packets arriving at
all devices at a regular rate is now often replaced with a single source node trying to
communicate a single message to the entire network. This is commonly dubbed the
reliable broadcast problem.

The first study to capture this modern model was the work of Bar-Yehuda, Gol-
dreich, and Itai. Their seminal paper on broadcast in a radio network [8] modeled
a multi-hop network in which there was no transmitter or receiver collision detec-
tion. Devices are assumed to only know their label and the label of their neighbors.
They describe a randomized algorithm with expected runtime of O(D logn + log n?)
rounds, and demonstrate a class of diameter 2 network graphs on which deterministic
solutions require Q(n) rounds.

The original BGI paper claimed their lower bound held for a model in which col-
liding broadcasts always lead to collisions—causing the receivers to hear silence. In
a subsequent errata notice [9], the authors refined the linear lower bound to hold
only for a more pessimistic model in which one of the colliding broadcasts might
be received. Kowalski and Pelc [58] later demonstrated that in the original collision
model, there exists an O(logn) deterministic broadcast algorithm for this same class
of small diameter networks. They also describe a sub-linear algorithm for any net-
work with o(loglogn) diameter, and show the existence of diameter 4 networks that
require £2(n!/*) rounds for a deterministic solution. Coupled with the randomized
algorithm of BGI, this result establishes the exponential gap between determinism
and randomization originally proposed in the earlier work. In [56, 29] the random-
ized algorithm of [8] is improved to O(Dlogn/D + log?n). Most subsequent work
assumes this stronger condition that two or more concurrent broadcasts always yields
a collision.

The early 1990’s also found interest applied toward centralized deterministic so-
lutions to broadcast. In [17] a O(Dlog®n) solution was proposed, which was later
improved in [35] to O(D + log’n). Alon et al. [6] established a lower bound of
Q(log®n).

Another popular variation was to study distributed algorithms with even less
information than in [8, 58, 56, 29]. Under the assumption that devices know only
their own labels (and not the number or identity of their neighbors), Chlebus et al.
described a deterministic upper bound that runs in time O(n). This was later proven
optimal [57]. In terms of randomized lower bounds in this setting, Kushelevitz and
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Mansour proved Q(D logn/D) to be necessary. Considering that the Q(log® n) bound
of [6] also holds for randomized algorithms, this implies that the O(Dlogn/ D+log? n)
solution of [56, 29] is optimal.

The above citations still capture only a fraction of the endless variations under
which the broadcast problem has been studied. Other constraints thrown into the
modeling mix include: a bound A on the maximum degree of the network graph;
receiver-side collision detection; geometric constraints on the node deployment (e.g.,
unit disk graphs); and the ability of devices to broadcast spontaneously—that is,
before receiving the broadcast message. Each unique subset of constraints yields its
own research lineage. A more extended summary of these results can be found in the
related work section of [58].

1.5.3 Beyond Broadcast

Though broadcast is the standard problem studied in the radio model, it is not the
only problem. Consider, for example, the wake-up problem [18, 24, 37], which has
devices in a radio network activated according to an arbitrary (perhaps adversarial)
schedule, and tries to minimize the time between the first activation and the first
non-collided transmission.

Other problems that have received considerable attention in this radio model
include gossip [25, 38], leader election [70], and consensus [72, 23, 21]. The latter
papers weaken the radio model by allowing for more arbitrary behavior when collisions
occur. It also augments devices with variable-strength receiver-side collision detectors.

1.5.4 Tolerating Failures in Radio Networks

The introduction of device failures in the radio network model begins in the late
1990’s—surprisingly late considering the long-term focus on fault-tolerance in the
classical distributed computing literature.

Crash Failures. A 1997 paper by Pagani and Rossi [75] studies radio broadcast
resilient to transient send and receive failures. The next year, Kushelevitz and Man-
sour [65] considered a radio channel in which each bit of a message is flipped with a
given probability.

The first appearance of classic device failures appeared in the work of Kranakis
et al. [60, 61] which considers broadcast on mesh networks with up to ¢ devices
permentantly failed (i.e., they begin the execution in a failed state). For the oblivious
case they prove a tight bound of ©(D + t) rounds and for the adaptive case ©(D +
logmin{R,t}), where R is the transmission radius in the mesh and ¢ a bound on
failures. Five years later, Clementi et al. [27] noted that any algorithm designed for
an unknown network (i.e., a model in which each device knows only its own label)
will also work in the permenant failure model of Kranakis (e.g., [57]).

In [27], Clementi et al. considered crash faults that can occur at any point during
the execution.
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They proved a lower bound of Q(Dn) rounds for oblivious broadcast, and show
that it holds for the adaptive case if D = ©(y/n). The surprising implication is
that a simple round-robin approach is optimal for dealing with crash failures. If the
maximum in-degree A is o(n/logn), however, they can improve their upper bound
to O(D - min{n, Alogn}).

In single-hop radio networks, crash failures were first studied in the context of
the classic Do-All problem. A pair of papers [19, 26] in 2001 and 2002, investigate
optimal solutions in this model.

Adversarial Failures. This brings us, finally, to the work we reviewed in sec-
tion 1.1, which we describe as the direct motivation for the work in this thesis. See
Section 1.1 for details.
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Chapter 2

Mathematical Preliminaries

Here we define some notation, constants, concepts and facts used throughout the
thesis.

2.1 Notation and Constants

We begin with the following useful notation:

e We use [i], for any positive integer Z, to denote the integer set {1,...,7}.

e We use S¢, for some non-empty value set S and positive integer 4, to denote all
vectors of length 7 consisting only of values from S.

e We use i-vector, for positive integer i, to refer to a vector of size ¢.
e We use the notation P(S), for non-empty set S, to describe the powerset of S.

e We use the '+’ symbol within a function call to indicate a wildcard character—
that is, it represents for all inputs from the corresponding domain set.

e Given a set S, we used the notation S, to describe the set S U {L1}.
We continue by fixing the following constants:

e Let M, R, Z, and O be four non-empty value sets that do not include the value
1.
(These represent the possible sent messages, received messages, environment in-
puts, and environment outputs, respectively. Notice, we use a different alphabet
for sent and received messages, as the latter might include additional symbols
unique to the act of receiving; e.g., collision indicators or partial information
about what was detected on the channel.)

e Let n and F be integers greater than 0.
(They describe the number of processes and available communication frequen-
cies, respectively.)
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We also introduce the following additional notation, which is defined with respect to
these constants:

e We call a vector from (Z,)" an input assignment.

e We call a vector from (O, )" an output assignment.

e We call an input or output assignment empty if and only if it equals L.
e We call a vector from (M )" a send assignment.

e We call a vector from [F]" a frequency assignment.

e We call a vector from (R )™ a receive assignment.

2.2 Probability Facts

The following theorems will be used in several locations throughout the thesis where
probabilistic analysis is required.

Theorem 2.2.1 (Useful Probability Facts) The following two facts hold:
1. For any probability p > 0: (1 —p) < e™P.
2. For any probability p < 1/2: (1 —p) > (1/4)P.

Proof. We begin with the first fact. We know from Bernoulli that:

lim ((1 - %)") =1/e

n—00

For 2,0 < z < 1, we can rewrite the equation as an inequality:

(1-z)= < 1/e

Given some probability p > 0, we can use the above inequality to prove our fact:

1-p = (a-»)
< (1/ey
= ¢®

The second fact follows from a simple argument concerning the shape of the two
relevant graphs. Notably, between the points p = 0 and p = 1/2, the curve for (1/4)?
is concave—bounded from above by (1 — p). ]

Theorem 2.2.2 (Union Bound) For arbitrary events &y, &, ..., &k,

pr] J&] < Z Pr(&]

i=1
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2.3 Multiselectors

The DFC, 5 protocol, presented in Chapter 9 makes use of a combinatorial object
called a multiselector. Multiselectors generalize the the selector family of combina-
torial objects [563, 12]. Whereas selectors are sometimes used to solve problems in
single frequency radio networks, we use multiselectors for to solve problems in multi-
ple frequency networks. These objects were first introduced in [40]. The definitions
and theorems provided below all come from this original paper.

Definition 2.3.1 An (n,ck)-multiselector, where n > ¢ > k > 1, is a sequence of
functions My, Ma, ..., My, from [n] — [c]|, such that:

For every subset S C [n], where |S| = k, there exists some £ € [m] such that
M, maps each element in S to a unique value in [c], that is, Vi,j € S, i # j:

My(é) # Me(5)-

The next theorems establishes the existence of (n, ¢, k)-multiselectors and bounds
their size. The proofs for the first two theorems are non-constructive.

Theorem 2.3.2 (From [40]) For everyn > ¢ > k, there exists an (n, c, k)-multiselector
of size:

— . ke en

c/2<k<c : ke*ln<t
2 en
k<c/2 : k2*/clne

For the case where ¢ >> k, we can prove the existence of more efficient multise-
lectors.

Theorem 2.3.3 (From [40]) For everyn > c¢ > k?, there exists an (n, ¢, k)-multiselector
of size O(klog(n/k)).

In [40] we also show how to explicitly construct multiselectors. The resulting sizes,
however, are larger than those produced by the existential proofs. In the following
two theorems, the notation “we can construct a (n, ¢, k)-multiselector” indicates that
we specify an algorithm, in the accompanying proofs, that produces an (n,c,k)-
multiselector as output.

Theorem 2.3.4 (From [40]) For every n,c,k, n > c¢ > k, we can construct a
(n, ¢, k)-multiselector of size O(k* log®n).

As with the existential proofs, a large ¢ relative to k provides a more efficient
construction.
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Theorem 2.3.5 (From [40]) For every n > ¢ > k*, we can construct a (n,c,k)-
multiselector of size O(k®log®n).

In the presentation of the FastGossip; algorithm, in Chapter 12.2, we make use
of a generalization of the multiselector, called, for obvious reasons: a generalized
multiselector. As with the regular multiselectors from above, this structure was first
introduced in [40], which provided the following definition:

Definition 2.3.6 (From [40]) A generalized (n,c,k,r)-multi-selector, wheren > ¢ >
k> 1andn > r, is a sequence of functions My, Ms, ..., My, from [n] — [0, c] such
that:

For every subset S C [n] where |S| = r, for every subset S’ C S where |S'| =k,
there exists some £ € {1,...,m} such that (1) M, maps each element in S’ to
a unique value in {1,...,c}, and (2) My maps each element in S\ S’ to 0.

In [40], we proved the following about the size of these objects:

Theorem 2.3.7 (From [40]) For everyn > r > ¢ > k where n > 2r, there exists

(n, ¢, k, r)-multi-selectors of size O (rgfr—,i,:&k log (en/r)) or O (r% log (en/r)).
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Part 1
Channel Models
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In Part I we describe our radio network modeling framework. In Chapter 3, we define
the basic components of our model and their execution. In Chapter 4, we define a
problem and what it means to solve a problem. We also introduce a special type of
problem that corresponds to implementing a channel. We continue, in Chapter 5, by
proving our two composition theorems. The first composes a problem-solving algo-
rithm and a channel emulation algorithm to generate a new algorithm. The second
composes a channel emulation algorithm and a channel to generate a new channel.
We conclude the part with Chapter 6, which formalizes the channel properties studied
in the remainder of this thesis.
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Chapter 3
Model

We model n distributed probabilistic processes that operate in synchronized time
slots and communicate on a shared radio channel comprised of F independent com-
munication frequencies. We assume that all processes start during the same round,
and each has a unique id in the range 1 to n, where the value of n is known. Later,
in Part IV, we describe how to relax these assumptions.

The processes communicate with each other using the radio channel. We assume
that each process chooses a single frequency on which to send or receive messages
during each round. The processes can also interact with the environment through
input and output ports. In each round, each process can receive a single input value
from the environment and return a single output value.

3.1 Systems

We formalize our setting with a collection probabilistic automata. Specifically, we
use one such automaton to model each process (and label the collection of all n
processes an algorithm), another automata models the channel, and another models
the environment. The combination of an algorithm, channel, and environment defines
a system (see Figure 3-1). We define each component below. In the following, we use
the notation finite support, with respect to a discrete probability distribution over
some sample space S, to indicate that the distribution assigns non-zero probability
to only a finite subset of elements from S.

Definition 3.1.1 (Channel) A channel is an automaton C consisting of the follow-
ing components:

e cstatesc, a potentially infinite set of states.
e cstartc, a state from statesc known as the start state.

e crandc, for each state s € cstatesc, a discrete probability distribution with finite
support over cstatesc.
(This distribution captures the probabilistic behavior of the automaton.)
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Figure 3-1: A system including environment E, algorithm A (which consists of n
processes, A(1),...,A(n)), and channel C. The arrows connecting the environment
and processes indicate that the environment passes inputs to the processes and the
processes return outputs in exchange. The arrows between the processes and the
channel capture the broadcast behavior: the processes pass a message and frequency
to the channel which returns a received message.
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e crecve, a message set generation function that maps cstatese X (M )" x [F]|"
to (R _L)n.
(Given the message sent—or L if the process is receiving—and frequency used
by each process, the channel returns the message received—or L if no messages
is received—by each process. Notice that this function is deterministic; proba-
bilistic behavior is capture by crandc.)

e ctransc, a transition function that maps cstatesc x (M) x [F]" to cstatesc.
(The state transition function transforms the current channel state based on
the messages sent and frequencies chosen by the processes during this round.
Notice that as with crecve this function is deterministic; probabilistic behavior
is captured by crandc.)

Because we model a channel as an automaton, we can capture a wide variety
of possible channel behavior. It might, for example, describe a simple single-hop
radio channel with fixed deterministic receive rules. On the other hand, it could
also encode a complex multihop topology and a sophisticated (perhaps probabilistic)
physical layer model. It can even describe adversaries with precise power constraints,
such as those included in the t-disrupted and (t, b, p)-feedback channel properties of
Chapter 6.

We continue with the definition of an environment.

Definition 3.1.2 (Environment) A environment is an automaton £ consisting of
the following components:

e estatesg, a potentially infinite set of states.
e estartg, a state from estatesg known as the start state.

e erandg, for each state s € estatesg, a discrete probability distribution with
finite support over estatesg.
(This distribution captures the probabilistic behavior of the automaton.)

e eing, an input generation function that maps estatesg to (Z.)".
(This function generates the input the environment will pass to each process
in the current round. The L placeholder represents no input. Notice that this
function is deterministic; all probabilistic behavior is captured by erands.)

e etransg, a transition function that maps estatesg X Oy to estatesg.
(The transition function transforms the current state based on the current state
and the outputs generated by the processes during the round. The L placeholder
represents no output. Notice that this function, as with eing, is deterministic;
all probabilistic behavior is captured by erands.)
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Environments model the interaction of the outside world with the processes. It
allows us to capture well-formedness conditions on the inputs provided to our pro-
cesses in terms of constraints on environment definitions. We continue with our final
automata type, the process.

Definition 3.1.3 (Process) A process is an automaton P consisting of the follow-
g components:

e statesp, a potentially infinite set of states.
e startp, a state from statesp known as the start state.

e randp, for each state s € statesp, is a discrete probability distribution with
finite support over statesp. (This distribution captures the probabilistic behavior
of the automaton.)

e msgp, a message generation function that maps statesp x I, to M.
(Given the current process state and input from the environment—or L if no
input—this process generates a message to send—or L if it plans on receiv-
ing. Notice that this function is deterministic; all the probabilistic behavior is
captured by randp.)

e freqp, a frequency selection function that maps statesp x I, to [F).
(This function is defined the same as msgp, except it generates a frequency to
participate on instead of a message to send. Notice that this function, as with
msgp, is deterministic; all the probabilistic behavior is captured by randp. )

e outp, an output generation function that maps statesp x I, x Ry to O,.
(Given the current process state, input from the environment, and message re-
ceived, it generates an output—or L if no output—to return to the environment.
Notice that this function, as with the two above, is deterministic; all the proba-
bilistic behavior is captured by randp.)

e transp, a state transition function mapping statesp x Ry X I, to statesp.
(This state transition function transforms the current state based on the input
from the environment and the received message. Notice that this function, as
with the three above, is deterministic; all the probabilistic behavior is captured
by randp.)

We combine the processes into an algorithm.

Definition 3.1.4 (Algorithm) An algorithm A is a mapping from [n] to processes.

As a useful shorthand, we sometimes refer to a process .A(Z) of an algorithm A,
for i € [n], simply as process %, or just i, if the process as implied by the context.
We can now pull together the pieces.
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Definition 3.1.5 (System) A system (£,A,C), consists of an environment &£, an
algorithm A, and a channel C.

Before continuing with the definition of an execution. we demonstrate the utility of
our formalism by defining several standard algorithm constraints.

Definition 3.1.6 (Deterministic Process) We say a process P is deterministic if
and only if Vs, s' € statesp,s # s : randp(s)(s) = 1, and randp(s)(s’) = 0.

That is, a deterministic process is defined such that its probabilistic state trans-
formation is the identity function. We can now combine deterministic processes to
yield a deterministic algorithm.

Definition 3.1.7 (Deterministic Algorithm) We say an algorithm A is deter-
mianistic if and only if for all i € [n], A[i] is a deterministic process.

Finally, we capture the special case of algorithms that do not assume unique
identifiers (or asymmetric knowledge).

Definition 3.1.8 (Uniform Algorithm) We say an algorithm A is uniform if and
only if it maps all values from [n] to the same process.

3.2 Executions
We now define an execution of a system (&, .A,C).

Definition 3.2.1 (Execution) An execution of a system (£, A,C) is a (potentially
infinite) sequence

SOy CO; EO) Rf’ RlcaRlE) Il) Mla F17 N17 Ol’ Sla 017 El7

where for allt > 0, S, and RS are n-vectors, where for each i € [n], S.[i], RZ[i] €
A(i), C, and RS are in cstatesc, E, and RE are in estatesg, M, is in (ML), F; is
in [F]", N, is in (R1)", I, is in (Z.)", and O, is in (OL)". We assume the following
constraints:

1. If finite, the sequence ends with an environment state E,, for somer > 0.
2. Vi € [n] : Soli] = start 40

3. Cy = cstarte.

4. Eg = estartse.

5. For every round r > 0:

(a) Yi € [n] : R[i] is selected according to distribution randg)(Sy-1[z]).
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(b) RS is selected according to crandc(Cr_1).

(c) RE is selected according to erandgs(Er_1).

(d) I, = eing(RE).

(e) ¥i € [n] - Myl = msgaq (RS, T i) and Fyli = freqaq (RS, L.
(f) N, = crecve(RS, M;, F}.).

(9) Vi € [n) : O] = out.agy (RE], L, Ny ).

(h) Vi € [n] : Sp[i] = transA(,-)(Rf[z'], N, [i], I.[7])-

(i) C, = ctranse(RE, M,, F;).

(i) E, = etranse(RE, O,).

Our execution definition has each process, the channel, and the environment start
in their well-defined start states (conditions 1-3). It then models each round r > 0
unfolding as follows. First, the processes, environment, and channel transform their
states (probabilistically) according to their corresponding rand distribution (4.a4.c).
Next, the environment generates inputs to pass to the processes by applying ein to
its current state (4.d). Next, the processes each generate a message to send (or L
if they plan on receiving) and a frequency on which to do this sending or receiving,
by applying msg and freq to their current states (4.e). Next, the channel returns
the received messages to the processes by applying crecv to the channel state and
the messages and frequencies selected by the processes (4.f). Next, the processes
generate output values to pass back to the environment by applying out to their
state, the environment input, and the received messages (4.g). Finally, all automata
transition to new states by applying their transition functions to all relevant inputs
from the round (4.h—4.j).

Much of our later analysis concerns finite executions. Keep in mind, by condition
1, a finite execution must end with an environment state assignment, E,, for r > 0.
That is, it contains no partial rounds.

Give a finite execution of a system, we define a function () that returns the prob-
ability of that execution being generated by the system. This function will provide
the foundation for definitions that concern the probability of various behaviors in our
model.

Definition 3.2.2 (Q) For every system (£, A,C), and every finite execution o of
this system, Q(E,A,C,a) describes the probability that (€, A,C) generates . That
is, Q(€, A, C, ) is the product of the probabilities of probabilistic state transformations
in « as described by randy, crande, and erandg.

3.3 Traces

We define a trace as a sequence of input and output vectors. This captures the
interaction of an algorithm with the environment. As is standard in the modeling
of distributed systems, we will later define problems in terms of allowable traces and
their respective probabilities.
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Definition 3.3.1 (Trace) A trace t is a (potentially infinite) sequence of vectors
from (Z.)" U (OL)". Let T be the set of all traces.

To make use of traces, we need a formal notion of the probability of a system
generating a fixed trace. We tackle this challenge with the introduction of a trace
probability function, which is a function that maps finite traces to probabilities.

In this section we define two useful trace probability functions that correspond
to systems. They return the probability that the corresponding system generate a
given trace passed as input. Before describing these functions, however, we need
the following three helper definitions, which are useful for extracting traces from
executions.

e The function io maps an execution to the subsequence consisting only of the
(Z,)™ and (O )™ vectors.

e The function cio maps an execution a to ¢o(a) with all 1™ vectors removed.
The ¢’ in cio indicates the word clean, as the function cleans empty vectors
from a finite trace. Notice, both input and output value vectors can equal 1",
as both Z;, and O include _L; cio, however, makes no distinction between input
and output when cleaning out these vectors.

o The predicate term returns true for a finite execution ¢, if and only if the
output vector in the final round of o does not equal L.

We now define our two trace probability functions: D and D;;. The difference
between D and Dy is that the latter ignores empty vectors—that is, input or output
vectors consisting only of L. (The letters ¢f abbreviate “time free,” as it ignores the
amount of time elapses between meaningful inputs and outputs.)

We use term in conjunction with cio in the definition of Dy, to prevent a prefix
and an extension of the prefix (with only L™ inputs and outputs in the extension)
from both being included in the sum for a given trace. (The helper function cio would
map both the prefix and its extended version to the same trace.)

Definition 3.3.2 (D & D) For every system (£,A,C), and every finite trace {3,
we define the trace probability functions D and Dy as follows:

o D(E,A,C,B) = Ltioiars AE A,C, ).
° th(g’ 'A’ C’ ﬁ) = Za|term(a)/\cio(a)={3 Q(ga A7 C, Ol) .

Given a system (€, A, C) and a finite trace 8, D(€, A, C, B) returns the probability
that this system generates this trace, while D;¢(&, A,C, B) returns the probability
that the system generates a trace that differs from § only in the inclusion of extra
L™ vectors.

Notice, these functions are not distributions. If you sum them over all traces for
a given system you can generate a value much greater than 1. This follows because
the domain of the functions are finite traces, meaning that such a sum would include
traces and their own extensions. Both functions are distributions, however, when
considered over all traces of some fixed length.
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Chapter 4

Problems

In this chapter we provide a formal definition of a problem, in terms of traces, and then
provide two definitions of solving a problem—one that considers the rounds between
“meaningful” inputs and outputs (i.e., not L™) and one that does not.

4.1 Problems, Solving, and Time-Free Solving

We begin by defining a problem as a function from environments to sets of trace
probability functions. At a high-level, this function describes for each environment
(that is, each source of inputs to the algorithms), what behavior would be considered
solving the problem with respect to that environment. This approach simplifies the
handling of well-formedness, as, for example, one can define a problem to say: if an
environment does not behave as the algorithm expects, then map to all possible trace
probability functions.

Definition 4.1.1 (E) Let E be the set of all possible environments.

Definition 4.1.2 (Problem) A problem P is a mapping from E to sets of trace
probability functions.

We can now specify two notions of solving a problem: solves and time-free solves.
The former considers L™ vectors while the latter ignores them.

Definition 4.1.3 (Solves & Time-Free Solves) We say algorithm A solves prob-
lem P using channel C if and only if:

e VEC E,AF € P(E),VB€T: D, AC,B)=F(B).
(Or, equivalently: VE € E : \B D(E, A,C,B) € P(£).)

We say A time-free solves P using C if and only if:

o VE€ E,IF € P(E),VB €T : Dy(E,AC,B)=F(B).
(Or, equivalently: YE € E : A\ D;s(E, A,C,B) € P(£).)

Both definitions capture the idea that for all environments &£, the trace probability
function D(E, A,C, *) for the fist case, and Dy(€,A,C, *) for the second case, must
be in the set P(£).
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4.2 Delay Tolerant Problems

In the presentation of the composition algorithm, in Section 5.1 of Chapter 5, we
restrict our attention to environments that are indifferent to delays. That is, they
behave the same regardless of how many rounds of empty (L") outputs are generated
by the algorithm between the more informative, non- L™, outputs. We can capture
this behavior with the following automaton constraints.

Definition 4.2.1 We say an environment & is delay tolerant if and only if for every
state s € estatesg and § = etranseg(s, L™), the following conditions hold:

1. eing(§) = L™
(If the environment is in a marked version of state s—i.e., the state, 3, gener-
ated when the environment is in some state s, and then receives output L™ from
the algorithm—the environment always returns L™ as input.)

2. erandg(3)(8) = 1.
(If the environment is in a marked state, the environment stays in that state
during the probabilistic state transformation at the beginning of each round.)

3. etransg(§, L™) = 8.
(If the environment is in a marked state and receives 1™ from the algorithm, it
stays in the same state when the transition function is applied at the end of the
round.)

4. For every non-empty output assignment O, etransg(§, O) = etransg(s, 0).
(If the environment is in a marked version of state s, and then receives an
output assignment O # L™, then it transitions as if it were in state s receiving
this output—in effect, ignoring the rounds spent marked.)

A delay tolerant environment behaves in a special manner when it receives output
1™ from the algorithm. Assume it is in some state s when this output is received.
The environment transitions to a special marked version of the state, which we denote
as 8. It then cycles on this state until it receives a non- L™ output from the algorithm.
At this point it transitions as if it were in the unmarked state s—effectively ignoring
the rounds in which it was receiving empty outputs. That is, whether it was in
the marked state for 1 round or 1000 rounds, when it receives a non-1" output, it
transitions as it would had it never received the interceding empty inputs.

We use this definition of a delay tolerant environment to define a delay tolerant
problem:

Definition 4.2.2 (Delay Tolerant Problem) We say a problem P is delay toler-
ant if and only if for every non-delay tolerant environment €, P(E) returns the set
containing every trace probability function.
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As mentioned, we use these definitions in our presentation of the composition
algorithm in Section 5.1. The composition algorithm composes an algorithm that
solves a delay tolerant problem, with an algorithm that emulates a channel, to form
a new algorithm. This composed algorithm simulates an execution of the problem-
solving algorithm and the channel emulation algorithm, using the latter to handle the
messages from the former. In this simulation, however, the problem-solving algorithm
may have to be paused while the channel emulation algorithm generates a set of
received messages. From the perspective of the environment sharing a system with
this composed algorithm, this introduces extra delays where only 1" inputs are being
generated. Because the problem is delay tolerant, however, we are able to prove, in
Theorem 5.1.7, that these added delays do not affect the correctness of the problem-
solving algorithm’s output.

4.3 Implementing Channels

In this section we define a precise notion of implementing a channel with another
channel as a special case of solving a problem. Channel implementation is a crucial
behavior in the study of radio networks, as it decomposes the solving of problems
into building a better behaved channel, and then solving the problem on this better
channel. In real world deployments, for example, this decomposition is captured in
the layers of the network stack—the MAC layer being an implementation of a powerful
channel with a less powerful channel. When coupled with the composition theorems
of Chapter 5, the implementation definitions below allow a formal treatment of this
basic behavior.

We begin with some useful notation. Specifically, if an algorithm is going to
implement a channel, it needs some way of being passed the messages to be sent, and
then some way of returning the corresponding received messages. We use the input
and output interface of the algorithm to accomplish this goal. The notation below
defines a set of input values, which we call send-encoded, that can be used to input the
messages to be sent to a channel emulation algorithm. It also defines a set of output
values, which we call receive-encoded, that can be used to output the corresponding
received messages.

e We say an input value v € Z, is send-encoded if and only if v € (sendx M xF).
Note, in the above, send is a literal.

e We say an input assignment is send-encoded if and only if all input values in
the assignment are send-encoded.

e We say an output value v € O is receive-encoded if and only if v € (recv xR ).
Note, in the above, recv is a literal.

e We say an output assignment is receive-encoded if and only if all output values
in the assignment are send-encoded.
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We now continue with three components—the channel environment, the channel
algorithm, and the channel identity algorithm. The channel environment and the
channel identity algorithm will be used below, in Definition 4.3.4, which defines the
channel problem corresponding to a given channel. Though the channel algorithm is
not necessary for this definition (it is first used in the definitions of Chapter 5), we
define it here as it is the counterpart to the channel environment, which 4s used in
Definition 4.3.4.

Definition 4.3.1 (Channel Environment) An environment £ is a channel envi-
ronment if and only if it satisfies the following conditions:

1. It is delay tolerant.
2. It generates only send-encoded and empty input assignments.

3. It generates a send-encoded input assignment in the first round and in every
round r > 1 such that it received a receive-encoded output vector inr — 1. In
every other round it generates an empty input assignment.

This constraint requires the environment to pass down messages to send as inputs
and then wait for the corresponding received messages, encoded as algorithm outputs,
before continuing by passing down the next batch messages to send.

The natural counterpart to a channel environment is a channel algorithm, which
behaves symmetrically.

Definition 4.3.2 (Channel Algorithm) We say an algorithm A is a channel al-
gorithm if and only if it satisfies the following conditions:

1. It generates only receive-encoded and empty output assignments.

2. It never generates two consecutive receive-encoded output assignments without
a send-encoded input in between.

3. Given a send-encoded input, it eventually generates a receive-encoded output.

The channel algorithm responds to each send-encoded input with a receive-encoded
output. When paired with a channel environment, the resulting system will generate
an alternating sequence of send-encoded inputs and receive-encoded outputs, with an
arbitrary number of intervening L™ outputs between them.

We continue with a special algorithm, called the channel identity algorithm, that
simply passes messages back and forth between a channel environment and a channel.

Definition 4.3.3 (A?) Each process A'(i), i € [n], of the channel identity algorithm
Al behaves as follows. If AL(i) receives a send-enabled input, (send, m, f), it sends
message m on frequency f during that round and generates output (revc,m’), where
m' is the message it receives in this same round. Otherwise it receives on frequency
1 and generates output L.
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By combining a channel environment £ with the channel identity algorithm Al
and a channel C, we get a system that, abstractly speaking, connects & directly to C.
We use observation to define what it means to implement C. Roughly speaking, an
algorithm implements C if its corresponding time-free probability trace function, Dy,
behaves the same as the time-free probability function corresponding to .A! and C.

Definition 4.3.4 (Channel Problem) For a given channel C we define the corre-
sponding (channel) problem F¢ as follows: YE € E, if £ is a channel environment,
then Pe(E) = {F}, where, VB € T : F(B) = Dy (€, AL, C,B). If € is not a channel
environment, then Pe(E) is the set containing every trace probability function.

The notion of implementing a channel is reduced to solving the corresponding
channel problem.

Definition 4.3.5 (Implements) We say an algorithm A implements a channel C
using channel C' only if A time-free solves F¢ using C'.
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Chapter 5

Composition

In this chapter, we prove two useful composition results. The first divides the task
of solving a complex problem on a weak channel into first implementing a strong
channel using a weak channel, and then solving the problem on the strong channel.
The second result simplifies the proofs from Part II that require us to show that
the channels implemented by our emulation algorithms, RFC and DFC, satisfy the
(t, b, p)-feedback channel property presented in Chapter 6.

5.1 The Composition Algorithm

Assume we have an algorithm Ap that time-free solves a delay tolerant problem P
using channel C, and an algorithm A that implements channel C using some other
channel C’. In this section we describe how to construct algorithm A(Ap, A¢) that
combines Ap and A;. We then prove that this composition algorithm solves P using
C'.

This result frees algorithm designers from the responsibility of manually adapting
their algorithms to work with implemented channels (which introduce unpredictable
delays between messages being sent and received). The composition algorithm, and
its accompanying theorem, can be viewed as a general strategy for this adaption.

We then generalize this result to a sequence of channel implementation algorithms
that start with some weak channel and end with the strong channel needed by P. In
the following, the delay tolerance property is crucial for proving that the composition
still solves P—the implementation of C using C’ may introduce a large number of
extra rounds in which A remains idle.

5.1.1 Composition Algorithm Definition

Below we provide a formal definition of our composition algorithm. Though the details
are voluminous, the intuition is straightforward. At a high-level, the composition
algorithm A(Ap, Ac) calculates the messages generated by Ap for the current round
of Ap being emulated. It then pauses Ap and executes A¢ to emulate the messages
being sent on C. This may require many rounds (during which the environment is
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Figure 5-1: The composition algorithm A(B, C), where B is an algorithm that solves
a delay tolerant problem, and C' is a channel algorithm that emulates a channel. The
outer rectangle denotes the composition algorithm. Each of the inner rectangles is
a process of the composition algorithm. Each of these processes, in turn, internally
simulates running B and C, which is denoted by the labelled dashed boxes within
the processes.

receiving only L™ from the composed algorithm—necessitating its delay tolerance
property). When A¢ finishes computing the received messages, we unpause Ap, and
then finish the emulated round by passing these messages to the algorithm. The only
tricky point in this construction is that when we pause Ap we need to also store a
copy of its input, as we will need this later to complete the simulated round once we
unpause. Specifically, the transition function applied at the end of the round requires
this input as a parameter. See Figure 5-1 for a diagram of the composition algorithm.
The formal definition follows.

Definition 5.1.1 (The Composition Algorithm: A(A, Ac)) Let Ap be an algo-
rithm and Ac be a channel algorithm.

Fiz any i € [n]. To simplify notation, let A = A(Ap, Ac)(i), B = Ap(i), and
C = Ac(i). We define process A as follows:

e statesy € statesp X statesc x {active,paused} x I, .
Given such a state s € states, we use the notation s.prob to refer to the statesp
component, s.chan to refer to the statesc component, s.status to refer to the
{active, paused} component, and s.input to refer to the I, component.

The following two helper function simplify the remaining definitions of process
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components:

L if s.status = paused,

siminput(s € statesg,in € 1)) = {(send,m, ) else,
where m = msgg(s.prob,in) and f = fregg(s.prob,in).

(This helper function determines the input that should be passed to the C com-
ponent of the composition process A. If the B component has a message to
send, then the function returns this message as a send-encoded input, otherwise
it returns L.)

L ifo=1,

’

simrec(s € statesa,in € T, mER,) = . )
m'  if o= (recv,m’),

where o = outc(s.chan, siminput(s,in), m).

(This helper function determines the message, as generated by the C' component
of A, that should be received by the B component. If the C' component does not
have a received message to return—i.e., it is still determining this message—the
helper function evaluates to L.)

starta = (startg, startc, active, 1).
(The B and C components start in their start states, the B component is initially
active, and the input component contains only 1.)

msga (s, in) = msgc(s.chan, siminput(s, in)).
(Process A sends the message generated by the C' component.)

freqa (s,in) = fregc(s.chan, siminput(s,in)).
(As with msga, process A also the frequency generated by the C component.)

The out 4 function is defined as follows:

L ifm/ =1,
outa(s,in, m) = < outp(s.prob, s.input,m’) if m' # L, s.status = paused,
outg(s.prob,in, m’) if m' # 1, s.status = active,

where m' = simrec(s,in, m).

(The process A will generate L as output unless it is in a round in which the C
component is returning a message to the B component—as indicated by simrec.
This event indicates that A should unpause the B component and complete its
simulated round by generating its output with the outp function. It is possible,
however, that the C component responds with a message by simrec in the same
round that it was passed a send-encoded input by siminput. In this case, there
is no time to pause the B component—i.e., set status to paused—so its output
is generated slightly differently. Namely, in this fast case it is not necessary to
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retrieve the input from the s.input component, as there was no time to store it
in that component; the outp function can simply be passed the input from the
current round.)

The rand, distribution is defined as follows:

PC if s.status = s'.status = paused, s.input = §'.input,
s.prob = s'.prob,

rand, (s)(s') = , P P , . :

pe-pc  if s.status = §'.status = active, s.input = s'.input,

0 else

where pc = randc(s.chan)(s'.chan) and pg = randp(s.prob)(s’.prob).

(If the B component is paused, then the probability is determined entirely by the
probability of the transformation of the C component in s to s'. By contrast, if
the B component is active, then we multiple the probabilities of both the B and
C component transformations.)

Let transp (s, m,in) = s'.
As in our definition of outy, let m' = simrec(s,in,m). We define the compo-
nents of state s’ below:

— §'.chan = transc(s.chan, m, siminput(s,in)).
(The C component transitions according to its transition function being
passed: its state, the received message for the round, and the simulated
input for the round.)

— §'.prob is defined as follows:

transg(s.prob,m’, s.input) if m’' # L, s.status = paused,
s'.prob = { transg(s.prob,m’,in) if m' # L, s.status = active,
s.prob else.

(The B component transformation depends on whether or not the C' compo-
nent has a receive message to return. If it does not, then the B component
remains paused and therefore stays the same. If the C' component does
have a message to return, it transitions according to its transitions func-
tion being passed: the message from C, and the appropriate input. As in
the definition of out 4, the input returned depends on whether or not there
was time to store it in the input component.)

— §'.input is defined as follows:

, . in if s.status = active
s .anput = _
s.input else.

52



(If the B component is active then we store the input from the current
round in the input component. Otherwise, we keep the same value in
input.)

— §'.status is defined as follows:

, active if m' # 1,
s status =
paused else.

(If the C component has a message to return to the B component, then we
can unpause the B component by setting the status component to active.
Otherwise we set it to paused.)

In this definition, the process A simulates passing the messages from B through
the channel protocol C, pausing B, and storing the relevant input in s.input, while
waiting for C to calculate the message received for each given message sent.

5.1.2 Composition Algorithm Theorems

We now prove that this composition works (i.e., solves P on C’). Our strategy uses
channel-free executions: executions with the channel states removed. We define two
functions for extracting these executions. The first, simple Reduce, removes the chan-
nel states from an execution. The second, compReduce, is defined for an execution
of the composition algorithm. Given such an execution, it extracts the channel-free
execution described by the states of the environment and those in the prob component
of the composition algorithm states.

Notice, the comp in compReduce captures the fact that the execution is being
extracted from a composition, though fans of symmetry could also assume it captures
the more complex nature of the systems with composition.

Definition 5.1.2 (Channel-Free Execution) We define a sequence a to be a channel-
free ewecution of an environment £ and algorithm A if and only if there exrists an
ezecution o, of a system including £ and A, such that o is generated by removing
the channel state assignments from o .

Definition 5.1.3 (simpleReduce) Let £ be a delay tolerant environment, A be an
algorithm, and C a channel. Let o be an ezecution of the system (€, A,C). Then
simple Reduce(c) returns the channel-free execution of £ and A that is generated by
removing the channel state assignments from o

Before defining compReduce, we introduce a helper function that simplifies dis-
cussions of executions that contain the composition algorithm.

Definition 5.1.4 (Emulated Round) Let £ be an environment, A be an algo-
rithm, Ac be a channel algorithm, and C' a channel. Let o be an execution of the
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system (€, A(A, Ac),C’). The emulated rounds of a are the collections of consecu-
tive real rounds that capture the emulation of a single communication round by Ac.
Each collection begins with a real round in which siminput returns a send-encoded
input for all processes, and ends with the next round in which simrec returns a mes-
sage at every process, where siminput and simrec are defined in the definition of the
composition algorithm (Definition 5.1.1).

Definition 5.1.5 (compReduce) Let £ be a delay tolerant environment, Ap be an
algorithm, Ac be a channel algorithm, and C' a channel. Let o' be an ezecution of the
system (€, A(Ap, A¢),C'). Then compReduce(a’) returns the channel-free execution
of € and Ap defined as follows:

1. Divide o into emulated rounds.

2. Ifd is a finite ezecution and ends with a partial emulated round, then compReduce(d)
null, where null is a special marker indicating bad input to the function.

3. Else, compReduce(a’) = a, where o is a channel-free execution of £ and
Ap, constructed as follows. For each emulated round r of o/, add a cor-
responding single round r to «, where we define the relevant assignments—
RS RE I, M,, F,,0,,S,, E.—of this round as follows:

(a) Vi € [n] : RZ[i] = S[i].prob, where S is the first state assignment of the

composition algorithm in the first real round of emulated round v from o/
1

(b) Vi € [n] : F.[i] equals the [F] component, and M,[i] equals the M compo-
nent, of siminput(S[i],in;), where S is described as in the previous item,
and in; s the input received by process i at the beginning of the first real
round of emulated round v from o' .

(c) Vi € [n] : N,[i] equals the R, component of simrec(S'[i}, in;, m;), where S’
is the first algorithm state assignment, in; is the input received by process
i, and m; is the message receied by i, in the last real round of emulated
round v from o'.

(d) I, equals the input assignment from the first real round of emulated round
r from .

(e) O, equals the output assignment from the last real round of emulated round
r from o

(f) Vi € [n] : Sy[i] = S"[¢].prob, where S" is the last algorithm state from the
last real round of emulated round r from o'.

1Recall, in each round of an execution, there are two state assignments for algorithms, channels,
and environments. The first is chosen according to the relevant distribution defined for the final state
assignment of the previous round, and the second is the result of applying the transition function
to the appropriate assignments in the round.
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(9) REZ equals the environment state in the first real round of emulated round
T from .

(h) E, equals the last environment state from the last real round of emulated
round v of o.

At a high-level, the above definition first extracts from o: the environment states,
input and output assignments, and the Ap states encoded in the prob component of
the composition algorithm. It then cuts out all but the first and last state of the
emulated round (which could be the same state if the channel behavior required only a
single round to emulate). Finally, it adds the send, frequency, and receive assignments
that were used in the emulated round. The resulting channel-free execution captures
the behavior of Ap and £ executing in a system that appears to also include channel
C.

We continue with a helper lemma that proves that the execution of Ap emulated in
an execution of a composition algorithm that includes Ap, with the same probability
as Ap running by itself.

Lemma 5.1.6 Let £ be a delay tolerant environment, Ap be an algorithm, and Ac
be a channel algorithm that implements C with C'. Let  be a channel-free execution
of £ and Ap. It follows:

S QEAnCa)= Y QE AlAr,A0).Ca))

o' |simple Reduce(a’)=c a’|compReduce(a’’)=a

Proof. To simplify notation, let S, be the set that contains every execution o' of
(€, Ap,C) such that simpleReduce(a’) = a, and let S, be the set that contains every
execution o/ of (£, A(Ap, Ac),C’) such that compReduce(a”) = a. (The inclusion
of a prime symbol, ’, in this notation, is to ensure forward compatibility with the
notation from the theorem that follows.)

In the proof that follows, we determine the probability of various executions that
result from applying @ to the execution and its system. Recall that Q(&,A,C, «), for
a system (£, A,C) and execution « of the system, simply multiplies the probabilities
of the state transformations that occur at the beginning of each round for each of the
automata in the system (the environment, channel, and n processes).

We begin by establishing several facts about S.. For every o/ € S;:

1. The sequence of states of £ in o' is the same as in . This follows from the
definition of simpleReduce.

2. The sequence of states of Ap in « is the same as in . This also follows from
the definition of simple Reduce.

3. It follows from observation 1 that the product of probabilities of environment
state transformations is the same in a and . Call this product pg.
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4. Tt follows from observation 2 that the product of probabilities of algorithm state
transformations is the same in « and /. Call this product pa.

We can use these observations to reformulate the first sum from the lemma state-
ment in a more useful form. From observations 1 and 2, we know that the prefixes
in S, differ only in their channel states. The reason why multiple executions might
reduce to the same channel-free execution, by simpleReduce, is that it is possible
that different channel states might produce the same received messages as in a, given
the sent messages and frequencies of a.

With this in mind, we rewrite the first sum from the lemma as:

pepa Y, pe(d),

o’€S),

where p¢(o/) returns the product of the probabilities of the channel state transforma-
tions in o/. By the definition of S}, we can also describe > ..o Pc(@’) as follows:

The probability that C generates the receive assignments in a, given the
message and frequency assignments from « as input.

With this in mind, let £, be the simple channel environment that passes down the
sequence of send-encoded inputs that match the message and frequency assignments
in a. Let 3 be the trace the encodes the message, frequency, and received message
assignments in « as alternating send-encoded inputs and receive-encoded outputs.
We can now formalize our above observation as follows:

>~ pele’) = Dis(Ear A, C, B)

a’es!,

We now establish several related facts about S.. For every o € S:

5. The sequence of states of £ in a can be generated by taking the sequence of
these states from o, and then potentially removing some of the marked states.
(Recall, “marked” is from the definition of delay-tolerant. These extra marked
states in a” correspond to the rounds in which the composition algorithm paused
Ap while running A¢ on C’ to emulate C.) This follows from the definition of
compReduce.

6. The sequence of states of Ap in a can be generated by taking these states
encoded in the the prob component of the composition algorithm states in o”,
and then removing those from a composition algorithm state with status =
paused. This also follows from the definition of compReduce.

7. Tt follows from observation 5, and the fact that a marked state transforms to
itself with probability 1, that the product of the environment state transforma-
tions probabilities in o’ equal pg, as in «.

56



8. To calculate the product of the algorithm state transformation probabilities
in a”, we should first review the definition of the state distribution for the
composition algorithm. Recall that for such a state, there are two cases. In
the first case, status = paused. Here, the probability of transformation to
a new state is determined only by the chan component. In the second case,
status = active. Here, the transformation probability is the product of the
transformation probabilities of both the prob and chan components.

It follows from this fact, and observation 6, that the product of the probabilities
of the algorithm state transformations in «” equal p4 times the product of the
probabilities of the A¢ state transformations encoded in the chan components.

As when we considered S’, we can use these observations to reformulate the second
sum from the lemma statement. Specifically, we rewrite it as:

pEpa Y peel(a”),

a’es!

where pc (o) is the product of the state transformation probabilities of both ' and
the chan component of the composition algorithm. By the definition of S, and the
composition algorithm, we can also describe Y ..o Pe,cr() as follows:

The probability that A¢ running on C’ outputs the receive assignments in
o, given the corresponding message and frequency assignments passed as
send-encoded inputs to Ac.

Let &, and 3 be described as above. We can now formalize our above observation as
follows:

> pee(@”) = Di(a, Ac,C', B)
a'’eS!

By assumption, A¢ implements C with C'. If we unwind the definition of imple-
ments (Definition 4.3.5), it follows that A¢ solves the channel problem Pc using C'.
If we then unwind the definition of this channel problem (Definition 4.3.4), it follows
that:

th(gonACaC,aﬁ) = th(gavAI’C7ﬁ)

We combine this equality with our rewriting of the p¢c and p¢ ¢ sums from above,
to conclude:

PEPA Z pe(o’) = pepa Z pecr ().

o'es, o' €S
Because these two terms were defined to be equivalent to the two sums from the
lemma statement, we have shown the desired equality. |

We can now prove our main theorem and then a corollary that generalizes the
result to a chain of implementation algorithms.
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Theorem 5.1.7 (Algorithm Composition) Let Ap be an algorithm that time-
free solves delay tolerant problem P using channel C. Let Ac be an algorithm that
tmplements channel C using channel C'. It follows that the composition algorithm
A(Ap, Ac) time-free solves P using C'.

Proof. By unwinding the definition of time-free solves, we rewrite our task as
follows:

VE € E,AF € P(£),VB € T : Diy(E, A(Ap, Ac),C', B) = F(B).
Or, equivalently:

VE € E M3 Dy (€, A(Ap, Ac),C', B) € P(E)).

Fix some £. Assume & is delay tolerant (if it is not, then P(£) describes every
trace probability function, and we are done). Define trace probability function F' such
that VB € T : F(B) = Dy (€, Ap,C, ). By assumption F € P(£). It is sufficient,
therefore, to show that V3 € T : Dy (€, A(Ap, Ac),C', B) = F(B) = Dy (€, Ap,C, B).
Fix some (3. Below we prove the equivalence. We begin, however, with the following
helper definitions:

e Let ccp(B) be the set of every channel-free execution o of £ and Ap such that
term(a) = true and cio(a) = 8.2

e Let S,(B), for trace f3, describe the set of executions included in the sum that
defines D;¢(€, Ap,C, ), and Sc(B) describe the set of executions included in
the sum that defines D;¢(E, A(Ap, Ac),C’, B). (The s and c subscripts denote
simple and complex, respectively.) Notice, for an execution to be included in S,
it cannot end in the middle of an emulated round, as this execution would not
satisfy term.

e Let S/(a), for channel-free execution a of £ and Ap, be the set of every execution
o of (£, Ap,C) such that simple Reduce(o/) = a.. Let S.(a) be the set of every
execution «’ of (€, A(Ap, A¢),C’) such that compReduce(a”) = a.. Notice, for
a execution o” to be included in S’, it cannot end in the middle of an emulated
round, as this execution would cause compReduce to return null.

We continue with a series of four claims that establish that {S.(a) : a € ccp(B)} and
{S'(a) : @ € cep(B)} partition Sy(B) and S.(5), respectively.

Claim 1: Uyeoqp(p) Ss(@) = Ss(8).
We must show two directions of inclusion. First, given some o/ € S,(3), we know
a = simpleReduce(d’) € cep(f), thus o € S.(a). To show the other direction,

2This requires some abuse of notation as cio and term are defined for executions, not channel-free
executions. These extensions, however, follow naturally, as both cio and term are defined only in
terms of the input and output assignments of the executions, and these assignments are present in
channel-free executions as well as in standard execution executions.
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Claim 2:

Claim 3:

Claim 4:

we note that given some o/ € S’(«a), for some a € ccp(B3), simpleReduce(a’) =
o. Because o generates (3 by cio and satisfies term, the same holds for o/, so

a’ € S,(B).
Useeep(s) Se(@) = 5e(B)-

As above, we must show two directions of inclusion. First, given some o €
S.(B), we know a = compReduce(a") € ccp(8), thus o’ € Si(a). To show
the other direction, we note that given some o” € S.(a), for some a € ccp(f),
compReduce(a”) = a. We know « generates 8 by cio and satisfies term. It
follows that o’ ends with the same final non-empty output as a, so it satisfies
term. We also know that compReduce removes only empty inputs and outputs,
so o also maps to 8 by cio. Therefore, o’ € S.(0).

VQI,OZQ € CCp(,B), g 7é Qo : S_;(Oll) N S;(az) = Q)

Assume for contradiction that some o’ is in the intersection. It follows that
simpleReduce(a’) equals both a; and «y. Because simpleReduce returns a
single channel-free execution, and a; # aq, this is impossible.

You, oy € cep(B), ay # ag : Si(ar) N Sh(az) = 0.
Follows from the same argument as claim 3 with compReduce substituted for
simpleReduce.

The following two claims are a direct consequence of the partitioning proved above
and the definition of Dyy:

Claim 5:

Claim 6:

D aceen(d) Laresia) QE: A, C,a) = Dys (€, Ap,C, B).

EO!ECCP(B) ZOL'GSQ(Q) Q(E, A(AP, .Ac)’ C” a’) = th(g, A(AP, AC), C" /B)

We conclude by combining claims 5 and 6 with Lemma 5.1.6 to prove that:

th(g) A(APa AC)’ Cla /6) = th(g, AP: ca ﬂ))

as needed. O

Corollary 5.1.8 (Generalized Algorithm Composition) Let Ays, ..., Aj_15, ] >
2, be a sequence of algorithms such that each A;_1;, 1 < i < j, implements channel
Ci_1 using channel C;. Let Ap, be an algorithm that time-free solves delay tolerant
problem P using channel Cy.It follows that there exists an algorithm that time-free
solves P using C;.

Proof. Given an algorithm Ap; that time-free solves P with channel C;, 1 <1 < j,
we can apply Theorem 5.1.7 to prove that Ap;1 = A(Ap;, Aiit1) time-free solves
P with channel C;;. We begin with Ap;, and apply Theorem 5.1.7 7 — 1 times to
arrive at algorithm Ap; that time-free solves P using C;. 0O
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5.2 The Composition Channel

Given a channel implementation algorithm .4 and a channel C’, we define the channel
C(A,C"). This composition channel encodes a local emulation of A and C’ into its
probabilistic state transitions. We formalize this notion by proving that A implements
C(A,C’) using C'. To understand the utility of this result, assume you have a channel
implementation algorithm A and you want to prove that A using C’ implements a
channel that satisfies some useful automaton property. (As demonstrated in the next
section, it is often easier to talk about all channels that satisfy a property than to
talk about a specific channel.) You could apply our composition channel result to
establish that A implements C(.A,C’) using C’. This reduces the task to showing that
C(A,C’) satisfies the relevant automaton properties.

5.2.1 Composition Channel Definition

At a high-level, the composition channel C(A,C’), when passed a message and fre-
quency assignment, emulates A using C’ being passed these messages and frequencies
as input and then returning the emulated output from A as the received messages.
This emulation is encoded into the crand probabilistic state transition of C(A,C’).
To accomplish this feat, we have define two types of states: simple and complez. The
composition channel starts in a simple state. The crand distribution always returns
complex states, and the ctrans transition function always returns simple states, so
we alternate between the two. The simple state contains a component pre that en-
codes the history of the emulation of A and C’ used by C(A,C’) so far. The complex
state also encodes this history in pre, in addition it encodes the next randomized
state transitions of A and C’ in a component named ezt, and it stores a table, en-
coded in a component named oext, that stores for each possible pair of message and
frequency assignments, an emulated execution that extends ext with those messages
and frequencies arriving as input, and ending when .4 generates the corresponding
received messages. The crecv function, given a message and frequency assignment
and complex state, can look up the appropriate row in oext and return the received
messages described in the final output of this extension. This approach of simulating
execution extensions for all possible messages in advance is necessitated by the fact
that the randomized state transition occurs before the channel receives the messages
being sent in that round. See Figure 5-2 for a diagram of the composition channel.

Below we provide a collection of helper definitions which we then use in the formal
definition of the composition channel.

Definition 5.2.1 (toinput) Let the function toinput map pairs from (My)* x [F]"
to the corresponding send-encoded input assignment describing these messages and
frequencies.

Definition 5.2.2 (Environment-Free Execution) We define a sequence of as-
signments « to be an environment-free execution of a channel algorithm A and chan-
nel C, if and only if there exists an execution o/, of a system including A, C, and
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Figure 5-2: The composition channel C(A¢,C’), where Ac is a channel algorithm
and C’ is a channel. The outer rectangle denotes the composition channel. The A¢
and C’ dashed rectangles inside the algorithm capture the fact that the composition
channel internally simulates running A¢ on C'.

a channel environment, such that « is generated by removing the environment state
assignments from o . If « is finite then the final output assignment in o must be
recetve-encoded.

Definition 5.2.3 (State Extension) Let o be a finite environment-free execution
of some channel algorithm A and channel C. We define a state extension of a to be
a extended by any RS, RC, where Vi € [n] : RS[i] € statesag), RC € cstatese, and the
final process and channel state assignments of a can transform to R% and RC with
non-0 probability by rand 4 and crandc, respectively.

In other words, we extend the execution a by the next states of the channel and
algorithm. We continue, next, with a longer extension.

Definition 5.2.4 ([-Output Extension) Let o be a finite environment-free execu-
tion of some channel algorithm A and channel C. Let o/ be a state extension of c.
We define an [-output extension of o, for some I € (Z,)", to be any extension of o
that has input I in the first round of the extension, an empty input assignment (i.e.,
L") in every subsequent round, and that ends in the first round with a receive-encoded
output assignment, thus forming a new environment-free ezecution.

In other words, we extend our state extension with a particular input, I, after
which we run it with empty inputs until it returns a receive-encoded output assign-
ment.

We can now provide the formal definition of the composition channel:

Definition 5.2.5 (The Composition Channel: C(A,C’')) Let A be a channel al-
gorithm and C' be a channel. To simplify notation, let C = C(A,C’). We define the
composition channel C as follows:
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1. cstatesc = simpleStatesc U complexStatesc,
where simpleStatesc and complexStatesc are defined as follows:

o The set simpleStatesc (of simple states) consists of one state for every
finite environment-free execution of A and C'.

o The set complexStatesc (of complex states) consists of one state for every
combination of: a finite environment-free execution o of A and C'; a state
extension o of o; and a table with one row for every pair (M € (M )",F €
[F]*), such that this row contains an (toinput(M, F))-output extension of
o.

Notation: For any simple state s € simpleStatesc, we use the notation s.pre
to describe the environment-free execution corresponding to s. For any complex
state ¢ € complexStatesc, we use c.pre to describe the environment-free exe-
cution, c.ext to describe the state extension, and c.oext(M, F) to describe the
toinput(M, F)-output extension, corresponding to c.

2. cstartc = sg € simpleStatesc,
where sg.pre describes the 0-round environment-free execution of A and C'.
(That is, it consists of only the start state assignment for A and start channel
assignment for C'.)

3. crandg(s € simpleStatesc)(q € complexStatesc)
is defined as follows:

o If q.pre # s.pre, then crandc(s)(q) = 0.

e Else, crandc(s)(q) equals the product of the probability, for each row q.oext(M, F')
in q.oext, that q.pre extends to q.oext(M, F), given input toinput(M, F).

By contrast, crandc(s' € cstatesc)(s € simpleStatesc) = 0. (That is, crandc
assign probability mass to complex states only.)

4. ctransc(q € complexStatesc, M, F) = s € simpleStatesc,
where s.pre = q.oext(M, F).

Notice that we do not need to define ctransc for a simple state, as our definition
of crandc prevents the function from ever being applied to such a state.

5. crecve(q € complexStatesc, M,F) = N,
where N is contains the messages from the receive-encoded output of the final
round of q.oext(M, F).

As with ctransc, we do not need to define crecve for a simple state, as our
definition of crandc prevents the function from ever being applied to such a
state.
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5.2.2 Composition Channel Theorems

To prove that A implements C(A,C’) on C', we begin with a collection of helper
definitions and lemmas.

Definition 5.2.6 (ez) Let a be an ezecution of system (€, A',C(A,C")), where £ is
a channel environment, A is a channel algorithm, and C' is a channel. We define
ex(a) to return the ezecution o, of system (€, A,C’), defined as follows:

1. We construct o/ in increasing order of rounds. Start by setting round O to
contain the starts states of £, A, and C'.

2. We then proceed, in increasing order, through each round r > 0 of «, expanding
o as follows:

(a) Add the sequence of algorithm and channel states that results from taking
RC .oext(M,, F,) and then removing the prefiz RC .pre, where RS is the
random channel state in round r of a, and M, and F, are the message and
frequency assignments from this round, respectively.

(b) Add RE as the random environment state in the first round of this exten-
sion, where RE is the random environment state in round r of a.

(c) Add E, as the second environment state in the last round of the extension,
where E, is the second environment state in round T of « (i.e., the result
of applying the environment transition function to RE.)

(d) Add RE as the environment state for all other positions and rounds in the
extension, where RE is the marked version of state RY, where “marked”

is defined in the definition of delay tolerant. (Recall, £ is a channel envi-
ronment which implies that it is delay tolerant.)

That is, we extract the simulated ezecution of A on C' encoded in the composition
channel in o, and then add in the states of £ from «, using marked states to fill in
the environment state gaps for the new rounds added by the extraction.

The following definition uses ez to capture a key property about the relationship
between systems with channel algorithms and systems with those algorithms encoded
in a composition channel.

Definition 5.2.7 (comp) Let & be a channel environment, A be a channel algorithm,
C' be a channel, and o be an ezecution of the system (£, A,C’). Let X be the set of
all ezecutions of (€, A!,C(A,C")). Then comp(e/) ={a:a € X, ex(a) =a'}.

It might seem surprising that multiple executions of (£, A’,C(A,C’)), can expand
to o’ by ez, as ex is deterministic—it simply extracts an environment-free executions
encoded in the C(A,C’) state, and then adds environment states in a fixed manner.
The explanation, however, concerns the unused rows of the oext table in the states of
C(A,C’). For every execution « of (£, A',C(A,C’)) that generates & by ez, the rows
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in the oezt table that correspond to the messages and frequencies in o/, are the same.
These are the rows that ex uses to construct its expanded execution. The other rows,
however, which are not used, can be different, as they are discarded by ez.

We proceed by proving an important lemma about the probabilities associated
with states that share a given row entry. Let s be a simple state. Let X be the set
of complex states that are compatible with s (that is, their pre components match
s.pre), and all have the same output extension o/’ in a fixed oext row. The lemma says
that the probability that s transitions to a state in X, by the composition channel
state distribution crand(s), equals the probability of s.pre extending to o”.

Lemma 5.2.8 Let A be a channel algorithm, C' be a channel, M be a message as-
signment, F be a frequency assignment, « be a finite environment-free execution of
A and C', & be a state extension of o, o be a toinput(M, F')-output extension of o,
s be the simple state of C(A,C’) with s.pre = o, and:

X = {s' € cstateseiacr) : 8 is complez, s'.pre = a, s .oext(M, F) = a"}.

It follows:

)" crandeacn(s)(s') = Pria’|al,

s'eX
where Pr[a”|a] is the probability that A using C' extend o to o, given the input
assignments in o

Proof.  Let pes: describe the probability that A using C’ extends o to o’. (That
iS, Pegt is the product of the probabilities assigned to algorithm and channel states
added to o in . Recall, these probabilities are determined by the state distributions
corresponding to the final algorithm and channel states in a.)

Also recall that every complex state has an oext table with one row for every
possible message and frequency assignment pair. Label the non-(M, F') rows in the
oext table with incrementing integers, j = 1, ...; i.e., there is one row indez j for every
row except the (M, F) row.

For every such row j, number the possible I;-output extensions of o’ with incre-
menting integers, kK = 1, ..., where I; is the message and frequency assignment pair
corresponding to row j. And let p;, for some row index j and output extension
index k, equal the probability that A and C produce extension k of o/, given input
I;. (As with peg, this probability is the product of the probabilities of the algorithm
and channel state transformations in the extension).

Because we do not have a j defined for row (M, F), we separately fix ps;; to de-
scribe the probability that A using C extends & to a”, given the input toinput(M, F’)

For any fixed j, we know:

> k=1 (5.1)

This follows from the constraint that .4 is a channel algorithm. Such an algorithm,
when passed a send-encoded input, must eventually return a receive-encoded output
in every extension.
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To simplify our use of the p;, notation, let Y be a set of vectors that have one
position for every row index, j. Let each entry contain an extension index, k, for that
row. Fix Y such that it contains every such vector. Each v € Y, therefore, describes
a unique configuration for the non-(M, F) rows in the oext table, and Y contains a
vector for every such unique configuration.

Using our new notation, and the definition of crand for a composition channel,
we can rewrite our sum from the lemma statement as follows:

Z crande(acr)(s)(s") = PectPyia Z H:Dj,vm-
sexX TEY j

To understand the right-hand side of this equation, recall that crande(ac(s)(s’),
for any s’ € X, returns the product of the probabilities, for each row in s'.0ext,
that A and C’ extend « to the extension in that row, given the corresponding input.
Since every extension of « in s'.oext starts with o/, we pull out from the product, the
probability, pes: of /. And because every state in s’ has the same extension in the
(M, F) row, we can pull the probability of that extension, pyi;, from the product as
well.

To simplify this sum, we note that the sum of products, > -y [] ; Pjalj), consists
of exactly one term of the form p; 4ps«...., for each unique combination of extension
indices. Applying some basic algebra, we can therefore rewrite this sum of products
as the following product of sums:

ZHPJ‘,EU] = (p11+ P12+ ..) (P21 + P22+ o)

TEY
We apply Equation 4.1 from above, to reduce this to (1)(1)... = 1. It follows that:

> crandegacy (s)(s)) = Peapsis
s'eX

Finally, we note that pes:p i matches our definition of Pr[a”|a] from the lemma
statement, completing the proof. ]

This lemma is used in the proof of the following result, as well as in our proof for
the RFC channel algorithm in Chapter 8.

Lemma 5.2.9 Let o be an execution of a system (£,.A,C’), where £ is a channel
environment, A is a channel algorithm, C' is a channel, and the final output in o is
receive-encoded. It follows:

QEAC o)=Y QEA,CAC)Q)

aecomp(a’)

Proof. Divide o/ into execution fragments, each beginning with a round with a
send-encoded input and ending with the round containing the corresponding receive-
encoded output. We call these fragments, in this context, emulated rounds. (This is
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similar to how we defined the term with respect to a channel algorithm execution in
the composition algorithm section.) By our assumption that o/ ends with a receive-
encoded output, no part of o’ falls outside of an emulated round.

Fix some emulated round e, of o'. Let I be the send-encoded input passed down by
the environment during e,. Let M and F be the message and frequency assignments
encoded in I (i.e., I = toinput(M, F)).

To simplify notation, in the following we use C as shorthand for the composition
channel C(A,C’). Let s be the simple state of C that encodes in s.pre the environment-
free execution obtained by removing the environment state assignments from the
execution of o’ through emulated round e, — 1. Let X be the set containing every
complex state g such that: g.pre = s.pre and q.oext(M, F') extends g.pre as described
by e,. (There is exactly one such extension for q.oext(M, F'). There can be multiple
complex states including this extension, however, because the entries can vary in the
other rows of oext.) Let p describe the probability that A using C’ extends s.pre to
q.oext(M, F), given input I.

We can apply Lemma 5.2.8 for A, C', M, F, a = s.pre, s, &' = q.oext(M, F), and
X, to directly prove the following claim:

Claim: 3 cx crande(s)(q) =p

We now apply this claim, which concerns only a single emulated round, to prove
the lemma, which concerns the entire execution «’'.

We use induction on the emulated round number of o’. Let R be the total number
of emulated rounds in «'. Let &/[r], 0 < r < R, describe the prefix of o/ through
emulated round 7. Notice, because we assumed that o ends with a receive-encoded
output: o’[R] = «'. Our hypothesis for any emulated round r < R states:

QEAC )= > QEACa

acomp(c/[r])

We now prove our inductive step. Assume our hypothesis holds for some r < R.
Every execution in comp(a/[r]) concludes with the same simple channel state s,
where s,.pre describes the environment-free execution generated by removing the
environment assignment states from ao/[r].

We know the probability that £ passes down I = toinput(M, F') to begin the next
emulated round of ¢ is the same as the probability that it passes down I in round
r + 1 of any of the executions in comp(a/[r]). This follows from the delay-tolerance
of £, which has it behave the same upon receiving a given receive-encoded output,
regardless of the pattern or preceding empty outputs.

Finally, by applying the above claim, we determine that given a execution that
ends in s,, the probability that it transform by crandc to a state g, such that
g.oext(M,F) = o[r + 1], equals the probability that o/[r] transforms to o/[r + 1],
given input I. This combines to prove the inductive step.

We conclude the proof by noting that the base case follows from the fact that the
probability of «[0] and comp(a[0]) is 1 in both systems. a
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Theorem 5.2.10 (Channel Composition) Let A be a channel algorithm and C’'
be a channel. It follows that A implements C(A,C’) using C'.

Proof. By unwinding the definition of implements, we can rewrite the theorem
statement as follows: for every channel environment £ and trace 3 € T

.th(g, .A, C’, ﬂ) = th(g, AI,C(A, CI), ﬁ)

Fix one such channel environment £. To prove our above equality, it is sufficient
to show that for every 3 € T, the two trace probability functions return the same
probability. We first introduce some simplifying notation: Seomp = (€, AT,C(A,C")),
and S = (€, A,C"). We now rewrite our equality regarding D/ in terms of Q:

VBeT: Za’|term(a’)/\cio(a’)=ﬁ Q(S? Oé') =
Za|term(a)/\cio(a)=ﬁ Q(SCOWIN a)

For simplicity, we will call the Q(S, *) sum the first sum and the Q(Scomp, *) sum the
second sum. We restrict our attention to traces that end with a non-empty output,
as any other trace would generate 0 for both sums. Fix one such trace 3. For this
fixed 3, consider each o included in the first sum. (By the definition of term, each
such o/ must also end with a non-empty output.) By Lemma 5.2.9, we know:

Q(S,d) = Z Q(Scompva)

a€ccomp(a’)

Recall that a € comp(a’) = cio(a’) = cio(«) and term(a) = true, so each execution
in our comp set is included in the second sum.

We next note that for every pair of executions o} and o, of S, such that o) #
ofy: comp(a}) N comp(ah) = B. In other words, each execution included from 5 is
associated with a disjoint set of matching executions from Sgomp. To see why, assume
for contradiction that there exists some a € comp(a}) N comp(as). It follows that
ex(a) equals both o/ and o). However, because ez is deterministic, and o) # as,
this is impossible.

It follows that for each o/ included in the first sum there is a collection of executions
included in the second sum that add the same probability mass. Furthermore, none
of these collections overlap.

To prove that the probability mass is exactly equal, we are left only to argue that
every execution included in the second sum is covered by one of these comp sets.
Let a be a execution included in the second sum. We know that cio(a) = B and
term(a) = true, therefore the same holds of ex(a) which implies that « is covered
by comp(ex(a)). O

We conclude with a theorem that helps apply properties proved for a channel

algorithm, to the emulation of the algorithm encoded in a composition channel. First,
however, we need a simple helper definition:
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Definition 5.2.11 (Reachable) We say an environment-free ezecution is reachable
if and only if the product of the algorithm and channel transformation probabilities is
non-zero. This is, it encodes probabilistic transformations of these states that could
occur in an execution with probability greater than 0.

We use this definition in the following theorem.

Theorem 5.2.12 Let A be channel algorithm, C' be a channel, and s be a state of
the composition channel C(A,C'). Let a be an environment-free evecution encoded
either in s.pre or in an entry of the table s.oext (this latter case requires that s is
complez).

If « is reachable, then there exists a channel environment £ such that we can add
states from € to a to generate a valid ezecution of (€, A,C').

Proof. We choose £ to be a simple channel environment that passes down the
sequence of input assignments in «, cycling on marked states while waiting for the
next non-empty output in a. O
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Chapter 6

Channels

In this chapter, we tackle the challenge of defining channels. We provide definitions
for four types of channels. Two we study in the remainder of this thesis, and two are
formalizations of popular models used in the existing literature.

6.1 Preliminaries

In our modeling framework, an algorithm designer can construct an algorithm to work
for a specific channel automaton, C. This designer could then prove correctness for
any system that includes C. Because our model does not include non-determinism,
however, it is sometimes useful to instead prove that an algorithm works with any
channel from a set of channels that all satisfy some constraints. We call such sets
channel properties, which we define as follows:

Definition 6.1.1 (Channel Property) A channel property X is a set of channels.
We also introduce the corresponding notion of satisfying a property:

Definition 6.1.2 (Satisfy a Channel Property) We say a channel C satisfies chan-
nel property X if and only if C € X.

One might expect a channel property to be defined with respect to traces describ-
ing send and receive behavior. As we will demonstrate with the properties defined in
this chapter, however, it is often more useful to define a property with respect to a
set of restrictions on the components of the channel automaton.

Specifically, in this chapter, we define four useful channel properties. We begin
with a pair of basic properties that capture some common assumptions about the
radio models used in the existing theory literature. Though we do not use these
channel properties in the chapters that follow, we present them here to highlight the
flexibility of our framework and the ease with which it can formalize existing work.
We then proceed with a pair of advanced properties that will become the focus of the
remainder of this thesis.

All of four of our channel properties assume F > 0 communication frequencies.
In each round, each process can tune into a single frequency and then decide to either
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broadcast or receive. This is motivated by the real world observation that most radio
networks are comprised of multiple frequencies that the devices can switch between.
The 802.11 standard [1], for example, allows radios to switch between around a dozen
frequencies carved out of the unlicensed 2.4 Ghz band, while bluetooth radios [11]
can switch between close to 75 frequencies, carved out of this same band.

Most radio models in the existing theoretical literature fix 7 = 1. In recent work,
however, we have been among a growing numbers of researchers who argue that
taking advantage of the multiple frequencies that are actually available in practice
can increase performance and help solve otherwise unsolvable problems; c.f., [31, 43,
32, 40, 30].

In addition, the channel properties defined in this thesis all capture single-hop
radio channels. In Section 6.4, however, we describe how they might be extended to
a multi-hop setting.

We begin, below, by providing informal descriptions of all four radio channel
properties considered in this chapter. Once the informal descriptions are established,
we proceed with the formal definitions.

6.2 Summary of Channel Properties

This chapter considers two basic channel descriptions—the partial collision and to-
tal collision properties—and two advanced descriptions—the t-disrupted and (¢, b, p)-
feedback properties. We summarize the behavior of all four below. In Sections 6.3,
6.4, and 6.5, we provide their formal definitions.

The Partial Collision Property. Channels that satisfy the partial collision prop-
erty match common expectations regarding a radio channel, namely:

1. At most one message can be received per round.
2. Senders receive their own message.

3. All receivers on the same frequency receive the same thing in a given round (i.e.,
either they all detect silence, indicated by L, or receive the same message).

4. If m is the only message sent on a frequency in a given round, then all receivers
on that frequency receive m.

5. If multiple messages are sent on a frequency, the receivers on that frequency
might all receive nothing, due to collision, or they might all receive one of the
messages.

The term partial in the property name is motivated by condition 5, which specifies
that collisions can occur, but are not guaranteed. Therefore, the model is partially
collision-prone. (The usage of the term partial in the context of collisions was first
introduced in [20]).
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This property matches the assumptions of the channel used in the broadcast lower
bound of BGI [8], which demonstrated networks of diameter 3 that required a linear
number of rounds to disseminate a message from a distinguished source.

This paper stood alone in its inclusion of condition 5 from above—most papers
that followed this seminal work replaced this condition with an insistence that 2 or
more messages sent simultaneously must cause a collision. More recently, however,
we have argued [20, 22, 72, 21] that the partial collision model is more realistic, as in
practice, radios can capture and successfully decode one message from among many
simultaneous transmissions, and, in general, introducing more non-deterministic be-
haviors in a model strengthens upper bound results.

We capture this stronger collision assumption with the next property:

The Total Collision Property. The total collision property shares conditions 1-4
with the partial collision property, but replaces condition 5 with the following:

5. If multiple messages are sent on a frequency, the receivers on that frequency all
receive nothing, due to collision.

In [58], the authors reconsidered the lower bound of [8] in the context of a chan-
nel that satisfied the total collision property. They showed that in this new case,
the bound could be exponentially improved from linear to logarithmic, which demon-
strates the somewhat counterintuitive reality that insisting on message loss makes the
model more powerful. (The proof [58] takes advantage of this constraint to emulate
a type of reliable collision detection that aided their efficient results.)

As mentioned, most existing studies of radio networks assume some variant of
either the partial or total collision properties (typically with F = 1); c.f., [17, 6, 35,
37, 25, 70, 56, 57, 29, 18, 24].

In addition to the common pair of properties described above, we also define two
novel properties. These advanced properties differ from the basic properties above in
that they allow for unpredictable (and perhaps even adversarial) interference in the
network.

The t-Disrupted Property. We first introduced the t-disrupted radio channel
in [31], and then expanded on it in [32, 40, 30]. This property is similar to the partial
collision property, but it includes the additional condition that up to ¢ frequencies
per round can be disrupted, which causes all receivers on those frequencies to receive
nothing. We assume ¢ is a known constant less than F.

This disruption could model the behavior of a literal adversarial device trying
to jam the network and prevent distributed coordination and communication. As
described in the introduction, however, it is probably more useful as a convienent way
to model the wide diversity of unpredictable sources of radio network disruption—
from unrelated protocols using the same bandwidth, to unexpected interference from
devices such as microwaves, radars, and lighting.

An important assumption when describing such adversarial behavior is the rel-
evant dependencies. In our case, we must specify the dependence on the channels’

71



choice of frequencies to disrupt and the frequencies chosen for use by the algorithm,
in a given round. We require that the choice of frequencies to disrupt in some round
r of an execution must be made without advanced knowledge of the processes’ broad-
cast behavior during round r. The choice can, however, depend on the definition of
the processes and the history of the broadcast behavior through round r — 1. If the
processes are deterministic, this is enough information for the channel to calculate
the upcoming behavior.

For example, if a process selects a frequency at random on which to participate,
the channel cannot know in advance which frequency that channel chose. This gives
the process at least a fj%t probability of selecting a non-disrupted frequency. If, on the
other hand, we allowed the channel to know the broadcast behavior before selecting
frequencies to disrupt, it could always disrupt this process’s frequency, regardless of
its random choice. (As you will encounter in the formal definitions below, part of the
utility of our model is its ability to precisely such notions of dependence.)

Solving problems on a t-disrupted channel is complicated, as indicated by the
length of the algorithms and proofs in [31, 32, 40, 30]. With this in mind, in this
thesis we also define the following more powerful channel that overcomes much of the
complexities of the ¢-disrupted property. This property is not meant to correspond
to channel behavior observed in the real world. Instead, it captures behavior we
later implement with the channel emulation algorithms of Part II, to provide a more
attractive programming layer for algorithm designers:

The (t,b,p)-Feedback Channel. The (t,b, p)-feedback channel, for 0 < t < F,
0<b<n,0<p<1, behaves like a t-disrupted channel that has been enhanced
such that most processes, be them senders or receivers, receive feedback about what
happened on all the frequencies. Specifically, in each round there are two possible
values that can be received: L or a feedback vector, R, containing a value from R
for each of the F frequencies. For each f € [F], R[f] describes what a receiver on
frequency f would have received had the processes that broadcast in this round been
broadcasting on a t-disrupted channel.

A perfect feedback channel would guarantee that all processes receive feedback in
all rounds, with probability 1. In practice, however, it can be difficult to achieve such
guarantees. This motivates the inclusion of the b and p terms, which are interpreted
as: the channel guarantees that with probability p, at least n — b processes receive
the feedback.

It is important to emphasize that the only two possible outcomes for a process is to
receive the common feedback vector or L. The low probability event is not receiving a
malformed vector, it describes, instead, the case where more than b processes receive
1 instead of feedback.

As mentioned, the (¢, b, p)-feedback channel does not correspond to an actual radio
scenario. Its definition is introduced for the first time in this thesis. Our goal in Part II
is to design algorithms that implement this idealized channel using the realistic (but
difficult to program) t-disrupted channel. Later, in Part III, we design solutions to
common problems using the feedback channel. These solutions demonstrate how the
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ability to gain feedback simplifies algorithm design in a setting with unpredictable
frequency disruption. By applying our composition results of the previous chapters,
these solutions are then automatically adopted to work in the more inhospitable t-
disrupted setting.

We chose the (t, b, p)-feedback channel as the appropriate high-level channel to
implement with a ¢-disrupted channel because our experience working with the latter
taught us that the most solutions in this setting require processes to disseminate in-
formation about who has and has not succeeded in broadcasting on a non-disrupted
frequency. This information is often then used to schedule the next group of broad-
casters. The feedback channel handles the details of this dissemination, allowing the
algorithm designer to focus on the issues unique to the problem being solved. That
being said, other high-level channels might also prove appropriate targets for imple-
mentation. Consider, for example, a p-reliable channel, which delivers messages to
all processes with probability p. Indeed, we formalized a definition of such a chan-
nel in [73], and described a simple algorithm for implementing this channel using
a t-disrupted channel. We leave the definition and implementation of alternative
high-level channels as interesting future work.

With these informal definitions concluded we can proceed with the formal versions.
All four property definitions rely on a useful formalism known as a receive function,
which we define in the next section before moving on to the property definitions.

6.3 Receive Functions

A receive function maps a domain including messages sent, frequencies used, and
perhaps some other parameters, to a range describing sets of possible messages re-
ceived. These functions capture the relationship between different sending scenarios
and possibilities for the corresponding receives. We use these functions to simplify
the definition of the channel properties that follow.

We fix the following set, defined for any t € {0, ..., F — 1}, which we will use here
and in Section 6.5:

F={sc[F]:|s| <t}

We also define a pair of predicates that aid the receive function definitions:

Definition 6.3.1 (solobcast, collide) Let solobcast(M,F,f,i), for a message as-
signment M, frequency assignment F, frequency f, and process i, return true if and
only if i is the only process broadcasting on frequency f in M and F'.

Let collide(M, F, f,1, ), for a message assignment M, frequency assignment F, fre-
quency f, and processes i and j, return true if and only if i # j and both processes
broadcast on f in M and F.

The following receive function definition captures behavior fundamental to many
radio channels.

Definition 6.3.2 (fy.) The basic broadcast channel receive function, fue, 15 de-
fined such that for every send assignment M and frequency assignment F, fuc(M, F)
consists of every recewe assignment N that satisfies the following:
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1. Vi € [n]: Nli] € M.
(Each process receives no more than one message.)

2. Vi € [n]: N[i] € M = 3j € [n]: M[j]=mA F[i]| = F[j].
(If a process receives a message m on frequency f, then some process broadcast
m on f.)

8. Vi € [n]: M[i] € M = N[i] = M[i].
(Each broadcaster receivers its own message.)

4. Vi,j € [n]: Flil = Flj) A M[i] = M[j] = L= N[i] = N[j].
(All processes that receive on the same frequency receive the same thing. )

The above receive function captures some of the basic behaviors common to our
four informal property descriptions above (notably, conditions 1-3 from the partial
collision property, which are also shared by the other three). It does not, however,
provide a sufficient number of properties to define a useful channel. Notably, it does
not specify the circumstances under which messages are received or not received. We
answer this question with the following receive function, which matches condition 3
from our partial collision property description:

Definition 6.3.3 (fif) The interference freedom receive function, fiy, is defined such
that for every send assignment M and frequency assignment F', fis(M, F') consists of
every receive assignment N that satisfies the following:

Vf € [F],Vi,j € [n] : solobcast(M, F, f,i) A F[j] = f = N[j] = M[i]

(If a single process broadcasts on a gwen frequency, then all processes receiving on
that frequency receive its message.)

For a given M and F, the set of receive assignments fyoe(M, F)N f;f(M, F) describe
the legal receives for a channel satisfying the partial collision property. Indeed, in
the formal definition of this property below, our task is reduced to requiring that the
channel receive function return a receive assignment from this set. To capture the
more stringent collision requirements of the total collision property, we introduce the
following additional receive function:

Definition 6.3.4 (f;.) The total collision receive function fi. is defined such that for
every send assignment M and frequency assignment F', f,.(M,F) consists of every
receive assignment N that satisfies the following:

Vi, 5, k € [n],Vf € [F]: collide(M, F, f,i,j) A F[k} = f AM[k] = L = N[k] = L

(If two or more processes broadcast on the same frequency, then each recewer on that
frequency receives L.)
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Notice that this definition assumes no collision detection—a receiver cannot dis-
tinguish no broadcasts on a frequency from multiple broadcasts. To include collision
detection, however, it is sufficient to replace the final 1 in the above definition with
a special collision notification marker

The final receive function we define captures the idea that up to ¢ frequencies
might be disrupted—preventing communication.

Definition 6.3.5 (f%.) The t-disrupted receive function, fi,, 0 <t < F, is defined
such that for every send assignment M, frequency assignment F, and set B € F,
ft..(M, F, B) consists of every receive assignment N that satisfies the following:

1. Vie[n]: M[i{j= LAF[i{) € B= N[i]= L.
(Every process recetving on a frequency in B receives L. )

2. Vf € [F]\ B,Vi,j € [n] : solobcast(M, F, f,i) A F[j] = f = N[j] = M[i].
(A variation of the interference freedom receive function that is modified to apply
only to frequencies not in B.)

With our receive functions defined, we can now tackle channel properties.

6.4 Two Basic Channel Properties

We define the first two properties informally described at the opening of this chapter.
As mentioned earlier, most of the difficult work of restricting allowable behavior
was handled by our receive functions, simplifying these two property definitions to
connecting the channel automaton behavior to the results specified by the appropriate
collection receive functions from above.

Definition 6.4.1 (Partial Collision Channel Property) The partial collision chan-
nel property is the set consisting of every channel C such that for every channel state

s € cstatese, message assignment M, and frequency assignment F: crecve(s, M, F) €
fbbc(M7 F) mfif(]\/[v F)

Definition 6.4.2 (Total Collision Channel Property) The total collision chan-
nel property is the set consisting of every channel C such that for every channel state
s € cstatese, message assignment M, and frequency assignment F': crecve(s, M, F) €

fbbc(M7 F) N flf(Ma F) mftC(Ma F)
Notice, these definitions are not overly complex or difficult to follow, but they are

also mathematically precise, as contrasted with the more informal, English descrip-
tions from existing work.
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Multihop Variants. Both of these basic channel properties describe single hop
networks. More work is required to extend them to multiple hops. One approach for
this extension would be to include the multihop topology—i.e., a graph—as an input
to the receive functions. The resulting channel properties could then be stated in a
format similar to the following:

The multihop total collision channel property contains every channel C
where there exists a multihop topology G = (V, E), such that for every
channel state s € cstatesc, message assignment M, and frequency assign-
ment F: crecve(s, M, F) € fuwe(M, F,G)N fif(M, F,G) N fic(M, F,G).

This thesis, however, focuses on single hop networks as the appropriate setting for
establishing the basic theory concerning the type of adversarial channels we study.
We leave the formal definition of multihop variants of our channel properties as future
work.

We continue, in the next section, with our two advanced channel properties.

6.5 Two Advanced Channel Properties

The previous properties describe a closed network model in which algorithms operate
without outside interference. The only disruption in such a network is caused by
the processes themselves. The remainder of this thesis, by contrast, concerns an open
network model in which algorithms most cope with unpredictable outside interference.
We define two properties that capture this behavior below. We begin, however, with
some final helper definitions.

The first helper definition is similar to a receive function. We omitted it from
the receive functions section, however, because it returns F-vectors instead of receive
assignments (which are n-vectors). This function is used to describe the possible valid
feedback vectors returned to processes by a feedback channel.

Definition 6.5.1 (recvAll) The function recvAll : (ML) x [F]" x F, — (M1)7,
is defined such that for every message assignment M, frequency assignment F', and
set B € F, recvAll(M, F, B) consists of every F-vector R , where there exists a set
B' C B such that the following conditions hold:

For every f € [F]:

1. If f€ B', then R[f] = L.
(If f is in the blocked set B' , then R[f] = L.)

2. If i € [n] such that M[i] # L and F[i] = f, then R[f] = L.
(If no process broadcasts on f, then R[f] = 1.)

3. If f ¢ B' and Ji,j € [n] such that collide(M, F, f,,j) = true, then either
R[f] = L or R[f] = m, where m is a message broadcast on f by some process.
(If f is not in the blocked set B', and at least two processes broadcast on f, then
R[f] either contains L or one of the broadcast messages.)
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4. If f ¢ B', and 3i € [n] such that solobcast(M, F, f,i) = true, then R[f] = M[].
(If f is not in the blocked set B', and only a single process i broadcasts on f,
then R[f] equals the message sent by i.)

The recvAll function returns a description of what a receiver would have received
on each frequency had the described broadcast behavior occurred on a channel that
returned receive assignments in the intersection of the basic broadcast, and ¢-disrupted
receive functions. Notice, unlike the t-disrupted channel property, total collisions are
not enforced. In condition 3 from above, a collision causes processes to receive either
L or one of the colliding messages. This extra flexibility simplifies the implementation
of feedback channels in Part II.

The set B passed to recvAll describes the frequencies that can be disrupted,
Because the function includes feedback vectors for every subset of B, it is possible
that fewer frequencies will be disrupted.

The following two helper definitions will also aid the description of the properties
that follow.

Definition 6.5.2 (Receivable, Transformable) Fiz some channelC. We say that
a state s € cstatesc is receivable if and only if there exists a state s' € cstatese such
that crande(s')(s) > 0. In other words, it is a state that can be generated by the
randomized transformation of the channel state.

Similarly, we say that a state s is transformable if and only if there exists a state
s’ such that crandc(s)(s’) > 0. In other words, it is a state that can be transformed
by crand into another state with non-zero probability.

Definition 6.5.3 (bcount) For any message assignment M, beount(M) = |{i € [n] :
M][i] # L1}|. That is, it returns the number of broadcasters in M.

We can now provide the formal description of the ¢t-disrupted channel property.

Definition 6.5.4 (t-Disrupted Channel Property) The t-disrupted channel prop-
erty, 0 < t < F, is the set consisting of every channel C such that there exists a

mapping fblockede : cstatesc — F;, such that for every channel state s € cstatesc,

message assignment M, and frequency assignment F', the following is satisfied:

crecve(s, M, F) € fowe(M, F) N fie(M,F) N f3(M, F, B),
where B = fblockedc(s).

The definition of a t-disrupted channel is similar to the that of the total collision
channel (Definition 6.4.2). The only difference is that we replaced the f;; receive
function from the total collision property with the f%.. receive function. Recall, the
fiy function requires that if a single process broadcasts on a given frequency, then
all receivers on that frequency receive its message (Definition 6.3.3). As described
in the definition of f%, (Definition 6.3.5), the only difference between fiy and f§;,
is that the latter disrupts the frequencies in the set B € F;, which is passed as one
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of the function parameters. In this context, disrupts indicates that receivers on the
frequency receive L, even if there is only a single broadcaster.

With this in mind, crecve(s, M, F) € fope(M, F)Nfie(M, F)Nf5 (M, F, B) consists
of receive assignments that describe a total collision channel with the frequencies in
B disrupted. The final piece to this definition is the selection of the set B. This
selection is specified by the final requirement of the definition: B = fblockedc(s). In
other words, the set of blocked frequencies is determined by the receivable channel
state in the round. Because this state is generated independently of the message
and frequency assignments for the round, this enforces an independence between the
choice of frequencies to disrupt and the algorithm’s broadcast behavior.

We continue with the formal definition of the (¢, b, p)-feedback channel property.
This property features some subtleties, so we carefully walk through its two conditions
in the text that follows the formal definition.

Definition 6.5.5 ((t,b,p)-Feedback Channel Property) The (t,b, p)-feedback chan-
nel property, 0 <t < F,0<b<mn, 0<p<1, is the set consisting of every channel

C such that there exist two mappings pblockedc : cstatesg x (ML)" x [F]* — P([n]),
and fblockedc : cstatesec — Fi, that satisfy the following:

Let M be a message assignment with bcount(M) < F, and let F be a frequency
assignment. Then:

1. For every transformable state s,, the probability that the distribution crandc(s:)
returns a state sy where |pblockedc(s2, M, F)| < b, is at least p.

2. For every receivable state s, there exists an R € recvAll(M, F, fblockedc(s)),
where, letting N = crecve(s, M, F), we have, for every i € [n]:

Nfi] = 1 ifi € pblockede(s, M, F),
R else.

At a high-level, this channel behaves like a ¢-disrupted channel enhanced such
that some processes receive on all frequencies simultaneously, while the others simply
receive L. It guarantees that with probability p, no more than b processes receive L.

We now consider the details of the definition. First, notice that for every chan-
nel C in the property set, we require the existence of two mappings: pblockedc and
fblocked;. The first will be used to determine the processes that receive L, given a
channel state, message assignment, and frequency assignment. The second is used
in the same manner as in the definition of the t-disrupted channel property (Defini-
tion 6.5.4). That is, it determines the disrupted frequencies, given a channel state.

With these functions defined, we continue with the two conditions. For both con-
ditions, we fix a message assignment M, and frequency assignment F', in advance. We
require that becount(M) < F. The conditions that follow, therefore, do not necessarily
apply to message assignments with more than F broadcasters. As discussed in the
description of the DFC feedback channel implementation algorithm (Chapter 9), it
proves difficult to implement a feedback channel if one must satisfy these conditions
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for any number of broadcasters. This follows from the algorithm’s requirement that
it can recruit some non-broadcasting processes to listen on each frequency.

The first condition specifies that given any transformable channel state s;, the
distribution crandc(s;) assigns at least probability p to states sy, where

|pblockedc(s2, M, F)| < b.

That is, regardless of the channel state and messages being sent, with probability p
no more than b processes will be included in the corresponding pblocked set.

The second condition restricts the receive assignment N = crecve(s, M, F), where
s is a receivable channel state. First it identifies a feedback vector

R € recvAll(M, F, fblockedc(s)).

Recall from the definition of recvAll (Definition 6.5.1) that this R describes what
could be received on each frequency of a ¢t-disrupted channel, given broadcast behavior
M and F, and some subset of the frequencies in fblocked¢(s) being disrupted. The
condition concludes by specifying that each process in the pblockedc(s, M, F) set
receives L (i.e., is blocked), while the rest receive the feedback vector R.

In using this property definition in the proof of our algorithms in Part III, we
rely heavily on two elements, in particular. First, the fact that with probability p, at
least n — b receive the feedback, regardless of the channel state or broadcast behavior.
This simplifies the analysis in these proofs, as we have a fixed probability of getting
enough feedback, for every round—regardless of the algorithm’s behavior.

The second useful element of this definition is that the disrupted frequencies are
determined only by the receivable state. Because this state is generated independently
of the message and frequency assignments for a round, it allows the use of random
frequency hopping as an effective method for avoiding disrupted frequencies (see, for
example, the correctness proof for our reliable broadcast algorithm: Theorem 13.3.1).
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Part 11

Algorithms for Implementing a
Feedback Channel
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In Part II we provide a randomized and a deterministic implementation of a (¢, b, p)-
feedback channel using a t-disrupted channel. Specifically, in Chapter 8 we describe
RFC.;, a randomized algorithm that implements a (¢,0,1 — #)-feedback channel,
where € is any constant of size at least 1. For the deterministic case, we describe, in
Chapter 9, the algorithm DFC} s, which implements a (t,t, 1)-feedback channel. In
the latter case, we trade the deterministic guarantee of success (i.e., p = 1) for an
increased number of potentially blocked processes (¢ in this case, as compared to 0
for the randomized case).
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Chapter 7

Preliminaries

In this preliminary chapter, we define the notation and pseudocode template used in
Part II.

7.1 Notation
The following definitions are used in Chapters 8 and 9:

e We use the terms t-disrupted channel and (t,b, p)-feedback channel to refer to
any channel that satisfy the ¢-disrupted channel property and (¢, b, p)-feedback
channel property, respectively.

e The term emulated round describes all the rounds that transpire between the
channel environment passing down a send-encoded input, and the channel al-
gorithm returning the corresponding receive-encoded output.

e The term real round, by contrasts, disambiguates the underlying system rounds
from the emulated rounds.

7.2 Pseudocode Template

To simplify the description of algorithms, we introduce a pseudocode template.
Specifically, for algorithm .A, we describe process A(z), for every i € [n], using the
format described in Figure 7-1. Informally, the process first retrieves random bits,
then receives its input vector, then chooses a frequency and broadcast message (or L
if it wants to receive), then broadcasts, then receives its received messages from the
round, and finally generates an output.
Formally, the template captures this behavior with the following functions:

1. RAND;(x € N) returns a string of x random bits selected uniformly at random.

2. INPUT;() returns an input value from 7, .
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Constants for .A(2):
(Constants and values)

Local state that is implicitly included in all algorithm descriptions:
bit; € {0,1}*, initially 0.
I; € Z,, initially L.
N, eR,.

Local state for A(z):
(Local state variables defined and initialized)

For all rounds r > 0:
(Local state transformations)
(Local state transformations)
I, — INPUT;()
(Local state transformations)
BCAST(f; € [F],m, € M)
N; — RECV()
(Local state transformations)
(Local state transformations)

Figure 7-1: Pseudocode template for process A(%).
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3. BCAST,(f; € [F],m; € M) broadcasts message m; on frequency f;. (If L is
passed instead of a message, this indicates that the process should receive.)

4. RECV;() returns the message set—or L to represent no messages—received
during this round.

5. OUTPUT;(O; € Oy) outputs the value O;.

We also note the following useful additions to our template.

7.2.1 Implicit State

In the pseudocode description provided in Figure 7-1, we describe a collection of
state variables labelled “Local state that is implicitly included in all algorithm de-
scriptions.” Because these state variables are used in all algorithms, we follow the
convention that it is unnecessary to reproduce their variable names, types, and ini-
tial values in every pseudocode description. We define these variables only once: in
Figure 7-1. These definitions are implicit in all subsequent pseudocode descriptions
found later in this thesis.

7.2.2 Subroutines

Sometimes when presenting an algorithm it proves useful to separate out certain
sections of code. The convention we follow allows the algorithm designer to describe
a subroutine in a separate figure. Wherever the subroutine title is included in the
main algorithm description, we replace the title with the body of the subroutine code.
Subroutines can be nested within other subroutines. In all cases, we simply replace
a subroutine title with its code body to generate a single pseudocode description.

This simple convention prevents a subroutine from referencing itself; i.e., no re-
cursion. It also sidesteps the notion of multiple scopes within the same process.
Subroutines of this type are sometimes also called macros.

7.2.3 Undefined Rounds

For simplicity, sometimes we preface process pseudocode with “For all rounds r < &7,
for some k > 0. In this circumstance, it assumed that for all rounds after round k,
processes broadcast nothing and output L.
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Chapter 8

The RFC¢; Randomized Channel
Algorithm

In this chapter, we provide a randomized implemention of a (¢, b, p)-feedback channel
using a t-disrupted channel. Specifically, we describe RF'C;, a randomized imple-
mentation of a (t,0,1 — --)-feedback channel using a t-disrupted channel. The main
code for RFC,; is presented in Figure 8-1; it references subroutines defined in Fig-

ures 8-2, 8-3, and 8-4.
2
S} ( ]'Z: _Gt log n)

The algorithm requires
real rounds for each emulated round. Below we provide a high-level summary of the
algorithm, including definitions for a relevant helper function and notation. We then
describe the pseudocode in detail.

Assumptions on the Size of n. The RFC,; algorithm assumes that n > F. It
could easily be adapted to smaller n, however, as long as n > t. This adaptation
restricts the processes to use only the first n frequencies.

8.1 Algorithm Overview

The algorithm cycles, indefinitely, through four phases: wasting, broadcast, feedback,
and endfeedback, and then back to waiting, and so on. Each full cycle through these
phases corresponds to one emulated round. Below, we provide a high-level description
of the algorithm’s operation. In the following, the algorithm designates the first 7
processes as listeners.

1. At the beginning of an emulated round, the algorithm is in the waiting phase.
When it receives a send-encoded input from the environment, its transitions
into the one-round broadcast phase. During this round, each listener receives
on the frequency that matches its id, regardless of the message and frequency
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passed as input from the channel environment. A non-listener process passed
a non-1 message from the channel environment, broadcasts this message on
the frequency also passed from the environment. A non-listener that is passed
message L can receive on any frequency.

. After this broadcast phase, the algorithm transitions into the feedback phase,
during which each listener attempts to inform the rest of the processes about
what it learned during the broadcast phase. Specifically, in each round of the
feedback phase, each process chooses a frequency at random. Each non-listener
process always receives on its chosen frequency. Each listener process receives
with probability 1/2, otherwise it broadcasts a set containing what it received on
its assigned frequency during the first round, and what message and frequency
pair it was passed by the environment during the first round (if the message is
non-_1.) We choose a sufficiently large number of rounds in the feedback phase
to ensure that all processes hear from all F listeners with probability at least
1- ni This allows the processes to agree on an appropriate receive-encoded
output.

. After the feedback phase concludes, the algorithm transitions to the endfeedback
phase, during which the processes use the information from the preceding phase
to generate their receive-encoded outputs. They then return to the waiting
phase in preparation for starting the next emulated round.

8.2 Helper Function and Notation

Before proceeding with a more detailed discussion of the pseudocode, we define the
helper function and notation it uses.

We begin with the helper function clean, used in the PrepareQutput subroutine.

It is defined as follows:

o clean: P([F] x My x [F]) = {L}U ML),

To define clean(S) we consider two cases for input S:

— Case 1: 3f € [F],B(*, %, f) € S.
In this case: clean(S) = L.
(If the set does not include a message from each listener, then clean returns
1)

— Case 2: Vf € [F],3(x,*, f) €S.
In this case: clean(S) = R € (M)*, where we define R as follows.
Vf e [F)
+ If S contains exactly one element of the form (f, %, x), then R[f] = m,
where m is the message (from M) in this tuple.

x Else, R[f] = L.
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(If the set contains information from each listener, the function calculates
the received value for each frequency, returning m if and only if m is the
only value included for a given frequency, and returning 1 otherwise. That
is, R[f] = L if either: (a) no listener reported receiving a message on f,
or (b) two or more messages were sent on f.)

In other words, given a set of 3-tuples of the form (message, frequency, and lis-
tener id)—i.e., the information generated during the feedback phase—this function
calculates an an output value the matches the definition of a feedback channel (i.e.,
it returns either L or a feedback vector).

We also define the following useful notation, used in the PrepareMessage subrou-
tine.

e Given an input value I € (M x [F]), we use the notation I.msg and I.freq
to refer to the first and second element of the pair, respectively.

o If [ ¢ (M, X [F]), then I.msg=1.freq= 1.

8.3 Pseudocode Explanation

The pseudocode that defines the process is contained in the three subroutines: Pre-
pareMessage, ProcessMessage, and PrepareOutput. The main body of the code calls
these subroutines in between the standard functions common to all algorithms that
use our pseudocode template. In the sections that follow, we describe all three sub-
routines in detail.

8.3.1 The PrepareMessage Subroutine

The purpose of this subroutine (presented in Figure 8-2) is to determine the broadcast
behavior for the current round (that is, the frequency on which to participate and
the message, if any, to send). It also handles the transition from the waiting phase to
the broadcast phase.

The subroutine handles two cases. The first case is when status; = waiting
and I; # L, which indicates that process ¢ has just received a new send-encoded
input from the environment. In this case, it first sets status; < broadcast, changing
the process status to broadcast, as it is about to broadcast the message received
from the environment. It then extracts the message component of the input into m;
(m; « I;.;msg), and the frequency component into f; (fi « I;.freq). If the process
is not a listener (i.e., if ¢ > F), then it is done with the subroutine. Otherwise, ¢ is
a listener (i < F), and then the process temporarily stashes a copy of m; and f; in
tempM; and tempF; (tempM; — m; and tempF, « f;), and then resets m; and f; to
describe receiving on frequency ¢ (m; « L and f; « 7).

The second case for this subroutine is when status; = feedback. (Notice, there
is no case for status; = broadcast or status, = endfeedback, as, by the control logic
of the process, this subroutine can never called with these values for status,). If
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process i is a listener and the final bit of the random bits in bit equals 1 (if i < F and
bit;[[lg F] + 1] = 1), then it sets m; to its feedback messages set, fom; (m; «— fom,),
otherwise it sets to m; to L to indicate it should receive (m; «— L). Then, regardless
of whether i is a listener or not, the process sets f, to the random frequency encoded
in bit; (f; « bit;[1...1g F]). We can summarize the behavior in this case as follows:
non-listeners always receive; a listener, by contrast, receives with probability 1/2, and
broadcasts its feedback messages set with probability 1/2.

After the call to the PrepareMessage subroutine completes, the process proceeds,
in the main body of its pseudocode description, to broadcast according to f; and m;
(BCAST;(f;,m;)). It then stores its receive input in N; (N; «+~ RECV,()) and calls
ProcessMessage to process these values.

8.3.2 The ProcessMessage Subroutine

The purpose of this subroutine (presented in Figure 8-3) is to process the received
messages. It also handles the transition from the broadcast phase to the feedback
phase, and from the feedback phase to the endfeedback phase.

The subroutine handles two cases. The first case is when status; = broadcast.
Here, the process first resets recvSet; to @ to prepare for the feedback phase ahead—a
phase during which it will attempt to fill this set with information about what the
send-encoded input encoded for every frequency. If the process is not a listener (i.e.,
if i > F), it sets status; — feedback and ends the subroutine. If the process is a
listener (i < F), it begins by initializing its feedback messages set, fbm;, to contain
only (fi, Ni,i). The first two values in this 3-tuple indicate that message N; was
received on frequency f;. (Notice, by the definition of PrepareMessage, described
above, f; = i at this point.) The third value indicates that ¢ is the source of this
information.

If the listener was passed a message by the environment in this round (tempM; #
1), it will add this information to fbm; as well (fbm; « fbm;U(tempF;, tempM;, i)).
In this way, listener 4 describes in its fbm set, not only what it received while listening
on ¢ during the broadcast-phase round, but also what it would have sent if it had not
been listening. As with the non-listener, its final action in the subroutine is to set its
status; to feedback.

This brings us to the second case for this subroutine, which is when status; equals
feedback.

Here, the process first checks whether its receive set, N;, is empty (N; = L). If it
is not empty, it adds Nj; to its recvSet; set (recvSet; « recvSet; U N;). Regardless
of whether N; is empty, the process will then increment its feedback round counter,
fbcounter (fbround « fbround+1). If the counter is larger than FBM AX, then the
feedback phase is done, which the process indicates by setting status, «+ endfeedback.

8.3.3 The PrepareOutput Subroutine

The purpose of this subroutine (presented in Figure 8-4) is to prepare the process
output. If the process is in the endfeedback phase it generates a receive-encoded
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Constants for RFC, (i)
FBMAX = [(F?*4(e +2)Inn)/(F —t)].

Local state for RFC ,(4):
m;, tempM; € My U P([F] x M1 x [freg]), initially L.
fi, tempF; € [F), initially 1.
status; € {waiting, broadcast, feedback, endfeedback}, initially waiting.
fbLeader; € [F], initially 1.
fbRound; € N, initially 0.
recvSet,, fbom; € P([F] x M x [F]), initially .

For all rounds r > 0:
bit, — RAND;([lg F1+ 1)
I, — INPUT()
PrepareMessage();
BCAST(f,,m;)
N; — RECV;()
ProcessMessage();
PrepareOutput();
OUTPUT;(0;)

Figure 8-1: Implementation RFC.;: a (t,0,1 — =)-feedback channel using a t-
disrupted channel. Code presented is for process RFCe(%).

output. Otherwise, it outputs L. The subroutine also handles the transition from
the endfeedback phase back to the waiting phase, in preparation for a new emulated
round.

This subroutine always begins by having the process set the output value, O;, to
1. If status; does not equal endfeedback, then the subroutine is done. If, however,
status; does equal endfeedback, then the feedback phase has concluded in this round
and the process prepares its receive-encoded output to return to the environment.
First, however, it resets status; «— waiting, m; «— L, fi « 1, and fbRound < 0,
so it is ready to start a new emulated round in the next real round. It then sets
O; = (recv, clean(recvSet;)). Recall, a receive-encoded output must be of the form
(recv, m), where m is the received message. The clean helper function, as described in
Section 8.2, will return L if the recvSet; does not include information from all F lis-
teners, and otherwise returns a feedback vector describing the information contained
in the set.

After this subroutine returns, the process, in the main body of the pseudocode,
outputs O; (OUT PUT;(0;)), to conclude the round.

8.4 Proof of Correctness for RFC,;

We continue by stating the main theorem.

Theorem 8.4.1 For anyt € {0, ..., F — 1}, ¢ € N*, and t-disrupted channel C, there
exists a (t,0,1 — #)—feedback channel C' such that RFC.; implements C' using C.
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PrepareMessage();:
if (status; = waiting) and (I; # L) then
status; «— broadcast
m, «— I,.msg
fi = ILi.freq
if (¢ < F) then
tempM, — m;
tempF; — f,
my; «— L
fiei
else if (status, = feedback) then
if (i < F) and bit,[[lg F] + 1] =1 then
m; — fbm,
else
m, — L

Figure 8-2: PrepareMessage(); subroutine for RFC,(i).

ProcessMessage();:
if (status; = broadcast) then
recvSet; « 0
if (i < F) then
foms — {(f., Nuyi)}
if (tempM, # L) then
fbm, «— fbm; U {(tempF;,tempM,, i)}
status; < feedback
else if (status; = feedback) then
if N, # L then
recvSet; — recvSet; U N;
fbRound, « fbRound; +1
if (fbRound; > FBM AX) then
status; «— endfeedback

Figure 8-3: ProcessMessage(); subroutine for RFC,(3).

PrepareOQutput();:

0;=1

if (status, = endfeedback) then
status, «— waiting
m, «— L
fi—1
fbRound «— 0
0, = (recv, clean(recvSet;))

Figure 8-4: PrepareOutput(), subroutine for RF'C, ().
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For the the proof, fix a specific ¢, €, and C that satisfy the constraints of the
theorem statement. Let ¢ = € + 2.

We will use the expression feedback phase to indicate the rounds in an execution
of RFC,,; in which the processes start with status = feedback. Similarly, we will
use broadcast phase to indicate the rounds in which the processes start with status =
waiting and then transform to status = broadcast during the call to PrepareMessage.

We prove four helper lemmas before tackling the proof of the main theorem.
The first two, Lemmas 8.4.2 and 8.4.3, are used by the third, Lemma 8.4.4, which
bounds the probability that no process outputs L at the end of the emulated round.
Lemma 8.4.5, the final helper lemma, proves that the all processes that do not output
L, output the same, well-formatted feedback vector.

We start with Lemma 8.4.2, which bounds the probability that a process receives
a message from a listener during a feedback phase round. In this lemma, as well as in
Lemma 8.4.3, we use the notation fized fbm; value from (listener) process RFC,(j),
to refer to the value of fbm; fixed by process j during the broadcast phase of the
current emulated round. Recall from the ProcessMessage subroutine that once this
value is fixed, it is not changed again until the broadcast phase of the next emulated
round.

Lemma 8.4.2 Fiz some i € [n], j € [F], channel environment £, and r — 1 round
ezecution a of (€, RFC;,C), such that round r is a feedback-phase round.
The probability that process RFCe4(i) receives a message containing the fized fbm;

value from (listener) process RFC..(j) during a one-round extension of «, is at least

srecv __ J—t
Pij = 2

Proof. We consider two cases for 7 and j. In the first case, ¢ = j. If this process
broadcasts in r, it will receive fbm; (by the definition of the t-disrupted property,
broadcasters receive their own messages). By the definition of the algorithm, every
listener process (i.e., processes 1 to F), during every feedback phase round, broadcasts
with probability 1/2 > %—3, regardless of the history of the execution to this point.
So we are done.

The second case is 3 # j. At the start of round r, the channel C probabilistically
selects a new state RC by distribution crand¢(Cr—1) (where C,_; is its final state
in a). By the definition of the t-disrupted property, it disrupts the frequencies in
S = fblockede(RS). The definition also provides that |S| < ¢.

During this same round, every process selects a frequency uniformly and at ran-
dom. The non-listeners receive. The listeners broadcast with probability 1/2. For
each process, these random choices are made independently of the history of the
execution to this point.

Consider the frequency f; selected by 4. It is important to recall here that the
random transformations of the channel state and the process states, in this round,
all occur independently. They can depend on « (i.e., the execution history up to this
round), but they cannot depend on the random selections made by the other entities
during the same round. Combining this reminder with the fact that process ¢ selects
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its frequency in r uniformly and independent of «, the probability that f; ¢ S is
(F — | fblockedc(RC)|)/F > (F —t)/F.

In a similar way, we consider the frequency f; selected by j, and note that the
probability that f; = f; is 1/F. Combine these two probabilities with the probability
of 1/2 that j broadcasts, and it follows that the probability that z and j land on an
undisrupted frequency in round 7, and j broadcasts during this round, is at least:

F—t

2F?

We now calculate the probability that no other listener broadcasts on f = f; = f;
during this round. We call this probability pjfflo, and we bound it as follows:

(8.1)

i > I 0-52) (52
ke[FN\j

> [ e (8.3)
ke[FI\j

= (1/4)7= (8.4)

> (1/4)2 (8.5)

= (1/2) (8.6)

To calculate step (2), we note that every listener chooses frequency f, and decides
to broadcast with probability exactly =. Step (3) makes use of Theorem 2.2.1. We
now combine (1) and (6) to obtain the following result: the probability that ¢ receives

fbm; from listener j during round r, is at least p;’* = f—]_?zt. O

We next look at the probability that a process ¢ hears from a listener j at least
once during all FBM AX rounds of a feedback phase.

Lemma 8.4.3 Fiz some i € [n], j € [F], channel environment £, and r — 1 round
execution a of (€, RFC.4,C), such that round r is the first round of a feedback phase.
The probability that process RFC,4(i) receives a message containing the fived fbm;
value from (listener) process RFC.4(j) during at least one of the rounds of an FBM AX -

round eztension of a, is at least p 7~ =1—n"¢.

Proof. The feedback phase lasts FBM AX rounds (where FBMAX is defined
in the constants for the pseudocode for the algorithm). We can extend a one round
at a time through the feedback phase. At each round we can apply Lemma 8.4.2,
as it holds regardless of the execution history up to that round. It follows that in
each of these rounds, process ¢ receives fbm; with probability at least p{’*® = %
Conversely, 4 fails to receive fbm; in all FBMAX rounds, with probability no more
than:

(1 _ pir]ecv)FBMAX. (87)
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By applying Theorem 2.2.1, and noting that FBMAX = €'1/p{"* Inn, we can
simplify (7) as follows:

(1— p:ZeW)FBMAX < e—pfgecv)FBMAX (8.8)
= 'BMAX—piFe (8.9)
= ¢Inm (8.10)
- n (8.11)
This yields the needed probability. O

The next lemma bounds the probability that all processes hear from all listeners.

Lemma 8.4.4 Fiz some channel environment £ and r — 1 round ezecution a of
(€, RFC,;,C), such that round r is the first round of a feedback phase.

The probability that no process outputs (recv, L) at the final round of an FBMAX -
round extension of a, is at least 1 — (1/n%).

Proof. Fix some i € [n] and j € [F]. By Lemma 8.4.3, we know that the
probability that ¢ fails to receive fbm; from j during this phase starting at round
r, is no more than n=¢%%"' Applying a union bound (Theorem 2.2.2), we conclude
that ¢ fails to hear from at least one of the F listeners, with probability no greater
than % <p €1

We apply the union bound a second time to calculate that the probability that at
least one process fails to hear from at least one listeners, is no more than n=¢=2 €

It follows that with probability at least 1 — (1/n€), all processes hear from all
listeners during this feedback phase. Finally, by the definition of the algorithm, a
process that hears from all listeners during a feedback phase, does not output L, as
needed by the lemma statement. O

=n

We proved that with high probability no process outputs L. Our final helper
lemma constrains this non-_L output. Unlike the previous lemmas, this one does not
concern probabilities—it is a straightforward statement concerning the construction
of the receive-encoded values output by RFC;.

Lemma 8.4.5 Fiz some channel environment € and a r+FBMAX —1 round execu-
tion a of (£, RFC,,;,C), such that the final FBMAX rounds of a describe a feedback
phase. Let RC | be the channel state selected from distribution crande(C_s) during
round r — 1. Let M and F be the message and frequency assignments, respectively,
encoded in the send-encoded input I._y of this round. And let Ly describe the frequen-
cies on which exactly one listener was scheduled to broadcast, by M and F'.

There ezists a vector R € recvAll(M, F, fblockede(RS ;)\ Ly)), such that every pro-
cess outputs either (recv, L) or (recv, R) at the end of the feedback phase starting in
round 7.

93



Proof. The relevant output values are generated by the call clean(S) at the end of
the PrepareQutput subroutine (Figure 8-4), so, in this proof, R = clean(S)—leaving
us to argue about the values returned by this helper function.

By the definition of clean, a process outputs (recv, L) at the end of a feedback
phase unless it received the fbm set from every listener, during the feedback phase.
Specifically, we defined clean to return L if it does not have a 3-tuple of the form
(x,%,1), for every ¢ € [F]. (Recall that this final element in these 3-tuples indicates
the source of the information.)

By the definition of the algorithm, the listeners set their fbm set at the end of
the broadcast phase round (see the code in ProcessMessage that follows the else if
(status; = broadcast) conditional), and then perform no further modifications during
the subsequent feedback round (see the code following the if (status; = feedback)
conditional, in the same subroutine). It follows that all processes that heard from all
listeners, pass the same set .S to clean at the end of the emulated round. We are left,
then, to argue that clean(S) € recvAll(M, F, fblockede(RE ;) \ Ly).

If no listener was scheduled to broadcast in M and F (and therefore Ly = 0),
this clearly holds. There was one listener on each frequency of a t-disrupted channel
during the broadcast phase, and all processes hear from all F listeners regarding what
they received during the broadcast phase round. The clean function will return the
‘needed F-vector that matches recvAll’s output format.

If, however, a single listener was scheduled to broadcast on a frequency in f blockede(RE ),
the issue becomes more complicated. In this case, the listener assigned to this fre-
quency (by the algorithm) will receive L—because the frequency is disrupted. The
listener scheduled to broadcast on this frequency (by the channel environment), how-
ever, includes its message in its fbm set (the fobm; «— fbm; U {(tempF;, tempM;, %)}
line from ProcessMessage) and then disseminates this set to all processes during the
subsequent feedback phase. It will be the only value associated with this frequency
and therefore returned in the clean(S) vector—even though the frequency was dis-
rupted. We anticipate this possibility by subtracting, in our lemma statement, these
frequencies (i.e., L;) from fblockedc(RY_,), to generate the blocked set we pass to
recvAll.

A similar subtlety arises when two non-listeners broadcast on a frequency, and
one listener is scheduled to broadcast on the same frequency. The listener assigned to
that frequency receives L due to collision. The scheduled listener’s message, however,
will be disseminated and included in the clean(S) set. We handle this case by noting
that we defined recvAll to allow for a message to be received from among multiple
messages broadcast simultaneously (Definition 6.5.1). a

We conclude by deploying our helper lemmas, along with our composition channel
theorem from earlier, to prove our main theorem.

Proof (Theorem 8.4.1). By Theorem 5.2.10, we know that RF'C,; implements
channel C(RFC,;,C) using C. For simplicity, we introduce the shorthand notation
C' = C(RFC,,,C). Our goal is to prove that C' is a (¢, 0,1 — = )-feedback channel. To
do so, we must prove that C’ satisfies the conditions of Definition 6.5.5.
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This definition requires the existence of the two mappings, fblocked¢s and pblockedc:,
that satisfy the definition’s two conditions. Below, we address the two conditions in
turn. We define fblockede and pblockedc as needed by the conditions.

Proving Condition (1) of Feedback Channel Definition. We begin with con-
dition (1), which states:

Let M be a message assignment with bcount(M) < F, and let F' be a
frequency assignment. Then, for every transformable state s;, the proba-
bility that the distribution crande (s1) returns a state s, where
|pblockeder (s2, M, F)| < b, is at least p.

In our case, b= 0 and p = 1 — (1/n¢). We need to define pblockedcr such that the
above is satisfied for these parameters.

Recall from Definition 5.2.5 that the composition channel has two types of states:
simple and complex. Because the state s; is transformable, we know it is simple.

Therefore, the distribution crande(s;) assigns non-zero probability only to com-
plex states. With this is in mind, we define pblockedcr only for complex states.

Specifically, given such a state, sy, and assignments M and F' that match the
conditions’ preconditions, define pblockedc:(s2, M, F') to return the set of processes
that output (recv, L) at the end of the last emulated round encoded in sy.0ext(M, F).

Our second step is to show that this definition of pblockedc matches the con-
straints of the condition. Fix some s;, M, and F that satisfy the preconditions of the
condition. Let o = s;.pre. Let S be the set of all complex states assigned a non-zero
probability by crande:(s;), and let S” C S be the subset of states from S such that the
last emulated round in their oext(M, F) entry has no process output (recv, L). Note,
by our definition of pblockedc:, for every such state s’ € S': pblockede: (s, M, F) = 0.

We need to lower bound the probability mass in crandc(s;) assigned to states
in §’. To do so, we first partition S’ by the values of the oext(M, F') rows. Let
exts(S') be the set consisting of every unique environment-free execution contained
in a oext(M, F) row of a state in S". For each o/ € exts(S’), we define partition
component X, of S’ as follows:

Xy ={s €8 :5.0ext(M,F)=a}
We apply Lemma 5.2.8 with respect to o and o' to determine:
Z crande (s1)(s") = Pr(d/|a],

s'eX 1

where Pr[a’|a] is the probability that RFC.,, using channel C, extends « to o/, given
the input assignments in o’.

We now rewrite the sum of the probability assigned to the states in S’ as a double
sum, and then substitute the above result to simplify:
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Zcmnd@(sl)(s’) = Z Z crande:(s1)(s")

s'eS’ a’cexts(S’) s'€X

= Z Prid/|a]

a’cexts(S’)
= Dydbk

where pyapx is the probability that RFC,;, using channel C, extends a to some emu-
lated round that has no process output (recv, 1), given the input toinput(M, F).

This is a statement about the behavior of RFC,, running on C, which allows us to
deploy our Lemma 8.4.4 from earlier in this chapter. First, however, we must trans-
form the environment-free execution « (from s;.pre) into an execution. We deploy
Theorem 5.2.12 to this end. This tells us that there exists a channel environment,
and a way to add states from this channel environment to s;.pre, that provides a
valid execution. We can now apply Lemma 8.4.4 to determine that the probability
that RFC.;, using C, extends this execution to an emulated round with no (recv, 1)
outputs, is at least 1 — (1/n). It follows that psaw = 1 — (1/n°), as well.

We have shown, therefore, that with probability at least 1 — (1/n), s; transforms
to a state s, € S’. For every such s, € S’: pblockede:(se, M, F) = 0, as needed.

Proving Condition (2) of Feedback Channel Definition. We continue with
condition (2), which states:

Let M be a message assignment with bcount(M) < F, and let F be a
frequency assignment. Then, for every receivable state s, there exists an
R € recvAll(M, F, fblockedc:(s)), where, letting N = crecve(s, M, F'), we
have, for every i € [n]:

. / 7
Nji] = L if i € pblockedc: (s, M, F)
R else

We already defined pblockedc:, so we are left to define fblockedc: and show that
the two functions, when combined, satisfy the above property.

Our first step is to define fblockedc:. Because s is receivable, we know it is
complex. With this in mind, let s¢ be the last state of C encoded in s.ext. (Recall
from Definition 5.2.5), s.pre is a prefix that contains no partial rounds. While s.ext,
by contrast, extends s.pre by a single channel and algorithm state. That is, it takes
the states at the end of the prefix in s.pre, and transforms them probabilistically to
their new state by applying the matching distributions.)

We define:

fblockedc:(s) = fblockede(sc)

In other words, fblockedc(s) evaluates to the frequencies disrupted by t-disrupted
channel, C, in the emulations of RFC on C, captured in state s of the composition
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channel C’. This is where it proves important that we included an ext field in addition
to the oext table in our definition of complex composition channel state. It requires
that every emulated round in the oezt table start with the same state s¢ of the channel
C.

Our second step is to show that our definitions match the constraints of the
condition. Fix some s, M, and F that satisfy the preconditions of the condition.
Above, we defined pblockede: (s, M, F) to return the processes that output (recv, 1)
in the last emulated round in s.cext(M, F). We are left to show that the processes
not in this set all output the same R € recvAll(M, F, fblockedc:(s)).

Lemma 8.4.5 aids us in this effort. As in our proof of condition (1), however, we
must first take the relevant environment-free execution encoded in s and transform
it into a valid execution for which the lemma applies.

We apply Theorem 5.2.12 to the execution in s.oext(M, F). This produces a
matching execution of a system with RFC¢,, C, and a channel environment. This
execution has the same states of RFC; and C, and the same input and output
assignments, as in s.oext(M, F). We can apply Lemma 8.4.5 to the last emulated
round in this execution. It follows that the processes that do not output L output
the same R € recv(M, F, fblockedc(s') \ Ly), where s’ is the first receivable channel
state in this emulated round, and L; is the subset of the frequencies defined in the
statement of Lemma 8.4.5.

The same holds, therefore, for the output at the end of s.oext(M, F).

By definition, s¢ = s'. It follows that fblockedc(s')\ Ly is a subset of fblockedc(sc) =
fblockedc:(s). Therefore, any R € recv(M, F, fblockedc(s") \ Ly) is also in
recvAll(M, F, fblockedc (s)), as the definition of recvAll defines valid feedback vec-
tors for all subsets of the blocked set passed as its third parameter.!

We have shown, therefore, that every process not in pblockede: (s, M, F') returns
the same R € recvAll(M, F, fblockedc:(s)), as needed. O

8.5 Time Complexity of RFC.;

We now bound the time complexity of the emulated rounds generated by RFC,;.

Theorem 8.5.1 Fiz some t € {0,...,F — 1}, ¢ € N*, t-disrupted channel C, and
channel environment £. Let a be an execution of (€, RFCc;,C). Every emulated
round in o« requires

[(F24(e +2)Inn)/(F —t)] + 1=
Fie
© <j_.__tlogn>,

1Formally, this is captured in its wording that given such a parameter B, it returns every R, such
that there exists a B’ C B, where the properties that follow hold with respect to B'.

real rounds to complete.
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Proof. The result follows directly from the algorithm definition.
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Chapter 9

The DFC} jy Deterministic
Channel Algorithm

In this chapter, we provide a deterministic implementation of a (¢, b, p)-feedback chan-
nel using a t-disrupted channel. Specifically, we describe DFC; ur, fort € {0, ..., F—1}
and (n, F,t+ 1)-multiselector M (recall, a multiselector is a combinatorial object de-
fined in Section 2.3). The main code for DFC; s is presented in Figure 9-1; it
references subroutines defined in Figures 9-2, 9-3, and 9-4.

The algorithm requires

e (FM|),

real rounds for each emulated round, where |M| is the size of the multiselector, M.
This size varies from a maximum of O (F* log” n) to a minimum of O (tlog (n/t)),
depending on both the size of ¢ compared to F, and whether we consider an existential
or constructive proof of the multiselector’s size. (See Chapter 2 for more details on
these objects and their sizes.)

Assumption on the Size of n. The DFC; 5 algorithm assumes that n = Q(F?).
It is possible to implement this feedback channel with smaller n, but this increases
complexity—both in terms of time and details of the algorithm—without adding
significant new insight to the problem.

9.1 Algorithm Overview

The algorithm cycles, indefinitely, through five phases: waiting, broadcast, feedback,
combine, and output, and then back to waiting, and so on. Each full cycle through
these phases corresponds to one emulated round. Below, we provide a high-level
description of the algorithm’s operation. In the following, the algorithm designates
the first 3 4 F2 processes as listeners. Similarly, it also designates the first F%t + F
processes as combiners.

At a high-level, its operation can be summarized as follows:
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1. At the beginning of an emulated round, the algorithm is in the waiting phase.
When it receives a send-encoded input from the environment, it transitions into
the one round broadcast phase. During this round, the algorithm divides the
listeners into F groups of size F2 + F, and assigns each group to a frequency.
Each listener receives on the frequency assigned to its group, with the following
exception: if a listener has been scheduled to broadcast by its input, it aban-
dons its role as listener and follows its scheduled behavior. Non-listeners always
behave as described in their input. (Notice, this differs from the RFC algo-
rithm, which had listeners ignore the behavior in their input during this first
round, and stick to their assigned frequencies. This worked for RFC because
we designated only one listener per frequency, so that listener could add what
it was supposed to broadcast to the set of values it heard. In DF'C, by contrast,
we assign multiple listeners to each frequency. It is important for the correct-
ness of the algorithm that every listener on the same frequency is disseminating
the same set of values during the feedback phase. Different processes might
hear from different listeners. These processes, however, must receive the same
information from their respective listener so they can later generate the same
feedback vector, as required by the definition of the feedback channel property.)

2. After this broadcast phase, the algorithm transitions into the feedback phase,
during which the listeners attempt to inform the rest of the processes about
what they learned during the broadcast phase. Specifically, each frequency is
assigned F2 + F listeners. The algorithm divides listeners these into F + 1
non-overlapping groups of size 7. We call these listener groups. Each of the
JF? + F listener groups in the system gets its own feedback epoch to disseminate
its values. During this epoch, the algorithm assigns one group member to
each frequency to broadcast while all other processes receive according to a
(n, F,t + 1)-multiselector. That is, in each round of the epoch, each of process
applies the multiselector function corresponding to that round to to its id, and
then receives on the frequency returned by the function. For example, during
the r* round of a feedback epoch, a process i that is not in the listener group
for this epoch, receives on frequency M, (i), where M, is the 7" function of M.

3. After the feedback phase concludes, the algorithm transitions to the combine
phase. The algorithm divides the combiners into F¢+1 non-overlapping combine
groups of size F. The algorithm assigns each combine group its own combine
epoch to disseminate the values it knows. The processes follow the same proce-
dure as in the feedback epochs—one member of the combine group is assigned
to each frequency to broadcast while the other processes receive according to
M.

4. After the combine phase concludes, the algorithm transitions to the output
phase, during which the processes use the information from the preceding phases
to generate their receive-encoded outputs. They then return to the waiting
phase in preparation for starting the next emulated round.
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The are several key insights behind the correctness of this algorithm. First, note
that up to F of the listeners on a given frequency might abandon their listening
responsibilities to broadcast. The definition of the feedback channel property (Defi-
nition 6.5.5), requires that bcount(M) < F, where M is the message assignment for
the round, and bcount(M) returns the number of non-L entries in M. It follows that
we do not need to address the case of more than F broadcasters.

Split the listeners from a frequency into F + 1 groups of size F. It follows that
at least one of these groups is comprised only of listeners that actually listened. Let
us identify one such behaved listener group for each frequency, and consider only the
feedback epochs associated with these F behaved groups.

In each of these select epochs, we can show that the behaved listeners propagate
what they heard in the initial broadcast round to all but at most ¢ of the other
processes. To see why, recall that during such an epoch, each listener broadcasts on a
unique frequency while the receivers receive for |M| rounds, choosing their frequency
according to the corresponding function of M. By the definition of an (n, F,t + 1)-
multiselector, each group of ¢+ 1 processes is assigned disjoint frequencies by at least
one function in M. It follows that no group of ¢ + 1 can be disrupted in every round
of a feedback epoch—in at least one round, they receive on disjoint frequencies, and
only t can be disrupted in that round.

After the feedback phase is over, up to Ft processes may have failed to hear from
some frequency’s listeners (¢ per behaved feedback epoch). In the combine phase, we
have Ft + 1 non-intersecting groups of size F disseminate all values they know. At
least one of these groups must be made up of F processes that know everything (recall,
no more than Ft processes are missing knowledge). By the same argument applied to
the feedback phase, all but at most ¢ processes will subsequently hear from a member
of this group, leaving at least n — ¢t with full knowledge of what happened during
the initial broadcast round. These knowledgeable processes can calculate appropriate
output, while the remaining processes can consider themselves blocked—and output
1.

9.2 Helper Functions and Notation

Before proceeding with a more detailed discussion of the pseudocode, we define the
helper functions and notation it uses.
We begin with the definitions for the following helper functions:

For all i € [n]:

o Ifreq(i € [F* + F?)) = [=L=]-
(For larger values of i, [ freg(i) = 1.)
This helper function returns the frequency on which ¢ should listen if ¢ is a
listener.

o fgroup(i € [F* + F?)) = [#].
(For larger values of 4, fgroup(i) = 1.)
This helper function returns the listener group of ¢ if ¢ is a listener.
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ffreqli € [F° + F2)) = i — F(fgroup(i) — ).

(For larger values of 4, f freq(i) = 1.)

This helper function returns the frequency ¢ should broadcast on during the
feedback epoch associated with its frequency group. It guarantees that all F
processes from a given frequency group will be returned unique frequencies.

o cgroup(i € [F*t + F]) = [£].
(For larger values of ¢, cgroup(i) = 1.)
This helper function returns the combine group of i if ¢ is a combine process.

o cfreq(i € [F?t + F]) =i — F(cgroup(i) — 1).
(For larger values of i, cfreq(i) = 1.)
This helper function returns the frequency i should broadcast on during the
combine epoch associated with its combine group. It guarantees that all F
processes from a given combine group will be returned unique frequencies.

e merge(N;, vals;) : merges vals; with the vals vector (if any) contained in NV;.
(That is, if the received message, Nj, contains a vals vector that includes a
value in position k, such that vals;[k] = L, merge assigns vals;[k] = vals[k].

e vclean(vals;) : if vals; does not contain undefined in any position it returns
vals;, otherwise it returns L.

We also use the notation I.msg and I.freq, for every input I € Z,, defined as in
Section 8.2.

9.3 Pseudocode Explanation

As with RFC.;, the pseudocode that defines the process is contained in the three
subroutines: PrepareMessage, ProcessMessage, and PrepareOutput. The main body
of the code, calls these subroutines in between the standard functions common to all
algorithms that use our pseudocode template. In the sections that follow, we describe
all three subroutines in detail.

9.3.1 The PrepareMessage Subroutine

The purpose of this subroutine (presented in Figure 9-2) is to determine the broadcast
behavior for the current round. It also handles the transition from the waiting phase
to the broadcast phase.

This subroutine handles three cases. The first case is when phase; = waiting
and I; # L, which indicates that process ¢ has just received a new send-encoded
input from the environment. In this case, it first sets phase; = broadcast, changing
the process phase to broadcast. As in the RFC channel algorithm, this indicates
that the process is about to broadcast the message received from the environment.
It next extracts the message component of the input into m; (m; «— I;.msg), and
the frequency component into f; (fi « I;.freq). If the process i is not a listener
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(ie., if i > F3 + F?), or if it is a listener but was passed a message to broadcast
in its input (m; # L), then it is done with the subroutine, and it will proceed to
broadcast as instructed in its input. Otherwise, if the process is a listener that was
not passed a message in its input, it sets its receiving frequency to that specified by
Lfreq (fi — Lfreq(i)). (Recall, by the definition [ freq, the first 7+ F? processes are
partitioned into F groups of size F2 + F. The [freq(i) function returns the number
of the group to which ¢ belongs.

The second case for this subroutine is when phase; = feedback. If process % is
a listener (i < F3 + F?) and the variable currepoch; equals the feedback group to
which 7 belongs (currepoch; = fgroup(i)), then ¢ will set its broadcast message to its
vals; vector (m; « vals;), and its frequency to the frequency returned by ffreq(i)
(fi « ffreq(?)). (Recall, fgroup(i) partitions the listeners into groups of size F and
then returns the number of the group to which ¢ belongs, and f freq assigns a unique
frequency to all listeners assigned to the same frequency group by fgroup.)

If the process is not a listener, or the process is a listener but currepoch; does not
equal its frequency group, then it receives on frequency Meyng, (¢), where Merpq, is the
ernd?® function of the multiselector M. (Recall, each function of the multiselector M
maps processes to values from [F].)

The third case for this subroutine is when phase; = combine. It is symmetric to
the second case with the exception that we replace fgroup with cgroup, and f freq
with ¢freq. For completeness, however, we still detail its operation.

If process 4 is a combine process (i < F?t + F), and the variable currepoch;
- equals the combine group to which ¢ belongs (currepoch, = cgroup(i)), then i will
set its broadcast message to its vals; vector (m; < wvals;), and its frequency to the
frequency returned by cfreq(i) (f; < cfreq(?)). (Recall, cgroup(i) partitions the
combine processes into groups of size F, and then returns the number of the group
to which ¢ belongs, and cfreq assigns a unique frequency to all combine processes
assigned to the same combine group by cgroup.)

If the process is not a combine process, or the process is a combine process but
currepoch; does not equal its combine group, then it receives on frequency Merng, (%),
where Me,nq, is the erndi® function of the multiselector M. (Recall, each function of
the multiselector M maps processes to values from [F].)

After the call to the PrepareMessage subroutine completes, the process proceeds,
in the main body of its pseudocode description, to broadcast according to f, and m;
(BCAST;(f;,m;)). It then stores its receive input in N; (N; « RECV{()) and calls
ProcessMessage to process these values.

9.3.2 The ProcessMessage Subroutine

The purpose of this subroutine (presented in Figure 9-3) is to process the received
messages. It also handles the transition from the broadcast phase to the feedback
phase, from the feedback phase to the combine phase, and the combine phase to the
output phase.

This subroutine, as with PrepareMessage, handles three cases. We start with
the case where phase; = broadcast. Here, the process ¢ starts by initializing its
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vals; vector to undefined”. If the process is a listener that actually listened during
this round (ie., if i < F* + F? and m, = L), then it sets position /freq(i) of
vals; to the value it received listening on frequency [freq(i) (vals;[lfreq(i)] = N;).
Regardless of whether or not 4 is a listener, it concludes the subroutine by initializing
currepoch; « 1 and erand; «— 1, and then setting phase; < feedback. It is now
ready to begin the feedback phase.

The second case handled by this subroutine is when phase; = feedback. Here,
the first action of process i is to merge the information it received in this feedback
phase round with its vals; vector (merge(N;, vals;)). It then increments ernd;, which
indicates the current epoch round. (Recall from the overview that each feedback group
gets its own epoch, consisting of |M| rounds, to attempt to disseminate what the
group members received during the broadcast phase round.) If ernd; > |M|, then the
process advances the epoch by setting currepoch; «+ currepoch; + 1, and then resets
ernd; «— 1. If this newly incremented currepoch; is too large (currepoch; > F*+ F),
then it concludes the feedback phase and can advance to the combine phase. The
process accomplish this by setting phase; « combine and reseting currepoch; « 1.
(We will use the same pair of variables, currepoch; and ernd;, to track progress
through the combine epochs.)

The third case handled by this subroutine is when phase; = combine. Here, as
with the feedback case, the first action of process ¢ is to merge the information it
received in this combine phase round with its vals; vector (merge(N;,vals;)). It then
increments ernd;. The logic that follows is symmetric to the logic for the feedback
phase case, with the exception that the combine phase consists of only F¢+1 epochs,
not F2 + F.

Specifically, the process checks to see if ernd; > |M| after the increment. If so,
it increments currepoch; and resets ernd; « 1. It then checks to see if its newly
increment currepoch; is too large (currepoch; > Ft+1). If so, the process is ready to
proceed to the output phase, which it indicates by setting phase; = output. Notice,
there is no need to reset currepoch; back to 1 as this will be handled by the broadcast
phase case from above, before the process next needs to use this variable.

9.3.3 The PrepareQOutput Subroutine

The purpose of this subroutine (presented in Figure 9-4) is to prepare the process
output. If the process is in the output phase it generates a receive-encoded output.
Otherwise, it outputs L. The subroutine also handles the transition from the output
phase back to the waiting phase, in preparation for a new emulated round.

This subroutine handles two cases. The first case is when phase; = output. Here,
the process resets phase; « waiting, m; «— L, and f; « 1, so it will be ready to
start a new emulated round in the next real round. It concludes by setting O; «
(recv,vclean(vals;)): the receive-encoded output generated by the current emulated
round. If phase; # output, by contrast, the process simply sets O; « L.

After this subroutine returns, the process, in the main body of the pseudocode,
outputs O; (OUT PUT;(0;)), to conclude the round.
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Local state for DFCy p(1):
m, € My U (M, U {undefined})”, initially L.
f. € [F), initially 1.
phase; € {waiting, broadcast, feedback, combine, output}, initially waiting.
currepoch,, ernd; € N, initially 0.
vals; € (M4 U {undefined})”, initially unde fined”.

For all rounds r > 0:
I; «— INPUTY()
PrepareMessage();
BCAST;(fi, ms)
N; — RECVi()
ProcessMessage();
PrepareOutput(),
OUTPUT,(0;)

Figure 9-1: Implementation DFC; 5 a (¢,t, 1)-feedback channel using a t-disrupted
channel. Code presented is for process DFC} p(3).

PrepareMessage();:
if (phase; = waiting) and (I; # L) then
phase, «— broadcast
m; «— I;.msg
fi e IL.freg
if (i < F® 4 F2) and (m; = L) then
fi — Ufreq(s)
else if (phase; = feedback) then
if (i < F3+ F2) and (currepoch; = fgroup(i)) then
m, «— vals;
fi « ffreq(i)
else
m, «+— L
f'l, — ernd, (l)
else if (phase; = combine) then
if (i < F%t + F) and (currepoch; = cgroup(i)) then
m, «— vals,
f.  cfreqi)
else
m, < L
f’z — Mernd, (7')

Figure 9-2: PrepareMessage(), subroutine for DFCy pr(i).
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ProcessMessage();:
if (phase, = broadcast) then
vals; — undefined”
if (i < F2 + F?%) and (m, = L) then
valsi|lfreq(i)] «— N;
currepoch, — 1
ernd; — 1
phase; «— feedback
else if (phase; = feedback) then
merge(N;, vals,)
ernd; <« ernd; + 1
if (ernd, > |M|) then
currepoch; «— currepoch; +1
ernd; «— 1
if (currepoch; > F2 + F) then
phase; «— combine
currepoch; «— 1
else if (phase; = combine) then
merge(N,, vals;)
ernd; «— ernd; + 1
if (ernd, > |M|) then
currepoch; « currepoch; +1
ernd, «— 1
if (currepoch; > Ft+ 1) then
phase; — output

Figure 9-3: ProcessMessage(); subroutine for DFC} p(3).

PrepareOutput(),:
if (phase, = output) then
phase, — waiting
m, «— L
foe1
0, « (recv,vclean(vals;))
else
0, «— L

Figure 9-4: PrepareOutput(); subroutine for DFC; p(3).
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9.4 Proof of Correctness for DFC} y

We first describe the formal theorem statement, then prove helper lemmas that con-
strain the behavior of DFC} j for a given emulated round. We conclude by returning
to prove the main theorem.

We need to show that for any ¢, (n, F, t+1)-multiselector M, and ¢-disrupted chan-
nel, DFC; s implements a (t, ¢, 1)-feedback channel using this channel. We formalize
this as follows:

Theorem 9.4.1 For any t € {0,...,.F — 1}, (n, F,t + 1)-multiselector M, and t-
disrupted channel C, there exists a (t,t,1)-feedback channel C' such that DFCy
tmplements C' using C.

For the remainder of the proof, fix a specific ¢, M, and C that satisfy the constraints
of the theorem statement.

Because we do not deal with probabilities in the following proofs, we can fix an
arbitrary execution in advance, and have our lemmas apply to an emulated round
in this arbitrary execution. Specifically, fix an execution « from a system including
a channel environment, DFC} p, and C. Assume it contains no partial emulated
rounds. (That is, it ends with the final round of an emulated round.) For simplicity,
in the following we call an emulated round good, if and only if no more than F
processes are assigned to broadcast in the message assignment encoded in the input
at the beginning of the emulated round. We can restrict our attention to good rounds
as our definition of a feedback channel places no restrictions on non-good rounds (the
definition properties are only required to hold if bcount(M) < F, where bcount(M) is
the number of processes in message assignment M that are assigned a non-_1 value.)
Therefore, assume the final emulated round in « is good. This is the round our
lemmas will concern.

We begin with a lemma that constrains the final output in a good emulated round.

Lemma 9.4.2 At most t processes output (recv, L) at the end of the final emulated
round n «.

Proof. We can divide this emulated round into three phases: broadcast, feed-
back, combine. We assign each real round of the emulated round to the phase name
corresponding to the state of its phase variable when it calls ProcessMessage().

We begin by considering the single round of the broadcast phase—the first real
round of the emulated round. The first 3 + F?2 processes are designated listeners.
We assign F? + F processes to each frequency by [fregq, and divide the processes on
each frequency into F + 1 groups by fgroup.

Listeners that receive a message to broadcast in the send-encoded input that
initiated the emulated round will ignore their listener duties. Because the emulated
round is good, however, this applies to no more than F listeners. Because each
frequency divides its listeners into F + 1 non-overlapping groups, it follows that every
frequency has at least one group composed of F listeners that actually listened on
that frequency. For simplicity, we call such listener groups behaved.

107



We continue with the feedback phase rounds. Each of the F2+F frequency groups
gets | M| rounds to disseminate what they received during the broadcast phase round.
Consider the | M| rounds dedicated to a behaved group from frequency 1. During each
of these M rounds, each of the listeners from the group broadcasts their vals vector
on a unique frequency, while the other processes listen to the channel assigned to
them by the matching function of the multiselector, M.

We claim that no more than ¢ processes can fail to hear from a listener during in
every one of these |M| rounds. Assume for contradiction that there exists a set S,
consisting of ¢ 4+ 1 processes, that fail to hear from a listener throughout all of these
rounds. Recall that M is a (n,F,t + 1)-multiselector. By the definition of such a
multiselector, there is some round from among these |M| in which all ¢ + 1 processes
from S are receiving on a unique channel. Because we have a single broadcaster on
each channel, the only way to prevent a process from receiving a listener message is
for that frequency to be disrupted. No more than ¢ frequencies can be disrupted per
round, however, so at least one process from S must receive a message from a listener
in this round: providing a contradiction to our assumption on the size of S.

We extend this same argument for a behaved listener group from each of the
other frequencies. It follows that for each frequency, all but at most ¢ processes
learn the message received on that frequency during the broadcast phase. When the
feedback phase concludes, therefore, we have no more than Ft processes—t for each
frequency—that do not know everything. The remaining processes have a vals vector
with a value in every position. Call such vectors complete.

The purpose of the combine phase is to reduce this number of processes without
complete vectors from Ft to t. The algorithm dedicates |M| rounds to each of the
Ft + 1 mutually disjoint combine groups defined by cgroup. Each group contains F
processes. They disseminate on unique frequencies while the other processes listen
according to M—just as in the feedback phase.

At least one of these combine groups is composed entirely of processes with com-
plete vals vectors (as there are Ft + 1 groups and no more than Ft¢ non-complete
vectors). By the same argument deployed for the feedback phase, during the |M]
rounds assigned to this combine group, all but at most ¢ processes receive this com-
plete vals vector and therefore make their own vector complete.

At the end of the emulated round, only processes without complete vals vectors
output (recv, L). As we just proved, this describes no more than ¢ processes, as
needed. O

We constrained the number of L outputs at the end of an emulated round. We
now prove that the non- 1 outputs all equal the same feedback vector.

Lemma 9.4.3 Let s be the channel state generated by applying crandc in the sin-
gle broadcast phase round of the final emulated round in «. Let M and F be the
message assignment and frequency assignment, respectively, encoded in the process
inputs at the beginning of the emulated round. It follows that there erists an R €
recvAll(M, F, fblockedc(s))), such that every process outputs either (recv, L) or (recv, R)
at the end of the emulated round.
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Proof. The output at the end of the emulated round is determined by each process
i passing its vals vector to vclean. If the vector is not complete (i.e., still contains
“undefined” in at least one location), vclean returns L, and the process outputs
(recv, L). If the vector is complete, vclean returns the vector vals;, and the process
outputs (recv, vals;).

We first argue that all processes with a complete vector have the same vector. To
prove this claim, we describe the two ways that a position in a local vals vector can
be changed from “undefined” to a message.

1. During the ProcessMessage() sub-routine of the broadcast phase round, listeners
can directly set the position corresponding to the frequency on which they
listened. They set the value to the value from R, returned from the channel
during this round. In addition, note that because the definition of a ¢-disrupted
channel includes the basic broadcast receive function, we know that all listeners
who receive on the same frequency will receive the same thing. Therefore, the
listeners on a given frequency who modify their vals vector at this position will
all set it to the same value.

2. The application of the merge function during the feedback and combine phases
can also modify the vals vector. This function, however, only combines a pro-
cess’s vals vector with a vals vector received from another process. It does not
introduce new values.

We can conclude from our above two points that any two processes that complete
the emulated round with a complete vals vector, have the same vector. Further-
more, this vector describes exactly what was received on each of the frequencies
during the broadcast phase round. During this round, messages were broadcast ac-
cording to M and F, and frequencies were blocked according to fblockedc(s). With
this in mind, the common complete vector clearly satisfies the constraints of set
recvAll(M, F, fblockedc(s))). O

Having established our key lemmas about emulated rounds, we return to the proof
for our main theorem.

Proof (Theorem 9.4.1). By Theorem 5.2.10 we know that DFC; 5 implements
channel C(DFC; r,C) using C. For simplicity, we introduce the shorthand notation
C' = C(DFC4,C). Our goal is to prove that C' is a (t,t,1)-feedback channel. To do
so, we must prove that C’ satisfies the properties of Definition 6.5.5.

This definition requires the existence of the two mappings, pblockedcr and fblockedc:,
that satisfy definition’s two conditions. As in our proof for RFC, we address these
two conditions in order, defining the mappings as needed.

Proving Condition (1) of the Feedback Channel Definition. We begin with
condition (1), which states:
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Let M be a message assignment with bcount(M) < F, and let F' be a
frequency assignment. Then, for every transformable state s;, the proba-
bility that the distribution erande (s;) returns a state s, where
|pblockedc: (s2, M, F)| < b, is at least p.

In our case, b=t and p = 1. We need to define pblocked¢s such that the above is
satisfied for these parameters.

Recall from Definition 5.2.5 that the composition channel has two types of states:
simple and complez. Because the state s; from the condition is transformable, we
know it is simple. Therefore, crandc:(s;) returns only complex states. With this
in mind, we only need to define pblockedc for complex states. Specifically, given
such a state, so, and assignments M and F, define pblockedc:(se, M, F') to return the
processes that output (recv, 1) at the end of sy.0ext(M, F). (Notice, this is the same
definition as used in the RF'C proof.)

Our second step is to show that this definition of pblocked;s matches the con-
straints of the condition. Fix some s;, M, and F that satisfy the preconditions of the
condition. Let s, be a complex state assigned a non-zero probability by crande(s).

As in our RFC proof, we apply Theorem 5.2.12 to sq.0ext(M, F), to derive a cor-
responding execution of a system with DFC; y, C, and a channel environment, that
has the same states of DFC; » and C, and the same input and output assignments,
as in sg.0ext(M, F).

By Lemma 9.4.2, we know that at most ¢ processes output (recv, L) in the fi-
nal emulated round of this execution. The same holds, therefore, for the outputs
generated at the end of sq.0ext(M, F).

We have shown, therefore, that for all states s,, such that s; transforms to s,
with non-zero probability, pblockedc:(s2, M, F') contains no more than ¢ processes, as
needed.

Proving Condition (2) of the Feedback Channel Definition. We continue
with condition (2), which states:

Let M be a message assignment with bcount(M) < F, and let F be a
frequency assignment. Then, for every receivable state s, there exists an
R € recvAll(M, F, fblockedc(s)), where, letting N = crecve(s, M, F), we
have, for every i € [n]:
Nji] = L if i € pblockede: (s, M, F)
R else
We already defined pblockedc:, so we are left to define fblockedc: and show that
the two functions, when combined, satisfy the above condition.
Our first step is to define fblockeds. Because s is receivable, we know it is

complex. With this in mind, as in the definition of this function from RFC, let s¢
be the the channel state added to s.pre in s.ext.
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We then define:
fblockede:(s) = fblockedc(sc).

Our second step is to show that our definitions match the constraints of the
condition. Fix some s, M, and F' that satisfy the preconditions of the condition.
Above, we defined pblockede: (s, M, F) to return the processes that output (recv, L)
in the last emulated round in s.oext(M, F). We are left to show that the processes
not in this set output the same R € recvAll(M, F, fblockedc:(s)).

Once again, we apply Theorem 5.2.12 to s.oext(M, F') to derive an execution of
a system with DFC} s, C, and a channel environment, that has the same states of
DFC;p and C, and the same input and output assignments, as in s.oext(M, F'). We
apply Lemma 9.4.3 to this prefix, which tells us that the processes that do not output
(recv, L), will output (recv, R), where R € recvAll(M, F, fblockedc(sc))). The same,
therefore, holds for the outputs at the end of s.oext(M, F). Because we defined
fblockedc(sc) = fblockede:(s), it follows that R € recvAll(M, F, fblockedc:(s))).

We have shown, therefore, that every process not in pblockedc: (s, M, F') returns
the same R € recvAll(M, F, fblockedc:(s)), as needed. a

9.5 Time Complexity of DFC; y

We conclude by bounding the time complexity of DF'C} ;. We first define the running
time in terms of |M|, and then use our theorems concerning multiselector construc-
tions to provide precise bounds in terms of n, F, and .

Theorem 9.5.1 Fir somet € {0, ..., F—1}, (n, F,t+1)-multiselector M, t-disrupted
channel C, and channel environment £. Let o be an ezecution of (€, DFCyy,C).
Every emulated round in « requires no more than

© (F*|M])

rounds to complete.

Proof. Each emulated round of DFC} s consists of 1 broadcast phase round,
F? + F feedback phase epochs, each consisting of |M| rounds, and Ft + 1 combine
phase epochs, each also consisting of |M| rounds. The F?|M| term dominates in the
asymptotic definition. O

We can reduce this to concrete times in terms of n, F, and ¢, as follows. As in
Chapter 2, we use the notation “we can construct an (n, F,t + 1)-multiselector” to
indicate that we present in [40] an algorithm that outputs such a multiselector, given
the parameters n, F, and ¢ + 1 as input.

Theorem 9.5.2 Fiz some t € {0,...,F — 1}. The following hold:
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1. There exists an (n, F,t + 1)-multiselector M, such that for any channel envi-
ronment &, t-disrupted channel C, and ezecution o of (£, DFC,,C), every
emulated round in o requires no more than

0 (F2% log ()

real rounds to complete.

2. We can construct an (n, F,t + 1)-multiselector M, such that for any channel
environment &, t-disrupted channel C, and execution o of (£, DFCy m,C), every
emulated round in a requires no more than

O (F***1og” n)
real rounds to complete.

Fiz some t € {0, ..., |V/F|}. The following hold:

3. There exists an (n, F,t + 1)-multiselector M, such that for any channel envi-
ronment &, t-disrupted channel C, and ezecution a of (€, DFCypy,C), every
emulated round in « requires no more than

2.5 n
9) (.7—' log (- ))
real rounds to complete.

4. We can construct an (n, F,t + 1)-multiselector M, such that for any channel
environment &, t-disrupted channel C, and execution « of (€, DFCy ,C), every
emulated round in « requires no more than

O (F%log® n)
real rounds to complete.
Proof. We define the appropriate multiselectors in Theorems 2.3.2, 2.3.4, 2.3.3,
and 2.3.5, respectively, of Chapter 2, and then use them as parameters to DF'C. The

needed running times follow from combining the multiselector sizes provided by these
theorems and the DFC runtime provided by Theorem 9.5.1. O
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Part 111

Algorithms for Solving Problems
Using a Feedback Channel
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In Part IIT we solve a collection of useful radio network problems. We design our al-
gorithms to work with the feedback channel-—harnessing its power to provide concise
and intuitive solutions. By then applying the composition algorithm theorem (The-
orem 5.1.7), we automatically derive solutions for the more realistic, yet also more
difficult, t-disrupted channel-—thus demonstrating the promise of our composition-
based modeling framework. Specifically, we study k-set agreement (Chapter 11),
gossip (Chapter 12), and reliable broadcast (Chapter 13). The acts of agreeing on
a set of values, exchanging a set of initial values, and reliably communicating a col-
lection of messages, respectively, provide a potent algorithmic toolkit for any radio
network setting.

To emphasize the benefit provided by the feedback channel, consider the solution
to gossip described in Chapter 12, and compare it to the solution from [40], a paper
in which we solved gossip directly on a ¢-disrupted channel. The bulk of this 12-
page paper was dedicated to the presentation of the algorithm (presented in four
different subroutines), explanations of the complicated code, and proof sketches that
could provide only intuition regarding correctness. To emphasize this complexity, we
have reproduced, in Figures 9-5, 9-6, 9-7, and 9-8, the pseudocode of the algorithm
described in [40]. Specifically, this pseudocode describes a deterministic solution for
gossip that runs on a ¢-disrupted channel and assumes the easy case where n and F
are (very) large compared to t.! In Chapter 12, by contrast, we are able to present a
gossip algorithm (Figure 12-1) that is much simpler than the algorithm described in
Figures 9-5, 9-6, 9-7, and 9-8. This increased simplicity is further emphasized by the
observation that the pseudcode from [40] is more compact than the pseudocode used
in this thesis; that is, [40] often combines multiple steps into a single line of informal
pseudocode, and it does not include state type declarations.

We are also able to provide a detailed explanation of our feedback channel-based
gossip algorithm behavior in only one page. A proof sketch, of the type acceptable for
an extended abstract, might have required an additional half page at most. Instead,
we provide a formal proof that still requires only three pages. The implication is that
the use of the feedback channel significantly simplified the challenge of solving this
problem.

Before continuing, we also note that numerous other problems that are useful in
a radio network setting would have their solutions simplified by a feedback channel.
To name just a few: maintaining replicated state, leader election, data aggregation,
and mutual exclusion (i.e., to allocate a scare resource). All of these problems would
be aided by the consistency granted by common feedback being provided to all (or
most) processes. The three problems we study in this part are meant simply as case
studies.

1The pseudocode template used in [40] differs slightly from the template used in this thesis, but
we trust the reader will be able to understand the basic ideas.
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Gossip(),
L « a partition of the set {1,...,F?} into F sets of size F.

for e =1 to |E| do
knowledgeable «— Epoch(L, knowledgeable, Ele]);
L «— a partition of the set {F2+1,...,2F2} into F sets of size F.
for e=1to |E| do
knowledgeable «— Epoch(L, knowledgeable, E|e]);
Special- Epoch(knowledgeable),

Figure 9-5: Pseudocode for main body of the deterministic gossip algorithm presented
in [40]. The subroutines it calls can be found in Figures 9-6 and 9-7. This algorithm
was designed to work directly on a t-disrupted channel. It is presented here to em-
phasize its complexity as compared to our solution from Chapter 12 (see Figure 12-1)

that uses a feedback channel.

Epoch(L, knowledgable, rnds);

S0
if knowledgable = true then
let S be the set of processes that are not in L and not completed.

Partition S into [|S|/F] sets of size F.
for r =1 to rnds do
if (knowledgable = true) and (r < [|S|/F]) then
if 3k € {1,..., F} : i = S[r][k] then
schedule 7 to transmit on channel k.
if 3k € {1,...,F} : i € L[k] then
schedule 7 to receive on channel k.
knowledgable — Disseminate(L[1],..., L[c]).
return knowledgable

Figure 9-6: Pseudocode for the Epoch subroutine used by the gossip algorithm from
[40] that is reproduced in Figure 9-5. The definition of the Disseminate subroutine,

used by Epoch, can be found in Figure 9-8.
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Special-Epoch{knowledgeable),
let M be an (n, F, 5t)-multiselector.
special — false
if (knowledgeable = false) or (i has not completed) then
special «— true
if knowledgeable = true then
L « set of F2(5t + 1) smallest processes that have completed in a previous epoch.
Partition L into (5t + 1) sets Li,. .., Lyy1 of size F2.
Partition each Ly, into F sets Lg[1], ..., Lg[F] of size F.
for s=1to 5t+1do
for r =1 to |M| do
if special = true then
schedule i to transmit on channel M, (7)
if 3k : i € L4[k| then
schedule ¢ receive on channel k.
Disseminate(Ls[1],. .., Ls[F]):

Figure 9-7: Pseudocode for the Special-Epoch subroutine used by the gossip algorithm
from [40] that is reproduced in Figure 9-5.

Disseminate(L[1],...,L{F));
let M be a (n,F,t + 1)-multiselector.
knowledgeable «— true
for k=1to F do
for each round r =1 to |M| do
if 35 € {1, ..., F} : i = L[k][j] then
schedule 7 to transmit on frequency j.
if i ¢ L[k] then
schedule 4 to receive on frequency M,(i).
if ¢ does not receive a message in any of the |M| rounds then
knowledgeable — false.
L' «— an arbitrary subset of {1,...,n} of size F(Ft + 1).
Partition L’ into Ft + 1 sets L'[1],..., L'[Ft + 1] of size F.
for each s =1 to Ft + 1 do
for each r = 1 to |M| do
if 35 € {1,...,F} : i = L'[s][y] then
schedule ¢ to transmit on frequency j.
if i ¢ L'[s] then
schedule i to receive on frequency M,.(3).
if i receives a message in any of the |M| rounds from a process with knowledgeable = true then
knowledgeable — true
return knowledgeable

Figure 9-8: Pseudocode for the Disseminate subroutine that is called by the Epoch
subroutine presented in Figure 9-6 and the Special-Epoch subroutine presented in
Figure 9-7.
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Chapter 10

Preliminaries

In this preliminary chapter we provide some definitions used by all three problems
studied in Part III.

10.1 The Value Set V

For all of Part III, fix V to be a non-empty set of values. We use V' to describe the
input values used by the three problems that follow.

10.2 The Input Environment

We define a simple environment that passes down a particular vector from V.

Definition 10.2.1 (v-input environment) For each ¥ € V", we define the unique
T-input environment £ as follows:

1. estatesg = {sg, 51}, and estarts = s.
2. erandg(s;)(s;) = 1, and erandg(s;)(s1-;) = 0, fori € {0,1}.
3. eing(so) =T, and eing(sy) = L™

4. etransg(sg, *) = s1, and etransg(sy, *) = 1.

In other words, the T-input environment returns T as input in the first round,
then outputs L™ for all subsequent rounds. We note that this environment is delay
tolerant (Definition 4.2.1):

Fact 10.2.2 For allT € V™, the T-input environment is delay tolerant.
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Proof. The definition of delay tolerance (Definition 4.2.1) requires the existence of
a state § = trans(s, L™), for each state s of the environment, that satisfies a collection
of four conditions. For the 7-input environment, these conditions are trivially satisfied

for §0=.§1 = S1. O

The v-input environment is appropriate for use with one-shot, decision-style prob-
lems in which initial values are passed to the processes only at the beginning of an
execution, and the processes then eventually generate some output. The three prob-
lems studied in Part III happen to be of this form, but environments could be defined
for almost any type of conceivable problem.
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Chapter 11

k-Set Agreement

In this chapter, we examine a fundamental problem, k-set agreement [16], that yields
a straightforward solution. It acts, therefore, as a warm-up: highlighting the pieces
of our modeling framework in action—from problem definitions to our composition
theorems—without the distraction of complex algorithmic logic. The problems in the
subsequent sections prove more complex.

Informally speaking, the k-set agreement problem, for integer k € [n], initializes
each process with a value from V. Each process must then eventually output a deci-
sion value from among these initial values, such that there are no more than k different
values output. In the formal problem definition given below (Definition 11.1.2), we
strengthen the problem slightly by requiring processes to output their decision values
during the same round. We also introduce a success probability, to accommodate
randomized solutions.

11.1 Problem Definition

Before formalizing the k-set agreement problem, we first introduce a helper definition.

Definition 11.1.1 (DS(v,k)) Given an n-vector T € V" and integer k € [n], we
define the the decision set DS(T, k) to consist of every finite trace v,V wherev € V"
satisfies the following:

1. 7' contains no more than k distinct values.

2. Every value contained in T is also contained in v.

We now formalize the problem.

Definition 11.1.2 (SET Ai,) The problem SET Ay, for k € [n] and probability p,
is defined as follows for every environment £:
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1. If there exists T € V™ such that £ is the T-input environment, then SET A ,(£)
1s the set consisting of every trace probability function F', such that:

>, Fp)=p

BeDS(v,k)

2. Else, SET Ay ,(€) is the set consisting of every trace probability function.

In other words, if the environment £ is the T-input environment for some 7 (i.e.,
behaves as it is supposed to for set agreement), the problem SET A ,(€) includes
every probability function that assigns at least probability p to the set of traces that
satisfy the desired agreement properties. Notice that we do not restrict how these
functions divide this probability mass among the traces. Instead, we include one
function for every possible such division. On the other hand, if £ is not the -input
environment, then we include every trace probability function in SET Ax,(€). The
effect is that if the environment does not behave properly, then the problem is trivially
solved.

Combining the definition of SET A with Fact 10.2.2 directly implies the following:

Fact 11.1.3 The SET Ay problem is delay tolerant.

We now turn our attention to solving this problem.

11.2 The SetAgree; Algorithm

The basic strategy for solving agreement with a feedback channel proceeds as follows.
First, schedule more processes to broadcast than the number of frequencies that can
be disrupted. Second, apply some deterministic function to the resulting feedback set
to determine the decision value. For example, we might have every process return
the smallest value from this common set, by some fixed ordering.

Complications arise, however, when some problems fail to receive the feedback.
To accommodate this possibility, we have each such process decide its own initial
value. So long as the number of such processes is strictly less than k, we still solve
k-set agreement. If we want to solve the problem with at least some probability p,
we are fine if the probability parameter in our feedback channel is at least p.

We capture this strategy with the Set Agree; algorithm presented in Figure 11-1.
In this algorithm, we define minval(N;), where N; is the receive value from a feedback
channel, and N; # L, to return the smallest value included in this feedback vector, by
some fixed ordering. As we prove below, the algorithm solves k-set agreement with
probability p, using a (¢, b, p’)-feedback channel, provided that p’ > p and b < k.

11.3 Correctness of the SetAgree; Algorithm

Theorem 11.3.1 Fir some k,b € [n], k > b, t € {0,...,F — 1}, and probabilities
p,p, o > p. Let C be a (t,b,p')-feedback channel. Then SetAgree, time-free solves
problem SET A, using C.
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Local state for Set Agree;(i):
m, € V U {L}, initially L.
f. € [F], initially 1.

For round r = 1:
I, — INPUT,()
if (1 <t+1) then
m, «— I;
fiei
BCAST,(fi,m;)
if (N; = 1) then
O; I
else
0O; — minval{N;}
OUTPUT,(0,)

Figure 11-1: The SetAgree; protocol. The pseudocode presented is for process
SetAgrees(i). (Note: V is a fixed non-empty value set, and minval returns the
smallest value contained in a feedback vector, by some fixed ordering.)

Proof. Let £ be a v-input environment for some n-vector v € V™. Informally
speaking, we know that when we execute SetAgree; with £ and C, the processes that
receive the feedback all output the same value—the minimum value, as determined
by minval, returned in the feedback vector. The remaining blocked processes each
output their own initial value. With probability p’ > p no more than b < k are
blocked. It follows that with this same probability no more than k values are output,
satisfying the problem definition.

To formalize this argument in terms of our feedback channel definition, we con-
struct a one round execution of system (&, SetAgree;,C), where £ is the arbitrary
input environment fixed above. By condition 1 of the feedback channel property def-
inition (Definition 6.5.5), we know that with probability at least p’, the initial state
of C, C,, transforms to a state RY, such that pblockedc(RY) < b. (Recall, pblockedc
is a mapping, required to exist by Definition 6.5.5, that describes the processes that
receive | from feedback channel.) Fix a one-round execution of (£, SetAgree,,C) for
which this property holds. Call this execution o. We continue by arguing about the
process outputs in this same round of a. We will show that the resulting trace is in
the decision set DS(7, k).

Let B = fblockedc(RY). (Recall, fblockedc is a mapping, required to exist by
Definition 6.5.5, that describes the disrupted frequencies in the round.) Let N be the
receive assignment returned by C during this round. By the second condition of the
feedback channel property, we know that there exists a R € recvAll(M, F, B) such
that at least n — |pblockede(RY)| > n — b processes receive R in the first round of a.

By the definition of recvAll (Definition 6.5.1), this feedback vector, R, contains
at least one of the ¢ + 1 initial values broadcast in the first round (only the values
broadcast on the frequencies in B are lost, and |B| < t). It follows that every process
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that receives R, outputs the same initial value, as returned by minval. The other
processes output their own initial values. The total number of initial values output
in o, therefore, is no more than b+ 1 < k. By the definition of the algorithm, all
processes output L in all subsequent rounds in all extensions of a. Therefore, the
trace generated by «, once the L™ vectors are removed, is in DS(7, k).

We now combine the pieces. We first argued that with probability p’ > p, our sys-
tem generates an execution such that the in the first round, no more than b processes
receive | from the feedback channel. We then argued that in any such execution, «,
the resulting trace, once the 1™ vectors are removed, is in DS(v, k). It follows:

Z Dy (€, SetAgree,,C, 3) > p.
BeDS(T,k)

Therefore, the D, trace probability function defined for our system is in SET Ay .
We conclude that SetAgree; time-free solves SET Ay, with C. a

11.4 Composing with Feedback Channel Implemen-
tations

We use the composition algorithm and our feedback channel implementations to ex-
tend SetAgree; to work with a ¢-disrupted channel.

Theorem 11.4.1 Fiz some t € {0,...,F — 1}, t-disrupted channel C, (n,F,t+ 1)-
multiselector M, and integer e > 1. Let p =1— (1/n€). Then:

1. The algorithm A(SetAgree;, RFC,;) time-free solves SET A, ,, using C.
2. The algorithm A(SetAgree,, DFCy ) time-free solves SET Ay y using C.

Proof.  We begin with result 1. By Theorem 8.4.1, the algorithm RFC,; imple-

ments a (t,0,1 — (1/n¢))-feedback channel using C. By Theorem 11.3.1, SetAgree;

time-free solves SET A, ,, using this channel. By Fact 11.1.3 we know SET A, , is delay

tolerant. Therefore we can apply Theorem 5.1.7 to conclude that A(Set Agree;, RFCl;)
time-free solves SET A, , using C. Result 2 follows from a symmetric argument. O

This is the first time in this thesis that we deploy our composition algorithm
theorem (Theorem 5.1.7). At first glance, the use of this theorem with our channel
implementation algorithms from Part IT might seem odd. The composition algorithm
theorem proof argues about algorithms that implement channels, a definition stated
in terms of the probabilities of message traces given a channel and a channel envi-
ronment. The channel implementation algorithm proofs, and the k-set agreement
algorithm proofs from above, by contrast, make use of the properties of a channel
automaton. The explanation for this apparent incongruity is that the automaton
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properties used to define a feedback channel, are, in reality, simply a convienent way
to specify the probability of message traces generated by a channel for a given source
of messages.

It also important to notice that two results from the above theorem—one for
RFC and one for DFC—are not directly comparable. Combining SetAgree; with
RFC allows us to solve 1-consensus (a strong problem), but with only a probabilistic
correctness guarantee. Combining SetAgree; with DFC, by contrast, only solves
(t+1)-consensus, but it does so with probability 1. We can imagine different scenarios
in which each would be the most appropriate choice. For example, if the correctness
of the agreement was the foundation for a mission critical behavior, we might tolerate
an increased value of k in return for the guarantee of correctness. Whereas, in other
contexts, we might tolerate some (small) probability of a correctness violation in
exchange for agreeing on a single value.

Time Complexity. The SetAgree; algorithm requires only a single round to gener-
ate its outputs. Its time complexity when composed with RF'C and DF'C, therefore,
matches the time complexity of these algorithms emulating a single round of the
feedback channel. We know from Theorem 8.5.1 that each emulated round of RFC
requires

o F2(e+1)logn
Foi

real rounds. We know from Theorem 9.5.1 that each emulated round of DF'C requires

o (F*|M])

real rounds. The size of multiselector M depends on the size of F relevant to ¢. Here,
we consider only the worst case where F < t2 (the other case follows in the same
manner). We can apply Theorem 9.5.2, in this case, to derive that there ezists a
multiselector M such that our composition requires

S} (.7:2’56‘7: log (%))

real rounds to complete, and we can construct a multiselector such that our compo-
sition requires

0 (F 2 1og” n)

real rounds.
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Chapter 12

(7, 0)-Gossip

In this chapter, we continue with the gossip problem [47]. The classic definition of
this problem initializes each process with a rumor. The goal is then for all processes
to learn all rumors. To accommodate the difficulty of a radio network with frequency
disruptions, we generalize the problem to a variant we call (v, §)-gossip (first intro-
duced in [31]). This variant requires that at least [(1 —d)n| processes receive at least
[(1 — 4)n] rumors. (Note: (0,0)-gossip matches the classic definition cited above.)
To maximize the utility of such a solution—and simplify the problem description—we
require that all processes that output a set of values output the same set, and that
this output occurs during the same round.

12.1 Problem Definition

Before formalizing the (v, §)-gossip problem, we first introduce some helper defini-
tions.

Definition 12.1.1 ((n,v)-multiset) We define a (n,~)-multiset, for real number
v, 0 < v < 1, and integer n > 0, to be any multiset of values from V of size s,
[(1=7)n] < s <n. We say an (n,v)-multiset is compatible with an n-vector from
V™ if and only if for every value v that appears k times in the multiset, the same
value appears in at least k positions in the n-vector.

Definition 12.1.2 (GS(9,7,6)) Given an n-vector v € V", and two real numbers,
7,6, 0 < «,86 <1, we define the gossip set GS(T,~,6) to consist of every finite trace
v,7 where U is an n-vector that satisfies the following:

1. There exists an (n,~y)-multiset S, compatible with T, such that every position in
v contains either S or L. That is, Vi € [n] : T'[d] € {S, L}.

2. No more than |n| positions in T contain L. That is, |{i € [n] : T[i] = L}| <

[on].

Each finite trace in GS(7,, ), describes a solution to (v, §)-gossip for rumors v.
We formalize this notion below.

124



Definition 12.1.3 (GOS,s,) The problem GOS,sp, for real numbers, v,4, 0 <
v,8 < 1, and probability p, is defined as follows for every environment &£:

1. If there exists aT € V™ such that € is the T-input environment, then GOS, 5,(E)
is the set consisting of every trace probability function F', such that:

>, F)zp

BeGS(T,v,8)

2. Else, GOS,5p(E) is the set consisting of every trace probability function.

This problem definition shares its structure with SET Ay, (Definition 11.1.2).
Also as with SET Ay p, combining the definition of GOS with Fact 10.2.2 directly
implies the following:

Fact 12.1.4 The GOS, s, problem is delay tolerant.

We now turn our attention to solving this problem. We begin by describing an
efficient solution that works with a (¢, b, p)-feedback channel, where F > t + b. To
understand why we require this constraint on J, imagine that the processes use the
feedback from the previous round to schedule a unique broadcaster on each frequency
for the next round. Up to b processes might not have the feedback and therefore not
schedule themselves to broadcast as they otherwise should. An additional ¢ processes
might schedule themselves, but broadcast on disrupted frequencies. If 7 >t 4 b, it
follows that there is still at least one process that schedules itself, broadcasts, and is
not disrupted—therefore ensuring the amount of disseminated information grows.

After describing this solution we discuss a modification that makes use of a gen-
eralized form of the multiselector object from Chapter 2. This generalized solution
works for any t,b < F, but at the cost of increased time complexity.

12.2 The FastGossip,:p Algorithm

The FastGossip. . algorithm, presented in Figure 12-1, provides an efficient solution
to gossip on a (t,b, p)-feedback channel, where n, F > t + b. Specifically, using this
channel, the algorithm solves the GOS, : ,cosmax problem in GOSMAX rounds,

where GOSMAX = [%1, as defined in the pseudocode.

Helper Functions. Before proceeding with the pseudocode description, we first
define the following helper functions that are used in the pseudocode to streamline
its presentation:

o beastsched(S; C [n],vals; € (VU{undefined})",i € [n]) : The function behaves
differently depending on the size of S,. We divide the behavior into two cases:
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Constants for FastGossipy,z,5(1):
GOSMAX = [{=2

Local state for FastGossip-,(i):
vals; € (V U {undefined})", initially undefined™.
knowledgeable; € {true, false}, initially true.
S; C [n], initially [n].
m; € VU{L}U(V Uundefined)™, initially L.
fi € [F], initially 1.

For all rounds r < GOSMAX:

I, — INPUTY()

if (r =1) then
valsi[i] — I,;

if (knowledgeable; = true) then
m; «— bcastsched(S;,vals;, 1)
fi — fregsched(S;,1)

else
m, — L

BCAST;(f.,m.)

N; — RECV;()

if (N; = 1) then
knowledgeable; — false

else
knowledgeable, «— true
update(S;,vals,, N,)

if (r = GOSMAX and knowledgeable; = true) then
QUTPUT;(clean(vals,, S,))

else
OUTPUT,(L1)

Figure 12-1: The FastGossip,p protocol. If executed with a (2, b, p)-feedback chan-
nel, where 7 > t + b, and passed v > %, it solves GOS, v ,cosmax. The code

presented is for process FastGossip, (). (Note: V is a fixed, non-empty value set.)
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1. |S;] > t+b: if ¢ is one of the min{F,|S;|} smallest values in S;, then it
returns vals;, otherwise it returns L.

2. |Si| <t+b:ifi <t+b+ 1 then it returns vals;, otherwise it returns L.

o fregsched(S; C [n],i € [n]) : If becastsched(S;,vals;,i) would return wvals; (for
any arbitrary vals;), then the function returns ord(S;, ) (that is, ¢’s position in
ascending order in S;), otherwise it returns 1.

e update(S; C [n],vals; € (V U {undefined})", N; € R,) : The function updates
both S; and vals; according to a receive assignment N; generated by a feedback
channel.

— To update vals; it applies the following logic: If there exists a process index
j such that vals;[j] = undefined, and there is a vals vector in NNV; that
includes a value for j, the function sets vals;[j] to this value.

— To update S; it sets S; = [n] \ procs(NV;), where procs(NN;) returns every
process j such that a value for j is included in a vals vector in N;.

o clean(vals; € (V U {undefined})", S; C [n]) : The function returns a version of
vals; modified such that for every j € S;, vals;[j] = bot.

Algorithm Description. At a high level, the algorithm works as follows. The set
S; describes the processes that have not yet disseminated their value—that is, had
their value returned in a feedback vector by the feedback channel. The boolean vari-
able knowledgeable; describes whether process ¢ has the latest information for .S;. (If
the process has the latest information, knowledgeable; = true, otherwise it is false.)
During each round, the F smallest values in S; are supposed to broadcast on unique
frequencies. Unknowledgeable processes, however, do not have the latest information
for S;, so do not know whether they are supposed to broadcast. Any process that re-
ceives the feedback vector from the channel—instead of L—gains enough information
to update its S; and become knowledgeable.

In more detail, during the first round, each process i initializes its position in its
vals vector to the initial value it received as input (vals;[i] < I;). The process’s
decision of whether or not to broadcast depends on the variable knowledgeable;.
(This variable is initially set to true, but its value can change as the execution
proceeds.) If knowledgeable; = true, then process ¢ sets its broadcast message to
beastsched(S;, vals;, i) and its frequency to fregsched(S;,%). These two helper func-
tions, as defined above, return, L and 1, respectively, to all but the min{|S;|, F}
smallest processes. These small processes, by contrast, get their vals vector and
a unique frequency on which to broadcast. (The behavior is slightly different if
|Si| < t+b, in which case the functions return the vals vectors to the ¢ + b+ 1 small-
est processes. This is needed to ensure that there remains at least one unblocked vals
vector in every round after .S; becomes less than ¢ +b.)
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After broadcasting according to m; and f;, and then receiving N; from the feedback
channel, process i does the following. If N; = 1—i.e., it did not receive the feedback
from the channel—then process i sets knowledgeable; « false, as it does not know
which processes succeeded in disseminating their values in this round. By contrast,
if 7 does receive the feedback vector, it sets knowledgable; < true and then calls the
helper function update with S;, vals;, and N;. As defined above, this helper function
updates S; by removing the processes that succeeded in disseminating in this round,
and then adds any new values learned in the feedback to the wvals; vector.

Finally, the process determines its output for the round. If r # GOSMAX, or
r = GOSMAX but knowledgeable; = false, it outputs L. By contrast, if r =
GOSMAX and knowledgeable; = true, it returns the clean(vals;, S;). As defined
above, clean sets, for every j € S;, vals;[j] = L. (This is needed to ensure that every
vals vector output by a process is the same. Without this call to clean, it is possible
that a process 4 originally set vals;[i]| = I;, but then never succeeded in disseminating
this information to the other processes. If i did not reset vals;[i] = L with clean, it
would be the only process with a value in that position in its output.)

12.3 Correctness of the FastGossip,:p Algorithm

We now present the main correctness theorem.

Theorem 12.3.1 Fiz a (t,b, p)-feedback channel C, for somet € {0,...,F —1}, b€
{0,...,F —t—1}, and probability p. Fix some real values v and d, where %’3 <~7v<1

a-mn
and % <6<1. Letp < p[fl—z—b]. It follows that FastGossip,.y time-free solves
GOS, 5 using C.

Proof. Let &£ be a T-input environment for some n-vector & € V™. In this proof
we demonstrate that with probability at least p, the system (€, FastGossipyp,C)
generates a trace such that when we remove the L™ vectors, the trace is in GS(7, 7, 9).
This is sufficient to prove the theorem.

By the first condition of the feedback channel property definition (Definition 6.5.5),
we know that for any round r of an execution of (£, FastGossipy;s,C), with prob-
ability at least p, the transformable channel state, C,, at the beginning of round
r, will transform to a receivable state, RC, where pblockedc(RS) < b. (Recall that
pblockede is a mapping, required to exist by the feedback channel property definition,

that determines the processes that receive L in a round.)
(1—y)n
Therefore, with probability at least pGOSMAX = pl7==t1 a GOSMAX-round
execution of the system (€, FastGossipyp,C), will satisfy this property in every
round. As we continue with the proof, we restrict our attention to one such execution,
Q.
We prove two claims about « that build to our needed final result that the trace

generated by a, once the L™ vectors are removed, is in the gossip set GS (7,7, 9).

Claim 1: For each round 7 € [GOSM AX] of @, no more than b processes start
the round with knowledgeable = false. For any two processes i,j € [n] that
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start r with their knowledgeable variable equal to true, it follows that S; = S;
at this point.

We prove this claim by induction. The base case (r = 1) follows from the fact
that every process i starts the first round with knowledgeable; = true and S; = [n].
To prove the inductive step, assume the claim holds for some r € [GOSMAX — 1].
By the definition of «, at least n — b processes will receive the feedback vector in
this round and subsequently set knowledgeable «— true. They will then start round
r + 1 with this same value, satisfying the first part of the claim. To prove the second
part, consider two processes ¢ and j that both receive the common feedback vector
R in 7. (Recall, by the definition of a feedback channel property, every process
that receives the feedback receives the same information.) Both processes will set
S; = Sj = [n] \ procs(R), in their call to update in r, satisfying the second part of the
claim.

We continue our next claim. In the following, we use the notation S™, r €
[GOSMAX], to describe the common S set calculated at the end of round r in
o, by the processes that received feedback in this round.

Claim 2: For every round r € [GOSMAX — 1] in o, ™™ C S". Furthermore,
if |S7| >t + b then |ST| — |S™Y > min{F,|S"|} —b—t.

Fix some r € [GOSMAX — 1]. By Claim 1, we know that at the beginning of
round r + 1 at least n — b processes are knowledgeable and have the same set S”.
These processes call beastsched and fregqsched with this common S”. We consider
two cases for the values returned.

First, if |S"| > ¢ + b, there exist x = min{F,|S|} processes that have their
vals vector and a unique frequency returned by these functions—if they call them
(unknowledgeable processes do not call these functions). At least x — b of these
processes are knowledgeable, and therefore do call the functions and receive their
assignments.

Consider the feedback vector returned by the feedback channel in this round.
To do so, let RE,, be the receivable state of the feedback channel in round r + 1.
Let B = fblockedc(RE,,). (Recall that fblockede is a mapping, required by the
definition of the feedback channel property, that describes the disrupted frequencies
in this round.) And let M and F be the message and frequency assignments for this
round. By the second condition of the feedback channel property, and the definition
of @, we know that there exists a feedback vector R € recvAll(M, F, B), such that at
least n — |pblockedc(RE, )| > n — b processes receive R. By the definition of recvAll,
this feedback vector R contains at least one of the £ — b > 1 wals vectors broadcast
in this round (only the values broadcast on the frequencies in B will be lost, |B| < t,
and z — b > t).

By definition, S™+! = [n] \ procs(R). We want to show that S™*! C S, as stated
in the claim. Assume for contradiction that S™*! contains a value 7 that is not in S"™—
thus invalidating a subset relationship. By definition, if j ¢ S7, its value was described
in the feedback during round r. The knowledgeable processes that broadcast in r +1,
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however, received this feedback and therefore included j’s value in their vals vectors.
Because at least one such processes has its vals vector included in the r + 1 feedback
(by our above argument), 5 will not be included in S™!, a contradiction. It follows
that S+ C S,.

Furthermore, we know that each of the x — b — ¢t > 1 knowledgeable processes
that have their vals vectors included in R, were in S™ (otherwise they could not be
scheduled to broadcast in r + 1). They are not, however, included in S™t!, as we
just defined them to have their values in R. This proves the additional property that
|IST| = |S™ | >z —b—t.

The second case to consider for Claim 2 is when |S”| <t + b. By the definition of
our helper functions, for this size of S”, the first £ + b+ 1 processes are scheduled to
broadcast on unique frequencies. By the same argument as above, at least {+b+1—b =
t+ 1 of these processes are knowledgeable at the start of r + 1, and therefore actually
broadcast as assigned. At least ¢t +1 — ¢ = 1 of these processes avoid a disrupted
frequency, and subsequently has its vals vector returned in the feedback. This vals
vector includes every value from the feedback of round r, therefore S, cannot include
any process that was not included in S". It follows that S"™*! C S, as needed for this
case.

Having proved our two claims, we can return to the theorem statement. Consider
the last round r = GOSMAX in a. Up to b (but no more) of these processes might
fail to receive the feedback in this round. These processes output L.

Every other process i, outputs clean(vals;, S;). By our argument for claim 1, we
know that these knowledgeable processes pass the same set, S™1, to clean. To bound
the size of this set, we deploy claim 2 and the value of GOSMAX. Specifically, we
show that |S™*'| < yn > t + b. Claim 2 establishes that if |[S"| > ¢ 4 b, then
|ST| — |S™| > min{F,|S"|} — b —t. We note that the S" set can have a size
in {t+b+1,...,F — 1} for only one round. During this one round, by our above
argument, all but at most ¢+b will have their values included in the feedback, bringing
the size down to ¢t + b. And once the size gets to t + b or below, we are done (i.e., the
size is less than or equal to yn for any allowable v value).

It follows that for GOSMAX = [(1—:}2—"] rounds, we remove F — t — b values in

F—t-b
each round. The exception is the final round, in the case where (1 — y)n does not

divide evenly by F —t —b, which has the size of S in {t+b+1, ..., F —1}. In this final
round, however, we remove enough to get the size of S to t 4+ b or below, as needed.

We next note that by the definition of clean, we know that processes that output
in the final round set the entry in vals for processes in S™™! to L.

We are left to show that no knowledgeable process ¢ can have an entry j in vals;,
such that j ¢ S™! and wals;[j] = L. Assume for contradiction that this occurs.
Because vals;[j] = L, we know no value for j was included in the feedback in this
final round (otherwise, i’s call to update would have updated wvals;[j] to a non-.L
value). If j’s value is not in this feedback, however, then S™*! must include j—a
contradiction.

It follows that all vals vectors are the same, and include |S™"!| < yn L values.
Furthermore, at most b < nd processes output L. And by the definition of the
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algorithm, every process outputs L in every subsequent round of every extension
of a. Therefore the resulting trace of «, once the 1" vectors are removed, is in
GS(7,7,9).

We now combine the pieces of our proof. We first argued that with probability
pCOSMAX > 4 our system generated an execution such that in each of the first
GOSMAX rounds, no more than b processes receive L from the feedback channel.
We then argued that in any such execution, «, the resulting trace, once the L™ vectors
are removed, is in GS(7,7,6). It follows:

Z Dys(E, FastGossipyp,C,0) > 7.
BEGS(T,7,9)

Therefore, the D,y trace probability function defined for our system is in GO.S, 5.
We conclude that FastGossip. .y time-free solves GOS, 5,y using C. O

12.4 Composing with Feedback Channel Implemen-
tations

We use the composition algorithm and our feedback channel implementations to con-
struct the following gossip solutions for a t-disrupted channel. The proofs below are
more complex than the corresponding proofs for the set agreement algorithm. This
is due to the fact that the gossip problem has more parameters to argue about.

Theorem 12.4.1 Fiz some t € {0, ..., F — 1} and t-disrupted channel C. The algo-
rithm A(FastGossipy 10, RFCey1;) time-free solves GOS, 5,y using C, for any v, 6, p’
where £ <y <1,0<6<1, and p' <1~ (1/n°), for some constant € > 1.

Proof. Fix some constants t,+,d,¢,p' and channel C that satisfy the constraints
of the theorem statement. By Theorem 8.4.1, the algorithm RFC,,,; implements a
(t,0,1 — (1/nct))-feedback channel using C. Before we deploy our algorithm com-
position theorem, we must first show that FastGossip, ;o time-free solves GOS, s,
using any feedback channel with these same parameters.

We know by Theorem 12.3.1 that given a (¢, b, p)-feedback channel C’, where F >
t + b, FastGossip,, time-free solves GOS, s, for any 22 <y <1, 2<§< 1, and
P < pGOSMAX yging .

In our above formulation, b = 0, so t + b =t < F. In addition, we fixed % =
% <~ <1 and % =0 < 4§ < 1. It follows that our definitions of ¢, b, v and d
satisfy what is needed to apply Theorem 12.3.1. We are left to show that p’ in our
above formulation is no more than (1 — (1/nct!))GOSMAX " Tet p = 1 — (1/nt1).
We know the probability of GOSM AX successes (each occurring with probability
p) is the same as 1 — pyqi, Where pgq; is the probability of at least one failure. We
know each failure occurs with probability 1 — p = (1/n¢t!). By a union bound over
GOSMAX rounds, pse is no larger than (1/n°). Putting the pieces together, we
bound (1 — (1/n¢*+1))GOSMAX > 1 — (1/n€) = p/, as needed.
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We have established that FastGossip,.p time-free solves GOS, 5,y for a feed-
back channel with the parameters provided by RFC.1; (and the constraints of the
theorem statement). This observation, plus the fact that FastAgree is delay toler-
ant (Fact 12.1.4), when combined with our composition algorithm theorem (Theo-
rem 5.1.7), proves the theorem. ]

We now make a similar argument using our deterministic implementation of a
feedback channel.

Theorem 12.4.2 Fiz somet € {0, ..., | F/2|—1}, t-disrupted channelC, and (n, F,t+
1)-multiselector M. The algorithm A(FastGossip.,.., DFCy ar) time-free solves GOSy 5
using C, for any v, 0,p’ where % <~<1, % <6<1,and0<p <1

Proof. Fix some constants t,7,d and p’, multiselector M, and channel C, that
satisfy the constraints of the theorem statement. By Theorem 9.4.1, the algorithm
DFC, 5 implements a (t,t,1)-feedback channel using C. As in our preceding re-
sult, before we deploy our algorithm composition theorem, we must first show that
FastGossip, . time-free solves GOS, 5 using any feedback channel with these same
parameters.

We know by Theorem 12.3.1 that given a (¢, b, p)-feedback channel C’, where F >
t + b, FastGossipyp time-free solves GOS, 5, for any % <v<1 % <é6<1, and
p,' < pGOSMAX’ using c.

In our above formulation, b = t. We fixed ¢ to be less than |F/2], so it follows
that t +b < F. Wealsoﬁxedﬁn—b=%§'y§1and%=%§6§1.

It follows that our definitions of ¢,b,v and 0 satisfy what is needed to apply
Theorem 12.3.1. We are left to show that p’ in our above formulation is no more
than pGOSMAX  where p is the probability parameter from our feedback channel.
Fortunately, as we established above, p = 1, and we set p' < 1, so clearly p’ <
pCOSMAX _ 1 as needed.

We have established that FastGossipy.p time-free solves GOS, 5, for a feed-
back channel with the parameters provided by DFCy pr (and the constraints of the
theorem statement). This observation, plus the fact that FastAgree is delay toler-
ant (Fact 12.1.4), when combined with our composition algorithm theorem (Theo-

rem 5.1.7), proves the theorem. a

Time Complexity. We continue with the time complexity. We know that the
FastGossip, . p algorithm requires GOSMAX = g:—;’l%] rounds to generate out-
put. The composition A(FastGossipyto, RFCet1,), therefore, requires GOSMAX
emulated rounds of the feedback channel. We know from Theorem 8.5.1 that each

emulated round requires
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o F2(e+1)logn
Fot

real rounds. It follows that the composition requires
o Fie+1)(1 —~v)nlogn
(F—1)?

rounds. By comparison, the randomized gossip solution presented in [32], which was
constructed to run directly on a t-disrupted channel, requires

© (nt*logn)

rounds to disseminate n—¢ values (i.e., ¥ = £.) This time complexity nearly matches
the complexity of FastGossip composed with RFC for this same <y value—indicating
that the layered approach adds minimal extra overhead in this case.

The composition A(FastGossip, s+, DFCy p) also requires GOSM AX emulated
rounds of the feedback channel. We know from Theorem 9.5.1 that each emulated

such round requires

O (F2|M|)

real rounds. The size of multiselector M depends on the size of F relevant to t. We
first consider the worst case where F < t2. We can apply Theorem 9.5.2 to derive
that there exists a multiselector M such that our composition requires

o F*3eF (1 —v)nlog %
F —2t

rounds, and we can construct a multiselector such that our composition requires

o FFH2(1 = y)nlog” n
F -2t

rounds. For the better case of F > t2, we can apply Theorem 9.5.2 to derive that
there exists a multiselector M such that our composition requires

S] (i‘;‘% log (n/t))

rounds. We can compare this final result to the O(n) time complexity achieved
in [40] for solving gossip on a t-disrupted channel with v = Land F > t*. Our
time complexity is roughly a factor of #2log (n/t) slower than the algorithm in [40].
The ¢ factor is avoided in [40] because this algorithm uses a faster feedback strategy
that takes advantage of the assumption that F > t2. Our DFC algorithm could
potentially be modified to behave differently for this case of large F, and perhaps
improve its efficiency. For simplicity of presentation, however, we it designed to work

the same for all ¢t and F.
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The multiplicative log factor from our bound is transformed into an additive factor
in [40] by delaying feedback for multiple rounds while multiple groups of processes,
that have not yet disseminated their values, broadcast. The feedback is then aggre-
gated and returned all at once. In terms of FastGossip, this would be equivalent to
partitioning S into groups of size F, then letting each of these groups broadcast be-
fore receiving the aggregate feedback that spans these rounds. To accommodate this
behavior we would have to slightly generalize the definition of the feedback channel to
allow a specification of a feedback schedule (i.e., a description of which rounds should
return aggregate feedback).

12.5 Generalizing the FastGossip, i, Algorithm

A key constraint of the FastGossip, . algorithm is that 7 > t+b. As explained, this
requirement allows us to make progress even if up to ¢ +b of F potential concurrently
broadcasting processes fail—due to frequency disruptions or lack of global knowledge
from missing the previous feedback.

It is also easy to see that for F < ¢, gossip is impossible for any non-trivial values
of v and J, as the channel can disrupt every frequency in every round, preventing any
communication between processes.

We are left, therefore, to consider the intermediate case where t < F <t +b. In
this section we discuss a generalization of FastGossip that works under these difficult
constraints. We stop short of actually formalizing this generalization, as the details
add little beyond the intuition.

Summary of the Generalization. At the core of the FastGossip algorithm was
the strategy of scheduling at least t+b-+1 processes to broadcast concurrently in every
round. Up to t of these scheduled processes might be disrupted by the channel. An
additional b might fail to broadcast because they lack the global knowledge needed to
make the scheduling decision. This leaves at least 1 process to broadcast successfully.

To explain our generalized strategy, assume the worse case of 7 =t — 1. For this
value of F and any b > 0, the strategy described above will fail, as the combination
of disruption and lack of knowledge can prevent any broadcast from succeeding.

We can alleviate this problem, however, by using a generalized multiselector (as
defined Chapter 2). At the beginning of a round r, the up to b processes that failed
to receive feedback in round r — 1 know that they failed to receive feedback. They do
not know, however, whether or not they should be broadcasting, and, if so, on what
frequency.

Imagine that we extend the broadcasting to include one round for each function
from a generalized (n, F, F,t + b)-multiselector M. (To prove the existence of such
a generalized multiselector using Theorem 2.3.7, this will require that n > 2(t +b).)
During each round of this new broadcast phase, each process that is either (a) knowl-
edgeable and scheduled to broadcast; or (b) is unknowledgeable, uses the correspond-
ing function of Mg to determine on what frequency to broadcast in that round. If
the function maps the process to 0, it does not broadcast.
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Let S be the set of processes that satisfy (a) and (b) from above. This set is
no larger than ¢ + b. Let S’ be the F processes that should broadcast in this phase
according to the helper functions. By the definition of the generalized multiselector,
there will be a round during the phase in which only these processes broadcast, and
they do so on unique channels. Because no more than ¢ can choose a disrupted
frequency, some process will succeed in having its value disseminated.

In this sense, the multiselector compensates for a bounded lack of knowledge. That
is, in each round, there is a known upper bound on the number of unknowledgeable
nodes.

The limit to this approach, of course, is the added time complexity. The size
constraints of Theorem 2.3.7 are onerous: the resulting runtime will be exponential
in some function of ¢t and b. Whether more efficient generalized multiselectors exist,
and whether there exist reasonably compact protocols for constructing them, remain
interesting open questions.
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Chapter 13

(¢, p)-Reliable Broadcast

We conclude Part III with a study of the reliable broadcast problem [15]. The stan-
dard definition for this problem requires every process to eventually receive every
broadcast. (In our model, this might be captured by an environment passing down a
broadcast message to a single process as input and then, eventually, requiring every
process to return that message as output.)

On a (t,b, p)-feedback channel, where b > 0, we are hindered by the reality that
up to b processes might be permentantly blocked from receiving messages from the
feedback channel. Presumably, this would prevent them from learning about the
reliable broadcast messages of other processes. With this in mind, we generalize
the problem to require that at least n — ¢ processes receive each message, for some
parameter ¢ > b. To accommodate the reality of a randomized feedback channel
implementation, we also introduce a success probability p.

For simplicity, we focus on a one-shot variant of the problem that provides some
subset of processes a message to broadcast in the first round, and then, in some
subsequent round, every process simultaneously outputs the complete set of messages
they received.!

In more detail, the (c, p)-reliable broadcast problem, for integer ¢ > 0, and proba-
bility p, assumes an environment that passes message values from V, to some subset
of the processes, in the first round. (Without loss of generality, we can assume it gives
each process a unique message.) In some round r > 1, every process outputs the set
of messages they have received. We require that these sets include only messages
that were actually passed to processes in the first round. We also require that with
probability p: for every such message m, at least n — c sets include m. For ¢ = 0 and
p = 1, this defines classic reliable broadcast.

Comparing Reliable Broadcast to Gossip. There are obvious similarities be-
tween the (c, p)-reliable broadcast problem and the (v, §)-gossip problem of the pre-

1The algorithm described in Figure 13-1 would likely work for a reasonably-defined online variant
of the problem (i.e., one in which processes could keep receiving messages as input, but perhaps would
have to send an acknowledgement token to the environment before a new message could be passed
down). Such a variant, however, is more complicated to define formally. That is, the environment
constraints would be complicated to specify.
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vious chapter. Conceptually, where they differ, however, is in the process input. For
the gossip problem, every process receives an initial value; a sufficient fraction of the
processes then need to output a set containing a sufficient fraction of these values.
In the reliable broadcast problem, by contrast, some arbitrary subset of the processes
receive an initial value. They then need to disseminate all of these values to a suffi-
cient fraction of the processes. It is true that a solution to reliable broadcast could
almost be used to solve (0, £)-gossip (the “almost” refers to the fact that gossip re-
quires every non-_L output set to be the same, whereas reliable broadcast does not,
so long as each message is included in enough output sets). For larger parameter
values, however, a reliable broadcast solution might not be very efficient, as the set
of processes receiving values is a priori unknown—preventing a solution from using
the type of fast deterministic strategy showcased by the FastGossip algorithm in
Chapter 12. (This fast solution depends on the guarantee that every process receives
a value.) Practically speaking, however, an important argument for the inclusion of
both problems is that our gossip solution is deterministic, whereas our reliable broad-
cast solution is randomized. We wanted to include a randomized algorithm in Part III
to demonstrate the randomized analysis of an algorithm using a feedback channel.

13.1 Problem Definition.

Before formalizing the (¢, p)-reliable broadcast problem, we first introduce the follow-
ing helper definition.

Definition 13.1.1 (BS(7,¢)) Given an n-vector v € (V.)", such that no value v €
V appears in two or more positions in the vector, and an integer ¢ € [n], we define
the broadcast set BS(T,c) to consist of every finite trace U,7 where T is an n-vector
that satisfies the following:

1. Let vals(T) be the set of non-L values in . For every i € [n]: T[i] = S; C
vals(v).

2. For every v € vals(v), there exists at least n — ¢ positions j such that v € Sj.

We now formalize our problem definition in the same manner as for set agreement
(Definition 11.1.2) and gossip (Definition12.1.3).

Definition 13.1.2 (RBCAST,,) The problem RBCAST.,, for ¢ € [n] and proba-
bility p, is defined as follows for every environment £:

1. If there exists a ¥ € (V U{L})" such that there exists nov € V in two or more
positions in T, and £ is the v-input environment, then RBCAST,,(£) is the set
consisting of every trace probability function F', such that:



2. Else, RBCAST, () is the set consisting of every trace probability function.

Combining the definition of RBCAST with Fact 10.2.2 directly implies the fol-
lowing:

Fact 13.1.3 The RBCAST., problem is delay tolerant.

We now turn our attention to solving this problem. At the core of our solution is
the same basic randomized strategy used in the RF'C' algorithm. That is, processes
select frequencies, and decide whether to broadcast, at random.

13.2 The RBcast;y Algorithm

The RBcast; p algorithm, described in Figure 13-1, time-free solves the RBCAST,
problem using any (¢, b, p)-feedback channel, where ¢ > b and p’ < 1—(1/n¥). The al-
gorithm terminates (that is, has processes output their message set) in O ((1/p)knF logn)
rounds.

Helper Function. Before proceeding to the pseudocode description, we first de-
fine the following helper function that is used in the pseudocode to streamline its
presentation:

e extract(N; € R,) : Given a receive value NV; from the feedback channel, such
that N; # L, this helper function returns every message from V in N;. If
N; = 1, extract(N;) returns L.

Algorithm Description. At a high level, the algorithm works as follows. Assume
process i is passed message m # L as input in the first round. For each of the
next RBM AX rounds, this process chooses a frequency at random and broadcasts
its message with probability 1/n.

If process 7 is passed L as its first-round input, then it simply receives during
each of these RBM AX rounds. In both cases, process i extracts any values from
the feedback vectors it receives, and adds them to outs;. After RBMAX rounds,
process 4 outputs outs;. Two things are important to note. First, the algorithm takes
advantage of the power of the feedback channel to help it disseminate messages. If
process 7 has a message, for example, it is sufficient that it broadcasts alone once on
a non-disrupted frequency—the feedback channel will disseminate this value to other
processes in the feedback vector for this round. The second important point is the
choice of RBMAX. In the proof that follow, we show that RBM AX is sufficiently
large to ensure that processes with messages to send succeed in broadcasting alone
on a non-disrupted frequency, with sufficiently high probability.

In more detail, process i initializes outs, to ) and msg; and m; to L. For each
round r € [RBM AX], if it receives a non-_L input it sets msg; to this input. Notice,
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Constants for RBcasty p (i) :
_ r(k+1)F*nlnn
RBMAX = [(EHnin).

Local state for RBcast; p i (i):
out, € P(V), initially 0.
msgi,m; € VU {L}, initially 1.
fi € |F], initially 1.

For all round » < RBMAX:

bit; — RAND,([lg F] + [lgn])

I, — INPUT()

if (I; # 1) then
msg; < I,

fo = biti[1...[1g F]

if (bit;[[lg F| + 1...[1gn]] = 0) then
m, < msg;

else
m; «— L

BCAST,(fi,ms)

N; — RECV,()

out; — out; U extract(N;)

if (r = RBM AX) then
OUTPUT,(outs;)

else

OUTPUT,(L)

Figure 13-1: The RBcast;,, protocol. The code presented is for process
RBcast, (%)
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if the algorithm is run with an input environment, this can only happen during the
first round. It simplifies the pseudocode, however, to avoid isolating this case.

The process then selects a frequency at random (f; « bit;[1...[lg F1]), and with
probability 1/n (if bit;[[lg F]| + 1...[lgn]] = 0) it sets m; to msg;, and otherwise
sets m; < L. It then broadcasts m; on f;. It follows that if process ¢ was passed
an message, and therefore msg; contains this message, it broadcasts this message on
a random frequency with probability 1/n, and otherwise receives. If process i was
not passed a message, then regardless of the outcome of this probabilistic decision, it
receives.

Finally, the process extracts any received values and adds them to out; (out; «—
out; U extract(N;)). At the end of round RBMAX, the process outputs outs;. In all
other rounds, it outputs L.

13.3 The Correctness of the RBcast;,; Algorithm

We now present the main correctness theorem.

Theorem 13.3.1 Fiz a (t,b,p)-feedback channel C, for somet € {0,...,.F —1}, b€
{0,...,F — 1}, and probability p. Fiz integers ¢ > b and k > 0, and probability
p' < 1—(1/n*). It follows that RBcast; . time-free solves RBCAST,  using C.

Proof. Fix some T-input environment £, such that v does not include the same
v € V in two or more positions. Fix an r — 1 round execution « of the system (&,
RBcastpx, C). Fix some process i that was passed a message m as input in the first
round (i.e, v[t] = m) of a.

Let us first consider what happens in round 7, given this arbitrary prefix . Let
C, be the channel state of C at the beginning of round r, and let RS be the state
chosen according to the distribution crand¢(C,) in this round.

By the definition of a feedback channel (Definition 6.5.5), there exists a mapping
fblockede, such that B = fblockedc(RS) describes the frequencies that are disrupted
in this round. Process ¢ chooses a frequency f on which to participate in r at random.
Formally, this occurs in the probabilistic transformation of the process state in this
round, which is independent of the probabilistic transformation of the channel state.
It follows that the probability that f # B is at least ]:——_}—Bl > It

By the definition of the algorithm, process ¢ broadcasts m on f in this round,
with probability 1/n. We combine these two probabilities to conclude that process @
broadcasts on an undisrupted frequency in r with probability at least fnj‘?t Call this
Claim 1. We will refer to it again soon.

This does not guarantee, however, that the message sent by process ¢ is included
in the feedback vector returned by the feedback channel in this round. It is possible
that another process broadcasts concurrently on f, generating a collision. For any
fixed j # i that also received a message as input, process j also chooses to broadcast
on f in r with probability #

140



By a union bound, the probability that at least one process broadcasts concur-
rently with ¢ is no more than ﬂn‘?l < jlr Thus, the probability that no process collides
with process i on f in r is at least (1 — %) = }-—;1- Call this Claim 2.

We now combine Claim 1 and Claim 2 to conclude that process ¢ broadcasts alone
on a non-disrupted frequency f in round r with probability at least

(F-t)(F-1)
Fn )

We now turn our attention to calculating the probability that this message, broad-
cast alone on an undisrupted frequency, makes it to at least n—b processes. We return,
then, to the definition of the feedback channel property. By this definition, there ex-
ists a mapping pblockede, such that B’ = pblockedc(RS) describes the processes that
fail to receive the feedback in this round. By the condition 1 of the feedback channel
property definition, with probability at least p, |B’| < b.

(Specifically, given any transformable state, including, C, the probability that it
transforms to a state RS encoding no more than b blocked processes, is at least p.)
Therefore, with probability at least pso, - p, process ¢ disseminates m to at least n —b
processes in round r.

This probability was calculated for an arbitrary execution a. We can therefore
construct a new RBM AX-round execution, round by round, applying this result for
each round, to determine the probability that ¢ succeeds in disseminating its value to
at least n — b processes, at least once.

Notice that we can rewrite

Dsolo =

k+1
DPsolo * P

RBMAX = Inn

With this in mind, we bound the probability that ¢ fails to disseminate m in all
RBMAX rounds as follows:

)RBMAX e—psolo-p-RBMAX

(1 — Psolo " P
e—(k+1) Inn

(1/nk+1)

The first step above uses the probability facts from Chapter 2. To extend this
argument to all processes with messages, we note that there are up to n such processes.
By a union bound, at least one of them fails to disseminate its message during these
rounds with probability no greater than (1/n¥). Therefore, with probability at least
(1 — (1/n*)), every process that receives a message as input at the beginning of an
execution of this system, disseminates its message to at least n —b > n — c processes.
After RBM AX rounds, every process outputs the full set of received messages, and
then outputs L in every subsequent round of every extension of the execution. We
have shown that with probability at least p’ = (1 — (1/n¥)), system (€, RBcast,p,
C) generates an execution, a, such that the trace generated by «, once the L™ vectors
are removed, is in BS(7,c). It follows:
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Z Dys(E, RBeastypk,C,8) > p'.

BeBS(v,c)
Therefore, the Dy trace probability function defined for our system is in RBCAST .
We conclude that RBcast; p solves RBCAST.y with C. O

Notice that the structure of this proof differs from the structure of the proofs for
our set agreement (Theorem 11.3.1) and gossip (Theorem 12.3.1) algorithms. This
follows because the algorithm considered here is randomized, while the previous two
algorithms are deterministic. To prove the that the deterministic algorithms solve
the problem, we split the proof into two parts. The first part bounds the probabil-
ity that the feedback channel behaves as needed, and the second part proves that
if the channel behaves we generate the needed trace. The proof for the randomized
reliable broadcast protocol, by contrast, bounds the probability of a given round do-
ing something good, where good captures both the behavior of the feedback channel
and the algorithm—because they are both probabilistic, there is no need to handle
the behaviors differently—and then applies this argument round by round, to cal-
culate the probability that enough rounds are good. Notice that the definition of
the feedback channel property (Definition 6.5.5) simplified this decomposition of the
feedback probabilities and undisrupted broadcast probabilities. This follows from the
definition’s constraint that the feedback probability hold regardless of the algorithm’s
behavior.

13.4 Composing with Feedback Channel Implemen-
tations

We use the composition algorithm and our feedback channel implementations to con-
struct the following reliable broadcast solutions for a ¢t-disrupted channel.

Theorem 13.4.1 Fiz some t € {0, ..., F — 1} and t-disrupted channel C. The algo-
rithm A(RBcastyp, RFCet) time-free solves RBCAST .y using C, for any p,k,e, c,
and p’ wheree >1,p=1—(1/nf), ¢ >0, p’ <1— (1/nk).

Proof. Fix some constants t,p, k, €, c,p’ and channel C that satisfy the constraints
of the theorem statement. By Theorem 8.4.1, the algorithm RFC.; implements a
(t,0,1 — (1/n¢))-feedback channel using C. Before we deploy our algorithm composi-
tion theorem, we must first show that RBcast,y time-free solves RBCAST,  using
any feedback channel with these same parameters.

We know by Theorem 13.3.1 that given a (i, b, p)-feedback channel C’', RBcast;p
time-free solves RBCAST, , if ¢ > b and p' = (1 — (1/n*). In our case, b = 0 and
we define p’ as required.

Combining the observation, and the fact that RBcast; . is delay-tolerant (Fact 13.1.3),

with our composition theorem (Theorem 5.1.7), proves the theorem statement. O
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Theorem 13.4.2 Fiz somet € {0, ..., F—1}, t-disrupted channel C, and (n, F,t+1)-
multiselector M. The algorithm A(RBcast: 1, DFC} pr) time-free solves RBCAST,,
using C, for any k,c, and p where ¢ >t and p < 1 — (1/n*).

Proof. The proof follows the same structure as Theorem 13.4.1, with the exception
that b = ¢ in the feedback channel implemented by DFC} p. m]

Time Complexity. The RBcast,, algorithm requires RBMAX = f%] =

O ((1/p)knF logn) rounds. The composition A(RBcast;pr, RFCe;), therefore, re-
quires RBM AX emulated rounds of the feedback channel. We know from Theo-

rem 8.5.1 that each emulated round requires

Flelogn
o (Z2%)

real rounds. It follows that the composition requires

0 (k-e -n.7:310g2n)
p(F —1)

real rounds. The composition A(RBcast;pk, DFCi ) also requires RBMAX em-
ulated rounds of the feedback channel. We from Theorem 9.5.1 that each of these
emulated rounds require

© (F*|M])

real rounds. The size of multiselector M depends on the relationship of F to ¢t. For
the worst case where F < t2, we can apply Theorem 9.5.2 to derive that there exists
a multiselector M such that our composition requires

0 (k ‘n- eff3'5log2n)
b

real rounds, and we can construct a multiselector such that our composition requires

0 (k : n}'f‘”’logf“n)
P

real rounds.
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Part IV
Ad Hoc Networks
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In Part IV we address a useful variant of the model described in Chapter 3. This
original model includes strong assumptions, namely: all devices start during the
same round and they (potentially) know the total number of devices participating
in the system. In some radio network environments, however, these assumptions
prove unrealistic. Consider, for example, ad hoc networks. Devices in this setting
typically come together in an unpredictable fashion—perhaps, for example, the PDAs
of conference attendees in the same room attempt to coordinate. In this context we
should not assume that the devices start during the same round. We should also not
assume that the exact number of devices that will eventually participate is known in
advance—though a reasonable upper bound on this number might be available; for
example, in the PDA scenario, it is unlikely that more than, say, 500 such devices
will gather in the same room.

In Chapter 14, we define a modified version of our modeling framework from
Chapter 3 that captures these attributes of an ad hoc setting. We call this variant
the ad hoc radio network model. It allows devices to start during different rounds
and does not guarantee that all n devices will participate. (In this sense, the model
parameter n becomes an upper bound on the total potential number of participants.)

In Chapter 15, we define the wireless synchronization problem, which requires the
devices in ad hoc radio network to eventually agree on a common round numbering.
We argue that a solution to this problem can be used to adapt any algorithm written
for our original modeling framework from Chapter 3 to run in our ad hoc variant.
This is, solving this problem can facilitate a powerful translation of results between
models. With this in mind, we present the T'rapdoor; algorithm, first described in [30],
which solves the wireless synchronization algorithm and comes close to matching the
best known lower bound. We then discuss a collection of strategies for accomplishing
our above-mentioned goal of using such a solution to adapt algorithms from the non-
ad hoc framework to operate in the ad hoc variant presented in Chapter 14.
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Chapter 14
The Ad Hoc Radio Network Model

To define the ad hoc radio network model we introduce a collection of modifications
to the radio network model presented in Chapter 3. In the following, we assume that
the input alphabet, Z, includes a special token, wake.

14.1 Definitions

We first define a type of process that we call an ad hoc process. These processes are
initialized in a quiet state, and then remain in this state until they receive a special
wake input from the environment. We then introduce ad hoc variants of algorithms
and executions that build upon these modified processes.

Definition 14.1.1 (Ad Hoc Process) An ad hoc process P is defined the same as
in Definition 3.1.8, with the addition of the following condition:

1. There exists a special quiet state quietp # startp such that:

(a) randp(quietp)(quietp) = 1.

(b) msgp(quietp, I €Z,) = 1.

(c) outp(quietp,] €T, meR,)= 1.

(d) transp(quietp,m € Ry, I € I, \ {wake}) = quietp.

(e) transp(quietp,m € R, wake) = startp.

In other words, an ad hoc process loops in a special quiet state until it receives a
wake input, at which point it transitions to its start state.
The definition of an ad hoc algorithm incorporates this process definition:

Definition 14.1.2 (Ad Hoc Algorithm) An ad hoc algorithm A is a mapping
from [n] to ad hoc processes.

These modified definitions of processes and algorithms require a corresponding
modified definition of an execution:
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Definition 14.1.3 (Ad Hoc Execution) An ad hoc ezecution  of a system (£,A,C),
where A is an ad hoc algorithm, is defined the same as Definition 3.2.1 of Chapter 3,
with the exception that the first condition is replaced with the following:

1. Vi € [n] : Soli] = quiet 4(;)-

The rest of the definitions from Chapters 3 and 4 remain the same with the
exception that we add the modifier ad hoc in front of any reference to a process,
algorithm, or ezecution.

14.2 Pseudocode for Ad Hoc Processes

To describe an ad hoc process, we modify the pseudocode template of Section 7.2.
Specifically, in this template, which is defined for a process ¢, we replace the global
round counter, r, with a local round counter, r;. The pseudocode template captures
what occurs after the process receives a wake input. The local round counter starts
at 1. These counters, therefore, differ between processes that receive wake during
different rounds. (We emphasize the local nature of this counter by replacing “For
rounds r...” in the template with the text “For local round r;...”).

14.3 Wake Environments

Before continuing, we note the obvious: ad hoc executions are interesting only if the
environment wakes up some processes. With this in mind, we introduce the following
general constraint for an environment that will prove useful for almost any problem
definition in the ad hoc model.

Definition 14.3.1 (P-Wake Environment) We say an environment € is a P-
wake environment, for P C [n], if and only if it in every ezecution of a system
including &€, the environment satisfies the following:

1. Processes in P receive the input wake ezactly once.

2. Processes not in P never receive the input wake.

In other words, the P-wake environment will wake up the processes in P, and
let the other processes remain in their quiescent state. As you might expect, when
we define problems for the ad hoc radio network model we will typically require
non-trivial behavior only for environments that are P-wake environments, for some

P Cn].

14.4 Fixing a Model

For the remainder of Part IV, we restrict our attention to the ad hoc radio network
model defined above. To simplify notation, we leave out the ad hoc notation preceding
the relevant terms (process, algorithm, etc.). In the following, its presence is implied.
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Chapter 15

The Wireless Synchronization
Problem

The wireless synchronization problem, which was first described in [30], requires that
the processes activated by a wake environment eventually agree on a global round
numbering. Informally, a solution to the problem must satisfy the following five
requirements, with respect to some probability p. (In the following, we use the term
active, with respect to a given round r > 1, and a process i, to indicate that process
i received input wake before round r.)

1. Validity: In every round, every active process outputs a value in N; = NU{l}.
If a process outputs a number, then we consider that to be its labelling of the
round number; if it outputs L, then it has not yet determined a round number.

2. Synch Commit: Once a process outputs a non-_L value (in N), it never again
outputs L.

3. Correctness: The round number increments in each round: if a process outputs
i in round 7, then it outputs ¢ + 1 in round r + 1.

4. Agreement: With probability p: in every round, all non-_L outputs are the same.

5. Liveness: Eventually, every active process stops outputting L.

The synch commit property ensures that each process knows when it has suc-
cessfully synchronized. Once synchronization has been achieved, the round number
continues to increment (as per correctness). These guarantees ensure that a synchro-
nization routine can safely be used as a building block for a protocol that depends on
the round numbers.

15.1 Problem Definition

We continue by formalizing these properties with a precise definition that matches
the form of a problem in our framework. In the proof for Theorem 15.4.1, however,
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we refer to the informal description of the properties, not the formal mathematical
version below, to simplify its presentation.

We begin, as with the other problems studied in this thesis, with a helper definition
that captures correct traces.

Definition 15.1.1 (SS(P)) The synch set SS(P), for some P C [n], contains every
infinite trace Ty, Ts, ..., T; € Z, U Oy, that satisfies the following conditions:

1. For every positive integer k: Ty, # L™.

2. For every positive integer k, Ty, € ({L} UN)" or T} € {1, wake}".
(The first set describes the possible output assignments—devices either out-
put L or a round number—and the second set describes the possible input
assignments—the environments we will consider generate only wake and L as
inputs.)

3. For every j ¢ P, and positive integer k: Ti[j] = L.
(Processes not in P do nothing.)

4. For every i € P, there erists ezactly one positive integer, k;, such that Ty, [i] =
wake.
(The environment wakes up each process in P once.)

5. Let S = {k; : j € P}. For every i € P, there exists an integer k;, ki > ki,
ki ¢ S, and an integer r; > 0, such that the following hold:

(a) For every integer k, k > ki, k ¢ S: Ti[s] = ri +m, where m = |{r : kf <
r<k,r¢S}.
(In round kf, process i begins outputting an incrementing sequence of in-
tegers, starting with r;. We are careful, in our definition of m, to not
count trace vectors that include wake, as such vectors are associated with
environment inputs, not process outputs.)

(b) For every integer k, k < kf, k # k;: Ty[i] = L.
(Before a process begins outputting round numbers, it outputs nothing. To

handle trace vectors corresponding to input assignments, we note that only
Ty, would contain a non-L wvalue for i, a case we handle by restricting

k#k;.)

6. For every positive integer k, if there exist i,j € P such that Ty[i], Ty[j] € N,
then Tr[i] = Ti[J].
(All processes that output round numbers in the same trace vector, output the
same values.)

Condition 2 of the definition above captures wvalidity from the informal defini-
tion. Conditions 5.a and 5.b combine to capture both synch commit and correctness.
Condition 4 captures liweness and condition 6 captures agreement. The remaining
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conditions, 1 and 3, are required to eliminate some malformed traces that otherwise
satisfy the above conditions. Specifically, condition 1 eliminates traces with 1" vec-
tors, and condition 3 eliminates traces with inputs to and outputs from processes not
in P.

We now constrain the environments for this problem.

Definition 15.1.2 (P-synch environment) We say an environment £ is a P-synch
environment, for some P C [n], if and only if it satisfies the following conditions:

1. € is a P-wake environment.

2. &€ never outputs any value other than L and wake.

In other words, a P-synch environment eventually wakes up the processes in P,
and that is all it does. We can now pull together these pieces into a formal problem
definition. The structure below is the same structure used for the problems studied
in Part III: the problem, SY NCH,, includes any trace function that assigns enough
probability mass (i.e., at least p) to traces in SS.

Definition 15.1.3 (SYNCH,) The problem SY NCH,, for probability p, is defined
as follows for every environment &:

1. If there ezists a P C [n] such that & is a P-synch environment, then SY NCH,(E)
is the set consisting of every trace probability function F', such that:

Y. F(B)=p.

BESS(P)
2. Else, SYNCH,(E) is the set consisting of every trace probability function.

Useful Notation. In the following discussion of the wireless synchronization prob-
lem, we use the notation synchronize, with respect to a process, round, and an exe-
cution, to indicate that the process outputs its first non-_L value in that round of the
execution.

As mentioned in the introduction to this chapter, we also use the notation active
with respect to a process, round r > 1, and execution, to indicate that the process
received input wake in some round " < r of the execution. We also sometimes use
the term with respect to only a round and an execution. In this case, it refers to
every process that is active in that round. And sometimes we use it with respect to
only an execution. Here, it describes every process that becomes active at some point
in the execution.
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15.2 Lower Bound

In [30] we prove a lower bound on the time required to synchronize every active
processes in a solution to the wireless synchronization problem. The bound holds for
a subset of algorithms that we call regular. An algorithm, A, is regular if and only if
there exists a fixed sequence of pairs (F}, by), (Fs, b)..., where each Fj is a probability
distribution over frequencies and each by is a probability, such that for each active
process .A(z) and local round r; (i.e., the r*" round after LA(¢) receives a wake input),
if A(7) has not received a message through r —1, it chooses its frequency and whether
or not to broadcast according to F, and b,, respectively. In other words, all active
processes behave in a uniform manner until they receive some information—at which
point their behavior can deviate in an arbitrary fashion.

We can restate this existing bound in the notation of our formal model, as follows:

Theorem 15.2.1 (From [30]) Fiz some t € {0,...,F —1}. Letp =1—(1/n) and
A be a regular algorithm that solves SY NCH, with any t-disrupted channel. There
exists a t-disrupted channel C, P-synch environment £, P C [n],|P| > 0, and an
execution of (€, A,C), in which some process in P requires:

log®n Ft
It
@ ((.7-"— t) loglog (n) + F—t 0gn>

rounds to synchronize after becoming active.

15.3 The Trapdoor; Algorithm

In this section, we describe the regular algorithm Trapdoor;. We first presented this
algorithm, and sketches of its correctness proof, in [30]. Here, we provide pseudocode
(missing from [30]) and fill in the proof details. Specifically, we show that it solves
SY NCH, with any t-disrupted channel C. Furthermore, it guarantees that every
active process synchronizes within

F Ft
0 <f_tlog2n+ ]___tlogn)
rounds of becoming active. This comes close to matching our lower bound from above.
Notably it captures both the log?n and £ terms from the lower bound. It is only

off in the first term, which is F loglog n times larger in the upper bound as compared
to the lower bound.

Helper Function. Before proceeding to the pseudocode description, we first define
the following helper function that is used in the pseudocode to streamline its presen-
tation. The function is called trand, which stands for trapdoor randomness. Given
a round number 7, and process status variable status, it calculates the appropriate
broadcast probability for a process with the status described in status during round
r, and returns the corresponding number of bits that the process should request from
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Constant Value
F' min{2t, F}
F— 6
Pko o7 (1)
4 = In2n
Pko
) 17¢
F—t (1)°
Piko iy (1)
T 3
2 maz{; —Inn, lg}

Figure 15-1: Constants used in the definition of Trapdoor;.

Epoch # 1 2 Ign—1 Ign
Start Round 1 lp+1 (lgn—2)g+1| (Ign—1)¢g+1
End Round e 20g (Ign—1)lg (lgn — 1)¢g + £},
Epoch Length 155 155 1 35) ﬁz
Asymptotic Length | © (}"%{ log 'n.) © (3:% log n) © ('};}t log n) S] ((}fl_)j log n)
Broadcast Prob. 1/n 2/n 1/4 1/2

Figure 15-2: Epoch lengths and contender broadcast probabilities for Trapdoor;.
Note: F' = min{2t, F}, £ and £} are defined in Figure 15-1.

RAND. That is, if the broadcast probability is p, it returns lg (1/p). The process
can then request this many bits from RAN D and subsequently broadcast if and only
if they all evaluate to 0 (an event that occurs with probability p).:

e trand(r € N, status € {contender, leader, knockedout})
We consider two cases based on the value of status:

— Case 1: status = contender.

« If r < T = (lg(n) — 1)lg + £5, where £r and ¢}, are defined as in
Figure 15-1, then let p be the probability from the Broadcast Prob.
row of Figure 15-2 from the column that includes r in the interval
defined by its Start Round and End Round values. The function then

returns [lg (1/p)].
* Else, the function returns 1.

— Case 2: status = leader or status = knockedout.

The function returns 1.
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Constants for Trapdoor(i):
(see Figure 15-1)

Local state for Trapdoor,(i):
p, € N, initially 1.
rnd, € NU {1}, initially L.
status; € {contender,leader, knockedout}, initially contender.
m; € {1} U (leader x N) U (contender x N x i), initially L.
fi € [F], initially 1.

For local rounds r; > 0:
if (rnd, # L) then
rnd; — rnd; +1
p; < trand(r;, status,)
bit; — RAND,(p; + [lg F'1)
if (status; = contender) then
if (bit;[1...p;] = 0) then
m, «— (contender,r;,1)
else
m, «— L
else if (status, = leader) then
if (bit,[1...p;] = 0) then
m; «— (leader,r;)
else
m; «— 1
else if (status; = knockedout) then
m; < 1
fi — biti[pi +1...p; + [lgf']]
BCAST;(fi, ms)
N; — RECV,()
if (status; = contender) and N; = (contender,r;,j) > (contender,r;,1) then
status; «— knockedout
if (status; # leader) and N; = (leader,r;) then
status; «— knockedout
™d; < T;
if (status, = contender) and (r = (Ig(n) — 1)¢g + ¢};) then
status; < leader
rnd; «— 7,

OUTPUTz(rnd,)

Figure 15-3: The Trapdoor; protocol. The pseudocode presented is for process
Trapdoor(i). (Note: the inequality (contender,r;,j) > (contender,r;,1) is defined
in terms of lexicographic order—it evaluates to true if and only if r; > r; or (r; =4
and j > 1).)
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Algorithm Description. At a high level, the Trapdoor, algorithm, presented in
Figure 15-3, works as follows. Fix 7' = min{F,2t}. The processes make use of only
the first 7' frequencies. (When F > 2t, using more than 2t frequencies does not help
because the increased probability of avoiding disruption with a randomly selected
frequency is balanced out by the decreased probability of two processes finding each
other.)

When a process becomes active, it starts as a contender. Each contender proceeds
through lgn epochs. (For simplicity of notation, assume n is a power of 2.) Each of
the first 1g (n) — 1 epochs is of length £z = © (53— logn) rounds. The final epoch is

of length ¢}, = © (% log n) rounds. (The precise definitions of these constants are
provided in Figure 15-1).

At the beginning of round r of epoch e, every contender chooses a frequency
f uniformly at random from [1,...,F’]. It then broadcasts a “contender” message
on frequency f with probability 2 (see Figure 15-2). The message is labelled with
the contender’s timestamp: a pair (r,,uid), where r, is the number of rounds the
contender has been active, and uid is a unique identifier. Otherwise, it listens on
frequency f. If a contender receives a message from another contender, and the
sender of that message has a larger timestamp (by lexicographic order), then the
receiver is knocked out (i.e., the trapdoor opens beneath its feet). A process that is
knocked out continues to listen on a channel (chosen randomly from [1,...,F"]) in
every round. If a contender completes all lgn epochs without being knocked out,
then it becomes a leader.

As soon as a contender becomes a leader, it declares that the current round is
equivalent to its local round counter, and begins to output an incrementing round
number in every subsequent round. From that point onwards, in every round, it
chooses a channel at random (from [1,...,F']) and sends a message containing the
current round number, with probability 1/2. Any active non-leader process that
receives a message from a leader will be knocked out (if it is not already) and adopt
the global round number in the message. It will then start outputting rounds.

In more detail, at the beginning of each round, process ¢ increments its global
round counter (rnd; < rnd;+1), if it does not contain L. It then calls trand(r;, status;),
which returns the number of bits corresponding to the probability with which pro-
cess i should broadcast in local round r;, given status;. It sets p; equal to this
value. The process proceeds by calling RAND, asking for p; bits to help it make
its broadcast decision, plus an additional lg 7’ to help it select a random frequency
(bit; + RAND;i(p; + [lg F'1)).

Process i then decides which message, if any, to broadcast. There are three cases,
depending on the value of status;. If process i is a leader and the first p; bits returned
by RAND equal 0 (an event that happens with probability 1/2P:), then it sets m; to
the message (leader,r;). That is, a message that encodes its local round counter as
its proposal for the global round counter. Otherwise it sets m; « L.

If process i is a contender, it follows a similar logic with respect to its p; bits.
This time, however, if the bits equal 0 it sets its message to (contender,r;,). That
is, a message announcing that it is a contender, and including a timestamp, (r;,1),

154



describing how many rounds 7 has been active and its id.

(The crucial observation for this case is the selection criteria for p;. As described
in the definition of the helper function trand, a contender progresses through lgn
epochs. The first lg (n) — 1 consist of £z rounds, and the final epoch consists of £f
rounds. During the first epoch, the process uses a broadcast probability of 1/n. This
doubles in each successive epoch until it reaches 1/2. This behavior is captured in
Figure 15-2. The insight behind this doubling is for the processes to adapt their
broadcast probability to the a priori unknown number of processes active in the
system.)

Finally, if process ¢ is knocked out, it sets m; «— L. A knocked out process never
broadcasts. Instead, it waits to learn the global round number from a leader, if it has
not already.

After m; is initialized, process i sets f; to a random frequency (f; «— bit;[p;+1...p;+
[lg 7'1]), and then broadcasts (BC AST;(f;,m;)) and receives (N; + RECVi()).

If process i is a contender in this round and it receives a contender message
from a process with a larger timestamp (i.e., if (status; = contender) and N; =
(contender,r;,j) > (contender,r;,i), where > is with respect to the lexicographic
order), then it changes its status to knockedout. If process i is not a leader and it
receives a leader message (leader,r;), it sets its status to knockedout and its global
round counter to r; (rnd; < 7;). And if process ¢ is a contender, and it made it
through all lgn epochs (r = (Ig(n) — 1)¢g + £%), then it sets its own status to leader
and its global round counter to its local round counter.

The final action of process 7 in the round is to output its global round counter
(OUTPUT;(rnd;)).

15.4 Correctness of the Trapdoor; Algorithm
We now present the main correctness theorem.

Theorem 15.4.1 For any t € {0, ..., F — 1}, t-disrupted channel C, and probability
p < 1—(1/n), the algorithm Trapdoor, solves SY NCH, using C. Every active process

synchronizes within
F 9 Ft
(0] (}__tlog n-l-f._tlogn>

rounds after being activated.

For the remainder of this section, fix a specific ¢, C, and p that satisfy the con-
straints of the theorem. Let 7' = min{2t, F}. Assume F' > 2, n >4, n > F', and
n is a power of 2.

Proof Notation. To aid the proofs that follow, we introduce a few additional pieces
of notation, all of which are defined with respect to a r—1 round execution, r > 1, of a
system that includes Trapdoor, C, and a P-synch environment, for some non-empty
P C[n].
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e Let p] be the probability that process ¢ broadcasts in round r.
o Let W(r) = > ;cppi. We sometimes refer to W (r) as the broadcast weight for
round 7.

Let S(r) be the set of processes that begin round r active.

Let S(r,i) C S(r), i € S(r), be the set of active processes that start r as either:
(a) a leader; or (b) a contender with a timestamp (i.e., the pair consisting of
the process’s local round counter and id) larger than the timestamp of process
1.

e Let W(T, %) = ZjeS(r,i) p;'

We continue with a helper lemma that proves, given some r — 1 round execution,
that if W (r) = ©(F"), and for some process ¢ € S(r), a constant fraction of this weight
is in W(r,%), then the probability that ¢ is knocked out in a one round extension of
this execution is bounded as: Q ((F' —t)/(F")).

Put another way, if ¢ chooses a non-disrupted frequency, which occurs with prob-
ability Q ((F' —t)/(F")), it has a constant probability of being knocked out. This
captures the intuition that when W (r,7) = ©(F’), a constant amount of probability
mass capable of knocking out 7 is expected on each frequency.

Lemma 15.4.2 Fiz some P C [n], P-synch environment £, process i € P, positive
constants ¢, > 1, and r — 1 round execution, «, of (€, Trapdoor:,C), such that
process i starts round r as a contender, cF' < W(r) < 3cF', and W(r,2) > W(r)/c.
The probability that process i is knocked out in a one-round extension of « is at least:
F'—t ey (1\*
7 (@) (1) -

Proof. We first extend o by the probabilistic state transformations that occur
at the beginning of round 7, generating: RF, RS, and RC. Let f; be the frequency
chosen by i in round 7 (as encoded in R). Let B, be the frequencies disrupted by C
in r as returned by fblockedc(RS). Recall that fblockedc is the mapping, describing
the disrupted frequencies in the round, required to exist for C by the definition of the
t-disrupted channel property (Definition 6.5.4). Because f; is generated independent
of the other probabilistic transformations made during r, it follows that f ¢ B, with
probability (F' — |B,|)/F > (F' —t)/F'.

Now consider process i’s decision to receive or broadcast., By the definition of
the algorithm, process i decides to receive with probability 1 — pI > 1/2. As with
its frequency choice, this decision is generated independent of the other probabilistic
transformations in r. We can combine this with the above probability to conclude
that process i receives on a non-disrupted frequency, with probability at least: %

We next bound the probability that exactly one process broadcasts on f;, and this
process is from S(r, i)—thus knocking out ¢, if f; is undisrupted. Keeping in mind, as
mentioned above, that each active process chooses it frequency and makes it broadcast
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decision independent from the execution history and other probabilistic decisions in
the round, we can bound this probability of a single broadcaster as follows:

] (1_10_))

J€S(ri)

The first term within the sum captures the probability that a process j from
S(r, ) chooses and broadcasts on f;. The second term (i.e., the [ term) captures the
probability that none of the other processes in P do the same (which would cause a
collision).

Next, we simplify:

7 1_1”_'%) > (”— (5"3“’) (15.1)
E (‘7: H ( ’7:) €S (ri) 7 H 4

J€S(ry) kePk#i,j kEP,k#i,j

Pi I\ Scrinis B
— E(Z) KEPkEL] 7 (15.2)

JES(ryi)
P 1
> _.7_ - 3c
> ¥ (Bg*) (159
JES(r,1)
c. 1
> — - 3c
> () (15.4)

The substitution in 15.1 follows from the probability facts presented in Chapter 2.
Steps 15.3 and 15.4 substitute bounds derived from the contstaints on W(r) and
W (r,4), provided in the lemma statement.

The needed result follows from the combination of our term bounding the prob-
ability of 4 listening on a non-disrupted frequency in r, and our term bounding the
probability that a process from S(z,7) broadcasts alone on this same frequency. O

We now apply Lemma 15.4.2 to derive a bound on the probability that the total
weight never gets too high. The key idea in the following is that once the broadcast
weight reaches ©(F"), the probability of being knocked out becomes sufficiently large
to bring the broadcast sum back down due by knock outs (recall, when a process is
knocked out, its contribution to the broadcast sum reduces to 0, reducing the overall
broadcast weight). (In this sense, the probability mass in our system behaves like a
self-regulating feedback circuit: when it grows too large, it reduces itself.)

Lemma 15.4.3 Fiz some non-empty P C [n] and P-synch environment £. The
probability that (€, Trapdoor;,C) generates an ezecution o that includes a round r
such that:

e there is no more than one leader at the beginning of r, and

o W(r)>6F,
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is less than or equal to (1/n?).

Proof. Our strategy is to construct an execution of (&, Trapdoor,,C), round by
round, until at least one of the following two properties holds:

1. Two or more processes become leader.

2. Every process in P is either a leader or knocked out.

Assume we build a finite execution «, such that at least one of these properties
holds for the final round of . Also assume that in every round 7 of o, W(r) < 6F".
It follows that all extensions of « will satisfy the constraints of the lemma statement
(leaders remain leaders and knocked out processes remain knocked out). To prove our
lemma, therefore, it is sufficient to prove that the probability of the system generating
a finite execution like « is at least 1 — (1/n?). With our overall strategy defined, we
can now proceed with the details.

We begin by constructing an execution of (€, T'rapdoory,C), round by round. We
stop our construction at the first round r such that either one of the above two
conditions holds, or the following new condition holds:

3. r is the first round such that W(r — 1) < 2F’ and W(r) > 2F

(Condition 2 will eventually hold in every execution of the system. But it is
possible that one of the other two conditions will become true first.)

Call this execution we are generating, . Assume one of the above conditions is
first satisfied for round r. (Therefore, o is an 7 — 1 round finite execution.) By the
definition our conditions and 7, we know that for every v’ <r —1: W(r') < 6" and
there is at most one leader.

Let us now consider what condition round r of « satisfies. If it is condition 1 or
2, we are done. As we argued, all extension of o will satisfy our lemma statement.
We assume, therefore, that it satisfies condition 3. That is, 7 is the first round such
that W(r — 1) < 2F" and W(r) > 2F.

So far we have worked with an arbitrary extension. Going forward, we consider
the probabilities of the different ¢p-round extensions of o, where £g is the epoch
length (Figure 15-1). Let us start with a simple observation about every £g-round
extension of o Between r — 1 and r + £z of any such extension, the broadcast weight
of processes in S(r — 1) can at most double (this doubling of broadcast probability
occurs, for each contender, only once every g rounds), and at most n new processes
can be made active, each adding an initial weight of 1/n to the total broadcast weight.
It follows:

W(r+€g) <2W(r—1)+1<6F. (15.5)

We will use this fact in several places in the remainder of the proof.
Our next step is to choose a process ¢ that is a contender at the beginning of
round 7 of @, such that W(r,4) > (7/8)W(r). That is, at least seventh-eighths of the
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broadcast weight in this round can knock out i. (Because we assume there is at most
one leader, the total weight is at least 2F’ > 4, and no process contributes more than
1/2 to this sum, we know there exists a process that satisfies these constraints.)

Consider the possible extensions of a. Assume we get to a round 7’ such that:
(a) we did not reduce the weight below 2F" between 7 and r'; (b) there is no more
than one leader at the beginning of ’; and (c) W(r') > (3/4)W(r). We argue that
we can apply Lemma 15.4.2 with respect to this extension, round 7', process %, and
constants: ¢ =2, ¢ = 12.

This argument requires that we justify our choice of constants. Recall, by the
lemma statement, ¢ and ¢’ must satisfy the following:

cF' < W(r') < 3¢F and W(r',i) > W(r')/c

By the same reasoning used to derive equation 15.5 from above, we know:

W(r') < 2W(r) + 1 < 3W(r), (15.6)

which bounds W(r’) from above. To bound W (r’,¢), we note that in round r, no
more than (1/8) of the broadcast weight in this round was contributed by processes
not in S(r,%) (i.e., processes that cannot knock out i.) Since round r, these processes
could have at most doubled their weight. In addition, less than n new processes could
have been activated, each contributing less than 1 to the broadcast weight. It follows
that the broadcast weight in 7’ that cannot knock out 4 is less than (2/8)W(r)+1 <
(1/2)W(r). Because we assumed that W(r') > (3/4)W(r), we derive the following
bound on W(r',1):

W', 4) > (1/4W(r) (15.7)

We know our choice of ¢ is correct. To see that ¢’ is sufficiently large, we note that
we maximize ¢ in the equation W(r',1) > W(r')/c/, when we minimize W (r’,%) and
maximize W (r'). Using the minimum and maximum values given by bounds 15.7
and 15.6, respectively, we get ¢ < 12, as needed. We are safe, therefore, to apply
Lemma 15.4.2 with these values, and conclude that 7 is knocked out with probability

at least:
F -t (1) (1)°
Pko = Y (’6) (Z) . (15.8)

With these observations, we can now construct an £ round extension of o (where
¢, as defined in Figure 15-1, equals It6ln 2n < £g), round by round. At the start of
each round r’ in this process, either something good happens—we elect two or more
leaders or the broadcast weight will be low W (r’") < (3/4)W (r)—or there exists some
contender ¢ that gets knocked out with probability pg,. The probability, therefore,
that our two good conditions do not hold and ¢ does not get knocked out for an entire
¢-round extension of «, is no greater than:
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(1—pro)f < eProt (15.9)
e 6in2n (15.10)
= 1/(64n°) (15.11)

We can extend this argument to consider every process %, such that W(r,i) >
(7/8)W(r) in . To dispense with dependency issues, we apply a union bound, which
tells us that the probability that the two good conditions do not hold and at least one
process i such that W (r,7) > (7/8)W(r) does not get knocked out, in our extension,
is no greater than 1/(64n°).

Flipping this around, we can say that with probability at least 1 — 1/(64n°), an
?-round extension of « elects two leaders, or arrives at a round 7’ such that at least
(1/8) of the broadcast weight from r (i.e., (1/8)W(r)) has been knocked out. This
final point combines the outcome of the two distinct cases: (a) every process 4 with
W (r,i) > (7/8)W (r) getting knocked out; and (b) the failure of the good condition
that the weight was greater than (3/4)W (r).

This is the crucial observation that we will now use in a series of union bounds to
generate out final result. Notice that we defined £g > 17¢'. Applying a union bound
to our above probability, and an extension of g rounds of a, we conclude that with
probability at least 1 —17/(64n3) > 1—1/n%, during this extension either we elect two
or more leaders or have (17/8)W (r) weight knocked out. Notice, (17/8)W (r) > 4F,
and 4F was the maximum amount of broadcast weight added in this interval (by
15.5). It follows that if this event occurs, there exists a round in the interval where
the broadcast weight falls below 2F".

If this occurs in an extension, we can jump to this round, and start over from
here, extending until we next arrive at a round that, like «, satisfies the one of
the conditions, 1—3, from earlier in the proof. At this point, we then repeat our
argument, which says that with probability at least 1 — 1/n®°, an extension of this
new execution will either elect two leaders or will arrive at a new round such that the
weight falls back below 2F’. And so on.

We are left to ask how many such applications of this 1 —1/n® argument might we
have to make in a given extension until we are guaranteed to have satisfied at either
conditions 1 or 2 from above. In the worst case, each of the |P| < n processes that are
eventually activated has a full T = (lg (n) — 1)¢g + £}; rounds of being a contender.
So there are at most nT < n3 applications of this argument until we are guaranteed
that our desired conditions hold. By a final union bound, our argument fails to hold
at least once in an extension with probability no worse than n3/n® = 1/n?, as needed.
O

We conclude with the proof of the main theorem. The key argument in this proof
concerns agreement. Qur strategy is to bound the probability of their ever being
more than one leader. This argument relies on Lemma 15.4.3 to prove that the total
broadcast weight in the system remains sufficiently low. Keeping the total weight low
helps us increase the probability that the first leader knocks out other processes. By
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contrast, if the broadcast weight in the system got too high, the leader might fail to
knock out other processes because its messages are lost to collisions.

Proof (of Theorem 15.4.1). To simplify the presentation of this proof, we
prove the properties of the problem as described at the beginning of this chapter.
The reader will have to trust that the formal mathematical version of the problem
(Definition 15.1.3) is equivalent to this informal description.

Fix some non-empty P C [n] and P-synch environment £. We first note that in
any execution of (£, Trapdoor;,C), properties 1-3 of the problem follow directly from
the definition of the protocol.

To establish property 4, agreement, we first note that a process ¢ does not syn-
chronize to a global round number (i.e., set rnd; to a value in N) output a round
number without first receiving a message from a leader. It is sufficient, therefore, to
show that with probability p, at most one process becomes leader in an execution of
(€, Trapdoor,,C).

First, we restrict ourselves to the executions of the system that satisfy the con-
straints of Lemma 15.4.3. Recall, this lemma tells us that an execution satisfies these
constraints with probability at least 1 — (1/n?).

Second, we construct such an execution of the system, round by round, until the
first round in which a process receives a wake input. Call this prefix a. Let ¢ be the
process with the largest id of the processes that received this input in this round. By
definition of the algorithm, ¢ will always have the largest timestamp in the system—
therefore, no contender can knock out i. It follows that in any extension of a, ¢ will
become leader after completing its final epoch.

Consider the other active processes in decreasing order of their timestamps. Let
j be the process among these with the next highest timestamp behind i. Let o' be
an extension of a up to the first round of j’s final epoch. Call this round r. There
is at most 1 leader in the system at this round (i.e., i). By our assumption that this
execution satisfies Lemma 15.4.3, we also know that W(r) < 6F".

Process i sends and process j receives in this round with probability (1/4). (Pro-
cess 4 is either leader or in its final epoch during r. Either way, its broadcast prob-
ability is 1/2.) By our standard claims on independence of probabilistic choices (as
argued in Lemma 15.4.2), we note that that ¢ broadcasts to j on a non-disrupted
frequency f in this frequency with probability at least (F' —t)/(4(F")?).

We next bound the probability that no other contender broadcasts on f in r
(which would cause a collision, and thus prevent a knock out), to be at least:

peato = ] (—%) (15.12)

kEP,k#i,j
> (1/4)° (15.13)

(As in Lemma 15.4.2, we used the probability facts from Chapter 2, and our
assumption that W(r) < 6’. This is the crucial calculation where it is important
that W(r) is not too large.)
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It follows that with probability at least

_ psolo(F/ - t)
Pfko = W7

process ¢ knocks out process 7 in .

We can extend this argument to all % rounds of j’s final epoch. Process i will
fail to knockout j in each such round, with probability no greater than (1 —p f,m)eg.

We note that ¢£ > pf% Inn. This allows us to simplify as follows (once again, in the
first step, deploying our useful probability facts):

(1—pfko)pg < ePreolk
= e

= 1/n°

We apply a union bound over all potential non-j leaders, in decreasing order of
their timestamps, to derive that the probability that at least one of them fails to get
knocked out by i, is no greater than 1/n%. We then deploy yet another union bound
to prove that either this fails to happen, or the conditions of Lemma 15.4.3 fails to
hold, with probability no greater than 2/n?.

We next consider property 5, liveness. We apply the same style of argument
used to calculate the agreement probability. This time, however, we consider the
probability that each active process j receives a message from process ¢ in the first
(% rounds after it completes its final epoch. During these rounds, ¢ will definitely be
a leader, as by assumption it was the first process to activate. Therefore, if a process
j receives a message from 4 during these rounds, it will synchronize, if it has not
already.

Let T = (lgn — 1)¢g + 2¢};, (i.e., the running time of the algorithm plus an extra
£} rounds). We apply a final union bound to determine that the probability that
agreement fails, or liveness fails to occur by round 7', is no greater than (2/n?+2/n?) =
4/n? < 1/n. (The final reduction follows from our assumption that n > 3, made
earlier in the chapter.)

We are almost done. Our last task is to show that

F Ft
T = log? 1
O (f-t og n-l—]___t ogn),
the running time from the theorem statement. Fortunately, this follows easily from the

definitions of £ and £, and the observation that: -2 = ©(;%;) and (]f_)i = O(£4).
O

A Note on Constants. Before continuing, we note that the constant factors in
our definitions of £z and ¢} are large—perhaps too large for practical application. A
more sophisticated probabilistic analysis, however, might significantly reduce these
constants. We tolerate these larger constants to help keep the proof intuition clear.
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15.5 Using Synchronization to Overcome the Dif-
ficulties of Ad Hoc Networks

A solution to the wireless synchronization problem can help mitigate the difficulties
introduced by the ad hoc radio network model, namely: the activation of processes
in different rounds and lack of advance knowledge of the active processes. Below,
we describe a general strategy for using a wireless synchronization solution to adapt
algorithms constructed for the original model of Chapter 3 (e.g., the channel emulation
algorithms of Part II) to the ad hoc variant presented in Chapter 14

Overview of Strategy. At a high level, our strategy works as follows. If processes
agree on a global round number then they can divide the rounds into repeating epochs
of length z, where z is some large constant to be defined later. We specify that a new
epoch starts at every round r such that r mod z = 0.

We then divide each epoch into two sub-epochs, in the same manner. The first is of
length z; and the second of length x5, where z, + z2 = z. The first sub-epoch is used
by the processes to run a set membership algorithm—an algorithm that generates
agreement on the current set of participating processes. The second sub-epoch is
then used by the participating processes to run algorithms designed for our original
model. They treat the first round of this sub-epoch as round 1 for the original model
algorithm. They can also use the knowledge of the set of participating processes, .S,
to assign the participants ids 1 through |S|, as expected by the original model. The
algorithm run here must either terminate within the z rounds alloted to it in the
current epoch, or, perhaps, be able to be paused between epochs.! Notice, the channel
emulation algorithms of Part II, and the problem-solving algorithms of Part III, would
probably be of the former type, as they have bounded finite runtimes.

To realize this strategy, we need a set membership algorithm and a way to integrate
the round number synchronization into the epoch structure. We address both issues
below.

The Set Membership Algorithm. A simple set agreement algorithm has each
newly activated process (i.e., each process that is not yet in the set of participants)
select a frequency at random. With probability 1/n, it broadcasts. Otherwise, it
receives. For a sufficiently large sub-epoch length, x;, it can be guaranteed that this
process will be heard by all other processes with high probability, and therefore it
will be added to all participant sets.

Agreeing on a Global Round Number. The other key component to our strat-
egy is how newly activated processes learn the global round number. We describe
three different approaches to accomplishing this goal.

1This second property—the ability to be paused—would also require that the algorithm have a
graceful way of handling the arrival of new participants that might be added to the membership set
between epochs. We leave the formalization of these algorithm properties as interesting future work.
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The first approach is for newly activated processes to run a wireless synchroniza-
tion solution immediately following their activation. Once they become synchronized
to the global round counter, they can execute the appropriate sub-epoch algorithms.
If the solution, like T'rapdoor;, is leader-based, the leader will have to continue to
participate in the synchronization algorithm even after it synchronizes.

Their are two disadvantages to this approach. The first is that the broadcasts
from the wireless synchronization solution can disrupt the other communication in
the epoch. The second is the possibility that some processes, such as the leader in
Trapdoor;, has to continually broadcast, which might disrupt its participation in the
algorithm being run in the second sub-epoch.

With this in mind, a better approach is to divide the frequencies into two groups.
The first group could be used by processes to run the wireless synchronization protocol
after being activated. The second group can be used for the epoch algorithms. This
eliminates the issue of the synchronization solution disrupting the epoch algorithms.
It does require, however, that F is sufficiently large for this division. That is, F >
2t + 2. Furthermore, for leader-based synchronization solutions, we still have the
problem of a leader not being able to fully participate in the epoch algorithms.

The third approach is to add a third sub-epoch. During this new sub-epoch,
the process with the smallest id in the membership set announces the global round
number on randomly selected frequencies. When a process is first activated, it enters
a listening phase during which it receives on random frequencies for z rounds. This
phase will overlap an entire third sub-epoch. If there are participating processes
already in the system, and the third sub-epoch is of sufficient length, this newly
activated process will learn the global round number during one of these rounds—
preventing it from needing to execute a disruptive wireless synchronization solution.

If a newly activated process does not receive a round number, only then does
it execute the synchronization solution to safely agree on a round. If the solution
is leader-based, the leader can eventually abandon its duty, trusting the third sub-
epoch to synchronize any further new arrivals. This option minimizes the potential
of disruption from the synchronization solution at the cost of a longer epoch.
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Chapter 16

Conclusion

Within the broad context of wireless networking, an increasingly important niche is
the study of reliable algorithms for settings suffering from what we call adversarial
interference. This term captures any type of channel disruption outside the control
of the algorithm designer, including: contention with unrelated devices using over-
lapping sections of the radio spectrum, electromagnetic noise from non-networked
devices—lighting, radar, etc.—and malicious jamming that takes advantage of the
open nature of the radio medium. Though the systems community has made im-
portant progress in mitigating some of the effects of this interference (e.g., through
the development of more resilient signal encoding), the problem is far from solved.
That is, the theory community cannot escape their obligation to grapple with this
pernicious behavior in the design and proof of reliable radio network algorithms.
Furthermore, it can be argued that with the appropriate tools for addressing these
problems, the theory community can aid their systems brethren in this battle against
unpredictable disruption.

16.1 Contributions

This thesis aids the theory community in achieving the above-stated goals. Specifi-
cally, it contains the following four important contributions.

16.1.1 Radio Network Modeling Framework

We described a formal modeling framework for the study of distributed algorithms in
radio networks. This framework allows for a precise, probabilistic, automaton-based
description of radio channels and algorithm behavior. It is general enough to capture
almost any radio model studied to date in the theory literature. At the same time, it
is particularly well-suited to specifying the often subtle details of adversarial behavior.

This framework also includes formal notions of problems, solving problems, and
implementing one channel using another channel. These formalisms are used by a pair
of composition results that enable a layered approach to algorithm design. The first
result can be used to combine an algorithm that solves a problem P using a powerful
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channel C;, with an algorithm that implements C; using a less powerful channel C,, to
produce an algorithm that solves P using C,. The second result combines a channel
implementation algorithm with a channel to produce a new channel. Later in the
thesis, this result facilitates the design of channel implementation algorithms.

16.1.2 Channel Definitions and Implementations

Using our modeling framework, we formalized the intuitive notion of adversarial in-
terference with the precise definition of the t-disrupted radio channel property. A
t-disrupted channel provides the devices access to a collection of F > 0 separate com-
munication frequencies, up to t < F of which can be disrupted in each round by an
abstract interference adversary. This adversary does not necessarily model a literal
adversarial device. Instead, it incarnates the diversity of possible interference sources
experienced in an open radio network environment.

We then introduced the more powerful (¢, b, p)-feedback channel property. Such a
channel behaves like a t-disrupted channel enhanced to provide feedback to the devices
about what was received on all frequencies during the current round. Specifically, it
guarantees that with probability p, at least n — b devices receive the feedback. We
argued that obtaining such feedback is essential to solving problems in a setting with
adversarial interference. This channel, therefore, provides just enough information to
allow algorithm designers to turn their focus onto the specifics of the problem they
are solving.

We then described two implementations of a (¢, b, p)-feedback channel using a t-
disrupted channel: the RFC and DFC algorithms. The former is randomized and
the latter is deterministic.

16.1.3 Solving Problems Using a Feedback Channel

To demonstrate the power of a layered approach to algorithm design, we described
intuitive solutions to three common problems using a feedback channel. Specifically,
we solved set agreement, gossip, and reliable broadcast. When these algorithms are
composed with our feedback channel implementation algorithms, we automatically
generate complementary solutions for the ¢-disrupted channel. We argue that devising
solutions from scratch on the ¢-disrupted channel would have introduced a significant
amount of extra complexity and repeated effort—validating the practical utility of
our layered strategy.

16.1.4 The Ad Hoc Variant

Our final contribution was the introduction of a variant of our modeling framework
that better captures the properties of an ad hoc radio network. Specifically, we
modified our framework so that only an arbitrary subset of the processes are activated
(by the environment), and these activations might occur during different rounds.
With this modification defined, we then provided a solution to the wireless syn-
chronazation problem using a t-disrupted channel in the ad hoc setting. This problem
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requires an unknown number of processes to agree on a global round numbering. We
discussed how such a solution can be used to adapt algorithms designed for a non-
ad hoc network (e.g., our feedback channel implementation algorithms) to work in
this ad hoc setting.

16.2 Future Work

Though this thesis solidifies a strong theoretical treatment of adversarial interference
in radio networks, much interesting future work on the topic remains. With respect
to the modeling framework, for example, it would be useful to devise a more general
algorithm composition result that allows the combination of arbitrary algorithms (not
just channel algorithms with problem-solving algorithms). Consider, for example, the
ability to combine an algorithm that implements a replicated state machine with
an algorithm that solves mutual exclusion using a replicated state machine. Such
general composition is useful for the development and verification of more complex
algorithms.

In addition, though the bulk of the existing theory work on radio networks as-
sumes synchronous time slots, producing an asynchronous (or partially asynchronous)
version of our modeling framework remains an interesting project. Presumably, one
might use an existing general modeling language, such as TIOA [51], for the this
endeavor, thus avoiding the need to tackle, from scratch, the complex modeling is-
sues created by non-synchronous environments (e.g., reconciling probabilistic behavior
with the non-deterministic scheduling of asynchronous events).

With respect to the channel definitions, there remains work to be done in the in-
vestigation of other useful channel properties. The t-disrupted channel property, for
example, is simple and captures a wide variety of settings, but it does not allow for
spoofed message. It can also be argued that it is too powerful: a more tractable prop-
erty might make the decision of which frequencies to disrupt oblivious; i.e., indepen-
dent of the behavior in the current execution.! Numerous similar variations are worth
exploring, from providing more power to the algorithm (e.g., collision/disruption de-
tection), to capturing more detailed disruption effects (e.g., probabilistic flipping of
individual bits in a message).

Similarly, the (¢, b, p)-feedback channel property is just one suggestion from among
many powerful channel types that could potentially simplify the development of algo-
rithms. For example, maybe a single-frequency reliable broadcast channel is also an
appropriate high-level channel to implement. It is also clear that for both cases—low-
level disrupted channels and high-level well-behaved channels—multihop definitions
are needed.

With respect to the channel implementation algorithms, it remains an open ques-
tion whether more efficient solutions are possible. Another interesting open question
is whether the restriction on the number of broadcasters is necessary for a determin-

1This latter property could easily be captured by modifying Definition 6.5.4 such that fblockedc,
applied to the channel start state, returns an infinite sequence of blocked sets, By € F, B2 € Fy, ...,
that describe what frequencies will be blocked in every round of the execution.
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istic implementation of a feedback channel. (Recall, the feedback channel property
described in Definition 6.5.5 requires that becount(M) < F, where M is the message
assignment passed to the channel, and beount(M) returns the number of broadcasters
in M.)

With respect to the algorithms that use a feedback channel—the set agreement,
gossip, and reliable broadcast solutions—these were meant as case studies that demon-
strate the components of the framework in action. They are not, by any means, the
only useful problems that can be solved in this setting. Of the numerous possible
problems worth addressing in a radio network environment, some of the most obvi-
ous include: multihop broadcast and point-to-point routing, maintaining replicated
state, leader election, and using leaders to construct network-wide structures such as
connected backbones.

Finally, with respect to the ad hoc variant of the model, it remains pressing
future work to formalize the proposed use of a wireless synchronization solution to
adapt algorithms from the original model to work in the ad hoc variant. Specifically,
a precise specification of the repeating epoch strategy is required, as is a theorem
statement that captures its exact guarantees.
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