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Abstract

This thesis proposes a games evaluation model that reports significant statistics
about the complexity of a game's various systems. Quantitative complexity
measurements allow designers to make accurate decisions about how to manage
challenge, keeping in mind the player's physical and mental resources and the
amount/type of actions the game requires players to act upon. Managing the operational
challenge is critical to keeping players in a state of enjoyment, the primary purpose of
video games. This thesis first investigates the relationship between enjoyment and
complexity through the concept of Flow. From there it examines the properties of
GOMS that are useful to analyzing videogames using Tetris as a case study, and then it
examines and dissects the shortcomings of a direct usability approach and offers solutions
based on a strategy game example. A third case study of the idle worker scenario in
strategy games is detailed to further corroborate the usefulness of applying a GOMS
based analysis to videogames. Using quantitative measurements of complexity, future
research can aggressively tackle difficulty and challenge precisely, mitigate complexity
to widen market appeal, and even reveal new genre possibilities.

Thesis Supervisor: Robert C. Miller
Title: NBX Career Development Associate Professor



Acknowledgments

I would like to extend a special thanks to the MIT EECS department for being

patient and understanding at every step of the way. I am sure that it is a particular breed

of kindness that is developed from years of working closely with thesis students who find

themselves in need of guidance and understanding.

To my initial supervisor, Alice Robison, I want to thank even more for accepting

the responsibility of guiding me through a thesis in an underdeveloped area. Although it

was frustrating to work with so little previous research, her encouragement helped me

push forwards and eventually find the few key pieces to cement the building blocks of

this thesis.

To my final supervisor, Rob Miller, I am deeply, deeply grateful for picking up

my thesis and guiding me through the finishing touches needed to make this a real thesis.

Working with the professor of the user interfaces class that inspired this thesis give is a

great honor.

To my family, I am sincerely indebted to them for their love, financial support,

and moral support at every hour. Bringing me food and sending cookies sustained me

through the long hours of work in a little dark room.



Contents

1 Introduction 6

1.1 Motivation 6

1.2 Approach 7

2 Background 10

2.1 Flow as a Measure of Enjoyment in Video Games 10

2.2 Software Usability Heuristics and Video Games 11

2.3 Quantitative Evaluation via Usability Models 12

2.4 Fundamental Differences: Software vs. Games 12

3 Understanding GOMS 14

3.1 Overview 14

3.2 Set-Clock Example 14

3.3 Click-Box Example 15

3.4 The Relevance of GOMS to Video Games 16

4 Overcoming Software Usability Model Shortcomings 18

4.1 Tetris Case: Measuring Complexity in Time 18

4.2 Army Case: Accounting for Unlimited Variation 23

5 Applications 27

6 Case Study in Genre Improvement 31

7 Further Research 36

8 Conclusion 39

References 41

Appendix A: Fitts' Law 42

Appendix B: KLM Standard Operators 43



List of Figures

1.1 Flow Zone as a function of challenge and ability 8

4.1 Screenshot of a Tetris game in progress 18

4.2 CPM-GOMS critical path representation of Tetris 20

4.3 Tetris complexity graph evaluating overall complexity as the sum of the

complexity of the individual subgoals 21

4.4 A different Tetris complexity graph evaluating overall complexity as the

sum of the complexity of the individual subgoals 23

4.5 Tetris complexity graph evaluating overall complexity as the sum of the

complexity of the individual subgoals divided by the time available to

complete those subgoals 23

4.6 Tetris complexity charts displaying the range of complexity which the

player can assume 26

5.1 Tetris complexity chart visualizing interaction of skill and complexity

ranges 28

5.2 FlOw complexity chart illustrating how FlOw achieves the same

flexibility in challenge as Tetris with an alternative approach 29



1 Introduction

1.1 Motivation

The goal of this paper is to give games developers a tool to selectively target

audience demographics and also broaden the mass appeal of their games through an

understanding of the barriers that prevent players from enjoying the game. Clearly all

parties involved in game design are interested in such progress. Publishers wish to target

the largest possible audience to generate the most revenue, developers wish to create a

game that is fun for their target audience to play, and gamers wish to play games that are

catered to their taste and player skills. This is the motivation for designing a system, for

quantitatively determining game complexity.

But all players are not created equal; skill at mechanics, taste in genres, and all

sorts of discrepancies differentiate audiences. Even only accounting for skill, designing

for one audience often excludes another, and designing separate cases for different

audiences incurs extra development cost. Therefore the model proposed in this paper

attempts not only to determine overall complexity, but attempts to identify complexity in

subsystems and additional complexity caused by their interactions. A subsystem in a

game is an independent game mechanic that interacts with other game mechanics to form

the overarching system of rules and methods the player manages. This gives developers

the information necessary to make informed decisions about how to manage complexity

in a system, be it a static change (the game is too complex/easy for everyone), or dynamic

(a certain subsystem might be automated at lower difficulty levels).

From another standpoint, as the gaming industry continues to grow in size, the

amount of money being invested into games signals a growing need for maturity in game

development. With publishers keeping track of and setting deadlines for production

studios, the reign of small garage-based companies taking their time and learning by trial-

and-error is past. Much like the software industry, design paradigms have shifted to



streamlined processes that minimize guesswork and maximize efficiency. Of particular

interest are the guidelines and heuristics established for use in user interface design, as

they relate the most closely to the heavily interactive field of videogames. This is the

inspiration from which the proposed complexity model will be implemented.

With the use of this proposed model for evaluating game complexity, the hope is

that the trial-and-error testing process for overall enjoyment of a game's fundamental

mechanics can be substantially reduced. Even while the design is still on paper, the

model can be applied successfully. Being able to estimate complexity over time allows

designers to carefully monitor the pace of the game, and quantitative measurements allow

for comparison and optimization of complexity among the subsystems of a game. An

example of this is how strategy games often have a resource acquisition subsystem that

provides resources for but is separate from unit management and fighting. Thus

subsystems should have relatively similar operational difficulty in order to ensure a

smooth experience, or else players will feel the jump in difficulty and possibly lose their

state of immersion when they switch tasks.

1.2 Approach

In user interface design, quantitative evaluations most often use the popular

GOMS approach to analyze the behavior of expert users for a given implementation.

GOMS breaks down the users overall goal into steps and estimates the time it takes to

complete each step. Applying this to games, we initially say that the complexity of a task

is measured by the amount of time that action takes. We use complexity in place of the

word difficulty or challenge, because of the notion that sometimes a hard task can be

completed more quickly than an easier one. However in some sense, the task that takes

longer is more difficult, because it engages the person's attention for the period of time he

is forced to spend on that task. In games where many subsystems are juggled at once,

that time occupied prevents the player from starting his next task, so the total time to

completion is directly relevant to the overall challenge of the game.



In Tetris, a game where players guide falling blocks and attempt to score points

and remove old blocks, the complexity of a player's task to figure out the ideal place to

put a given block would then be defined by how long a player takes to mentally

determine where that spot is. Unfortunately, this measure of complexity becomes

inadequate when time restrictions come into play. In the Tetris example, the player has

increasingly less time to mentally determine the best spot for the next piece as the falling

speed of the blocks increase. To compensate for this, this thesis will use relative

complexity, defined as the ratio of time required to complete a goal to time available to

complete the goal. Absolute complexity will hereon refer to the complexity measured in

time to completion. Because goals in games do not always have to be fully completed to

succeed in the overall goal (players can put the block anywhere and make up for the

mistake later), this relative complexity measurement gives a good indication of the

demand on the user without forcing each successive task to wait for previous tasks to be

completed before their additional complexity is considered.

As more possibilities are introduced into the game environment, a direct GOMS

analysis becomes impossible as the concept of an expert user becomes harder to define.

Taking a battle between two armies as an example, the expert player might always have a

best option initially, but as the future best choices are highly dependent on the response

of the opposing army. The limitless possibilities lead us to require a different approach.

Taking cues from analyzing algorithm runtimes, this thesis approaches this problem by

insteading looking at complexity lower bounds and upper bounds rather than constant

values (pre-determined or evaluated at runtime). Even better, this gives us a range within

which a player can expect the complexity to vary within, which is an indicator for what

levels of skill the game caters towards!

With a conceptual model in hand, a retroactive case studies of successful games

can provide supporting evidence for the viability of this approach. Examining the idle

worker case study shows that this model does indeed retroactively reveal the existence of



a complexity anomaly that, once fixed in a single game, was then quickly adopted by

many other games in the genre as a fix.

Being able to accurately pinpoint complexity then leads to all sorts of

opportunities to fine-tune and expand the medium. Removing unwanted complexity,

smoothing complexity flow, and aggressively expanding complexity ranges are all

possible with quantitative analyses.



2 Background

2.1 Flow as a Measure of Enjoyment in Video Games

Flow, as defined by Mihaly Csikszentmihalyi (1990), represents the feeling of

complete and energized focus in an activity, with a high level of enjoyment and

fulfillment. Previous game design scholars have effectively adapted his idea of Flow to

model players' enjoyment in videogames. Holt (2000) explores videogame immersion as

a Flow State, and Sweetser and Wyeth (2005) use Flow as one of a number of factors that

account for player satisfaction in games. As explored in Jenova Chen's work on "FlOw",

Flow is determined by a balance between the player's ability to meet challenges and the

level of challenge of a goal (2006).

Stablla
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U

Figure 1.1 Flow Zone as afunction of challenge and ability

Chen attempts to approach the question of increasing the audience of a game by

implementing player oriented dynamic difficulty adjustment (DDA). In FlOw, the game

is designed to have players essentially choose the difficulty level for themselves by

allowing free movement between sections of the game, where each section contains

progressively harder obstacles than the last. The success of FlOw in its reception by a

wide spectrum of gamers and a commercial implementation on the PS3 concluded that



designs focused on enhancing Flow experience can help expand the video game market

and mature the media as a whole.

Without Flow being used as a design guide, it is left to gut feeling and experience

to guide designers to produce the intended amount of challenge in their games. The

adjustable difficulty approach helps increase the audience pool by having something for

everyone, but it still skips over a gap. Given a situation in game, exactly how

challenging is it? Wrestling with these questions of balancing ability and skill, designers

are currently just taking shots at an imaginary balance because game development lacks

the tools to measure them. Looking at the obvious related field of software design,

usability seems to hold the most similar concepts and values. Human-computer

interaction (HCI) deals with the same issues of challenges to users with respect to the

complexity of the user interface.

2.2 Software Usability Heuristics and Video Games

Federoff (2002) took the first step, analyzing the application of software usability

heuristics to games. Heuristics allow identification of potential problems in software

design before other evaluations can be applied or more expensive evaluations are applied.

Looking at Nielsen's ten usability heuristics, she identified which worked and which did

not apply in video games, and concluded that while usability heuristics were useful, they

mostly did not cover game play issues. However, she continues in her research and lists

preliminary guidelines that she observed in use by a game development team. Expanding

the scope of usability from interface to including game mechanics and game play would

then allow a game usability expert to formally evaluate games in the same way as

software usability experts.

However, heuristics give little in the way of predicting or controlling flow

(through challenge) in games. Taking a step deeper in HCI uncovers quantitative

evaluation models. GOMS and other HCI cognitive modeling attempt to produce a priori

quantitative predictions of performance in an earlier stage in the development process



than prototyping and user testing. Moreover, they allow designers to incorporate

cognitive theory without having an extensive background in psychology. Adapting these

models to games would be the next step in building a mature development process.

2.3 Quantitative Evaluation via Usability Models

One of the most powerful aspects of having a quantitative model is the concrete

comparisons it allows between different games. Bringing the model to bear on a

successful game of a certain genre can give reasonable expectations for the level of

complexity the audience expects or desires. Comparing successful and unsuccessful

games of the same genre may reveal correlations between ease of access and market

success. During development if the complexity of the experimental design deviates

greatly from the successful game's complexity, a red flag might be raised. Is there is an

appropriate reason for the experimental design to be so much more or less complicated to

play than the tried and true game? If it was intended, then the model can verify that the

design succeeds.

An investigative paper into applying the GOMS usability model to games was

successful in accurately predicting functional-level behavior and slightly less accurately

predicting keystroke-level behavior in Super Smash Brothers 3 (John & Vera, 1992).

With an assumption that the minimum time a task takes to complete is proportional to its

complexity, these models should be able to evaluate the challenge in video games.

2.4 Fundamental Differences: Software vs. Games

Unfortunately, software usability and game design clash in their goals. Because

software usability focuses purely on productivity, heuristics and models of usability

attempt to minimize time to completion. From the perspective of a game designer, this

goal would correlate to minimizing challenge. A quick glance at the Flow graph above

reveals that this does not coincide with a game's goal of optimizing flow.



There are certainly points in games where challenge is not welcome. Mundane

operations such as changing the volume or saving the game should be as simple as

possible. This leads to an important observation. In games there exists both goals which

are tied into the entertainment goal in which challenge of some level is desirable and

goals that only provide support utility in which complexity is undesirable. Within utility

functions, software usability heuristics and models can be applied directly.

It is imperative to note that meaningful assessment requires this proper distinction

between entertainment goals and utility goals. This classification is delineated by the

design of the game. The same goal in two different games might be a utility in one and a

desirable challenge in the other. Imagine an operation that moves a player's avatar from

one point to another. In a strategy game, this most likely would implement pathfinding

algorithms to automatically guide the avatar around obstacles to the selected destination.

However, the same algorithm guided movement would be undesirable in a maze game,

where the challenge exists in guiding the avatar to the maze exit.

Ideally having adapted software usability models to games will allow a

complexity profile to be built. Data such as average complexity, upper bounds and

minimum bounds of complexity, and expected complexity under given circumstances can

be mined and used by designers to make educated decisions in how to maximize and

maintain intended Flow in their games.



3 Understanding GOMS

3.1 Overview

GOMS refers to the Goals, Operators, Methods, and Selection rules approach to

understanding a given design. Goals are what the user hopes to accomplish. Operators

are the actions the software allows the user to take. Methods are well learned sequences

of subgoals and operators that can accomplish a goal. Selection rules are the personal

rules that users follow in deciding what method to use in a particular circumstance (John

& Kieras 1996).

The basic approach to GOMS involves first selecting a set of top-level goals,

choosing a specified interface design to evaluate, writing out the procedures a user must

learn and execute to complete the goals, and finally assessing the learning and execution

implications of procedures. An example GOMS profiling of setting a clock is profiled

below, where the top-level goal is SET-CLOCK.

3.2 Set-Clock Example

Method for goal: SET-CLOCK

1) Hold TIME button
2) Accomplish goal: SET-HOUR
3) Accomplish goal: SET-MINUTE
4) Release TIME button
5) Return goal accomplished

Method for goal: SET-<digit>

1) Click <digit> button
2) If target <digit> = current <digit>, return goal accomplished
3) Goto 1

This GOMS profiling can directly apply in many situations to goals in

videogames. Consider a game where a block appears randomly on a computer screen,

and the player's goal is to click on it with the mouse.



3.3 Click-Box Example

Method for goal: WIN-GAME

1) Accomplish goal: MOVE-MOUSE-AND-CLICK
2) Return goal accomplished

Method for goal: MOVE-MOUSE-AND-CLICK

1) Move mouse to target
2) Click mouse button
3) Return goal accomplished

Using KLM (Keystroke-Level Model) or another variant of GOMS gives the

expected time for this action to be completed. Times for actions such as eye movement

and button presses are cataloged in usability tables. Other timings such as moving the

mouse to a target area can be evaluated as well (in this case with Fitts' Law). Without

other implementations to compare against these numbers would be uninformative, but

suppose another game exists where the player must use the keyboard to move the pointer

to the block.

Method for goal: WIN-GAME

1) Accomplish goal: MOVE-POINTER-AND-SELECT
2) Return goal accomplished

Method for goal: MOVE-POINTER-AND-SELECT

1) Accomplish goal: MOVE-POINTER-TOWARDS-BLOCK
2) If cursor is not on block, goto 1
3) Press enter button
4) Return goal accomplished

Selection rule for goal: MOVE-POINTER-TOWARDS-BLOCK

1) If block above cursor, accomplish goal: MOVE-UP
2) If block below cursor, accomplish goal: MOVE-DOWN
3) If block to the right of cursor, accomplish goal: MOVE-RIGHT
4) If block to the left of cursor, accomplish goal: MOVE-LEFT
5) Return goal accomplished



Method for goal: MOVE-<DIRECTION>

1) Press button <DIRECTION>
2) Return goal accomplished

Offhand it might seem that the mouse method would always be a more desirable

operation, but imagine if the block was minuscule, maybe a pixel wide. Fitts' Law

dictates that the time to maneuver the mouse to a tiny target area is very high, while the

key method would take only a few presses to move the cursor into place once the cursor

reaches into the general vicinity of the pixel (See Appendix A).

3.4 The Relevance of GOMS to Video Games

Herein lies the value of GOMS. It is an objective, quantitative model for

evaluating the repercussions of a specific implementation. In the case above the designer

can see the profiling and realize that under certain circumstances (in this case a the tiny

block), it would be prudent to implement both types of movement operators for the user

towards minimizing time to completion.

Revisiting the importance of classification between utility usability and game

usability, minimizing time to completion is not always conducive to designing fun games.

The earlier argument over classification of a movement function between utility and an

entertainment goal is easy to clarify here through example. Taking the "click on the box"

game further, imagine that the player has an avatar. The goal is to navigate the avatar to

the box through a maze. In the mouse implementation, the avatar runs in a straight line

towards the clicked destination until it runs into a wall. In the keyboard implementation a

directional press advances the avatar one square in that direction unless there is a wall

there. From a GOMS perspective, there is an even better solution! Implementing a

pathfinding algorithm, the mouse point-and-click implementation automatically finds a

path through the maze.



With the first mouse and keyboard implementations, multiple iterations are

required of each task to advance the avatar a few squares at a time before reaching the

goal, whereas the pathfinding mouse implementation has the same completion time as the

original "click on the box" game! Certainly in the eyes of a software usability approach,

it is the clear winner. But this "solution" goes against the whole principle of maze

games!

Instead, our version of GOMS for games needs to be applied as an impartial

measure of complexity, allowing for unminimized operators and dependent on the

designer to interpret the actual meaning of the results. It is important to note, however,

that impartiality also means that it does not model learnability or memorability. If the left

button was mapped to moving the block right and vice versa for the right button, players

would definitely have a harder time getting used to the interface. This would not be

identified by GOMS and would require a heuristics based analysis to reveal, such as the

one proposed by Federoff. Furthermore, GOMS only handles expert users. This problem

is discussed further in the next section.



4 Overcoming Usability Model Shortcomings

4.1 Tetris Case: Measuring Complexity in Time

In the classic game Tetris, the player controls dropping blocks in a limited playing

field. They are able to rotate the blocks, move them from side to side, or cause them to

fall faster. The object of the game is to stay alive as long as possible while scoring

points, which becomes increasingly difficult as the blocks fall quicker as time passes. If

players fill a row of blocks, that row disappears and the blocks above drop down a row.

Method for

1539
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Figure 4.1 Screenshot of a Tetris game in progress

goal: SURVIVE-AND-GET-POINTS

1) Accomplish goal: DETERMINE-BEST-LOCATION-FOR-NEXT-
PIECE

2) Accomplish goal: PLACE-PIECE-AT-LOCATION
3) Goto 1

Method for goal: PLACE-PIECE-AT-LOCATION

1) Accomplish goal: ROTATE-AND-MOVE
2) If block not at bottom already, accomplish goal: DROP-BLOCK
3) Return goal accomplished

Selection rule for goal: ROTATE-AND-MOVE



1) If target location to left, accomplish goal: MOVE-LEFT
2) If target location to right, accomplish goal: MOVE-RIGHT
3) If target orientation not current orientation, accomplish goal:

ROTATE-BLOCK
4) If target orientation equals current orientation and target location

equals current location, return goal accomplished
5) Goto 1

Method for goal: MOVE-<DIRECTION>

1) Press <DIRECTION> button
2) Return goal accomplished

Method for goal: ROTATE-BLOCK

1) Press ROTATE button
2) Return goal accomplished

Method for goal: DROP-BLOCK

1) Press DOWN button
2) Return goal accomplished

To simplify matters, this version of Tetris consists of just one button to rotate the

block in one direction, along with left, right, and down directional controls. Pressing

down instantly drops a block to the bottom. Taking a look at the methods, it is apparent

that most of the control goals take very little time to complete. MOVE-<DIRECTION>

and ROTATE-BLOCK are a single button push, so the amount of time PLACE-PIECE-

AT-LOCATION takes to execute is simply the sum of the button presses. KLM models

approximate average keystrokes to take 0.2s, which is a generous upper bound for a game

with only four buttons (See Appendix B). Given a normal Tetris board width of 10

squares, the maximum presses required for one block for an expert (no mistakes) is 5 for

maneuvering left and right, 3 for rotating the block to the desired orientation, and 1 more

for dropping the block. So an upper bound for the time to completion runs at about 2

seconds. Taking into account that experts can rotate while simultaneously moving the

block laterally and that the block can fall on its own, it upper bounds with 5 button

presses, yielding a complexity time of 1 second. Probability theory can give more exact



values along with average completion times. This accounts for the complexity of the

second half of the main goal.

The GOMS representation above leaves out an implementation for determining

the best location to place a block. The differing amount of personal selection rules along

with the exponential complexity of determining all possibilities makes it nearly

impossible to perfectly model it in a strict static programming style. However, this

problem arises from the fact that this is the heart of Tetris gameplay, and it is the source

of the majority of the challenge in the game. Before attacking the problem with a new

approach, let us assume it has a mental calculation time of 2 seconds. Also note that the

mental process can be done simultaneously while physically placing the piece because

the next piece to fall is displayed on the side, and DETERMINE-PLACEMENT is purely

a mental process while PLACE-PIECE is purely physical when players memorize the

button presses necessary to move a piece to a target location. Visualizing the critical path

would yield the following repeating sequence:

4atlocation

Place piecepiecebestiodallon at location

(1s)Place piecebest"location
s(s)

----------------------------------------------------------------------------- 10Game time (s)

Figure 4.2 Criticalpath representation of Tetris. Note that it repeats in the same
way until the game ends.

The critical path gives the optimal time to completion while accounting for tasks

that can be executed in parallel. But this data by itself yields little insight into the



complexity of the process. Since we are searching for a way to measure complexity, let

us first define absolute complexity at a given time as the amount of time necessary to

complete all tasks at that time. In the above example then, the absolute complexity

alternates from 2s to 3s worth of goals to be completed.

5

4

3 i Place Block

Absolute I Determine

Complexity 2 Placement

(s)

0
1 2 3 4 5 6 7

Game time (block #)

Figure 4.3 Tetris Complexity Graph evaluating overall complexity as the sum of
the complexity of the individual subgoals. Each subgoal is valued at its upper

bounded completion time.

This seems a bit misleading first, as obviously Tetris gets harder to keep up with

as the blocks start falling faster, yet the complexity level stays constant. Stepping back,

imagine a version of Tetris that does not increase the fall speed of blocks. It then makes

sense that the complexity would stay constant; the game never gets harder (still assuming

a static time to determine piece placement). Getting rid of some assumptions, there is a

linear limit on the number of viable places to stick the current block. Ignoring special

cases where blocks can be slotted into the side of the block pile, there are only 6 pieces,

and a piece with a given orientation can only be placed in at most 10 spots, with a limit of

4 orientations. Therefore the amount of time to identify locate the best place to put a

piece to be anywhere up to n seconds (linear time to mentally process, since in an optimal

case the first spot is ideal for the first orientation or the field is empty and any orientation

will suffice), and the time to place the piece in that location to be anywhere from 0 to 1

seconds. KLM estimates mental processes at 0.6-1.35s, so we will use that range to

approximate the time required here (See Appendix B). Ideally that time range can be

empirically measured. The absolute complexity then spans the range of 0 + 0.6 seconds



to 1.35+1 seconds, yielding a constant upper bound for how much work needs to be done

by the player. The only variables in complexity are due to the configuration of the pile of

blocks.

5 - ----.----- --

Upper
4 - Bound

3 . . . . . . . . . . . . . . Pl R ace Block

Comrn plexity (s) Determine

2 Placement

0
1 2 3 4 5 6 20 21 22 23

Game time (block #)

Figure 4.4 A different Tetris Complexity Graph evaluating overall complexity as

the sum of the complexity of the individual subgoals. Each subgoal is valued some

random value within its lower and upper bound, where the exact value is determined

by the shape falling and the configuration of the pile of blocks.

Now the complexity has a range and a cause that the designer can see and base

choices on. Of course without any restriction of time, it is difficult to pass judgment on

how to tune complexity in this version of Tetris other than comparing its relative

difficulty to other games. What does a two second complexity measurement mean when

there is no time limit? Integrating time limits into the model in this case is as simple as

evaluating the complexity in time over the time limit.

Assume that a Tetris block initially take five seconds to fall from the top of the

field to the bottom. As time progresses, it takes less time to fall. The amount of time

available is simply the fall time minus the travel time unavailable due to the pile of

blocks. Now the flow of complexity mirrors the idea that the game will eventually end

from becoming too fast for the player to handle. When the ratio of time required and

time available rises above 1:1, the player is forced to make sacrifices to finish goals in

time. This might mean skipping certain subgoals until later or, in the case of Tetris,

placing a block before actually figuring out the optimal placement of the block.



Eventually the player will simply have too much to do in too little time, the blocks will

pile up, and the game will be over.

2.5 - ------..... . ........

Upper
2 -.......--- ---.-. . Bound

1.5 ..... Race Block

Relative Determine
Complexty 1 -.. Racement

( s / s ) 0-5
0.5

0 10 20 30 40 50 60 70 80 90

Game time (s)

Figure 4.5 Tetris Complexity Graph evaluating relative complexity as the sum of
the complexity of the individual subgoals divided by the time available to complete

those subgoals. Each subgoal is valued some random value within its lower and
upper bound, where the exact value is determined by the shape falling and the

configuration of the pile of blocks. The upper bound is calculated as the upper bound
of the subgoals divided by the available time.

Forcing the player above the 1:1 ratio of time required to complete goals to time

available is not necessarily an unwanted situation. In fact it may correspond to the Flow

zone where the player has just enough time to complete all the goals. Forcing the player

to make sacrifices can mean the player is making meaningful choices. However when

the complexity grows too large it overwhelms the player as he has too many important

choices to make and not enough time to implement those choices.

4.2 Army Case: Accounting for Unlimited Variation

At this stage it is apparent that modeling basic game functions is consistent across

GOMS in software usability and videogames. But it quickly becomes vague how to

model dynamic environments as the amount of variables increases. Consider an example

game with a player controlled army facing off against an opponent army.

Method for goal: KILL-ENEMY-ARMY

1) Accomplish Goal: ANALYZE-SITUATION



2) Accomplish Goal: FORMULATE-STRATEGY
3) Accomplish Goal: MANAGE-UNITS
4) If enemy units alive, goto 1
5) Return goal accomplished

Method for goal: ANALYZE-SITUATION

1) Accomplish Goal: ANALYZE-ALLY-UNIT-COMPOSITION
2) Accomplish Goal: ANALYZE-ENEMY-UNIT-COMPOSITION
3) Accomplish Goal: ANALYZE-EXTERNAL-FACTORS
4) Return goal accomplished

The endless variations of possible situations seems to undermine the ability of

GOMS to return some useful complexity value for a given situation, not to mention the

difficulty of calculating the mental runtime of the ANALYZE-<> methods. At first

glance a simple linear runtime in the unit count might seem feasible, but on the next run

through a player probably uses the previous count to hasten his next analysis. Similarly

the second run through of FORMULATE-STRATEGY would be heavily based on the

results of the last FORMULATE-STRATEGY, and be more akin to a MODIFY-

STRATEGY. Terrain (spatial) analysis also would require more insight into cognitive

science outside the scope of this paper.

The first solution to this problem lies in a clear game design. An explicit vision

for the game can give expectations for unit counts, strategic balance between units, the

way terrain affects battles, and all other information about what gameplay decisions are

important to the player and how they affect the player's choices. For example a game

with a rock-paper-scissors balance between units would mean the player's strategy

formulation method consists of matching up and seeing how many rocks he has versus

the opponent's scissors. The less clear a game design is, the more vague this type of

analysis will become. Of course it is still up to the games usability expert to assign a

reasonable complexity value, but the designers should be able to explain the strategic

choices available to the player. If not, then it is probably an oversight in the design.



The second solution is to realize that the underlying GOMS assumption models

the performance level of an expert user. While it might be tough to make an accurate

best-case model for all scenarios, it should be plausible to at least make educated

approximations for upper bounds and lower bounds on the time complexity of the

player's goals. Again a clear design will help tighten expectations, especially if the

design includes scenarios which involve mental walkthroughs. In this example, a fairly

loose upper bound would involve the player explicitly tallying all the units one by one

every time and reformulating an appropriate strategy from scratch. A fairly loose lower

bound would involve the player remembering his unit count every cycle with minimal

upkeep in tracking losses or gains, then ignoring external factors and never deviating

from the initial strategy.

The upper bound is unreasonably high of course, so its value seems minimal until

we recognize that players will make sacrifices when decisions are forced upon him,

whether it be by lack of time or from having too many decisions to make. Therefore an

optimal model will take into account that the minimal amount of complexity a player can

get away with is more important than the absolute most complexity a player can assume.

On the other hand it still might be difficult to identify the exact minimum that will

achieve the player's goals successfully, but again the design should have some

expectations for what the player should at least be able to do to succeed. In the case of

the armies fighting, the minimum might be simply selecting all units to move towards the

enemy and autoattack.

Between these upper and lower bounds is the freedom within which players can

comfortably exert their skills to meet challenges. Above the upper bound is the region in

which there is more player skill available than challenges to meet, and below the lower

bound is the situation where the player cannot handle the bare minimum of challenge.
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Figure 4.6 Tetris complexity charts displaying the range of complexity which the

player can assume. a) Upper bound set at a static 3s, lower bound assumed to have
a 0.5s minimum. b) Upper bound set at 3s / time available, lower bound set at 0.5s /
time available. The complexity range indicates the possible total complexity given a

particular scenario.
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5 Applications

With this GOMS-based model for complexity as a tool, game designers can use

complexity charts to monitor and control the flow and pace of their designs. The Tetris

example shows how complexity ebbs and flows due to the current state of the pile of

blocks, as well as showing the asymptotic increase in relative complexity due to

increasing time restraints.

In games with multiple interacting subsystems, GOMS can profile each of them

individually and then integrate them into an overall complexity profile for the game. If

the design vision has enough depth to predict the frequency of events, adding together the

complexity of separate subsystems gives the designers insight into the behavior of

complexity as the game progresses, such as how it might peak or dip and the average

amount of challenge presented to the player over time.

Furthermore, numerical complexity values allow the designers to see what

activities are the most resource intensive. If the requirements of skill are deemed too

stiff, developers can see what sequence of events in particular is overwhelming the

player. They can then cull or modify modules based on their workload (offset against

how important that component of gameplay is), and then using the GOMS approach see

how proposed those design changes modify the game's complexity profile.

A total complexity value over all subsystems gives a basis for comparison.

Designers can see how how different systems in the game compete for attention, how

different games with similar subsystems compare, and how different scenarios in the

game stack up against each other. All of these complexity values can be extracted from

the game design given sufficient detail. If the design fails to provide the necessary level

of detail, then this approach to analyzing games forces the designers to clarify their ideas.



Retroactively applying these models to successful games can reveal why certain

games are able to cater to specific markets, or how they manage to appeal to a wide

market. Although branding and advertising can sell a game, the continuing popularity of

a game is strongly contingent on enjoyable game mechanics. The wide success of casual

gaming bears anecdotal evidence to the correlation between a greater market size and a

large complexity range with a low complexity lower bound. Their mechanics are

generally simple and quick to learn, but they also have a depth of gameplay that appeals

to more skillful players. In Tetris, for example, the game speeds up to match the player's

skill level.
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Figure 5.1 Tetris complexity chart visualizing interaction of skill and complexity
ranges. This occurs when their skill (represented by the dotted line) intersects with

the complexity range between the upper and lower bounds. The expert player is
bored when the game begins and the fall speed is slow but becomes challenged
when the game becomes very fast towards end. Tetris has options to allow the

player to start the game with afaster falling speed, which would allow the expert to
skip the initial not challenging segment. The least skilled player is engaged

immediately until he is overwhelmed.

This complexity evaluation identifies how Tetris appeals to different levels of

skills in players. While it may seem obvious, this model gives a quantitative justification

for how scaling difficulty in game achieves this goal of accommodating a range of skill

levels. Taking a look at FlOw, a different mechanism is used to achieve the same result.



FlOw has tiered "levels" between which the player can traverse at will, with increasingly

difficult creatures to confront.
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Figure 5.2 FlOw complexity chart illustrating how FlOw achieves the same

flexibility in challenge as Tetris with an alternative approach. The expertfinds
challenge in the mastery of the game, the novicefinds enjoyment in just idly

swimming around and maybe eating the slow, benign creatures, and the average
playerfinds a challenge in just managing to eat things in higher tiers or attacking
enemies in middle tiers. In this case the graph is constructed with respect to the

action the player is taking since there is no time restriction. Swimming involves just
moving about, eating involves maneuvering the player's avatar in position to

consume an object while avoiding obstacles, and attacking involves more complex
maneuvering to attack enemies. The complexity values are ratios of required time to

a normalizing constant time interval.

An interesting observation to note is that FlOw's difficulty has a concrete

maximum challenge. Whatever the challenge of the last tier, because there is no

increasing time restraint it remains constant. If the skill level of the player is beyond the

challenges present in the last tier, the game holds no appeal to that player. Looking at

Tetris, the challenge grows unbounded due to ever increasing speeds. A player of any

skill level will eventually hit the point where they have to struggle to win. Of course the

designer of FlOw could make it impossibly hard to defeat creatures in the last tier, but it is

regardless important to take note that it is in the directly in the designers' hands to

manually implement the hardest challenges in the game. Contrast this to Tetris, which

has a single mechanic whose difficulty is scaled solely by time. But because both have



complexity profiles that allow for a spectrum of skill levels, both are able to appeal to a

large demographic.

Likewise the profile can identify problems on the opposing end. As touched on

earlier, Tetris options allow players to manually increase the speed so that it is closer to

their challenge point from the very start. What this is avoids is the boredom zone that

experts players will feel as the challenge is far below their ability. Players might not

want to plow through the boring parts to reach the engrossing parts, so designers should

be aware of these low complexity areas and adjust accordingly.

Additional profiling can be done in various forms depending on the need. The

initial Tetris example (Fig 5) used complexity snapshots taken at intervals during the

course of a game. Building scenarios and profiling them will yield concrete numbers for

how complex situations can get, and designers should be able to imagine worst-case

scenarios with which to work with. Generic profiling with upper and lower bound shows

the range of skill levels the game can accommodate. Calculating expected values for

complexity at a given time can be done by evaluating complexity against frequency of

use for any interval of time. When there are distinct choices the player can make to alter

what happens next, each decision branch can be modeled separately. Essentially, this

evaluation technique is as specific as the usability expert requires.



6 Case Study in Genre Improvement

After successful games are released, subsequent patches and sequels generally

attempt to take the original and improve the experience with new features. Although not

all additions are improvements, it is reasonable to assume that specific additions that

continue to be implemented throughout future iterations of the game or become adopted

by other similar games indeed add a feature to the game that improves the experience.

With that in mind, this section will investigate one of those additions that has propagated

throughout genres due to their improvements to the user experience through mitigation of

undesired complexity.

Idle Workers

Many strategy games implement worker units that harvest resources and build

important structures that yield benefits to the player. The selection and construction

process of an individual building is a small part of the overall game but frequently

repeated, and thus should not be a demanding task (undesired complexity) or else it will

disrupt the player's focus on the strategic portion of the game (desired complexity). The

general process for construction of a building yields the following:

Method for goal: CONSTRUCT-<BUILDING-TYPE>
1) Accomplish Goal: SELECT-WORKER-UNIT
2) Accomplish Goal: SELECT-<BUILDING-TYPE>-FROM-

OPTIONS
3) Accomplish Goal: SELECT-DESTINATION

Initially, the procedure seems fairly straight forward. Select a worker, select a

building from his construction interface, and select a location for construction to proceed.

Working backwards, the method for SELECT-BUILDING-DESTINATION is

reminiscent of the Tetris placement method, since there are only a finite number of ways

to place a building in a given space. The worst case scenario is that the player is forced



to build at another location than the original, optimal destination. At this stage the player

has selected a unit and the building to be constructed.

Method for goal: SELECT-DESTINATION
1) Accomplish Goal: MOVE-TO-DESTINATION-SCREEN
2) Accomplish Goal: MOVE-CURSOR-TO-DESTINATION
3) Click Mouse
4) Return goal accomplished

Selection rule for goal: MOVE-TO-DESTINATION-SCREEN
1) If distance to destination < 1 screen, accomplish goal

SCROLL-MAP
2) If distance to destination > 1 screen, accomplish goal CLICK-

ON-MINIMAP
3) Return goal accomplished

Method rule for goal: SCROLL-MAP
1) Move cursor to edge of screen in scroll direction
2) Wait until map scrolls to desired location
3) Return goal accomplished

Method for goal: CLICK-ON-MINIMAP
1) Move cursor to minimap
2) Move cursor on minimap to destination area
3) Click mouse
4) Return goal accomplished

Method for goal: MOVE-CURSOR-TO-DESTINATION
1) Determine placement requirements
2) Move cursor to build site
3) Click mouse
4) Return goal accomplished

The only real variable here is the mental time for determining placement of the

building, which KLM approximates as 1.2s typically (See Appendix B), but is typically

determined empirically for a given application. The rest fall squarely under methods that

KLM predicts. Mouse movement to a destination target falls under Fitts' Law, and in the

specific case of scrolling the map the border of the screen counts as an infinite area so the

time taken there is small and constant. In the worst case scenario, choosing another

location would require a simple repeat of moving the screen to the new location, and



because of the nature of this particular goal, a player can generally place the building

down in a suboptimal location without incurring much additional thought or penalty. In

other words the player in this case will generally not be making a huge sacrifice towards

the goal of winning by cutting short this goal and simply placing the building wherever it

fits.

Moving backwards to SELECT-<X>-FROM-OPTIONS, the typical interface

involves clicking the icon corresponding to the desired option from the selected worker's

interface. This falls squarely within normal user interface usability standards and

minimization of completion time.

Finally the first step is the method for selecting a new worker. Ideally, the player

wants to pick an idle worker (one who is not assigned to a task already) that is closest to

the work site. If none is available then the next choice is to use a worker who already has

a task but is currently doing something more expendable than whatever building needs to

be constructed (generally workers harvesting resources can be temporarily diverted to the

construction task without a large economic impact). Failing that the player might choose

to build a new worker unit or wait until later when one of the previous conditions can be

fulfilled.

Selection Rule for goal: SELECT-WORKER-UNIT

1) If known idle worker exists, SELECT-IDLE-WORKER-UNIT
Else if suspected idle worker exists, SEARCH-IDLE-

WORKER-UNIT
Else if expendable worker exists, SELECT-EXPENDABLE-

WORKER-UNIT
Else if enough funds and time and no worker in queue,

BUILD-NEW-WORKER
2) If no worker selected, goto 1 after interval
3) Return goal accomplished

Method for goal: SELECT-IDLE-WORKER-UNIT



1) Remember last worker used for other finite tasks
2) Check location and status if it is available to build
3) If available, click on unit and return goal accomplished
4) Return goal failed

Method for goal: SEARCH-IDLE-WORKER-UNIT

1) Accomplish goal: MOVE-TO-DESTINATION-SCREEN to
some map section that has player units, prioritize near build
area

2) Scan for idle workers
3) If found, click and return goal accomplished
4) If x time passed, return goal failed
5) Goto 1

Method for goal: SELECT-EXPENDABLE-WORKER-UNIT

1) Accomplish goal: MOVE-TO-DESTINATION-SCREEN to
some map section that has expendable worker units,
prioritize near build area

2) Click on worker unit
3) Return goal accomplished

Method for goal: BUILD-NEW-WORKER

1) Accomplish goal: MOVE-TO-DESTINATION-SCREEN to
worker production facility

2) Move cursor to facility
3) Click facility to select
4) Accomplish goal: SELECT-BUILD-WORKER-FROM-

OPTIONS
5) Return goal accomplished

BUILD-NEW-WORKER is straightforward. SELECT-EXPENDABLE-

WORKER-UNIT is also straightforward, assuming that the player has a set of workers

in mind as expendable when he chooses to subvert one of them to this construction task.

This leaves the SEARCH-IDLE-WORKER and SELECT-IDLE-WORKER-UNIT.

Immediately they jump out because they involve an odd return goal failed possibility.

Attempting to write pseudocode without goal failed would lead us to methods that either

return falsely reporting success or loop. This is because the player may think there is an

idle unit where this is none, or may be searching for just the possibility of a random unit.



In this pseudocode, if the player cannot find the idle worker he suspected existed in

SELECT-IDLE-WORKER-UNIT, he returns to the the SELECT-WORKER-UNIT and

continues where he left off. If the player is searching for a potential idle worker unit and

cannot find one in SEARCH-IDLE-WORKER-UNIT, the player will give up after some

time.

The GOMS pseudocode reveals the possibility that the player might end up

wasting time pursuing a fruitless search. When armies are clashing and the objective is

to destroy the enemy, a "Where's Waldo?" gameplay mechanic is distracting and

detrimental to the primary focus of the game as undesirable complexity. The visual scan

for idle workers may be easy in some games with few units, but as the unit count

increases, unit size decreases, or visual distinctness decreases, it takes longer to scan the

a screen full of units. Additionally it becomes more likely the player will overlook an

existing idle worker. Eventually, one design team added an interface button that notified

players of idle workers and allowed players to select them by clicking that button. This

simple interface addition increased efficiency and negated the need for that mental recall

of possible idle workers, which can be a fairly large time-sink in comparison to the rest

of the operations involved in this CONSTRUCT-<BUILDING-TYPE> method, and its

widespread incorporation across games with building units points to the desire for

minimizing unnecessary complexity. It is unknown what prompted the design team to

implement it, but because players can abandon the SEARCH-IDLE-WORKER-UNIT

method at any time and successfully obtain a worker to build with, it is not clearly a

problem that needs to be addressed when playing the game. Applying this GOMS-based

approach reveals the distinct possibility for improvement, however. While the idle

worker feature is a tiny part of a massive, complex game, its addition has a dramatic

effect on the flow of the game by ensuring the small task of selecting a worker is actually

small and simple.



7 Further Research

With the ability to measure complexity, it is feasible that a player's skill could

also be measured. Being able to match players to games that meet their skill level would

make consumers more comfortable trying out games outside their comfort zone. On a

more specific note, it might also let games actively identify player skill levels in a manner

consistent with the game. For instance a shooter game might throw the player into a

training course, and the player's complexity score on that level could be the basis for the

initial difficulty setting for the rest of the game. Of course there are a number of different

skills that players might need for a given game, and one generic skill level probably

would not be sufficient across the range of game mechanics. But if a few core skill types

can be identified, it would go a long way in rating games meaningfully. Strategic

thinking, micromanagement skills, problem solving skills, and dexterity all come to mind

as possibly separate example skill categories.

Even given a player's skill cap, the players desire comes into play. While a player

might be able to perform at one level, external factors can place him below that cap. A

player who is simultaneously gaming and chatting or who is tired from too little sleep

would easily fall into this situation. It is a small step to imagine that a game with

numerous subsystems would have the same effect within the game. A player might be

trying to accomplish one goal in game, but the presence of side goals could hinder his

focus. To that end there is likely cognitive science theory that is applicable to games in

the way the mind divides its attention between several events. Researching its effect on

games could give designers guidelines on how many individual systems the player should

be asked to optimally handle at once. The Rule of Seven (Goetz, 2006) is a common

rule-of-thumb used to determine how much responsibility the mind can juggle, but it is

not obvious how to apply it to games where subsystems themselves branch into smaller

subsystems.



Another research area involves an aggressive approach to mitigating complexity

while maintaining depth. Using this model, hot spots of complexity can be identified and

then attacked through the use of better interfaces or automated functionality. In the

optimal case, reduction of complexity can open the door to new types of game. Looking

at the genre of Real-Time Strategy games, the ease of directing units to a destination is

only enabled through the advent of pathfinding algorithms. Without pathfinding, unit

control would be a nightmare as map size and unit counts grow. Managing a troop of

units around obstacles would involve overwhelming manual control with a click count

exponential with respect to the number of obstacles and again in the number of units.

Automating the pathfinding aspect allows the player to have as little or as much control

over his units as he needs, since he can also choose to navigate a more roundabout path if

he so desires for strategic purposes. Following this approach, heavily complex systems

can be made accessible to players with a lower skill cap yet maintain the options for the

fine control more skilled player desires. Again this is highly relevant since it potentially

unlocks a wider market while maintaining the market it already has.

One last area to pursue is investigating the relation between an accommodating

complexity range and critical acclaim and/or commercial success. People searching for a

game to buy will often consult reviews to determine whether or a not a game is

appropriate for them. The reviewers will often summarize their reviews with the pros

and cons, which often includes whether a game has poorly done mechanics, tedious

sections, too easy/too hard, or any other reasons the critic might have found the game

difficult to enjoy. A lot of these reasons seem to appeal to some idea that the complexity

of the game was not finely tuned enough to provide a smooth experience for the reviewer.

Of course reviewers also have their own skill levels, and a single review will reflect that.

A complexity evaluation tool will allow designers to label the difficulty of the game they

designed, which reviewers will take into account. Additionally successfully tuning

complexity to a wider audience should correspondingly increase average review score as

a wider number of reviewers will fit within the target skill zone. In 2007, the five of the

top ten best selling games also placed in the top ten list of games with the highest



Metacritic scores for the Xbox 360 (Metacritic, 2008). Moreover, all of the top ten game

ranked by Metacritic score sold over two million units, where over one million units is

generally the baseline for success in the gaming industry. Metacritic scores are

calculated as an average score over many reviews, and it follows the idea that games

appealing to a wide variety of skill levels have a better chance at yielding higher average

review scores.



8 Conclusion

Essentially this quantitative model for complexity in games is another tool

designers can use to ensure higher quality in their games. Having seen GOMS applied

successfully to videogames to predict actions in previous research, this model takes the

next step in adapting usability models for use with games by quantifying the level of

complexity shouldered by the player. Moreover it addresses the issues of complexity as

an enjoyable aspect of gaming versus the efficiency focus of software usability.

Unfortunately this paper leaves out a lot in the way of deeper analysis with

respect to cognitive science theory outside the scope of this research and presents only

the basic approach. It holds up well analyzing smaller games like Tetris, but moving

forward to large games means a loss of granularity as potential complexity skyrockets as

a result of interactions between systems. Game usability experts will have to fill in

assumptions such that comparisons are still valid across modules or games. Still, sticking

certain systems into black boxes remains useful as comparisons to other games or

modules containing the same black boxes stay consistent. And even a tiny subsystem in a

highly complex game can dramatically impact Flow, but the idle worker case study

shows how a GOMS analysis can reveal where and why this occurs.

Use of this model will point out problematic spots that designers can focus on.

Once the problem is identified, the designer can modify complexity through algorithms,

AI techniques, or simply adding or removing mechanics to reach the desired complexity

level. From a business perspective, these models provide additional backing behind

designers' claims of market appeal. Investors could then compare such profiles against

previously successful game profiles.

This initial approach to evaluating complexity successfully delivers when

covering simpler games like Tetris, and it shows promise in handling larger scenarios.

The final word on the effectiveness of this model would be achieved through a thorough



profiling of a number of successful and unsuccessful games. Achieving a positive

correlation between complexity and audiences would mean that designers can be assured

of one more measure of control over the success of their games and go a long way in

maturing the industry as a whole.
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Appendix A: Fitts' Law

Fitts' Law is an equation used to describe pointing. The parameters of interest are:

a. The time to move to target
b. The movement distance from the starting position to the target center
c. Target width

The equation itself is the following:

T=a+blog2 ( D/W+ 1)

where

* T is the average time to complete the movement
* a and b are constants determined experimentally based on the pointing device
* D is the distance from the starting point to the center of the target area
* W is the width of the target area

The distance is often thought of as the amplitude of the movement, and the width of the
target area as the allowable error. Inspecting the equation there is an accuracy-speed
trade off such that smaller targets or more distance targets require more time to acquire
(Gokturk, 2008).



Appendix B: KLM Standard Operators

The following are standard operators and estimated times for each operator when using
the Keystroke Level Model (KLM) taken from Kieras' paper (1993) on using KLM to
estimate execution time.

K - Keystroke (.12 - 1.2 seconds; .28 recommended for most users). This operator is
pressing a key or a button on the keyboard. Pressing the SHIFT or CONTROL key
counts as a separate keystroke. Different experience levels have different times for the K
operator.

Expert typist (90 wpm): .12 sec
Average skilled typist (55 wpm): .20 sec
Average nonsecretarial typist (40 wpm): .28 sec
Worst typist (unfamiliar with keyboard): 1.2 sec

T(n) - Type a sequence of n characters on a keyboard (n x K sec). This operator is
simply a shorthand for a series of K operators, and would normally be used only when
the user is typing a string of characters that is a single "chunk," such as a filename.

P - Point with mouse to a target on the display (1.1 sec). This operator represents the
action of moving the mouse to point the cursor to a desired place on the screen. The
actual time required can be determined from Fitts' law. For typical situations, it ranges
from .8 to 1.5 sec, with an average of 1.1 sec. If great accuracy is not required, or the
movement distances or target sizes are not unusual, this average can be used instead of
more precise times.

B - Press or release mouse button (.1 sec). This is a highly practiced, very rapid
movement. Figure .1 sec for pushing the button down or letting it up.

BB - Click mouse button (.2 sec). Pushing and releasing the mouse button rapidly, as in
a selection click, counts as two B operators, for a total of .2 sec.

H - Home hands to keyboard or mouse (.4 sec). Since the targets are pretty large, and
the movement well practiced, moving the hand between keyboard and mouse, and vice-
versa, is relatively fast.

M - Mental act of routine thinking or perception (.6 - 1.35 sec; use 1.2 sec). Of
course, how long it takes to perform a mental act depends on what cognitive processes
are involved, and is highly variable from situation to situation or person to person. This
operator is based on the fact that when reasonably experienced users are engaged in
routine operation of a computer, there are pauses in the stream of actions that are about a
second long and that are associated with routine acts such as remembering a filename or
finding something on the screen. The M operator is intended to represent this routine



thinking, not complex, lengthy, problem-solving, racking the brain, or creative
meditations. In a variety of routine computer usage tasks such as word processing and
spreadsheet usage, these routine pauses are fairly uniform in length, justifying the
simplifying assumption that all Ms take the same amount of time, around one sec.


