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Abstract

The complexity of many dynamical phenomena precludes the use of linear models
for which exact analytic techniques are available. However, inference on standard non-
linear models quickly becomes intractable. In some cases, Markov switching processes,
with switches between a set of simpler models, are employed to describe the observed
dynamics. Such models typically rely on pre-specifying the number of Markov modes.
In this thesis, we instead take a Bayesian nonparametric approach in defining a prior on
the model parameters that allows for flexibility in the complexity of the learned model
and for development of efficient inference algorithms.

We start by considering dynamical phenomena that can be well-modeled as a hidden
discrete Markov process, but in which there is uncertainty about the cardinality of the
state space. The standard finite state hidden Markov model (HMM) has been widely
applied in speech recognition, digital communications, and bioinformatics, amongst
other fields. Through the use of the hierarchical Dirichlet process (HDP), one can
examine an HMM with an unbounded number of possible states. We revisit this HDP-
HMM and develop a generalization of the model, the sticky HDP-HMM, that allows
more robust learning of smoothly varying state dynamics through a learned bias to-
wards self-transitions. We show that this sticky HDP-HMM not only better segments
data according to the underlying state sequence, but also improves the predictive per-
formance of the learned model. Additionally, the sticky HDP-HMM enables learning
more complex, multimodal emission distributions. We demonstrate the utility of the
sticky HDP-HMM on the NIST speaker diarization database, segmenting audio files
into speaker labels while simultaneously identifying the number of speakers present.

Although the HDP-HMM and its sticky extension are very flexible time series mod-
els, they make a strong Markovian assumption that observations are conditionally inde-
pendent given the discrete HMM state. This assumption is often insufficient for captur-
ing the temporal dependencies of the observations in real data. To address this issue,
we develop extensions of the sticky HDP-HMM for learning two classes of switching
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dynamical processes: the switching linear dynamical system (SLDS) and the switching
vector autoregressive (SVAR) process. These conditionally linear dynamical models can
describe a wide range of complex dynamical phenomena from the stochastic volatility
of financial time series to the dance of honey bees, two examples we use to show the
power and flexibility of our Bayesian nonparametric approach. For all of the presented
models, we develop efficient Gibbs sampling algorithms employing a truncated approx-
imation to the HDP that allows incorporation of dynamic programming techniques,
greatly improving mixing rates.

In many applications, one would like to discover and model dynamical behaviors
which are shared among several related time series. By jointly modeling such sequences,
we may more robustly estimate representative dynamic models, and also uncover in-
teresting relationships among activities. In the latter part of this thesis, we consider
a Bayesian nonparametric approach to this problem by harnessing the beta process to
allow each time series to have infinitely many potential behaviors, while encouraging
sharing of behaviors amongst the time series. For this model, we develop an efficient
and exact Markov chain Monte Carlo (MCMC) inference algorithm. In particular, we
exploit the finite dynamical system induced by a fixed set of behaviors to efficiently
compute acceptance probabilities, and reversible jump birth and death proposals to
explore new behaviors. We present results on unsupervised segmentation of data from
the CMU motion capture database.

Thesis Supervisors: Alan S. Willsky
Professor of Electrical Engineering and Computer Science

John W. Fisher III
Principal Research Scientist
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override variable for table ¢ in restaurant j

number of customers at table ¢ in restaurant j

number of tables in restaurant j that considered dish &
number of tables in restaurant j that were served dish k&
number of currently occupied tables in restaurant j
number of unique dishes considered in the franchise
number of unique dishes served in the franchise

observation from the hidden Markov model at time ¢

state of the Markov chain at time ¢

number of transitions from state j to state k in z1.7
number of transitions from state j to state k in 2.7, not
counting the transitions z;_1 — 2z; or zz — 2411
self-transition parameter

self-transition proportion parameter /(o + k)

index of mixture component that generated observation y;
number of transitions from state j to state k in 2.7

number of transitions from state j to state k in 217, not
counting the transitions z;—; — 2 or 2z — 2441

number of currently instantiated mixture components for
state j’s emission distribution
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Symbol

Definition

HDP-SLDS and HDP-AR-HMM

VAR(r)
SLDS
A%
Ak

(k)
C
R
2t
Tt
Yt
by

L
d

n

Se

order r vector autoregressive process

switching linear dynamical system

it lag matrix of the k** VAR process

dynamic matrix for k** dynamical mode

For HDP-AR-HMM, contains lag matrices A§k)
process noise covariance of k" dynamical mode
measurement matrix

measurement noise covariance

dynamical mode index at time ¢
continuous-valued state vector at time ¢
observation vector at time ¢
pseudo-observation vector at time ¢

lag pseudo-observation vector at time ¢
dimension of the observations y;

dimension of the latent state x;

set of indices for which elements ag_«) of A% are distributed

with ARD parameter agc)
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Symbol Definition

IBP-AR-HMM

zt(i) dynamical mode index for object ¢ at time ¢

yt(i) observation vector for object 7 at time ¢

5 feature vector for object i containing elements f;z,

n](;c) transition variables for object 7

A dynamic matrix for k** dynamical mode

Yk process noise covariance of k* dynamical mode

75@ §th feature-constrained transition distribution for object 1
Normalizes 77](2 over indices determined by f;

K, total number of instantiated dynamical modes

Kj_’ number of instantiated dynamical modes not considering
those used by object 4

I feature vector for object i containing only the components of
J; shared by other objects

fus feature vector for object 4 containing the feature indices of f;
unique to object %

n dynamic parameters 8, = {Ag, X} for features unique to
object &’

yn transition variables 773(2 associated with features unique to

T4

object 4
number of features unique to object %



Chapter 1

Introduction

HE study of dynamical phenomena is pervasive in fields as diverse as bioinformat-

ics, econometrics, and systems and control. For example, within bioinformatics one
might be interested in modeling recombination hotspots and ancestral haplotypes. In
econometrics, classical time series include daily returns of a stock index, the exchange
rate of a currency, or interest rate. Systems and controls applications are plentiful,
ranging from robotics to modeling the dynamics of aircraft. Within these fields, there
has been an explosion of data of increasingly complex phenomena, resulting in a push
toward building more intricate time series models and developing efficient inference
techniques. The challenges these datasets pose result from a convergence of factors:
the size of the datasets demand examination of time series analysis techniques that
scale effectively with the dimensionality of the data while the complexity of the dy-
namics precludes the use of standard linear dynamical models for which exact inference
techniques exist.

A small subset of time series data, such as the trajectory of a ballistic missile, can
be described by a single dynamical model that is well-defined through knowledge of
the underlying physics of the object we are observing. Slightly more complicated time
series, like a maneuvering passenger aircraft, can be described as switching between a
small set of dynamical models. However, many of the dynamical processes we encounter
are too complex for such modeling schemes. For example, describing human motion
requires the formulation of a model that represents the large number of degrees of
freedom provided by the many human joints. High performance aircraft or the dance
of honey bees [129] are other examples of dynamical systems with patterned, but very
intricate motions. In this thesis, we consider methods for learning dynamical models for
time series with complex and uncertain behavior patterns. Specifically, we address how
Bayesian nonparametric methods can be used to provide a flexible and computationally
efficient structure for learning and inference of these complex systems.

Although the true underlying dynamics of the phenomena of interest are generally
nonlinear, they can often be effectively modeled as switches among a set of conditionally
linear dynamical modes. These switching linear dynamical systems (SLDS) have been
used to describe, for example, human motion [133, 140], financial time series [27, 94, 154],
and maneuvering targets [43,145]. Within the control community, these models are of-
ten referred to as Markov jump-linear systems (MJLS). The different linear dynamical
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modes account for changes the phenomena exhibit: a person changes from walking to
running; a country undergoes a recession, a central bank intervention, or some national
or global event; an aircraft makes an evasive maneuver. Classical methods for infer-
ring the latent state of the switching dynamical process rely on defining a fixed, finite
set of models with known parameterizations and switching behaviors. In the case of
identifying switching dynamical processes, the field consists of only a fixed number of
directions: either relying on knowledge of the number of dynamical regimes and es-
timating the model parameters from the data, or relying on simplifying assumptions
such as deterministic dynamics when the number of models is not known. Further de-
tails are discussed in Chapter 4. Alternatively, emerging methods within the field of
Bayesian nonparametrics, specifically hierarchical extensions of the Dirichlet process,
offer promise in learning stochastic switching dynamical models with the flexibility of
incorporating new dynamical modes as new behaviors are observed. Furthermore, by
casting the problem of system identification within the Bayesian framework, one can
leverage the extensive theory and methodologies of this field.

The clustering properties induced by the Dirichlet process prior have been exploited
in many standard mixture modeling applications. Hierarchical layerings of Dirichlet pro-
cesses, such as the hierarchical Dirichlet process (HDP) [162] and the nested Dirichlet
process [143], as well as generalizations of the Dirichlet process, such as the Pitman-Yor
process [72,137], have proven useful in a variety of fields including genomics [187], doc-
ument modeling [19], natural language processing [58,160], and computer vision [158].
Originally developed for static estimation problems, a burgeoning trend is realizing the
significant impact these methods can have on time series analysis, an impact which cuts
through the boundaries between machine learning, statistics, and dynamics and control.
One perspective of this analysis has been the development of Dirichlet process priors on
stochastically evolving distributions such as the dependent Dirichlet process [61,111]
and the kernel stick-breaking process [39]. For example, imagine one has recordings
of a unknown collection of neurons. Due to either changing recording conditions or
changes within the neuron itself, the waveforms observed may vary with time. In such
cases, one would like to allow the model parameters to stochastically evolve [48]. Other
uses of these processes include the study of how a response density changes with pre-
dictors [39], or time-varying document topic modeling [156] in which the popularity of
various topics within a given domain evolve with time.

The complex time series we analyze in this thesis, however, have more patterned
behaviors that we would like to capture through models that allow repeated returns to
a set of simpler dynamical models. In such cases, instead of examining stochastically
evolving distributions as in the dependent Dirichlet process, we would like to nonpara-
metrically model the stationary transition distributions of a discrete-time Markov pro-
cess. That is, we would like to allow for switching processes with an unbounded number
of possible Markov states. A first attempt at such a model is the hierarchical Dirich-
let process hidden Markov model (HDP-HMM) [11,162]. One of our contributions in
this thesis—the sticky HDP-HMM-—provides improved control over the number of hid-
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Figure 1.1. Two examples of data we examine in the thesis. (a) A speech signal from which we aim
to infer the number of speakers and a segmentation of the audio into speaker labels; (b) A honey bee in
the beehive, performing a set of three dances indicated by the arrows: turn right, turn left, and waggle.
In this scenario, our goal is to discover these dances and to estimate dynamical models to describe
them.

den Markov model modes inferred by better capturing the temporal mode persistence
present in many real datasets. As a motivating example for the sticky HDP-HMM,
consider the problem of speaker diarization [185], to which we return in Chapter 3.
Here, an audio recording is made of a meeting involving multiple human participants
and the problem is to segment the recording into time intervals associated with indi-
vidual speakers. See Fig. 1.1(a). Segmentation is to be accomplished without a priori
knowledge of the number of speakers involved in the meeting: moreover, one does not
assume a priori knowledge of the speech patterns of particular individuals. For this
application, we show that producing state-of-the-art diarizations using the HDP-HMM
requires the sticky extension to properly account for the fact that a person currently
speaking is likely to continue speaking.

Both the HDP-HMM and its sticky extension make a strong Markovian assumption
that observations are conditionally independent given the mode. Such an assumption is
inappropriate for many of the datasets we examine. For example, consider the problem
of segmenting the dance of a honey bee into the turn right, turn left, and waggle dances
depicted in Fig. 1.1(b) [129]. (See Chapter 4 for explanation.) In such a scenario, even
conditioned on the dance mode, the observations of the honey bee position are highly
correlated and thus the overall dance cannot be well approximated by a hidden Markov
model. Motivated by such applications, in this thesis we also examine a Bayesian non-
parametric approach for learning SLDS, thereby capturing a broader class of dynamical
phenomena exhibiting more complex temporal dependencies.

While the Dirichlet process targets inferring a small set of representative dynamical
modes, there is still a question about the dimensionality of the parametrization for
the conditionally linear dynamical models. In the presence of limited data, one would
like to reduce the number of parameters that must be estimated. Additionally, finding
the minimal such dimension still yielding a model adequately describing the observed
dynamics can provide insight into properties of the underlying dynamical phenomenon.
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Figure 1.2. Motion capture skeleton plots for six examples of jumping jacks, each from a different
motion capture movie. Skeleton rendering done by modifications to Neil Lawrence’s Matlab MoCap
toolbox [105].

To jointly address these issues, we propose a method of inducing sparsity in the temporal
dependency structure among variables.

In the problems discussed so far, we have assumed that we are interested in the
dynamics of a single time series. However, in many applications one is presented with
numerous realizations of related phenomena. One example we consider in Chapter 5 is
that of motion capture data depicting multiple people performing a set of related tasks.
In such cases, one would like to discover and model dynamical behaviors which are
shared among the multiple, related time series. For example, in the motion capture data
one might be interested in grouping all instances of jumping jacks from a collection of
videos, as displayed in Fig. 1.2. The benefits of such joint modeling are twofold: we may
more robustly estimate representative dynamic models in the presence of limited data,
and we may also uncover interesting relationships among the time series. Qur proposed
method relates the set of dynamical behaviors each object exhibits through utilization
of a beta process prior [67,165]. This specific choice of a Bayesian nonparametric prior
allows flexibility in the number of total and sequence-specific behaviors, and encourages
the time series to share similar subsets of the large set of possible behaviors.

B 1.1 Thesis Organization and Overview of Methods and Contributions

We now provide an overview of the contributions of each chapter, including method-
ologies and results, as well as an overview of the chapter structure. The introductory
paragraphs of each chapter provide more detailed outlines.

The overarching theme of the thesis is the proposal of methods for Bayesian nonpara-
metric learning of time series exhibiting complex dynamics that can be approximated
as switches among conditionally linear dynamical modes. For each of the Bayesian non-
parametric time series models that we present, we leverage the simple Markov struc-
ture and the induced conditionally linear dynamics to develop efficient inference tech-
niques. Throughout this thesis, we provide numerous demonstrations that our proposed
Bayesian nonparametric framework provides flexible and efficient methods for learning
simple representative models of dynamical phenomena from limited noisy observations.
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H 1.1.1 Chapter 2: Background

We begin by reviewing many of the statistical concepts that are utilized throughout
this thesis. The chapter starts by motivating the Bayesian, and more specifically the
Bayesian nonparametric, approach by presenting the de Finetti theorem. We then
describe exponential families of probability distributions and sufficient statistics. To-
gether, these concepts enable examination of prior distributions, namely conjugate prior
distributions, that lead to efficient inference techniques built upon in this thesis. We
present an analysis of a class of likelihood models and associated conjugate priors used
extensively in our models. The chapter then moves to discussing the graphical model
representation of joint probability distributions. We provide an introduction to graph-
ical models, with an emphasis on the directed chains and their associated inference
techniques that provide the basis for the models we consider and are fundamental to
our derivations. For the more general models we consider in this thesis, exact inference
is infeasible and we rely on the Markov chain Monte Carlo techniques outlined in this
chapter. We conclude the chapter with background material on the stochastic pro-
cesses we use in developing our Bayesian nonparametric models: the Dirichlet process,
its hierarchical extension, and the beta process.

B 1.1.2 Chapter 3: The Sticky HDP-HMM

Accounting for Temporal Mode Persistence

The existing Bayesian nonparametric approach to learning hidden Markov models
(HMMs)—the HDP-HMM ([162]—utilizes the hierarchical Dirichlet process (HDP) to
allow for an unbounded HMM mode space. However, as we thoroughly analyze in this
chapter, the HDP-HMM inadequately captures the temporal mode persistence present
in many real datasets such as the speaker diarization application described previously.
To address this issue, we augment the model with a bias towards self-transitions and
show that in our scenarios of interest this sticky HDP-HMM leads to both improved
segmentation performance as well as increased predictive power. Earlier papers have
also proposed self-transition parameters for HMMs with infinite mode spaces [11, 186],
but did not formulate general solutions that integrate fully with Bayesian nonparamet-
ric inference. One of the main contributions of this chapter is the derivation of an
exact Gibbs sampling technique that allows for a learned bias towards self-transitions
instead of relying on fixing this sticky parameter. As such, the model still allows for
fast-switching dynamics if they are present in the data.

Efficient Inference Leveraging Dynamic Programming

The direct assignment Gibbs sampler [162] developed for inference in the hierarchical
Dirichlet process was also proposed as the sampler for the HDP-HMM. This direct
assignment sampler marginalizes the HMM transition distributions and sequentially
samples the mode sequence. However, as we demonstrate in this chapter, sequential
sampling of a mode sequence with strong correlations leads to very slow mixing rates.
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This problem is exacerbated in the case of the sticky HDP-HMM in which the temporal
dependencies encoded in the prior are even stronger than in the HDP-HMM of Teh
et al. [162]. We instead consider a truncated approximation to the sticky HDP-HMM
and develop a sampler that harnesses efficient dynamic programming techniques to
block sample the HMM mode sequence. Specifically, we utilize a variant of the forward-
backward algorithm [139]. Such sampling techniques have been proposed for the finite
HMM [148], with analysis showing that blocked sampling requires more computation
time but leads to faster mixing rates than a direct sampler.

Learning Multimodal Emissions and Application to Speaker Diarization

Having developed the sticky HDP-HMM framework that accounts for temporal mode
persistence, one can examine extending the model to account for multimodal emission
distributions. Specifically, we consider Bayesian nonparametric learning of the emission
distributions by treating each as a mixture of Gaussians with a Dirichlet process prior.
The sticky HDP-HMM’s bias towards generating sequences of observations from the
same latent HMM mode allows the model to disambiguate the underlying emission
distribution. In contrast, a similar extension of the HDP-HMM of Teh et al. [162]
to allow multimodal emissions exhibits considerable uncertainty in the choice between
rapidly switching amongst HMM modes with single Gaussian emissions or creating
persistent HMM modes and associating multiple Gaussian emission components. As a
motivating example, we consider the problem of speaker diarization and demonstrate
that the sticky HDP-HMM provides state-of-the-art speaker diarizations. We show that
such performance relies on the augmented model’s ability to capture mode persistence
and multimodal emissions.

Chapter Outline

The chapter begins with a review of the HDP-HMM of Teh et al. [162], as well as
a demonstration that this model inadequately captures the temporal mode persistence
present in many real datasets. We then describe our proposed sticky HDP-HMM frame-
work and how one may place a prior on this self-transition bias parameter and infer it
from the data. Both the direct assignment sampler of Teh et al. [162] and the blocked
sampler we develop utilizing the truncated sticky HDP-HMM are subsequently out-
lined. The second half of the chapter focuses on extending the sticky HDP-HMM to
allow for Bayesian nonparametric learning of multimodal emission distributions. We
conclude with an analysis of the NIST speaker diarization database [126].

B 1.1.3 Chapter 4: Bayesian Nonparametric Learning of SLDS
Extending the Sticky HDP-HMM to Models with Conditionally Linear Dynamics

The fourth chapter extends the sticky HDP-HMM model of Chapter 3 to scenarios in
which a Markov switching model with conditionally linear dynamics provides a better
approximation to the observed dynamics than the HMM’s assumption of conditionally
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independent observations. We consider two such models: the switching linear dynamical
system (SLDS) and switching vector autoregressive (VAR) process and refer to our
Bayesian nonparametric versions of these models as the HDP-SLDS and HDP-AR-
HMM, respectively. The basic formulation we present uses a conjugate matrix-normal
inverse-Wishart (MNIW) [183] prior on the set of dynamic parameters assuming a fixed
model order (i.e., dimension of the SLDS continuous state vector or the autoregressive
order.) For the HDP-SLDS and HDP-AR-HMM, we examine a set of synthetic datasets
demonstrating our ability to learn switching dynamical models with varying numbers
of dynamical regimes. We also examine our ability to segment a sequence of honey bee
dances (see Fig. 1.1(b)) and to detect changes in volatility of the IBOVESPA stock
index, showing performance competitive with alternative methods and consistent with
domain expert analysis.

Sparsity Inducing Priors for Model Order Identification

A more complete system identification of the switching dynamical models that we con-
sider would also involve learning the model order. Although our HDP-SLDS and HDP-
AR-HMM formulations assume that, respectively, the underlying state dimension or
autoregressive order are fixed, we propose using automatic relevance determination
(ARD) [9, 112, 124] as a sparsity-inducing prior in place of the conjugate MNIW prior.
We specifically encourage mode-specific sparsity in the dynamic parameters in a struc-
tured manner that leads to insight into components of the fixed-dimension state vector
or fixed set of autoregressive components that do not contribute to the underlying dy-
namics of the observed phenomenon. In addition to such insights, the sparsity-inducing
prior leads to improved parameter estimation in the presence of limited data. We apply
this model to a sequence of the honey bee dances, and demonstrate that the turning
dances are well-modeled by a single autoregressive component while the waggle dance
relies on two components.

Efficient Inference Leveraging Kalman Filtering

Just as we harnessed dynamic programming techniques in the truncated sticky HDP-
HMM blocked Gibbs sampler, for the HDP-SLDS we can leverage the conditionally
linear dynamics induced by a fixed mode sequence and incorporate efficient Kalman
filter computations to block-sample the latent state sequence. Such block sampling
of the state sequence was proposed for the finite SLDS in [25]. A later paper [26]
analyzed the benefits of an alternative sampler that sequentially samples the dynamical
mode sequence, analytically marginalizing the state sequence. We propose a sampler
that iterates between block sampling of the mode and state sequences, occasionally
interleaving a step of sequentially sampling the mode sequence.
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Chapter Outline

Chapter 4 begins with a description of our proposed HDP-SLDS and HDP-AR-HMM
dynamical models. We then describe two possible priors for the dynamic parameters:
the MNIW prior and the sparsity-inducing ARD prior. We outline our Gibbs sampling
algorithm for both the HDP-SLDS and HDP-AR-HMM under these two choices of
priors. Simulations on synthetic data and a sequence of honey bee dances demonstrate
that the developed HDP-SLDS and HDP-AR-HMM are able to infer both the number of
dynamical modes and the underlying model order. We conclude by presenting variants
of these models that are commonly found in application areas such as econometrics and
target tracking. For the latter application, an alternative sampler harnessing the specific
structure of the model is also presented. We present results for the model variants on
the IBOVESPA stock index, and synthetic maneuvering target tracking data.

B 1.1.4 Chapter 5: Sharing Features among Dynamical Systems with Beta
Processes

Transferring Knowledge Among Multiple Related Time Series

The final main chapter of the thesis focuses on methods of transferring knowledge
between multiple related time series. We assume that each of the time series can be
modeled according to the switching dynamical processes of Chapters 3 and 4. We then
envision a large library of behaviors, with each time series exhibiting a subset of these
behaviors. Specifically, we examine the beta process [67,165] as a method of tying
together the set of behaviors associated with the time series. This process encourages
sharing in the chosen behaviors while allowing time-series-specific variability.

One could imagine an alternative architecture based upon the hierarchical Dirichlet
process, similar to the model considered in Chapter 4. Specifically, consider a set
of HDP-SLDS’s tied together by sharing the same set of transition distributions and
dynamic parameters. Such a model would assume that each time series was performing
exactly the same set of behaviors, and switching between them in the same manner.
In addition to allowing each time series to choose a unique subset of the full set of
behaviors, our proposed model using the beta process prior also enables multiple time
series to select the same set of behaviors, but to switch between them in a unique
manner. To test our proposed model, we analyze a set of exercise routine videos from
the Carnegie Melon University (CMU) motion capture database [169] and demonstrate
that we are indeed able to identify common motion behaviors. A benefit of our Bayesian
nonparametric approach is that we are also able to discover motions unique to a given
video.

Birth-Death RJ-MCMC for Non-Conjugate IBP Models

The model we introduce does not allow for conjugate analysis, and previous samplers
for the non-conjugate case either relied on approximations [59] or proposals from the
prior [117] that result in low acceptance rates in high-dimensional applications. In



Sec. 1.1. Thesis Organization and Overview of Methods and Contributions 31

contrast, we develop a Markov chain Monte Carlo (MCMC) sampler that uses reversible
jump [60] birth and death proposals to explore the incorporation of new behaviors, and
exploits the finite dynamical system induced by a fixed set of behaviors to efficiently
compute acceptance probabilities.

Chapter Outline

We start by describing how the beta process may be used as a prior for relating the
switching dynamical processes of Chapters 3 and 4. Having established the generative
model, we describe an MCMC inference algorithm that allows for efficient exploration
of the set of possible behaviors. We conclude the chapter with empirical results on a
set of synthetic data, and on data from the CMU motion capture database.

M 1.1.5 Chapter 6: Contributions and Recommendations

We conclude by surveying the contributions of this thesis, and highlights of directions
for future research. Each chapter concludes with a lengthy discussion of areas of future
research. In this chapter we simply abstract and jointly examine common themes
appearing throughout the thesis.

H 1.1.6 Appendices

For readability and clarity of the main concepts of the thesis, the majority of derivations
are placed in a series of appendices appearing at the end of the thesis. These derivations
focus on determining the conditional distributions and message passing schemes used
in our MCMC samplers, and rely heavily upon the background material presented in
Chapter 2.
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CHAPTER 1.

INTRODUCTION




Chapter 2

Background

N this background chapter, we review the statistical methodologies upon which our

contributions are based. We begin in Sec. 2.1 by motivating the Bayesian framework
through a discussion of exchangeability and de Finetti’s theorem, which can be viewed
as a justification for the use of prior distributions. We then describe exponential families
of probability distributions and sufficient statistics in Sec. 2.2 and Sec. 2.3, respectively.
Together, these concepts enable examination of prior distributions, namely conjugate
prior distributions, that lead to efficient inference techniques, as discussed in Sec. 2.4.

In Sec. 2.5, we turn to discussing the graphical model representation of joint prob-
ability distributions that allows for the development of efficient inference techniques.
We first provide an introduction to graphical models, with an emphasis on the directed
chains and their associated inference techniques that provide the basis for the mod-
els we consider and are fundamental to our derivations. In Sec. 2.6 and Sec. 2.7, we
specifically consider two such simple directed chain graphical models that are the basic
building blocks for the more complex models we consider in this thesis: the hidden
Markov model and the state space model. For each of these models, we provide an
interpretation of their associated classical inference techniques in terms of the general
graphical model framework described in Sec. 2.5.

For the models we consider in this thesis, exact inference is infeasible and we rely on
Markov chain Monte Carlo techniques that are outlined in Sec. 2.8. Finally, we conclude
in Sec. 2.9 by providing background material on the stochastic processes we use in
developing our Bayesian nonparametric models: the Dirichlet process, its hierarchical
extension, and the beta process.

B 2.1 The Bayesian Framework

In this section we provide a brief motivation for the Bayesian approach and establish
some concepts that reappear throughout this thesis. The overarching goal of the thesis
is then to examine the flexibility a Bayesian approach can provide in the case of learning
dynamical systems.
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B 2.1.1 Modeling via Exchangeability

The concept of exchangeability is central to many statistical approaches, and may be
viewed as critical in motivating Bayesian statistics. Let us assume that we are aggregat-
ing data in an attempt to make predictions about future values of the random process
we are observing. If we were to make the strong assumption of the data being indepen-
dent, we would treat every new data point individually without using past observations
to predict future observations since:

P> yn) = [ [ p(ve) ‘ (2.1)
) =1

implies that

p(yn+1a ey Ym I Yty .- 7yn) = p(yn—l-l; s 7ym)‘ (22)

A weaker assumption that often better describes the data we encounter is that of
exchangeability, which states that the order we encounter the data is inconsequential.

Definition 2.1.1. A sequence of random variables y1,y2,...,Yn is said to be finitely
exchangeable if
D
Y192, -« Yn = Yr(1)s Yn(2)s - - - » Ym(n) (23)
for every permutation @ on {1,...,n}. Here, we use the notation 2 to mean equality

in distribution.

From this definition, we see that independence implies exchangeability, but not vice
versa. We are often in settings where data is continually accumulated, or in which
fixing an upper bound n is challenging. We would thus like to formalize a notion of
exchangeability for infinite sequences.

Definition 2.1.2. A sequence y1,ya, ... s said to infinitely exchangeable if every finite
subsequence is finite exchangeable [15].

As is demonstrated in Bernardo and Smith [15], not every finitely exchangeable
sequence can be embedded in an infinitely exchangeable sequence.

Example 2.1.1. As an ezample of infinite exchangeability, consider an urn with b black
balls and w white balls. Draw a ball at random from the urn and replace that ball along
with n balls of the same color. Continue repeating this procedure infinitely many times.
Such an urn is typically referred to as a Pélya urn. Let y; = 1 if the i draw from the
urn produces & black ball, and y; = 0 otherwise. Then,

(1,1,0,1) = b b+n w b+ 2n
P ) Wb fwrnbtw+2nb+w+3n
b w b+n b+ 2n

- btwbt+w+nbt+tw+2ndb+w+3n
=p(1,0,1,1).
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The denominator is the same for all possible sequences since n balls are added at every
draw regardless of the color of the drawn ball. The sequence of terms in the numerator
simply depends upon how many previous times a black or white ball was drawn, not the
specific order. Using this argument, one can prove that every finite subsequence of data
generated from this urn procedure are exchangeable under this model. However, we can
clearly see that the data are not independent, nor even a Markov process.

Exchangeability has simplifying implications for inference since we can simply ignore
the order in which the data arrive. Sometimes, however, exchangeability is too strong of
an assumption. Relaxations include considering partially exchangeable data where some
auxiliary information partitions the data into exchangeable sets. For example, consider
a person flipping two biased coins, one on even throws and the other on odd throws. The
data are exchangeable within the set of odd or even tosses if these labels are provided.
There are many possible extensions and variations on the standard exchangeability
model; however, the end goal is to group data into exchangeable, and thus relatively
simple, blocks for which inference is more tractable.

A very important result arising from the assumption of exchangeable data is what
is typically referred to as de Finetti’s theorem. This theorem states that an infinite
sequence of random variables yi1,ys2,... is exchangeable if and only if there exists a
random probability measure v with respect to which y1,y2,... are conditionally i.i.d.
with distribution v. Furthermore, this random measure can be viewed as the limit-
ing empirical measure. De Finetti actually proved this in the case of binary random
variables de Finetti [33], with the more general extension to arbitrary real-valued ex-
changeable sequences made by Hewitt and Savage [66] and Ryll-Nardzewski [146].

Theorem 2.1.1. If y1,y2,... @5 an infinitely exchangeable sequence of binary random
variables with probability measure P, then there exists a distribution function Q on [0,1]
such that for all n

1 n
21 ym) = /O ] 0¥ (1 - 9)¥dQ), (2.4)
i=1

where p(y1,..-,Yn) is the joint probability mass function defined by measure P. Fur-
thermore, Q is the distribution function of the limiting empirical frequency:

PP
= T}l_)r%oﬁ;yh 6~ Q. (2.5)

Proof. Originally presented in [33]. See Bernardo and Smith [15] and Heath and Sud-
derth [65] for a proof in more modern terms. [

!The notation x ~ F indicates that the random variable z is drawn from a distribution F. We use
bar notation x | F ~ F to specify conditioned upon random variables, such as a random distribution.
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This theorem can be interpreted as saying that if y1,ys, ... is an infinitely exchange-
able binary sequence, then it is as if the elements of this sequence are independent
Bernoulli random variables with probability of success 6, where 6 has distribution Q.
Furthermore, one can interpret ) as our belief about the limiting empirical frequency
of ones in the data.

From de Finetti’s theorem, we see the motivation for the Bayesian perspective of the
parameter yielding the observations i.i.d. as a random quantity with some distribution
Q, rather than as a fixed and unknown quantity. We now state the more general form
of the de Finetti theorem.

Theorem 2.1.2. If y1,y2,... is an infinitely exchangeable sequence of real-valued ran-
dom wvariables with probabilily measure P, then there exists a probability measure
defined on the space of all probability measures P(R) on R such that?

P € nmmedn = [ T[VA@) (26)
=1

Furthermore, p is the law of a probability measure v, where v is almost surely defined
by the limiting empirical measure. Namely,

P
v(B)= lim — Ip(u:), v~ p. (2.7)
=1

where B ranges over all elements of the Borel o-algebra. The measure u is often referred
to as the de Finetti measure.

Proof. See Hewitt and Savage [66] and Ryll-Nardzewski [146]. '

From a generative perspective, the theorem states that if yq,y2,... are infinitely
exchangeable, then there exists a measure x4 on measures such that:

Vep

iid. (2.8)
i |v ~" b

When we take the sets A; to be (—o0,y;], we obtain a form of the above theorem in
terms of the random distribution functions F' associated with the random measures v.

Example 2.1.2. As an informal presentation to provide some intuition for this the-
orem, let us return to the case of binary random variables. Assume the phenomenon
we are observing are realizations from a game, though we do not know the game being
played. Instead, we are simply observers of the outcomes of the game. For example,

*Here, we use V as the variable of integration when integrating with respect to the probability
measure p. We then use v as the random measure with law p.
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assume the observed phenomenon are flips of a coin with probability p of heads. The
limiting empirical frequency of heads (i.e., 1’s) in infinitely many draws will be p almost
surely. The de Finetti theorem then implies that the de Finetti measure i is degenerate
on

v =pd + (1 —p)do

because every such infinite sequence of flips of that coin results in the same empirical
measure. See Fig. 2.1(a). Here, we use &; to be a measure concentrated at i.

On the other hand, assume we are observing draws from a Pdlya urn starting with
b black balls and w white balls, adding n balls per round, as in Example 2.1.1. From
this example, we know that the data are erchangeable. We observe an infinite binary
sequence which gives us the following empirical measure:

vy =016 + (1 - 91)50.

We are provided with infinitely many such sequences from an urn in the (b,w) start-
ing configuration (i.e., infinitely many realizations from this game.) For each infinite
sequence, we build the empirical measure

V¢=9¢51+(1—92')50 1=1,2,....

De Finetti tells us that these v; are instantiations of the random measure v. In essence,
we can empirically build up the de Finetli measure y by examining the infinite collection
of empirical measures. Let us instead examine the distribution @ on 6. One can show
that Q is a Beta(b/n,w/n) distribution (see Sec. 2.4.2), as empirically demonstrated in
Fig. 2.1(b), implying that the generative process is

6 ~ Beta(b/n,w/n)
yi | 8% Ben(o),
where Ber denotes the Bernoulli distribution. This process is referred to as a Beta-
Bernoulli process. There are many other such games for generating infinitely exchange-
able binary sequences that we could be observing, each corresponding to a different de
Finetti measure. As the observer of these sequences, de Finetti simply tells us that
there exists a random probability measure which yields the data i.i.d.; we would need
to observe infinitely many sequences to actually reconstruct the distribution on this
probability measure associated with the underlying game.

We have seen in Theorem 2.1.1 that for infinitely exchangeable binary sequences,
there exists a random probability measure v that concentrates on {0,1} implying that
this measure can be uniquely described by a single parameter #. One can straight-
forwardly extend the argument in Theorem 2.1.1 to infinitely exchangeable sequences
taking values in {1,..., K}; here, the random measure yielding the data i.i.d. concen-
trates on {1,..., K} and is thus uniquely defined by a (K — 1)-dimensional parameter
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Figure 2.1. (a) Histogram of the empirical estimates of the probability of heads, p, in the coin-
flipping experiment from 10,000 trials. Each trial’s estimate is based on 100,000 observations. The red
line indicates the true probability of heads. (b) Histogram of the empirical estimates of the parameter
 that yields the exchangeable observations drawn from a Pélya urn i.i.d.. The histogram is the result
of 10,000 trials from an urn starting with 10 black balls and 6 white balls, and replacing 2 balls at every
draw from the urn. Each trial’s estimate of € is produced based on 1,000 observations. The red line
indicates a Beta(10/2,6/2) distribution.

6 = {f,...,0k_1} [15]. Analogous to the examples presented in Example 2.1.2, pos-
sible underlying games include rolling a K-sided weighted die or drawing from an urn
with K different colored balls. When moving to infinitely exchangeable sequences tak-
ing values in the reals, the random probability measures v can be arbitrarily complex
and are, in general, defined by infinitely many parameters (i.e., v is a generic element of
P(R).) Some special cases exist in which the parametrization remains finite. For exam-
ple, if v is almost surely a Gaussian distribution, the parametrization solely consists of
a mean and variance. The more general case in which # may be an infinite-dimensional
parameter motivates the development of Bayesian nonparametric methods, some of
which we explore in this thesis. For example, the Dirichlet process of Sec 2.9.1 defines
a distribution on probability measures that concentrate at a countably infinite number
of elements of the reals (or the more general spaces we consider in Sec. 2.9.1.)

When we limit ourselves to the more restrictive class of finite-dimensional 8 (e.g.,
Bernoulli, multinomial, Gaussian random variables), we can invoke the following corol-
laries.

Corollary 2.1.1. Assuming the required densilies exist, and assuming the conditions
of Theorem 2.1.2 hold, then there exists a distribution function Q) such that the joint
density of y1,...,yn is of the form

pon,- ) = [ T]plws |9)dQ(), (29
1 Y /;il;llpy

with p(- | 9) representing the density function corresponding to the finite-dimensional
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parameter ¥ € O.

From the above corollary, it is simple to see how the de Finetti theorem motivates
the concept of a prior distribution Q(-) and a likelihood function p(y | -).

Corollary 2.1.2. Given that the conditions of Corollary 2.1.1 hold, then the predictive
density is given by

p(ym-i—l?"‘vyn|y17'-~aym):/e H p(yl |19)dQ(19 |y13--'aym)7 (210)
i=m+1

where

T p(y: | 6)dQ(6)
dQ6 | y1,- - ym) = f@H?l;lp(yi [5d00) (2.11)

Proof. The result follows directly from employing

PY1, - Yn)

P\Ym+1,--3Yn [ Y1,---5 Y = \»
( mr ’ ’nl m) p(yla"-7ym)

along with Corollary 2.1.1. [ |

From the form of the predictive density in Eq. (2.10), we see that our view of
the existence of an underlying random parameter 6 yielding the data i.i.d. has not
changed. Instead, we have simply updated our prior belief Q(6) into a posterior belief
Q0 | y1,-..,Yym) through an application of Bayes rule:

C pwl0p6)  py]6)p(0)
POIY) = o T op@)ds ~  ply)

Here, we have written the rule in its simplest form assuming that a density on 8 exists
in addition to the conditional density on y. Although one can view the computation
of the predictive distribution in Eq. (2.10) as the objective in Bayesian statistics, we
will often limit our discussion to the process of forming the posterior distribution in
Eq. (2.11) from the prior by incorporating observations, since this is a fundamental step
in examining the predictive distribution.

From a practical perspective, we never have an infinite sequence of observations
from which to characterize our prior distribution. Furthermore, even if we had such a
quantity, the probability measure that the de Finetti theorem would suggest as yielding
the data ii.d. might be arbitrarily complex. Thus, we are left with two competing
pragmatic choices in defining our prior:

(2.12)

(1) Tractable inference,

(2) Modeling flexibility.
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The issue of tractable inference often motivates the use of conjugate priors, as discussed
in Sec. 2.4. The goal of flexibility in our models leads to the study of Bayesian non-
parametric methods. A brief introduction to some specific classes of nonparametric
methods that maintain computational tractability is presented in Sec. 2.9.1-Sec. 2.9.4.
Another key aspect of the Bayesian framework we have established is in charac-
terizing a model, or likelihood distribution, p(y | @) for how our data are generated
conditioned a parameter value §. This choice, too, is often motivated by practical con-
siderations that are typically coupled with those of choosing a prior distribution. We
do not develop a full analysis of model selection in this thesis, but begin the explo-
ration in Sec. 2.2. As practitioners, we do not actually know the underlying generative
process, but we can use a combination of our insight on the process (e.g., we know we
are observing heights from a given population and heights tend to be well-modeled as
Gaussian) and our adherence to computational limitations to define a model.

H 2.2 Exponential Families

Exponential families represent a fundamental class of distributions in statistics. They
arise as the answer to numerous, albeit related, questions. Within the Bayesian frame-
work: For what class of models does there exist a prior that leads to computationally
tractable inference [15,141]? Frequentists arrive at the exponential family when ask-
ing: If there exists an efficient estimator, can we describe the class of models from
which the data could have been generated [87,184]? Common to both domains: What
distribution is maximally random while being consistent with a set of moment con-
straints [15,79,116]?

Definition 2.2.1. A parametrized family of distributions Pe = {Ps} is a k-parameter
exponential family with natural parameter n(-) = [m(-),...,n(-)]¥, natural statistic
t() = [t1(),-. ., t()])T, and base distribution q(-) o ) if each member Py of the
family has a density of the form

p(y | 8) = exp{n” (0)¢(y) — a(8) + B(y)} (2.13)
k
= exp {Z i (0)t:(y) — () + 5(y)} (2.14)
=1

with respect to a dominating measure® . Here, y* is a point in the sample space Y,

which represents the support of the density. The function o(-) is referred to as the
log-partition function and ensures that the probability density integrates to 1. We will
denote this family by £(0;n(-),t(-), 8(-)).

3The dominating measure is the assumed measure on the considered measurable space, and as such
provides the measure with respect to which the Radon-Nikodym derivative is taken when defining
densities (amongst other measure-theoretic operations one could examine).

“We use the notation y rather than y to indicate that this quantity is allowed to be vector valued.
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The set of admissible parameter values, or the natural parameter space, for which a
constant a(@) exists are those such that

k
/eXP {Z ni(0)ti(y) + ﬂ(y)} dy < oo. (2.15)
=1

We could generalize Eq. (2.15) and the results to follow for a given measure p rather
than the assumed Lebesgue (or where appropriate, counting) measure. However, we
will omit this level of mathematical formality.

It is common to restrict oneself to examining families of distributions whose support,
i.e., the set of y such that p(y | 8) > 0, does not depend upon 6.

Definition 2.2.2. An ezponential family £(0;n(:),t{-),5(-)) is called regular if the
support of each member of the family does not depend upon the value of the parameter
0.

Another form of exponential families that deserves a special name is when the
density of each member of the family depends linearly on the parameters, i.e., n(6) =

61,....0k).

Definition 2.2.3. A canonical exponential family is one which depends linearly on the
parameter 0:

p(y | 8) = exp{67t — a(6) + B(y)} (2.16)
k
= exp {Z 0iti(y) — a(0) + ﬁ(y)} . (2.17)
1=1

We will denote the canonical exponential family by £(6;1I(-),t(-),5(-)).

One, in theory, can always consider an exponential family in its canonical form by
defining a family P, with the parameters as the possibly nonlinear mapping 7(0) £
[m,...,m] and the log-partition function «(-) appropriately redefined. In practice,
however, it might be challenging to find the set of admissible values of n and the form
of the log-partition function. Note that some references, such as Bernardo and Smith
[15], use the term canonical to refer to exponential families that also depend linearly
on the data.

Definition 2.2.4. For data y distributed according to p(y | 8), a parameter 0 is termed
unidentifiable on the basis of y if there exists 01 # 6y such that Py, = Pp,.

Lemma 2.2.1. If the set of natural statistics [t1(-),...,t(-)] are linearly dependent,
then the parameters [m1,...,nx] are unidentifiable from the data y.
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Proof. Assume, without loss of generality, that ¢x(y) = ctx—1(y) for some constant c.
Take nj = 1; for i = 1,...,k — 2, n},_; = Ng—_1 + cni, and 7, = 0. Then,

. |
p(y | m) = exp {Z niti(y) — (6) + ﬂ(y)}

i=1

k-2
= exp {Z miti(y) + (Me—1 + cmie)te—1(y) — (6) + ﬁ(y)}

i=1

k—2
= exp {Zn{tz(y) + n;c_ltk—l(y) —a(f) + B(y)}

i=1

=p(y | 7).
m

From the above, we see that whenever there are linearly dependent natural statistics,
we can find an equivalent, reduced-order exponential family. We will assume that we
always restrict ourselves to such reduced-order models. Note that the same issue arises
if the components of the natural parameter 17(@) are linearly dependent functions of 6.

Definition 2.2.5. A minimal ezponential family is one in which there does not exist a
non-zero vector a = [a1,...,ax| such that

k
> aiti(y) (2.18)
i=1

s equal to a constant.

B 2.2.1 Properties of the Canonical Exponential Family

The following theorem leads to a number of useful properties of the exponential family,
specifically, the moment-generating property of the log-partition function.

Theorem 2.2.1. For any integrable function f(-) and any @ in the set of natural
parameters, the integral

[ twes {3 iitw) - a0) + 5w}ty (2.19)

is continuous and has deriwvatives of all orders with respect to the parameters 0.

Proof. See Barndorff-Nielsen [8], amongst other texts. ]
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Corollary 2.2.1. The expected value and covariance of the natural statistics t;(y) are
related to derivatives of the log-partition function by

Bglti(y)] = 3-(6) (220)
and
82
conlti(y). 1)) = 55 5-0(0) (221)
respectively.

Proof. We apply Theorem 2.2.1 to the following identity, arising from the unit integra-
bility of the density p(- | 8):

[eo (S btiv) - a6) + )} dy = 1.

Taking the derivative with respect to 6;,

0
[t@e {36t - a0) + 8w } dy = 5-a(0). (222)
The first equality of the corollary results from noting that the left-hand side of Eq. (2.22)
is the expected value of ¢;(y) under the given exponential family. Differentiating again
with respect to 0; yields

L) - o-a(8)) (1,0) ~ o-0(6) ) exp {3 6ititw) — a(6) + By) } dy
86; 96,

2
N ao?aai“(e) / exp {Z Oiti(y) — a(6) + ﬂ(y)} dy = 0.
(2.23)

Identifying the first line of Eq. (2.23) as cov(t;(y),t;(y)) using the fact that a%a(e) =
Eglt;(y)], and identifying the integral of the second line as 1 completes the proof. W

The above implies that instead of computing potentially complicated integrals, we
can find the moments of a distribution by calculating the derivatives of the log-partition
function. We note, however, that finding the log-partition function is often a challenge
in and of itself. Another important implication of the above result is that since V2a(-)
is a positive semi-definite covariance matrix, a(0) is a convex function in §. For minimal
exponential families, V2a(-) must be positive definite, implying strict convexity. Such
interpretations of «(-) have important implications for the geometry of exponential
families that are exploited in variational approaches [176].
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H 2.2.2 Interpretation as Linearly Constrained Maximum Entropy Distribu-
tion

As alluded to at the beginning of this section, the exponential family can be derived
as the maximally random distribution subject to a set of linear constraints. To derive
this result, and to formalize our definition of randomness, we need to rely on some
information-theoretic concepts. See Cover and Thomas [31] for a more detailed explo-
ration of these terms.

Fundamental Quantities of Information Theory

Shannon’s measure of entropy conveys the uncertainty of a discrete random variable y
taking values within a finite space Y:

H(y) =-Y_ p(y)logp(y), (2.24)
yeY

where p(y) is the associated probability mass function defining the law of y. If the log
is base 2, the units of this measure is in bits while for base e the units are nats. From
this definition, one can easily prove that

0 < H(y) < log V. (2.25)

One can extend the idea of entropy to jointly random variables (z,y) ~ p(z,y), z € X,
in which case the joint entropy is defined as

H(z,y)=—>_ > p(z,y)logp(z,y), (2.26)

zeX yey

One can similarly define the conditional entropy of a random variable y given z:

H(ylz) ==Y p(z,y)logp(y | z). (2:27)

zEX yeYy

Using standard manipulations, one can show that the joint entropy H(z,y) is simply
the sum of the entropy of z, H(x), and the conditional entropy of y given z, H(y | z),
which has a nice interpretation in terms of conservation of uncertainty. The change in
entropy of a random variable y after an observation z is given by the mutual information

1) = Y 3 ple,y) log 2EY) (2.28)

a5 p(2)p(y)
=->.> p(@y)(logp(y) —logp(y | 7)) (2:29)
zeX yey

=H(y) - H(y | z). (2.30)
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The above definitions can be extended to continuous random variables by considering
differential entropy

h(y) = — /yp(y) log p(y)dy, (2.31)

and differential conditional entropy
My )= = [ [ ploy)ospty | =)duda- (232

However, although discrete entropy is a non-negative quantity, differential entropy does
not have this property.

Finally, we define a measure of the distance between two densities p and gq. The
relative entropy or Kullback-Leibler (KL) divergence is given by:

D(pllq) = / p(y)log pgz;dy (2.33)

Note that because KL divergence is not symmetric, it is not actually a distance metric.
From this definition, we see that mutual information can be interpreted as the KL
divergence between a joint distribution of (x,y) and the distribution assuming they are
independent random variables:

I(y; ) = D(p(z, y)||p(x)p(y))- (2.34)

Here, the mutual information is defined in terms of differential entropy.

Projections onto Exponential Families

Let us define a linear family of distributions for a random variable y as

Li={p:Epltx(y)] =px, k=1,...,K}. (2.35)

This family is termed linear since for all p;,ps € Ly, and for all A € [0,1], py =
Ap1+ (1= A)p2 € Ly

Theorem 2.2.2. Let t(-) = {t1(-),...,tx(:)} be a set of functions defined on Y and
{u1, p2, .., i} be a set of arbitrary constants. Define the linear family

Li=A{p:Epltx(W)] = i, k=1,...,K}, (2.36)
and consider the element of this family, p*, which satisfies

p* = arg min D(p||q), (2.37)
pEL:

where the support of q contains that of p. Then p* belongs to the exponential family

K
& = {p :p(y) = exp (Z Acti(y) — () +log Q(y)) } - (2.38)

k=1
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Proof. See Bernardo and Smith [15] for a proof. The basic idea is to minimize the
Lagrange function consisting of the KL divergence and a set of Lagrange multipliers that
enforce the linear constraints, as well as the constraint that p* must be a valid density.
These Lagrange multipliers end up as the natural parameters A of the exponential
family. ||

If we take g(y) o< 1 for all y € Y (an improper distribution in the case when ) is not
finite), then p* has the interpretation as the mazimum entropy distribution that satisfies
a set of moment constraints. As an example, the maximum entropy distribution over
the real line subject to a second moment constraint is a zero-mean Gaussian distribution
with variance given by that constraint.

W 2.2.3 Examples

Many well-known classes of distributions can be cast within the framework of an expo-
nential family. We now present a set of examples of such manipulations.

Bernoulli
1 gve?
p(y|0)=6Y(1—-6)"" m y€{0,1} (2.39)
Inp(y |6) =ylnd+ (1 —y)In(l — ) (2.40)
9
=n|-—— — 2.
n<1_0)\y/+ln(l 0) (2.41)
S — t(y) a(0)
n(6)
Geometric
py|0)=(1-06)0* ye{0,1,2,...} (2.42)
1 0) = In(0 In(1—6 2.43
np(y|6) =In(6) y_+In(1—0) (243)
n(0) t(y) o(6)
Poisson
Ove?
p(y|0) = )l y€{0,1,2,...} (2.44)
1 0) = In(0 -6 —1 2.45
nply|0)=1n(0) v -0 —lny (2.45)
n© ) 0 BE)
Exponential
py|0)=0% y>0 (2.46)
Inp(y | 0) = :@ +£1’Q/ (2.47)

n@)ty) )
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B 2.3 Sufficient Statistics

For the exponential family, we have seen that the densities only depend on the data
through the natural statistics ¢(y) and the base distributions ¢(y) « exp{6(y)}. This
leads one to ask under what conditions are inferences using transformations of the data,
or statistics, the same as if we had used the data itself. One might additionally ask
what set of models yield a compact set of statistics, summarizing an arbitrarily large
set of data, that are sufficient for the inferences we wish to make. In the following, we
establish a formal framework for this data-processing concept.

Definition 2.3.1. Given a sequence of random variables y,ys,. .., with y; € Y; and
probability measure P, a sequence of statistics t1,ta,..., with each function t; defined
on the product space Yy x --- x V;, is said to be predictive sufficient for y,,ys,... if

PWirs- i, | Y15 Y) =pWiys Y5, | E5) Vi (2.48)

where {iy,...,ix} are a set of indices not seen in {1,...,j5}. Here, p(- | -) is the
conditional density induced by the measure P.

That is, given t; = ¢;(y;,-..,y,), the values of the data y,,...,y; do not further
contribute to the prediction of future values of data.

Definition 2.3.2. Given an exchangeable® sequence of random wvariables yy,Ys, .- -,
each with sample space ), the sequence of statistics ti,la,..., with each function t;
defined on the product space )’ , is said to be parametric sufficient for yi,ys,... if

dQO0 | y1,...,y,) =dQ(0 [t,) Vn =1, (2.49)

for any dQ(8) such that

Py, ) = / T2 | 6)dQ(0). (2.50)
=1

Informally, this definition of sufficiency implies that, given exchangeable data, pos-
terior inference using a parametric sufficient statistic results in the same analysis as
using the data itself. The following theorem provides a connection between a statistic
being sufficient for prediction and for posterior inference.

Theorem 2.3.1. Given an exchangeable sequence of random variables y1,Ys, ..., each
with sample space Y, the sequence of statistics t1,ta,. .., with t; defined on the product
space Y’ , is predictive sufficient if, and only if, it is parametric sufficient.

Proof. See Sec. 4.5 of Bernardo and Smith [15] for a heuristic proof. [ |

5Unless otherwise noted, for an infinite sequence of random variables we use the phrases exchangeable
and infinitely exchangeable interchangeably.



48 CHAPTER 2. BACKGROUND

The following theorem identifies the structure in the probability model that leads
to the existence of parametric sufficient statistics, thus providing insight into how to
propose and test statistics for such sufficiency.

Theorem 2.3.2 (Neyman factorization criterion). The sequence of statistics ti,ta,. ..
s parametric sufficient for an infinitely exchangeable sequence of random variables
Y1,Y2, ... if and only if the joint density for y1,...,ym can be factored as

Y1 Ym | 0) = b (Em, 0)9(Y1,- -, Yp), m>1, (2.51)
for some functions h,, > 0 and g > 0.

Proof. This proof follows that provided in Sec. 4.5 of [15]. Assume such a factorization
exists. Then, for any dQ(0) we may write

P, Ym | 6)dQ() han (tm, 8)dQ(0)

QO |y, Ypy) = = .
Ol ¥m) = eyt 19)QE) T b, 9)dQD)

The righthand equality depends on the data y,...,y,, solely through the statistic ¢,,,

and thus, dQ(0 | Yy, -, Y,) = dQ(O | ty).
Conversely, assume that ¢, is a parametric sufficient statistic. Then,

. p(yla-"aym | o)dQ(O) :dQ(e l Yi,---,Y )

p(yla cer 7ym)
p(tm | 6)dQ(6)
p(tm) '

= dQ(B | tn) =
The result follows by identifying that this must imply

p(yla 9 Ym | 0) = h’m(tma a)g(yb cee 7ym)
for some h,, >0, g > 0. |

From the Neyman factorization criterion, and from the fact that we can write the
likelihood of N i.i.d. observations from a k-parameter exponential family as

N N
p(Y1,---»Yn | 0) = exp {n(9)T > ty,) — Na(6) + Y ﬂ(yn)} (2.52)
n;l n=1 v
= exp {n(B)T > ty,) - N a(O)} exp {Z ﬂ(yn)} ,  (2.53)
n=1 n=1

we see that sn(Y1,--,¥s) = {1, X t1(¥i), -, i (i)}, n = 1,2,..., is a se-
quence of sufficient statistics.

Furthermore, the Pitman-Koopman-Darmois theorem [80,141] states that a prob-
ability model admits a sufficient statistic whose dimension remains bounded as the
sample size increases if and only if it is an exponential family model. The first proof
of this result is due to Darmois [32] (in French), with two versions in English produced
independently by Pitman [136] and Koopman [98], each using slightly different technical
conditions.
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B 2.4 Incorporating Prior Knowledge

Within the Bayesian framework, motivated by the concepts presented in Sec. 2.1.1,
one is interested in incorporating a prior distribution on the latent model parameter ¢
in order to make predictions about future data. Assuming the associated conditional
densities exist, as we will throughout this section, and given N i.i.d. observations, this
predictive likelihood is given by:

p(Y Y- YN A) = /@p(y | 9)p(F | y1,---,yn,A)dD. (2.54)

Here, we take the prior distribution itself to be contained within a family P parame-
terized by a set of hyperparameters A € A. The hyperparameters are not fundamental
to the objective of our inference, and can simply be viewed as tuning parameters. As an
intermediary step in the process of predictive analysis, one might simply be interested
in examining the posterior density on 6:

p(y | 0)p(@ | N
Jor(y | 9)p(d | A)dd

There are many perspectives on how one should choose a prior distribution on
the latent parameter 0. A subjective Bayesian would argue that one should choose
a distribution that encodes our subjective prior belief about the values of 8. On the
other hand, objective Bayesians aim to remain agnostic and employ a prior distribution
that is maximally uninformative, allowing the data to speak most loudly. Such goals
often lead to the use of “flat” priors (e.g., limiting forms of the conjugate families
discussed in Sec. 2.4.1), but with sometimes unintended implications [13]. A more
coherent framework for developing objective priors is that of reference analysis, first
introduced by Bernardo [14] and further developed by Berger and Bernardo [12]°. A
reference prior is one that—constrained within a class of candidate priors—maximizes
the uncertainty about @ relative to the knowledge that could be gained about @ from
repeated observations from the model. For any sufficiently regular prior p(@), as the
number of observations tends to infinity, the posterior of @ concentrates about its true
value. Thus, the limiting mutual information

(2.55)

p(e | ya)‘) =

. p(ﬂ7y17"'7yk)
hm/ /pﬁ,y oo, Yy) log dddy;.i, 2.56
k=0 Jyi Jo @9 B8 e lyr, . ) T Yk (2.56)

or equivalently, the average divergence between the prior and the posterior:

. p,[9 y?""’
im [ pyr .y / P9 | yps- s wi) log POV gy (57
& e p(9)

k—o0 y

provides a measure of the amount of missing information about 0 after receiving in-
finitely many observations from the model. A reference prior aims to choose from

5See also [13] for a comprehensive survey.
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within a specified class the prior that maximizes this missing information. Thus, refer-
ence priors only depend on the asymptotic behavior of the assumed model”. In finite
parameter spaces (i.e., |©| = K, K < 00), the reference prior reduces to the prior that
maximizes the entropy within the class of candidate priors, as proposed by Jaynes [79].
For one-dimensional location and scale families, such as the family of univariate Gaus-
sian distributions parameterized by a mean (location parameter) and variance (scale
parameter), the reference prior is a constant for the location parameter (i.e., improper)
and equivalent to Jeffreys prior [81] for the scale parameter. For more complex models,
however, derivation of reference priors relies on numerical techniques. In addition, even
once a reference prior is derived, posterior inference can be challenging.

An alternative approach, largely considered a pragmatic choice, is that of conju-
gate priors. In many cases, these priors do indeed encode substantial information that
can strongly influence the analysis of 8.5 As we see in the following sections, the
parametrization of these conjugate priors can be viewed as adding pseudo-observations
when the model class is in the regular exponential family. Thus, choices of hyperparam-
eters that add few pseudo-observations are often viewed (with the caveats mentioned
above) as weakly informative while maintaining the computational benefits we describe
in Sec. 2.4.1. For the subjective Bayesian, the choice of a conjugate prior is also a prag-
matic one, and the hyperparameters allow for a simple method of tuning the distribution
to aspects of their prior belief.

B 2.4.1 Conjugate Priors

The use of conjugate priors is often motivated by practical considerations. Namely,
conjugate priors allow for a computationally tractable mechanism for incorporating
new data into the posterior distribution of the parameter 8. For an arbitrary family
P of prior distributions, with p(6 | A\) € Pa, the integral of Eq. (2.54) and in the
denominator of Eq. (2.55) may be intractable. If, however, p(y | 8)p(0 | A) remains in
the family PA where every element of P has some known functional form, then the
normalization constant is automatically determined by the definition of the distributions
in that family. This motivates the following definition of conjugacy.

Definition 2.4.1. A family Py of prior distributions on @ € © is said to be conjugate
to a model class Pe, with p(y | 8) € Peo, if the posterior remains in the family of prior
distributions:

p(0 | y,\) € Py (2.58)

"This statement assumes the model provides conditionally independent observations given 6. If
instead there were dependencies in the observations, such as the time-series models we consider in this
thesis, the reference prior might be a function of the sample size.

8We note, however, that there are special cases in which the conjugate prior and reference prior
coincide. For example, these priors coincide when 6 represents the mean of a Gaussian, and that mean
is subject to second moment constraints. In this case, both the reference and conjugate priors are
Gaussian, which can be derived utilizing the constrained maximum entropy results of Sec. 2.2.2 and
noting the equivalence of the reference prior and the maximum entropy prior for location families.
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for all possible observations y € Y, likelihoods p(- | @) € P, and priors p(- | A) € Pa.?

Since we could simply take P4 to be the set of all distributions, this definition alone
does not lead to the tractable inference we seek to define. Instead, one may consider
the likelihood in terms of a sufficient statistics £(-). From the definition of sufficiency,
we have

p(8 |y, A) =p(0|ty),)) o p(t(y) | O)p(6 | A) (2.59)

If t(y) is of fixed, finite dimension independent of that of y (i.e., the number of data
points), the family of prior probability distributions which satisfy

p(t(y) | 8)p(0 | X) < p(6 | X) (2.60)

will lead to tractable inference. From this stricter definition, the Pitman-Koopman-
Darmois theorem [80] described at the end of Sec. 2.3 implies that the class of likelihoods
for which a conjugate prior family exists are those belonging to the exponential family
(regular or non-regular).

Conjugate Prior to the Regular Exponential Family

Given a model which is member of a regular exponential family, we may easily construct
the corresponding conjugate prior. Namely, for any member of £(0;n(-),t(-), 5(-)), we
can write the likelihood as:

p(y | ) = exp{n(0) t(y) — a(6) + B(y)} (2.61)

Given a set of N i.i.d. observations, we have:

N N

p(Y1,---,Yn | 0) =exp {n(O)T > t(y,) - Na(6) + ) B(yn)} (2.62)

n;l n=1 N
= exp {n(e)T > ty,) - Na(")} exp {Z ﬂ(yn)} (2.63)

n=1 n=1

If we choose Py such that
Pa={p(- | \) | p(6 | \) < exp{tn(8) — No(6)}} (2.64)
with A = {to,Ng}, then

PO | Yy, ... yn,A) x exp{tTn(8) — N'a(6)} (2.65)
=p(@|N) € P, (2.66)

9Occasionally, we write p(y | 8) to be explicit about the domain of the distribution, whereas here
we write p(- | 8) to be clear that the distribution is a function of its argument for fixed 8, not a number
resulting from an evaluation at y.
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with X' = {¢/, N’} where

N
t'=to+> ty,) (2.67)
n=1
N’ =Ny + N. (2.68)

We note that the conjugate prior is itself in the exponential family. Namely, the prior is
in the canonical family £(to; I(-),n(-), —Noa(-)). As evidenced by Eq. (2.67)-Eq. (2.68),
we see that conjugate priors have the additional benefit of being interpretable as simply
adding Ny pseudo-observations with a total sufficient statistic ¢,.

The likelihood of the data can then be written in terms of the normalizing constant
of a member of the exponential family:

p<y1,...,yNM)=/ep(«9|A>p(y1,...,yNw)dﬁ

N N
= /eexp {'r](’l?)T Zt(yn) — Na(9) + Zﬂ(y)}
n=1 n=1

exp{tJn(8) — 1(\) — Noa(®)}d9

N
= exp {—v(» +3 ﬂ(y)} exp{tTn(9) — N'a(9)}do

n=1
N
~exp {w') —AO) + Zﬁ(w}, (2.69)
n=1

where we use v(-) to denote the log-partition function of the conjugate prior family Py,
and the last equality follows from identifying the integral over © as integrating over an
unnormalized member of Py with parameter X' = {t/, N'}.

In the following sections, we briefly outline some of the probability density and mass
functions, and the associated conjugate analysis that we utilize throughout this thesis.
All of these results may be derived using a combination of the results presented in
Sec. 2.4.1 along with manipulations similar to those in Sec. 2.2.3.

H 2.4.2 Multinomial Observations
Multinomial Likelihood Distribution

Consider a random variable y on a finite sample space Y = {1, ..., K}. Let the probabil-

ity mass function be denoted by 7 = [ry,...,7x]. The multinomial distribution [16, 51]
describes the probability of a string of N observations of y taking on values y1, ..., yn,:
N!
p(y1,- .-, ynlm) = WHWIJGV’“, NkéZ(S(yn,k‘). (2.70)
k * k n

We use the notation 6(j, k) to indicate the discrete Kronecker delta. When K = 2, this
distribution is referred to as the binomsial distribution.
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Dirichlet Prior Distribution

The K-dimensional Dirichlet distribution [51] is the conjugate prior for the class of
K-dimensional multinomial distributions and is uniquely defined by a set of hyperpa-
rameters a = [aq,...,ak|. The distribution has the following form:

wla) = T an) soe=l
p( | ) Hkr(ak) x k » k>0, (271)

with I'(-) representing the standard Gamma function. We denote this distribution by
Dir(ay,...,akx). When K = 2, this distribution is referred to as the beta distribution,
which we denote by Beta(ai,az). The first moment of the Dirichlet distribution is
given by:

Q;

Zjaj.

Efr;] = (2.72)

Conjugate Posterior and Predictions

The conjugacy of the Dirichlet distribution implies that, conditioned on N multinomial

observations y1, ..., yn, the posterior distribution of 7 is also Dirichlet:
p(rlys,....yn, @) < p(wla)p(ys, - - -, yn|m) (2.73)
K
x H 7T,C:k+Nk_1 x Dir(ay + Ny, ...,ax + Ng). (2.74)
k+1

Using the normalizing constant of the Dirichlet distribution, and substituting into
Eq. {(2.54), one can derive the predictive likelihood to be:

Ny + ag A
= = — = E . 2.
p(y k|y1a 7yNaa) N+a0 , Og (677 ( 75)

B 2.4.3 Gaussian Observations

Gaussian Likelihood Distribution

A Gaussian or normal distribution [51] is parameterized by a mean vector p and
covariance matrix ¥. This distribution often arises in the natural world and can provide
a useful description of continuous-valued random variables that concentrate about a
given value and have constrained variability. The distribution is defined over a sample
space ) = R? and is written as

ol D) = s e { - W w2

We denote this Gaussian distribution by N{(u,¥) or N (y; s, X) to be explicit about
the domain.
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Known Covariance: Normal Prior Distribution

For fixed covariance ¥, the normal distribution is the conjugate prior on the mean
parameter . In the following, we assume a N (g, Xo) prior for this parameter'C.

Known Mean: Inverse-Wishart Prior Distribution

When only the covariance ¥ is uncertain, the conjugate prior is the inverse- Wishart
distribution [51]. The d-dimensional inverse-Wishart distribution, with covariance pa-
rameter A and v degrees of freedom, is given by

G
v —1) .
2 I T ()

We denote this distributions by IW (v, A). The first moment is given by:
vA

B = =71

p(Ely,A) =

exp { —%tr(l/AE“l)} : (2.77)

(2.78)

Normal-Inverse-Wishart Prior Distribution

When both the mean and covariance are uncertain, the normal-inverse- Wishart dis-
tribution [51] is conjugate. This distribution defines a conditionally normal prior on
the mean, p | ¥ ~ N (89,%X/k), and an inverse-Wishart distribution on the covariance,
Y ~IW(v,A). The joint prior distribution is then defined as

v4d+1

p(p, Zlk, 9,1, A) oc [B] 2 exp {—%tr(vAE‘l) - g(u -9 - 19)} - (2.79)

We will use the notation NIW(k, ¥, v, A) to represent this distribution®!.

Conjugate Posteriors and Predictions

Consider N Gaussian observations y,,...,yy with y, ~ N (u,X). We will outline the
posterior distributions for each of the three cases listed above. More explicit details can
be found in Gelman et al. [51].

For known covariance X, the posterior distribution on the mean g is given by an
updated normal distribution:

p(l"’ I ylv"?yN’E’u'O’ZO)

N
=N ((Eal IS o + Y Jw), (St + 2—1)—1> . (280)

=1

'9Tn the limit as prior precision tends to zero (i.e., |35 — 0), the reference prior p(u) o constant is
obtained.

"1n the limit as & — 0, v — —1, and |A| — 0, the often proposed “noninformative” multivariate
Jeffreys prior is obtained: p(u,X) o [£|~(@+1/2 Note, however, in the multivariate case, this is not
equivalent to the reference prior [13].
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For known mean p, the posterior distribution on the covariance ¥ is given by an
updated inverse-Wishart distribution:

N
p(ElY1s- - YN, v, A) = IW (V +N,A+(1/v) Z(yz - )(y; — H)T> - (281)
i=1

Finally, when both the mean g and covariance ¥ are uncertain, the posterior dis-
tribution is given by an updated normal inverse-Wishart distribution:

(1, 2|y, YNy K 9,0, A) = NIW(R, 9,7, A), (2.82)

where the hyperparameter update equations are:

K=K+ N (2.83)
N
RO =k + Y vy, (2.84)
n=1
v=v+N (2.85)
N
PA = vA + Z vyl + k997 — k09’ . (2.86)
n=1

For the scenario where both p and X are uncertain, and a conjugate normal inverse-
Wishart prior is placed on these parameters, the predictive likelihood is given by a
multivariate Student-¢ distribution [51]:

., 5 (RE+DLp <
p(y l Yis--- avaﬁ’ﬂyl/aA) - tu—d+1 (197 R’/(D — d-l-_l)A s (287)

where a standard multivariate Student-¢ distribution t, (9, vA) is given by:

_ T((v+4d)/2)

—1/2 1 T _1 (v+d)/2
= T/ VAl (1 +=(0-9)(vA)7(0 - 19)) . (2.88)

p(0)

When 7 > (d + 1), the posterior density can be approximated by a moment-matched
Gaussian:

- E+1)v +
p(ylyla"~ayN7R7197V7A) mN(ya’ﬂvE/—)A) . (289)
For analysis on the accuracy of this approximation, see [157, Section 2.2].

B 2.4.4 Multivariate Linear Regression Model
Gaussian Likelihood Distribution

The normal multivariate linear regression model is one in which the observations, or
responses, Y; € R? can be described as a linear combination of a set of known regressors
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x; € R™ with errors accounted for by additive Gaussian noise:

Y, =xpna1 + -+ TipnQn + € e; ~ N(O, 2) (2.90)
We may combine a set of IV response vectors into a matrix Y = [yl ey N] , the re-
gressors into a matrix X = [.731 @ N] , and the noise terms into F = [61 - e N]

and compactly write:

Y =AX + E, (2.91)
where A = [al @ N] is referred to as the design matriz.

Known Covariance: Matrix-Normal Prior Distribution

When the noise covariance ¥ is know, the conjugate prior on the design matrix A is the
matriz-normal distribution [183]. A matrix A € R?*™ has a matrix-normal distribution
MN (A, M,V,K) if

[MISH

|27V |2
Equivalently,
p(vec(A)) = N(vec(M), K~ @ V), (2.93)

where ® denotes the Kronecker product. From this, we see that M is the mean matrix,
and V and K~! are related to the covariance along the rows and columns of A.

Matrix-Normal Inverse-Wishart Prior Distribution

The conjugate prior on the set of parameters A and X is the matriz-normal inverse-
Wishart prior. This distribution places a conditionally matrix-normal prior on A given
%,

A|S ~ MN (A4 M,K,Y) (2.94)
and an inverse-Wishart prior on X,
X ~IW(y, A). (2.95)
Conjugate Posteriors and Predictions
Let D = {X,Y}. The posterior distribution of {A4,%} decomposes as

p(A,% | D) =p(A| %, D)p(X | D). (2.96)
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The resulting posterior of A is derived in Appendix F.1 to be
p(A|Z,D) = MN (4A; SyzS5 571, Saz) (2.97)
with
See=XXT+K Sup=YX'+MK S, =YY" +MKM". (2.98)
The marginal posterior of ¥ is given by:
p(E|D)=IW (v+N,A+Sy,), (2.99)

where S|, = Syy — Sny;zlSZ;.

B 2.5 Graphical Models

Probabilistic graphical models provide a framework for compactly encoding the con-
ditional probabilistic dependency structure of a set of random variables. For surveys
of these models and their associated inference algorithms, see [85,103,157,176], with
seminal work by Pearl [134]. The framework of graphical models has allowed for the
development of many efficient inference techniques such as belief propagation [104,134],
and for advances in variational methods [176]. Such developments have provided an
ability to analyze large-scale datasets, which would not be feasible without harnessing
the sparsity in the parametrization of the full model. Additionally, the generic formu-
lation of the graphical model inference algorithms enables transfer of advances in one
domain to other domains in a straightforward manner. For example, many classical
models such as the hidden Markov model (HMM) [139] and state space model can be
formulated within the graphical model framework; the inference algorithms developed
specifically for these models—like the forward-backward algorithm [139], Viterbi decod-
ing [42], and Kalman filtering [90]-—can be derived as special cases of generic graphical
model inference algorithms. The development of inference algorithms for the Bayesian
nonparametric extensions of these models that we examine in this thesis is considerably
simplified by representing the models within the graphical model framework.

B 2.5.1 A Brief Overview

A graph G = (V,€) consists of a set of nodes V representing the random variables of
the model and edges £ containing elements (i,j) € £ which connect a unique pair of
nodes i,j € V. For an undirected graph, the element (i,5) € £ if and only if (j,7) € &,
which of course need not be true in a directed graph. Pictorially, a node is typically
represented by a circle, an undirected edge by a line, and a directed edge by an arrow
with the tail originating at the parent node and the head ending at the child node. See
Fig. 2.5. We primarily restrict our attention to directed graphs, since these graphs are
the most appropriate for describing the dynamical models we consider in this thesis.
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H 2.5.2 Directed Graphical Models
Let I'(j) denote the set of parent nodes to a node i. This set is defined by

r()={ieV| (5 €&} (2.100)

A leaf node is one that has no children while a root node has no parents. For a directed
graph, the joint density decomposes as the product of the conditional densities for each
node % given its parents I'(7):

p(wy) =[] p(a: | fér(i)), (2.101)
iV

where we use the notation x4 to denote the set {z; | ¢« € A}. For an acyclic graph
(i.e., one without a directed cycle going from some node ¢ and returning to node 4,)
one can verify that Eq. (2.101) defines a valid joint density. Namely, to verify that
the density integrates to 1, one can marginalize over nodes starting at leaf nodes and
ending at root nodes. For a directed graph, the sparsity of the model parametrization
is defined in terms of the relative ratio of nodes to parent nodes. As we will see, there
is not as significant a reduction in the representational complexity and computational
complexity of inference if each node has many parents.

Whereas the joint distribution is easy to define from a directed graphical model, the
conditional independence statements encoded by the graph are somewhat challenging
to directly infer. Consider the graphical model of Fig. 2.2(d). Without conditioning on
y, random variables £ and z are independent:

p(x,y,2) = p(x)p(2)p(y | 2, 2) = p(z, 2) = p(x)p(2). (2.102)

However, these variables are not conditionally independent given y:

p(z, 2ly) o< p(z,y, 2) = p(z)p(2)p(y | =, 2)
#p(z | y)p(z | y). (2.103)

This phenomenon is referred to as explaining away, Berkson’s paradoz, or selection
bias. For example, imagine that x represented whether or not an earthquake occurred,
z whether a burglar is trying to get into the car, and y the car alarm. Earthquakes and
car robberies might be independent a priori, but upon conditioning on the car alarm
being triggered, an increase in the probability of an earthquake results in a decrease
in the probability of a burglary since the earthquake “explains away” the fact that the
alarm was triggered. For general directed graphical models, instead of writing down the
joint distribution and deriving whether the conditional independence statement is true,
one can employ an algorithm called Bayes ball [150]. One can use such an algorithm
to verify the conditional independence statements that appear in the derivations in the
appendices of this thesis. The algorithm provides a set of eight scenarios, depicted
in Fig. 2.2, consisting of the eight possible three-node chains one can encounter in a
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Figure 2.2. Pictorial representation of the Bayes ball algorithm for determining the independence
statements in a directed graphical model. There are four possible three node combinations depicted by
the graphs of (a)-(d). For each of these structures, we examine the case of marginal independence of
and z (top) or conditional independence of = and 2 (bottom) given an observation y (gray node). If a
ball starting at one of the z or z nodes can pass to the other, as indicated by the straight arrows, then
those two nodes are not (conditionally /marginally) independent. If the ball bounces back, as indicated
by a set of walls and curved arrows, then the nodes are (conditionally /marginally) independent. These
rules can be linked together in various combinations to examine larger graphical models.

directed graph based on directionality of the edges and whether or not the intermediary
node is an evidence node (i.e., observed). Some of the junction scenarios are bestowed
with a set of walls that deflect the Bayes ball. Two random variables x; and x; associated
with nodes i and j are then deemed conditionally dependent given the random variables
xy, associated with a set of evidence nodes V) (which may be the empty set) if a
ball starting at one node can traverse the graph to the other node based on the rules
summarized in Fig. 2.2; the random variables are conditionally independent otherwise.
Another method of determining some statements of conditional independence, and ones
extremely useful for the inference algorithms we develop, is described in the following.

Markov Blanket

For a directed graph, a node is conditionally independent of all other nodes in the graph
given its Markov blanket which consists of the node’s parents, children, and coparents.
The coparents of a given node are defined as those nodes that have a child in common
with the given node. The Markov blanket concept is depicted in Fig. 2.3.

Mixture Models and Exchangeability

The version of the de Finetti theorem in Corollary 2.1.1, assuming the distribution @
has a parameterized density g(- | A), implies the following hierarchical Bayesian model:

Py, Y01 N) = a0 | N) [ plwi | ). (2.104)

i=1

which, based on Eq. (2.101), has a directed graphical representation shown in Fig. 2.4.
This figure contains both an explicit representation of the graphical model, as well as an
equivalent representation using plate notation to compactly represent the n observations
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Figure 2.3. Markov blanket for x; consisting of the node’s parents, coparents, and children. The node
z+ is then conditionally independent of all other nodes in the graph given its Markov blanket.

A A

0

ey

Figure 2.4. Graphical representation of the hierarchical Bayesian model of n exchangeable random
variables implied by de Finetti’s theorem. Each observation is an independent draw from a density
parameterized by @, which itself has a prior distribution with hyperparameters \. Left: An explicit
representation of the graphical model. Right: A compact representation using a plate to denote n
replicates of the observations ;.

Yi- The fact that this set of random variables is yielded conditionally i.i.d. given 6 can
be directly verified from the graphical model by using the Markov blanket concept or
the Bayes ball algorithm.

M 2.5.3 Undirected Graphical Models

Many inference algorithms for directed graphical models rely on first converting the
graph to an undirected form. This conversion process, referred to as moralization,
“marries” any coparents by connecting them with an undirected edge. Each directed
edge is then converted into an undirected edge. See Fig. 2.5. In the following, we
provide a very brief sketch of the theory of undirected graphical models that we employ
in subsequent sections.

Undirected graphical models, or Markov random fields (MRF), are typically used
when there is no causal structure to the data, as in images, which instead have spatial
dependencies. Whereas the directed graphical model is easily derived from the factor-
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Figure 2.5. (a)-(b) Two directed graphical models that result in the same moralized (undirected)
graphical model shown in (c).

ization of the joint distribution, the form of an undirected model is typically formed
from a set of conditional independence statements. For an undirected graphical model,
if V;, V; and Vj, are three disjoint sets of nodes, and if every path from a node in V; to
a node in Vy, passes through V;, then V; is called a separator. If the following holds for
every possible choice of such sets:

zy, )p(xy,, | TV;), (2.105)

then the set of random variables @y = {z;} is said to be globally Markov with respect to
the undirected graph G. Eq. (2.105) implies that each node 7 in an undirected graphical
model is conditionally independent of all other nodes given its set of neighbors I'(¢):

p(xy,, Ty, | TV;) = D(TV,

p(zi | ®y\s) = (@i | Tr(s)), (2.106)

where V\i denotes the set of all nodes except for node 4, and I'(¢) is defined just as in
Eq. (2.100) using the undirected set of edges £. This local Markov property can be used
to derive the Markov blanket property of a directed graph since the neighborhood of
a node in a moralized graph will solely contain the children, parents, and coparents of
the node in the directed graph.

It is important to note that in the conversion of a directed graph to its undirected
form, all of the conditional independence statements of the undirected graph hold for the
model of the directed graph. The converse is not necessarily true since the mapping is
many to one. Take, for example, the graphs of Fig. 2.5. The directed graph of Fig. 2.5(a)
encodes a model with z; and zs marginally independent; however, in the moralized
graph this result cannot be directly deduced from the graphical model and instead
depends upon the parametrization. For example, the directed graph of Fig. 2.5(c) does
not (necessarily) have z; and z, independent and has the same undirected graphical
representation. For the basic V-structure of Fig. 2.2(d), there is no undirected graph
that encodes the same set of independence statements. Conversely, for an undirected
graph consisting of four nodes x1, 2,3, x4 connected in a four-cycle (i.e., each node
shares an edge with exactly two other nodes), none of the 16 possible directed graph
structures capture the same conditional independence statements. For tree-structured
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directed graphical models, in which the moralized graph does not contain any loops,
the set of conditional independence statements for both graphs is identical, implying
that undirected graph inference exploits all possible conditional independencies. In
Sec. 2.5.4, we present an efficient inference algorithm for undirected, tree-structured
graphical models that harnesses the conditional independence statements implied by
the graphical model. Because these statements for a moralized directed tree are the
same as those for the directed tree, the undirected inference is equivalent to inference
in the directed tree and leverages all possible efficiencies. The majority of algorithms
developed in this thesis simplify to iterative inferences on tree-structured graphs.

Given a general undirected graph G, the characterization of a joint distribution
satisfying the specified Markov properties is not as straightforward as in the directed
case. However, the Hammersley-Clifford theorem [21] provides some insight. Let C
denote the set of cliques in an undirected graph G, where a cligue is defined as a fully
connected subset of nodes. If a distribution can be factorized in terms of non-negative
potential functions 1.(-) defined on the cliques:

p(xV) X ch(mc)a (2'107)

ceC

then the distribution is Markov with respect to G. Conversely, any strictly positive
density, p(z) > 0 for all z, which is Markov with respect to G has such a factorized
representation. Note that the full characterization of the joint distribution, a necessary
step for many inference tasks, can be quite challenging since it relies on computing a.
normalization constant or partition function from an arbitrarily complicated product
of potential functions.

In some applications, it is useful to examine a pairwise Markov random field repre-
sentation in which the clique potentials are defined on the graph’s edges:

pley) o< ] wiil@s ;) [ [ vul=:). (2.108)

(h.j)e€ i€V

H 2.5.4 Belief Propagation

For most graphical models we encounter in applications, the joint state space X is
too large to explicitly characterize, and thus simple inference tasks can pose significant
challenges. For example, consider a graphical model with N nodes each taking one of K
possible values. The joint state space of such a graph is |¥| = K. Naive computation
of the posterior marginal based on a set of observations v,

pail)= [ plav] v (2109)
Wi

requires a sum containing KV~ terms in the case of the K-valued graphical model.
For tree-structured graphical models, however, such global inference tasks can be
ezactly and efficiently computed by a recursion of local computations. This belief propa-
gation algorithm harnesses the fact that in an undirected tree (such as the one depicted
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Figure 2.6. Left: A tree graphical model with node z; dividing the tree into disjoint subgraphs. Right:
A simple tree graph for illustrating the concepts underlying belief propagation.

in Fig. 2.6(left)), any given node separates the tree into disjoint—and thus condition-
ally independent—subgraphs given the value on the separating node. Computations
performed within the subgraphs can then be combined to form the desired posterior
marginal of the chosen node.

For the graph of Fig. 2.6(right), the joint distribution can be factorized as follows:

p(x) o Y1a(z1, T2)Yo3(w2, T3)Pas (T2, Ta) U1 (T1)Y2(72)Y3(23)Ya(Ts). (2.110)

Then, computation of the marginal p(z;) can be accomplished by combining local com-
putations resulting from distributing the integrals over the terms of the product in
Eq. (2.110):

p(x1) 11)1(561)/ Pia(x1, 2) Y2 (z2)

Xo

[]XS ¢23($2,m3)¢3($3)d:c3] . [/«;’4 w24(3:2,:r4)w4(;v4)dm4] dze. (2.111)

. PN i
' gl

maz(z2) maz(z2)

Here, we have defined a message m;;(z;) as the result of a local integration over z; that
results in a function in terms of z;. In the above example, we would also define

mai (1) 0</% VY12(x1, 2) V2 (z2)m32(x2)maz(z2)dTs. (2.112)

More generally, assume we additionally have a set of evidence nodes representing a
set of observations y = {y;} that are conditioned upon during inference. We assume a
structure in which the neighborhood associated with each observation y; solely contains
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node i (i.e., that of x;), and define a generic message from node j to node i as

mjz(mz) =/ wz(muyz ’[;bz](xZ)m] H M iL'J d:v] (2113)

X keT(5)\i

That is, each outgoing message from node j is a function of |I'(j)| — 1 incoming messages
to node j. The initial messages at leaf nodes are simply given by:

m;i(z;) = /X | Vi, Yi) i (i, 25)d ;. (2.114)

Then, one can show that after passing all of the messages, the desired marginal can be
computed as

p(zi |y) = %%(l’i,w) I mii=), (2.115)

JET ()

with

/d’z xuyz H m]z(mz)dxz (2116)

JET(3)

See [157] for a more complete derivation, and for references to classical literature. Note
that tractable propagation of messages and computation of the normalization constant
in Eq. (2.116) relies on restricted forms such as discrete or Gaussian MRFs. Otherwise,
one can consider a discretization of the continuous beliefs or one of many approximate
inference schemes such as the Monte Carlo techniques we outline in Sec. 2.8.

A node can send a valid message to a neighboring node only when it has received
valid messages from each of its other neighbors. As such, one needs to implement a
schedule when running belief propagation. One possible choice is a serial scheme in
which a single node is selected as the root of the tree. Then, messages are passed
from the leaves to the root, followed by a pass from the root back to the leaves. See
Fig. 2.7(top). Alternatively, one can use a synchronous parallel update where every
node sends a message whenever it has received all |I'(j)| — 1 incoming messages. This
schedule starts with all leaf node passing messages, as depicted in Fig. 2.7(bottom).
Finally, a parallel scheme involving message passing from all nodes at every iteration
is also provably correct. After L such iterations, the local marginal estimates will have
incorporated information from all nodes within a distance L [2]. Thus, the algorithm
converges after a number of iterations equal to the diameter of the tree. Typically, the
messages are initialized to be uniform over &; in the case of a discrete-valued MRF. The
parallel scheme has obvious advantages over the alternative schedules in a distributed
implementation; in a serial implementation, such a schedule is typically inefficient but
is simple to code.
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Figure 2.7. Graphical representation of the serial (top) and synchronous (bottom) belief propagation
scheduling schemes. Arrows indicate a message being passed. For the serial schedule, the node x; was
selected as the root node.

In terms of computational costs, the belief propagation algorithm can lead to a dra-
matic improvement over alternative approaches for computing marginals at all nodes.
For example, if each node can take on K possible values, and we have N nodes in total, a
brute force approach to calculating the set of marginals requires O(N K~ ~1) operations
(KN—1 operations for computing the marginal at each of N nodes.) A naive application
of simply passing integrals through the product of the pairwise potentials in Eq. (2.108)
requires O(N(N — 1)K?) operations (for each of N nodes, integrate over N — 1 nodes
with two nodes per clique.) The belief propagation algorithm simply requires O(N K?)
operations by efficiently reusing messages.

Note that for graphs with cycles, a single node does not necessarily partition the
graph into disjoint sets, and thus Eq. (2.115) is not valid. The junction tree algo-
rithm [104, 151] allows for exact inference in arbitrary graphs by running belief propa-
gation on the tree formed from the maximal cliques of a triangulated graph. However,
these cliques can be quite large, leading to computation intractability. In such cases, the
parallel message update form of belief propagation algorithm is often applied directly to
graphs with loops, and is termed loopy belief propagation. For graphs with large loops,
the inconsistencies or frustrations that can arise in more tightly coupled loops are less
pronounced and loopy belief propagation can yield good performance. In the Gaussian
MRF case, if loopy belief propagation converges, then it provides correct node means
(but in general gives incorrect node variances) [181]. For convergence results in discrete
and Gaussian MRFs, see [71,113] for more details.

Many classical models, such as the hidden Markov model (HMM) or linear-Gaussian
state space model, have hand-tailored inference algorithms, such as the forward-backward



66 CHAPTER 2. BACKGROUND

Figure 2.8. Graphical representation of a hidden Markov model (HMM) over n time steps. The
latent, discrete-valued Markov process z; captures the temporal dependencies in the observations y.

algorithm and Kalman filtering and smoothing, that can be described within the more
general framework of inference on a graphical model. In Sec. 2.6-2.7, we examine the
HMM and state space models in detail and explore these connections in inference algo-
rithms.

H 2.6 Hidden Markov Model

The hidden Markov model, or HMM, is a class of doubly stochastic processes based
on an underlying, discrete-valued state sequence that is modeled as Markovian [139].
Conditioned on this state sequence, the model assumes that the observations, which may
be discrete or continuous valued, are independent. The HMM has proven a powerful
model in many applied fields including speech recognition [82,88,139], computational
biology [100, 101, 155], machine translation [127, 128], cryptanalysis [92] and finance [17].

Let z; denote the state of the Markov chain at time ¢ and 7; the state-specific
transition distribution for state 7. Then, the Markovian structure on the state sequence
dictates that for all ¢ > 1

Zt | Zp—1 ™~ Tz (2117)

The state at the first time step is distributed according to an initial transition distri-

bution 7°:

z ~ 7l (2.118)

Given the state z, the observation ¥, is conditionally independent of the observations
and states at other time steps. The observation is simply generated as

Y | 2 ~ F(02,) (2.119)

for an indexed family of distributions F'(-) where 6; are the emission parameters for
state i. Assuming there exists a density associated with F'(-), the resulting joint density
for n observations is then given by:

P21, y1m) = 7 (20)p(w1 | 21) [ (2t | 2 0)p(un | 20), (2.120)
t=2
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Figure 2.9. Left: Lattice representation of an HMM state sequence sample path. Each circle represents
one of the K possible HMM states at various time steps. The highlighted circles indicate the selected
states, and the arrows represent the set of possible transitions from that state to each of the K possible
next states. The weights of these arrows convey the relative probability of the transitions encoded by
that state-specific transition distributions m;. Right: Corresponding transition distributions 71, 2, and
w3 for the lattice example.

from which we can infer a directed graphical model representation shown in Fig. 2.8.
One can use the Bayes ball algorithm of Fig. 2.2 on this HMM graphical model to verify
that an observation v; is indeed conditionally independent of all other observations and
states when given the state z;.

One can view a sample path of the state sequence as a walk through a state versus
time lattice, such as the one depicted in Fig. 2.9. A similar diagram representing all
possible transitions is often referred to as a trellis diagram.

W 2.6.1 Forward-Backward Algorithm

The forward-backward algorithm [139] provides an efficient message-passing scheme for
computing node marginals of interest for problems of filtering p(z, | y1,-..,¥yn), pre-
diction p(znem | Y1,---,Yn), and smoothing p(z, | y1,...,yn), N > n. This classical
algorithm has straightforward connections with the belief propagation algorithm of
Sec. 2.5.4. Following Rabiner [139], we define a set of forward messages

a'n(zn) él'-f"(?)'l-}--- :ynazn) (2121)

and backward messages
Br(2n) = P(Unt1,--, YN | Zn)- (2.122)

For the problem of filtering, we simply need the forward messages since

P(zn | Y1, Yn) = % (2.123)



68 CHAPTER 2. BACKGROUND

Similarly, for prediction we can utilize the Markov structure of the underlying chain to
derive that

pI A P(znim | Znam—1) -+ 22, P(#nt1 | #n)an(2n)
z yereyYp) = — = z , (2.124
P(Zntm | 91 Yn) >, an(2) ( )

which we show is equivalent to propagating the forward message without incorporating
the missing observations ¥n+1, .. ., Yn+m. The problem of smoothing, on the other hand,
utilizes both the forward and backward messages:

2z |y, yn) = 2 (yl’];('y'l’ yN _’ Zz))p (zn) (2.125)
_ P15 Yn | 20)PYna1, - - YN | 20)P(2n) (2.126)

p(y1,---,YN)
_ _on(#n)Bn(zn) (2.127)

Zz i (2) B (2)’

for any m.

We derive the recursions for these forward and backward messages by harnessing the
conditional independencies implied by the graph of Fig. 2.8. The recursions presented
in this section are utilized by many of the inference algorithms described throughout
the thesis and derived in the appendices. For the forward message,

i1 (znt1) = PUnt1 | 2011) D PWLs -5 Yn | 20)P(2n41 | 20)P(2n) (2.128)

Zn

= P(Yn+1 | 2n41) D n(20)P(2n41 | 2n)- (2.129)

Zn

The backward recursion is similarly derived as

ﬁn(zn) = Z p(yn+1 l Zn+1)p(yn+Za <y YN | Zn—l—l)p(zn—l—l I Zn) (2‘130)
Zn+1

=Y p(Unt1 | 2011)P(2ns1 | 20)Bnra(2n0s1)- (2.131)
Zn-1

The forward initial condition and backward final condition are given by:

a1(z1) = p(y1, 21) = p(y1 | 21)7°(21) (2.132)
Bn(zn) = 1. (2.133)

To relate the forward-backward algorithm to belief propagation, we need to convert
the directed graph of Fig. 2.8 to its undirected form. In this case, the conversion simply
means exchanging directed edges for undirected ones. The relationship between the
algorithms is then readily apparent. Specifically, consider node z, with neighbors z,_1
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and 2,41, and evidence node y,. Choosing a sequential node ordering starting at z; for
the message-passing scheme, Eq. (2.115) simplifies to:

1
p(zn [ Y, - vyN) = Z Zp(yn | zn)mnfl,n(zn)mn—}—l,n(zn): (2~134)
with
mn—l,n(zn) = Z p(yn—l | znél)p(zn | Zn—l)mn—2,n—1(zn—1) (2135)
Zn—1
mn+l,n(zn) = Z p(yn+l | Zn—{-l)p(zn—{—l | Zn)mn+2,n+1(zn+1). (2.136)
Zn+1

From the above, we can make the connection:

an(zn) = p(yn | 2n)Mn—1n(2n)

Bn(2n) = Mni1,n(2n). (2.137)

The prediction algorithm of Eq. (2.124) is trivial to derive within the belief propa-
gation framework. Consider an HMM graphical model up to time n and then append
a length m Markov chain with nodes 41, ..., Zntm- The standard belief propagation
algorithm defined on this graph is then equivalent to the method described above.

W 2.6.2 Viterbi Algorithm

Given a set of HMM parameters, one might be curious about the most likely state se-
quence to have generated an observation sequence y1, ... ,yn. The Viterbi algorithm [42]
provides an efficient dynamic programming approach to computing this MAP sequence:

N
= max ©(2)p(y | 2) [ 2 | 20-1)p(yn | 20) (2.138)
11
N
= ZImirle —log n°(21) — log p(y1 | 21) + Z —~logp(zn | 2n—1) — log p(yn | 2n)| -
n=2

Note that choosing the MAP sequence is not necessarily equivalent to choosing the
maximum node marginal independently at each node:

Zn :maxp(zn | yl)"‘,yN)' (2139)

Actually, such a maximum node marginal sequence may not even be a feasible sequence
for the HMM.

The Viterbi algorithm works on the dynamic programming principle that the min-
imum cost path to z, = k is equivalent to the minimum cost path to node z,_; plus
the cost of a transition from 2,1 to z, = k (and the cost incurred by observation y,,



Compute the MAP hidden Markov model state sequence 21,..., 2y as follows:
1. Initialize minimum path sum to state z; = k for each k£ € {1,...,K}:
Si(z1 =k) = —log7%(z1 = k) —logp(y1 | 21 = k)
2. Forn=2,...,N, and for each k € {1,..., K}, calculate the minimum path sum
to state z,, = k:
Sn(2n = k) = —logp(yn | 2n = k) + min {Sn—1(2n-1) — logp(zn = k | zn-1)}

and let
Zp_1(2n) = arg glirll {Sn-1(2n-1) —logp(zn =k | 2n-1)}
3. Compute
min — Ing(zla <+-3ZN | Yi,.-- 7yN) = mll’lSN(ZN)
Z15e-9ZN ZN
and set

Zny = argmin Sy (zn)
N

4. Tteratively set, forn € {N —1,...,1}.

20 = 23 (Zn11)

Algorithm 1. Viterbi hidden Markov model decoding.




Sec. 2.7. State Space Models 71

given z, = k.) These costs can be represented on edges and nodes in the trellis diagram
of Fig. 2.9. The MAP state sequence is then determined starting at node zy and re-
constructing the optimal path backwards in the trellis based on the stored calculations.
The details of the Viterbi algorithm are outlined in Algorithm 1.

Viterbi decoding reduces the computation cost to O(K2N) operations instead of
the brute force O(K™) operations. Algebraically, the Viterbi algorithm is very closely
related to the max-product (or min-sum) algorithm that operates by distributing the
maximization (or minimization) operators over the elements of the product (or sum)
in Eq. (2.138). The max-product algorithm is equivalent to the belief propagation
recursion, except for replacing the integrals with maximizations.

M 2.7 State Space Models

A state space model provides a general framework for analyzing many continuous-
valued dynamical phenomena. The model consists of an underlying state x; € R"
driven by a set of deterministic control inputs u; € R™. The latent process produces a
set of observations y, € R%. A stochastic state space model additionally incorporates
mutually independent and white process noise and measurement noise terms e; and
wy, respectively. We assume these noise processes are zero-mean with covariances X
and R;, respectively. The process noise term can be used to account for disturbances
or uncertainties in the assumed dynamical model, while the measurement noise term
models noisy observation mechanisms.

B 2.7.1 Standard Discrete-Time Linear-Gaussian State Space Formulation
A discrete-time linear time-invariant (LTI) state space model is given by:

Tyl = Amt +BUt +et

(2.140)
Yy, = Cxy + Duy + wy.

The time invariance of the model describes the fact that the parameters {4, B,C, D}
defining the linear state space model do not depend on the time index ¢. The terms e;
and w; are noise processes which satisfy:

T
o o B 0 0
E €; Ej = 0 Eéij S(Sl . (2141)
w; wj 0 STdij R(SU

This formulation ensures that the state sequence 2.7 forms a continuous-valued, discrete-
time wide-sense Markov process [89]. Note, however, that y;.p is not marginally wide-
sense Markov although the joint process (x¢,y,) is. When e; and w, are Gaussian noise
processes, implying that the second order statistics fully characterize the stochastic
process, the state sequence forms a strict-sense Markov process: the state x; yields the
past, 1.4_1, and the future, & 1.7, conditionally independent. Neither time-invariance
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nor linear dynamics is necessary for the strict-sense, discrete-time Markov process re-
sult.
In this thesis, we typically assume an uncontrolled (i.e., u; = 0) model:
Ty = Azt e
t+1 t+ et (2.142)
vy, = Cxy + wy.
The graphical model for this process is equivalent to that of the hidden Markov
model depicted in Fig. 2.8.

B 2.7.2 Vector Autoregressive Processes

Many dynamical processes can be modeled as autoregressive (AR). That is, the observa-
tions are a noisy linear combination of some finite set of past observations plus additive
white noise. An order r wvector AR process, denoted by VAR(r), with observations
y, € R?, can be defined as

. .
Y= Ay, i+er e ~N(0,X). (2.143)
=1
Here, the observations depend linearly on the previous r observation vectors. We refer
to {Ai,..., A} as the set of lag matrices. Every VAR(r) process can be described in
state space form by, for example, the following transformation:

A Ay ... A, I
I 0 ... 0 0

ze=|. . . |eat|le w=[l0 .. oz (2149
0 ... I 0 0

Note that there are many such equivalent minimal state space representations that
result in the same input-output relationship [34,110], where minimality implies that
there does not exist a realization with lower state dimension (see Sec. 2.7.4 for further
details). On the other hand, not every state space model may be expressed as a VAR(r)
process for finite 7 [6]. We can thus conclude that considering a class of state space
models with state dimension r - d and arbitrary dynamic matrix A subsumes the class
of VAR(r) processes.

W 2.7.3 Switching Linear Dynamic Systems

Many complex dynamical phenomena cannot be adequately described by a single lin-
ear dynamical model. However, the dynamics can often be approximated as switches
between a set of linear systems in some probabilistic fashion based on an underlying,
discrete-valued mode of the system. This class of hybrid systems is commonly referred to
as a jump-linear system. When one takes the latent mode of the system to be a discrete-
time Markov process, this model is typically referred to as a Markov jump-linear system
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(MJLS) [30] or switching linear dynamic system (SLDS). Switched affine and piecewise
affine (PWA) models, which we do not consider in this thesis, alternatively take the
mode to be a function of the continuous state [130].

The SLDS we consider in this thesis can be described by:

zZt ~ 7th_1
xr = APz + ey(z) (2.145)
Yy = Cxy + wy,

where 2; represents the mode of the system at time ¢, and is defined by a discrete-valued
Markov process with transition distributions ;. Here, we assume the process noise is
mode-specific:

e(z) ~ N(0,26)) (2.146)

while the measurement mechanism is not. This assumption could be modified to allow
for both a mode-specific measurement matrix C*) and noise w;(z;) ~ N(0, R?)).
However, such a choice is not always necessary nor appropriate for certain applica-
tions and can have implications on the identifiability of the model, as is discussed in
Chapter 4.

We similarly define a switching VAR(r) process by

2y 7th71
-
X (2.147)
Yt = ZAz( Dy, + e(z).
=1

Note that the underlying state dynamics of the SLDS are equivalent to a switching
VAR(1) process.

Both the SLDS and the switching VAR process can be viewed as extensions of the
standard HMM where instead of having conditionally independent observations given
the mode sequence, the system has conditionally linear dynamics. See Fig. 2.10 for
graphical model representations, and compare to that of the HMM in Fig. 2.8.

B 2.7.4 Stochastic Realization Theory

The models we have described so far assume that the dynamic parameters are known
and specified. The field of stochastic realization theory addresses the issue of construct-
ing a model that realizes a stochastic process with a given set of statistical properties.
One example of this is determining from a set of zero-mean, wide-sense stationary ob-
servations whether there exists an LTI state space model driven by white noise that
produces the same second order moments, and if so, finding such a model. A ques-
tion then arises as to the dimension of the underlying state of such a model, and more
specifically, finding the minimal such dimension. The theory is developed assuming
that the statistics of the process are available. In practice, however, applying the ideas
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Figure 2.10. Graphical models for the (a) switching vector autoregressive (VAR) process and (b)
switching linear dynamical system (SLDS) over n time steps. For both models, a discrete-valued
Markov process z; dictates the linear dynamical model at time ¢. For an order r switching VAR process
(shown here for r = 2), the conditionally linear dynamics are completely determined by the previous r
observations. The SLDS instead relies on a latent, continuous-valued Markov state z; to capture the
history of the dynamical process.

of stochastic realization relies on approximations based on estimates of a finite set of
these statistics (e.g., correlations over a fixed number of lags) from a finite set of data.
Such practices fall under the category of system identification. Model order reduction,
on the other hand, addresses the problem of finding a lower order approximation to a
given state space model. In the following, we review some of the methodologies rele-
vant to the models we consider. A more detailed presentation of this material can be
found in [107]. We restrict our attention here to linear dynamical systems, with a brief
overview of stochastic realization for the SLDS presented in Chapter 4.
Assume we are given a set of random variables y_ ... Let

Y+:['yt Y1 Y2 ] (2.148)
Y+=[y:—1 Y2 Y3 } (2.149)

Eq. (2.142) implies that the state of any stochastic realization of this process must yield
the past and present conditionally independent:

P(Y—oooo | @) = (Y- | T)p(Yy | T). (2.150)

Exploiting this Markov property, it can be shown that the size of the minimal state
dimension that fully characterizes the second-order statistics of Y, and Y_ must be
exactly the dimension of their cross-covariance:

Al
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If we have a realization of the form given in Eq. (2.142), we see that

AT = Blyirvi ] = { giﬁ:&i a6, 1> 8 (2.152)
where P, is the steady-state covariance satisfying (assuming A stable),
E[z.xl] = P, = AP, AT + %, (2.153)
and we may rewrite the Hankel matrix as
C
H= CA [G AG - Ad‘lG] = OR. (2.154)
C Ad-1

Noting that O and R correspond to extended observability and reachability matrices,
respectively, for the system triplet (A, C,G), we may utilize the results from determin-
istic realization theory. These results inform us that a realization is minimal if and only
if (A,C) is observable and (A, G) is reachable. Such a minimal realization is unique
up to a change of basis in the coordinates of the state. Namely, we can define a set of
equivalent minimal realizations as:

M(A,C,G) = {(CT,T*AT, T'G) | T invertible similarity matrix}. (2.155)

For any such (A, C,G) to be a stochastic realization, it must also satisfy the following
set of positive real equations:

P, = AP, AT + ¥ >0 (2.156)
AO)=CPCT+R>0 (2.157)
G = AP.CT. (2.158)

The Kalman-Yakubovich-Popov (or positive real) lemma [91, 189] states that there ex-
ists a P, satisfying the positive real equations if and only if the covariance A(7) is a
positive semidefinite function.

In practice, one does not have an infinite collection of correlations {A(7)}22;, but
rather a finite set of observations y;. or correlations {A(7)}7_; from which one wants
to produce a realization of the state space model. This necessarily leads to approximate
methods since the above rank and factorization methods cannot be exactly applied to a
finite Hankel matrix using the covariance estimates produced by y,.7. Instead, thereisa
wealth of literature that attempts to find a low-rank approximation to the finite Hankel
matrix, such as through principle component analysis or more sophisticated balanced
truncation techniques that aim to be coordinate-invariant. Note that such realizations
need not satisfy the positive real equations and care must be taken to ensure that the

state space realization is valid.
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W 2.7.5 Kalman Filtering and Smoothing

The Kalman filter [90] provides a recursive algorithm for estimating the underlying
state of a linear-Gaussian state space model given a set of observations and fixed model
parameters. Classically, the recursion is derived by exploiting the orthogonality prin-
ciples that arise from preprocessing the observations with a whitening filter, and then
building the linear least-squares estimate of the state from this white sequence. For a
detailed derivation, and for numerous properties and extensions of the standard Kalman
filter, see [89]. For the purposes of this background chapter, we simply present the al-
gorithmic outline and then build the connection with a message passing formulation.
Specifically, consider the state space model of Eq. (2.142). In Algorithm 2, we outline
the standard Kalman filter for computing the linear least-squares estimate &y, of x;

given yy, ..., Y.

1. Initialize filter with
Pojo=Po

oo = 0
2. Working forwards in time, for each t € {1,...,T}:
(a) Compute
Ki =Py 1C(CPy_1C+ R)™"
(b) Predict
§3t|t—1 = Ai‘t—l]t—l
Pyi1= AP, 1,1 AT +%
(¢) Update
Ry = By + Ky, — Cyp—1)
Py = Pyy—1 — KtCPyy

Algorithm 2. Kalman filter recursion for an LTI system.

Other inference tasks for which closed-form solutions exist include: fized-point
smoothing to form an estimator &, for ¢* fixed and T > t*; fized-lag smoothing
to form & for k fixed; and fized-interval smoothing to form &7 for T fixed and for
all t < T. For each of these problems, there are multiple possible algorithmic solutions.
See [89] for more details.

Relationship to Belief Propagation

As with the forward-backward algorithm, the Kalman filter and the Rauch-Tung-
Striebel variant of the Kalman smoother can be related to the belief propagation algo-
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rithm of Sec. 2.5.4. Similar derivations to the ones presented in this section will prove
useful in the derivations in Appendices D and E.

For any state space model (i.e., model with a graphical representation as in Fig. 2.8),
the following recursions exist:

p(yl"ﬂ s Yg | (I?t)

p(xe | Yy, Y1) = x p(yy | ®e)p(®s | Y1s- -5 Yem1)  (2.159)

P(Y1;---,Yy)
P(@e+1 | Y1,- oY) = /X P(®es1, Tt | Y15 - -5 Yy )dwe (2.160)
t
o</ p(xe1 | 2)p(Te | Y1,y - - - Y )T (2.161)
A}

Assuming a linear-Gaussian state space model as in Eq. (2.142), these operations can
be evaluated in closed form and simply correspond to operations on Gaussian mean and
covariance parameters. Eq. (2.159) yields the update step of the Kalman filter, while
Eq. (2.161), commonly referred to as the Chapman-Kolmogorov equation, yields the
predict step. We will utilize these generic formulations in our derivation of the Kalman
message passing algorithm.

We start by defining a forward message in a similar manner to that of the HMM
forward-backward algorithm:

i1 (®ee1) = [/X P(@e1 | we)ou(@e)dae| - p(Yeqr | Tee1)- (2.162)
t

From Eq. (2.161), we can directly infer that, as with the HMM,
ay(xe) < p(®e | Y1, Yy)- (2.163)

Assume ai(xt) ~ N~ (a:t,H{It,Atlt) where N ~1(6, A) denotes a Gaussian N(u, )
in information form with A = £7! and § = £~ !lu. We may write the integrand of
Eq. (2.162) in the following quadratic form:

p(xt1|me) o exp ——(wt+1 — Az) TS @41 — Aﬂ?t)} (2.164)
iUt+1 »-t -x1A Ty
e —ATSTl ATR-A || a
1
(@) o exp {—E(wt tlt) Al (@t 95&} (2.165)

+

T
T+l (}
Ty Gttt

-’Bt+1 0 0 Tt+1
ol a [ g

it
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Combining these terms, the integrand is given by:

1
p(xer1|xe)on(2s) o exp {—g(mt - Oflt)TAflt(mt - Bflt)} (2.166)

T -1 -1
o] 1| T X —X7A Tir1
P172| & —ATS L ATS A+ A, z;
T

Ti+1 0 }
+ 7 .

T 0 tt

Marginalizing over ;11 using the standard Gaussian marginalization identity

A
/ NP b1 , Au A dze = N1 (21;01 — A12A5y 02, A11 — Ar2AS) Agy),
X, Zo| |02] |A2r Ao

we obtain:

/ P(@e1 | @) (@e)day oc N7H(@eq1; 0041, Arer), (2.167)
X
where
i =5 AT 4 oo
A1 =571 = TTAATETT A+ A )T ATE '
We can write our likelihood term as:
1 _
P(Ypy1|®e1) o exp {_E(yt—l—l — Cxyy1) "Ry yy — Cth)} (2.169)
X exp {—%mtT_,_lCTR‘lC:ctH + a:,’;”HCTR—lytH} (2.170)

To combine these terms, we simply add the information parameters:

1 _ -
0t +1(®e41) < exp {_§$?(At,t+1 +CTR'C)zs + o] (6441 + CTR lyt+l)} :

(2.171)
Thus,
6] 11 = Oer1 + CTR 'y
= ST AT A+ A )T, + CTR My (2.172)
A = A1 +CTRIC |

t+1[t+1

=27 -5 AATS A+ A )T ATE T 4 CTRTIC,
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1. Initialize filter with

f _ p-1
Mo =Fi
fo_
60 =10

2. Working forwards in time, for each t € {1,...,T}:

(a) Compute
M, = A7TAf A7
Jy = My(M; + 271)“1
Li=1- .
(b) Predict
Ay =LeaMy LT+ J 8700,

Or10=LiaAT0[_ ),

(c) Update

Al, = A1y +CTRIC

9tf‘t =614 +CTR 'y,

Algorithm 3. Stable forward information form Kalman filter recursion.

which is equivalent to a standard update-to-update Kalman filter in information form

with &, = (A{It)_19{|t and Py, = (A{lt)'l. An equivalent form of this recursion (as-

suming A is invertible) is given by Algorithm 3.
We now examine the backward recursion. As in the HMM forward-backward algo-
rithm, let

Br(xt) = P(Ypq1s---» Y7 | T1)s (2.173)

and recursively define

Bi@) x [ vl | @b | B fen(@ndeen. (2174
t+1

Assuming OBr(xz;) ~ N _1(wT;0ng +1’A§“1T +1), an analogous derivation to that of the
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forward recursion provides the following backwards recursion:

01y = ATSTHET + CTRTIC + Ay y) HOTR Yy, + 634)
b Ty—1 Ty—1/5—1 T p—1 b \—1y—1 (2.175)
A=A STA-A ST (5T +C RCHA) 204

As in the HMM forward-backward algorithm, the posterior marginal is computed
by combining the forward and backward messages, and then normalizing:

p(xe | Y1, Y7) X op(@s) Be (). (2.176)

Replacing a;(x;) and (@) by their definitions in terms of the information parameters
Htfjtv A{!t, 055’|t+1, A2|t+1’ we have:

p(@e | Yy, yr) < N zy 9£ta Aijt)f\/*l(iﬂt; 9§t+1; A€|t+1.) (2.177)

oc N7 (@s; 0, + O 1, A, + Aby)- (2.178)

The connections between Kalman filtering and smoothing and belief propagation follow
exactly as they did for the HMM. See Eq. (2.137), replacing z, with x; and using the
definitions of a(-) and G;(-) above.

B 2.8 Markov Chain Monte Carlo

As we have seen in Sec. 2.1, Bayesian inference (e.g., prediction or computation of
posterior parameter estimates) relies on integration with respect to some potentially
high-dimensional probability distribution'2. We will generically denote this distribution
by m. Except in the simplest cases, such integrals cannot be computed in closed form.
Markov chain Monte Carlo (MCMC) methods [57,142] provide a class of algorithms
that produce estimates of the desired integral based on iterative sampling, combining
Monte Carlo integration with samples from a specially constructed Markov chain. The
key feature of these methods is that the sampling procedure does not rely on sampling
from the distribution 7, which is assumed to have an arbitrarily complex form.

H 2.8.1 Monte Carlo Integration

The first step in understanding Monte Carlo integration involves formulating the desired
integral as an expectation under the distribution 7:

/X f(@)n(z)dz = Eq[f()]. (2179)

The Strong Law of Large Numbers [46] informs us that the sample average based on
a set of independent samples z; ~ 7, i = 1,...,n, converges almost surely to the

2Frequentists rely on integration for inference as well, and the techniques described in this section
are equally well-suited to such problems. However, per the theme of this thesis, we will focus on the
Bayesian framework.
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true expectation under w. Thus, we may consider the following approximation, which
becomes arbitrarily precise for n sufficiently large:

Exf(z)] =~ % > f(=). (2.180)
i=1

The assumption of having i.i.d. samples x; can be relaxed by examination of ergodic
theory [142]. The focus of MCMC methods is to develop an ergodic Markov chain
with stationary distribution 7, which we refer to as the target distribution, such that a
sample path from this chain can be used to form the above estimate.

W 2.8.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm provides a generic method for constructing an er-
godic Markov chain, relying solely on defining a valid proposal distribution ¢(- | -) and
evaluation of the target distribution 7 up to a normalization constant. It is assumed
evaluating 7(z) is easy, but sampling from this distribution is challenging. The weak
conditions the proposal distribution must satisfy are described in Eq. (2.189)-Eq. (2.191)
to follow. The Metropolis-Hastings algorithm is outlined in Algorithm 4.

Given a previous sample z(#~1:

1. Sample 2’ ~ g(z’ | (= D).

2. Determine the acceptance probability:

(@ | x(t_l)) _ min{ 77(33,)‘1(37“71) | z') 1} .

m(zt=D)g(a’ | z(-1)’

3. Sample
2O ~ p(a | z)e + (1 — p(a | m(t_l))) Op(t-1y,

where 6, is a Dirac mass at x.

Algorithm 4. Metropolis-Hastings algorithm.

The acceptance probability p(y | z) is defined only when 7(z) > 0. However, as
long as 7(z©) > 0, the chain defined in Algorithm 4 will have 7(z®) > 0 for all t. We
use the convention that p(y | ) is 0 if both 7(z) and n(y) are zero.

To analyze the properties of the Markov chain defined by the Metropolis-Hastings
algorithm, it is useful to examine a condition known as detailed balance.

Proposition 2.8.1. Let K(y | ) = p(xn+1 = y | ©, = ) be the transition distribution
or transition kernel for a given Markov chain. If K(y | x) satisfies detailed balance:

Ky | z)m(x) = K(z | y)7(y), (2.181)
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then the chain defined by this transition kernel has stationary distribution w. A Markov
chain satisfying detailed balance is said to be reversible with respect to .

Proof. Given a chain satisfying detailed balance,

[xwiom@ie = [ K@y =) [K@|hdo=n@), (2182

implying that 7 is indeed a stationary distribution of the Markov chain. n

It is straightforward to show that the transition kernel defined by Algorithm 4
satisfies detailed balance. With probability p(y | ), the chain transitions from z to a
sample y ~ ¢(y | z); otherwise, the chain transitions back to z. Thus, the kernel is a
weighted mixture of the proposal distribution and a Dirac mass at x:

K(y | 2) = oy | 2)aly | <) + (1 ~ [tz 12)ate| x)dz) 5. (2.183)

To check the detailed balance condition of Eq. (2.181), we analyze each term of the
transition kernel separately. The Dirac mass satisfies the following equality trivially:

(1= [ ot 1 odate |01z ) dunte) = (1 [ pte wdate 1)) By, (2180

We derive the equivalence of the other term in the resulting detailed balance equation
as:

_ ) ay | o)n(2), qly|z)n(x) < q(z | y)m(y);

ply | z)q(y | z)m(z) = { oz | 1)(y). otherwise. (2.185)
=min (g(y | z)m(z),q(z | y)7(y)) (2.186)
= min (¢(z | y)7(y), q(y | )7 (x)) (2.187)
=p(z | y)g(z | y)7(y). (2.188)

Therefore, as long as

U supp ¢(- | ) D supp T, (2.189)
z€ SuUpp «

the chain defined by the Metropolis-Hastings algorithm (Algorithm 4) will satisfy de-
tailed balance and thus define a Markov chain with 7 a stationary distribution. To prove
that the Markov chain indeed converges to 7 (i.e., 7 is the unique invariant distribution
for this chain and this distribution is reached from all initial states), we invoke some
mild conditions under which the chain is both aperiodic and Harris recurrent [142].
Jointly, these conditions imply ergodicity.
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A sufficient condition for the Metropolis-Hastings Markov chain to be aperiodic is
for events z(® = (=1 to occur with some positive probability. That is,

Plr(z""D)q(y | 27D) < m(y)g(z | y)] < 1. (2.190)
Furthermore, if
qly|z) >0 V(z,y) € X x X, (2.191)

then the Metropolis-Hastings Markov chain is irreducible. It can be shown (see Lemma
7.3 of [142]) that an irreducible Metropolis-Hastings chain is also Harris recurrent. Thus,
any Metropolis-Hastings algorithm defined with a proposal distribution that satisfies
the conditions of Eq. (2.189)-Eq. (2.191) will eventually produce samples from the
stationary distribution 7 and

R AN .
lim ; Fa®) = /X f@)r@)de  ae—m . (2192)

T—oo T —

Discussion on the rate of convergence to the stationary distribution can be found in [57,
142]. In general, this burn-in period is challenging to quantify, except by conservative
bounds, and is especially challenging to assess in high-dimensional spaces. Convergence
can be greatly affected by the initialization of the Markov chain, and in practice, it is
common to run multiple chains from different initializations [50]. Multimodal target
distributions with low valleys between the modes can lead to poorly mizing chains that
stay in one region of the state space for long periods of time. Cleverly engineered
proposal distributions, such as through tempering [125], can play a significant role in
the success of a sampling algorithm.

M 2.8.3 Gibbs Sampling

The Gibbs sampler [57,142] is a special case of the Metropolis-Hastings algorithm in
which the proposed sample is always accepted. The Gibbs sampler for n random vari-
ables (x1,%2,...,Ty) is summarized in Algorithm 5, from which we see that in order
to sample from the full joint distribution on n random variables, it is sufficient to
iteratively sample from each of the possibly univariate conditional distributions. As
discussed in Sec. 2.5.2, a node in a directed graph is conditionally independent of all
other nodes given its Markov blanket. Therefore, in the case of sparse graphs, the
conditional density from which we are sampling is dependent only on a small subset of
the other sampled nodes. We note that, as opposed to Metropolis-Hastings, the Gibbs
sampler requires knowledge of the full conditional distributions and an ability to sample
from them. Additionally, this algorithm is only applicable to models with at least two
random variables.



84 CHAPTER 2. BACKGROUND

Given a previous sample (1) = (:cgt_l), ... ,xﬁf _1)), generate:
1. x&t).w pi(z1 | a:g_l), cee ,a:,(f_l)).
2. azg) ~ pa(z2 | x&t),wg_l), ... ,ng_l)).
n. x,(f) ~ pp(zn | xgt),...,xff)_l).

Algorithm 5. Multi-stage Gibbs sampling algorithm.

To ensure a reversible chain'®, which leads to a Central Limit Theorem result for
the estimator of Eq. (2.180) [142,167], the reversible Gibbs sampler performs a sweep
at every iteration from x; to z, followed by a sweep in the reverse ordering back to
z1. Another variant on the standard Gibbs sampler of Algorithm 5, as proposed by Liu
et al. [109], is to choose a random ordering for a single sweep—such an algorithm can
lead to improved rates of convergence.

To make the connection between Gibbs sampling and Metropolis-Hastings, consider
the proposal distribution at the i* step of the sampler in Algorithm 5:

gi(x' | ®) = pi(; | 21, -, Ti1, Tit1, -+ Tn)
. 6(117_“,“_17%“1_“’%)(:13'1, T Ty, T),  (2.193)
where © = (z1,...,2,) and @’ = (zf,...,2},). That is, sample z from its Markov

kernel and set each m;, J # 1, equal to ;. For this proposal, the acceptance probability
is given by:

1) = min { TN ) )

m(x)gi(x' | x)’
zmin{pz‘(xé | Z1,e ey i1, Big 1, - Tn)Pi(T5 | T1, -+, i1, Big1, - -5 Tny) 1}
pi(xi | LlyeeesLi—1sLit1ye-- ,xn)pi(x; | TlyeeryLig—1,Ljp1y--- ,:L'n)’

=1,

implying that every proposed sample is accepted. Thus, one can interpret the full set of
n steps of Algorithm 5 as a composition of n Metropolis-Hastings steps with Markovian
kernels in which each proposal has acceptance probability equal to 1. If one were to
treat all n steps of Algorithm 5 as a particular Metropolis-Hastings algorithm, the global

acceptance probability of &’ = (zf,...,z},) is typically not equal to 1. However, with

13 A non-reversible Markov chain implies that the chain does not satisfy the detailed balance condition
of Eq. (2.181). However, since detailed balance is merely a sufficient condition for 7 to be a stationary
distribution, this does not preclude 7 from being the stationary distribution of the Gibbs chain.
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the direct form of Algorithm 5 in which each step is a Metropolis-Hastings proposal
that is accepted (rather than modifying the algorithm to be a proposal distribution for
a sample '), the convergence properties must be assessed differently than they were for
the Metropolis-Hastings algorithm. In particular, each transition step does not satisfy
the sufficient conditions of Eq. (2.190)-Eq. (2.191) so the resulting Markov chain is not
necessarily irreducible. (Actually, each individual Markov kernel is never irreducible as
it is constrained to a lower dimensional subspace.)

The following proposition states that, based on a condition of ergodicity, the Markov
chain defined by Algorithm 5 indeed has stationary distribution 7, as desired. We then
provide a sufficient condition for ergodicity.

Proposition 2.8.2. If () is ergodic, then m is the stationary distribution of the
chain defined in Algorithm 5.

Proof. The kernel of the chain (z®) is
K | x) =pi(z) | 22, ..., 20)p2(2h | 21,23,y @n) -+ palay, | 20, xh_q). (2.194)

Using this kernel, one can show that

P(z' € A) = /]IA(m')IC(:c’ | 2)7(x)dz'dx

- [ rta)ia’

implying that 7 is the stationary distribution. See [142] for further details. [ |

We now state a condition for the transition kernel defined by Algorithm 5, which,
if satisfied, implies the ergodicity of the chain. Weaker conditions based on positivity
constraints on the transition kernel exist (see Theorem 10.8 of [142]), but are more
challenging to verify.

Proposition 2.8.3. If the transition kernel associated with Algorithm 5 (see Eq. (2.194))
is absolutely continuous with respect to the dominating measure, the resulting chain is
Harris recurrent.

Proof. For a proof of this result, see [167]. [ |

If one of the Gibbs steps is replaced with a Metropolis-Hastings step (i.e., a hy-
brid sampler), absolute continuity is lost and further analysis is necessary to conclude
convergence of the resulting chain. Another important consideration is the fact that
the developed Gibbs sampler does not apply to changing numbers of parameters since
such changes imply irreducibility of the resulting chain. In such variable-dimension
cases, one can instead appeal to reversible jump MCMC [60]. Both a hybrid sampler
and reversible jump MCMC are employed in an algorithm developed in Chapter 5 (see
Sec. 5.2 in particular.) However, the analysis of these techniques is beyond the scope
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of this background chapter, and we refer the interested reader to Chapters 10 and 11
of [142].

We conclude by noting that a two-stage Gibbs sampler (n = 2) has special conver-
gence properties that do not apply in the general case of Algorithm 5. Some of these
special properties arise from the fact that in the two-stage sampler, each subchain is
also Markov allowing for component-wise study, which does not carry over to the more
general case. For this two-stage sampler, instead of using the notation z1,...,z, as
before, we use x and y to denote the two random variables of the model. An outline of
the two-stage sampler is presented in Algorithm 6.

Given a previous sample z(#=1):

1. Sample y® ~ py, (y | z¢~V).

2. Sample z® ~ Dy (@ | y®).

Algorithm 6. Two-stage Gibbs sampling algorithm.

From the construction of the sampler in Algorithm 6, it is clear that (z®,y(®)
forms a Markov chain. Interestingly, so does each subsequence (z(*)) and (y®), as
previously suggested. The transition kernel for the sequence of random variables (z®)),
for example, is

K| 9) = [ by (e’ |9pyy | 2)d, (2.195)
and the marginal distribution py(-) is indeed the stationary distribution of this chain:
pele) = [ 2y’ |9y )y
— [y 19) [ pyuly | 2)pc(o)ndy
= [ [t 1oimty | 2100 prtorda
_ / K(z' | 2)pe(z)dz. (2.196)

Based on such results, interleaving Markov chain results and the duality principle [36]
apply. See Robert and Casella [142] for more details and for a full analysis of the
convergence properties of the two-stage Gibbs sampler.

B 2.8.4 Auxiliary, Blocked, and Collapsed Gibbs Samplers

In Sec. 2.8.3, we have assumed that it is feasible to sample from the full conditional
distributions of the variables of interest, and we have assumed that this sampling has
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occurred by dividing the n random variables into n sampling stages. In this section, we
explore several Gibbs sampling variants: auxiliary, blocked, and collapsed. In the aux-
iliary variable sampler, a set of auxiliary variables, which are not the random variables
of interest in the inference, are added to the sampling procedure in order to enable
closed-form sampling of the variables of interest. In some cases, one can improve the
efficiencies of the sampler by block sampling multiple random variables jointly. Finally,
collapsed Gibbs sampling involves the analytic marginalization of random variables
from the model and then sampling the remaining variables from the reduced-order con-
ditional distributions (assumed to maintain a simple, analytic form.) Each of these
methods is summarized below.

Auxiliary Variable Sampling

There are some cases in which augmenting the random variables of interest = with
auziliary variables or completion variables'® allows for closed form conditional distri-
butions for the augmented set y = {z,z}. Note that although (y{*)) forms a Markov
chain (by construction), the subchain (z®) need not. However, the subchain () still
converges to the the marginal distribution py(-) (see Theorem 10.6 of [142].) In the
standard mixture model we explore in Example 2.8.1, the completion variables z have a
physical interpretation as the mixture components that allow for Gibbs sampling of the
mixture weights {my} and mizture parameters {0 }. Estimation of the mixture weights
and parameters can then be performed by simply discarding the completion variables.

Often, the auxiliary variables are only added for a subset of the sampling stages,
and then discarded at other stages. That is, the auxiliary variables are sampled based
on the current MCMC configuration of the variables of interest, then some subset of
the variables of interest are sampled based on the sampled auxiliary variables. Finally,
the auxiliary variables are discarded when sampling the other variables of interest that
do not depend upon the auxiliary variables. Such sampling algorithms are developed
in this thesis, for example, in Sec. 5.2 and Appendix C.1.

Blocked Gibbs Sampling

There are also many scenarios in which jointly sampling variables can lead to statistical
efficiencies. Such blocked Gibbs sampling is especially useful when subsets of variables
are very strongly dependent. In such cases, large moves in the joint probability space by
standard coordinate-by-coordinate sampling may require stepping through deep valleys
in the posterior distribution that can be avoided with blocked sampling of variables.

Collapsed Gibbs Sampling

Finally, in some cases it is possible to analytically marginalize nuisance parameters
from the model and solely sample the variables of interest. In other cases, the variables

14 The choice of terminology often depends upon whether the variables added have a physical inter-
pretation in the model.
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(1) A
(6x)

1 K

N

Figure 2.11. Graphical model of a finite mixture model in which the model parameters are defined
with mixture weights 7 | v ~ Dir(y/K,...,7/K) and emission parameters ¢ ~ H,A ~ H(X). For
each of the N observations y;, a cluster assignment variable z; € {1,..., K} is sampled as z; | w ~ ,
determining the mixture component for generating observations y; | {0}, 2 ~ F(6:;).

marginalized are actually the variables of interest, and sampling occurs on a chain from
which estimates of the desired variables can be formed. See Example 2.8.1. Analytical
marginalization of variables in a Gibbs sampler, often referred to as collapsed Gibbs
sampling, can aid in improving the mixing rate, especially when the marginalized ran-
dom variables are high-dimensional as this can dramatically reduce the dimensionality
of the search space.

However, there are scenarios in which such marginalization introduces dependencies
between the remaining random variables that can actually lead to slower mixing rates.
For example, let us consider the case of the hidden Markov model (HMM) described
in Sec. 2.6. Given a sampled set of transition distributions 7; and emission param-
eters 6, one can employ a variant of the forward-backward message passing scheme
to block-sample the entire state sequence z1.7 (see Chapter 3.) On the other hand, if
one chooses to marginalize the transition distributions (assuming a conjugate Dirichlet
prior), then the state sequence no longer forms a simple Markov chain and thus block
sampling is no longer feasible—one must instead rely on sequentially sampling the state
z; conditioned on the state at all other time steps z1,...,2—1,2¢41,..., 2. Since the
temporal correlations in an HMM can be quite strong, such sequential sampling can
lead to very slow mixing rates. These mixing rate issues are examined in much further
depth in Chapter 3, with a general empirical conclusion that block sampling of strongly
dependent variables leads to more significant improvements in rates of convergence than
marginalization.

Example 2.8.1. Consider the finite mizture model of Fig. 2.11 in which each cluster
assignment variable z; € {1,...,K} indicates the mirture component associated with
observations y;. The model is defined by a set of mizture weights w distributed as

|y~ Dir(y/K,....v/K)

and emission parameters 0y, drawn as

O | HA~H(\)  k=1,... K.
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Assume we have N observations. The generative model then dictates that each for each
1 €{1,...,N}, we draw:
zi|m~w

yi | {0k}, 2 ~ F(8,).

In what follows, we assume the distribution F(0y) has an associated conditional density

S [ 0k).

Let us assume that our goal is to infer the set of model parameters consisting of the
mizture weights ® = [r1, ..., 7k and the emission parameters 8 = {6x}X_|. One cannot
simply employ a Gibbs sampler on these parameters since there do not exist closed-form
conditional distributions p(w | 0,y1,...,yn) and p(@ | ™, y1,...,yn). Instead, one
could consider a completion or auxiliary variable Gibbs sampler in which the cluster
assignment variables z1,...,zn are additionally sampled.

Let z1.y = {21,.-.,2n} and 2y = {21,--.,2i-1,2i4+1,---, 28 }. Then, one can sam-

ple each z; from

p(zi =k | z\ivylzNyﬁaa) =p(2i =k | yiaﬂ-’e)
o< T f(yi | Ok),

with the first equality following from the Markov properties implied by the graphical
model in Fig. 2.11. Conditioned on the cluster assignment variables z1.n, the mizture
weights ™ and emission parameters 0y are mutually independent. The mizture weights
can be sampled from the posterior Dirichlet distribution (see Eq. (2.74)):

N
p(m | z1v,7) = Dir(Ny + /K, ... Nk +7/K)  Np=> 6(zi,k), (2.197)
i=1

and the parameters 8 from their associated posterior (depending upon the form of the
prior H(\)):

POk | {yi | e =k}, A). (2.198)

Here, we have used the fact that the full conditional distributions for ™ and each O
simply depend upon the sampled values of the random wvariables contained within the
Markov blanket for that random variable’s node. The resulting completion Gibbs sampler
is outlined in Algorithm 7.

Alternatively, assuming the base measure H(\) is conjugate to the likelihood model
F,'% one could analytically marginalize the mizture weights ™ and emission parameters
0 and solely sample the cluster assignment variables z;. Based on a set of Gibbs samples
of z1.N, one could then estimate a set of model parameters (the variables of interest)
from the distributions given in Eq. (2.197) and Eq. (2.198).

15Conjugacy of the prior on 7 to the multinomial observations z; is already established by our choice
of a Dirichlet prior.
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Given mixture weights 7w(*"1) and emission parameters {91,(:_1)},5=1 from the previous
Gibbs iteration, sample a new set of model parameters as follows:

1. For each i € {1,..., N}, independently assign observation y; to one of the K
clusters by sampling the cluster assignment variable z; as:

e K

N ] _ §

A S fla | 605 k), = Dl fla | 607Y)
i1 k=1

2. Sample a new set of mixture weights:

N
7® ~ Dir(Ny +/K,...,Ng +7/K),  Ne=> 6(z, k)
i=1

3. For each cluster k € {1,..., K}, independently sample new parameters from the
conditional distribution implied by the observations currently assigned to that
cluster:

69 ~ p(6r | {ys | 28 = K}, \)

Algorithm 7. Completion Gibbs sampler for the finite mixture model shown in Fig. 2.11. Each
iteration resamples the cluster assignment variables for each of the N observations, and uses these
sampled values to resample a set of mixture weights and emission parameters.

Integrating over ™ and 0, the Markov structure!® of the graph in Fig. 2.11 implies
a posterior distribution on the cluster assignment variables that decomposes as:

p(2i | 26, Y18, 7, A) X (20 | 206, 7)P(Yi | 208, s M) (2.199)
Based on the Dirichlet prior, the predictive distribution of Eq. (2.75) informs us that:
Ny "' +v/K —i
plzi=k|27) = N_1t+q N = Zd(zj,k). (2.200)
J#
When considering z; = k, the likelihood term of Eq. (2.199) simplifies to:
p(yi | zi =k, 2,9\, A) = p(yi | {y | 2 = k,j # i}, ). (2.201)

Because H()) is chosen conjugate to F, Eq. (2.201) can be analytically determined.
The resulting collapsed Gibbs sampler is outlined in Algorithm 8.

6Marginalization of 7 and @ induces dependencies between the z; and y; not present in Fig. 2.11.
However, the Markov structure of the graph in Fig. 2.11 can be exploiting during the integration over
7 and @ to produce the decomposition of Eq. (2.199).
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Given a previous set of cluster assignment variables (=1 sequentially sample new
assignments as follows:

1. Set z1.y = zgtNl).

2. Sample a random permutation 7(-) of the integers {1,...,N}.

3. For each i € {7(1),...,7(N)}, resample z; as follows:

(a) For each k € {1,..., K}, determine the predictive likelihood of observation y;
based on an assignment to cluster k:

fielys) = pyi | {y; | 25 =k, 5 # i}, ).
This likelihood can be computed from a set of cached sufficient statistics
based on the results presented in Sec. 2.4.1.

(b) Sample a new cluster assignment z; as

K
i~ —Z(N" + /K fe(wid)d(zin k), Zi= ) (Ng* +4/K) frlvi),
Zi k=1 k=1

where N, * is defined as in Eq. (2.200).

(c) Update cached sufficient statistics to reflect the assignment of y; to cluster z;.

4. Set sz 1T

Algorithm 8. Collapsed Gibbs sampler for the finite mixture model shown in Fig. 2.11. Each it-
eration resamples the cluster assignment variables for each of the N observations, having analytically
marginalized the mixture weights and emission parameters.

H 2.9 Bayesian Nonparametric Methods

As motivated by the discussion of de Finetti’s theorem (Theorem 2.1.2) in Sec. 2.1, it
is theoretically desirable to consider models that are not limited to finite parameteriza-
tions, and in so doing one must define prior distributions on these infinite-dimensional
objects. Bayesian nonparametric methods avoid the often restrictive assumptions of
parametric models by defining distributions on function spaces such as that of proba-
bility measures. If suitably designed, these methods allow for efficient, data-driven pos-
terior inference. For a review of Bayesian nonparametric inference, see [120,157,178].
In the following sections, we briefly describe some classes of Bayesian nonparametric
methods: the Dirichlet process, its hierarchical extension, and the beta process.
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B 2.9.1 Dirichlet Processes

A Dirichlet process (DP) is a distribution on probability measures on a measurable
space ©. This stochastic process'” is uniquely defined by a base measure H on © and a
concentration parameter v; we denote it by DP(y, H). The Dirichlet process is formally
defined by the distributions induced on finite partitions of .

Theorem 2.9.1. Let H be a pfobability distribution on a measurable space ©, and v a
positive scalar. Consider a finite partition {A1,...,Ax} of ©:

K
Udr=0 4;nA=0,j#k (2.202)
k=1

A random probability measure Go on © is a draw from a Dirichlet process if its measure
on every finite partition follows a Dirichlet distribution:

(Go(A1),...,Go(Ak)) | v, H ~ Dir(yH(Ay),...,vH(AKk)). (2.203)

For each such base measure H and concentration parameter 7y, there exists a unique
stochastic process satisfying the above conditions, which we denote by DP (v, H).

Proof. The proof of the existence of the Dirichlet process was initially provided by Fer-
guson [41], who invoked Kolmogorov’s consistency conditions to establish the existence
of the Dirichlet process as a stochastic process with Dirichlet marginals. A more con-
structive definition of the Dirichlet process was given by Sethuraman [149]. [ |

Using Eq. (2.72) along with Eq. (2.203), it is straightforward to establish that for
any AC O,
E[Go(4) | H] = H(A)  Go|H,y~DP(y,H). (2.204)

Based on an observation ' ~ Gy that falls within an element Ay, of a given partition
{Ai,..., Ak}, one can use the Dirichlet posterior analysis results of Eq. (2.74) to show
that

(GO(Al)a “e aGO(AK)) I alaHv’Y ~ DiI’(")’H(Al), ce. aryH(Ak) +1,... 7’7H(AK))
(2.205)

Here, we note that the observation 6’ only affects the Dirichlet parameter of the arbi-
trarily small partition element Ay, in which it is contained. Formalizing such an analysis,

"In elementary probability theory, random variables are functions whose range is R, whereas more
advanced probability theory allows random variables to range over more general spaces (e.g., function
spaces, spaces of probability measures, etc.). Stochastic process theory describes these more general
random objects.
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Ferguson [41] showed that a set of independent observations 61, ...,6%, 0; ~ Go, leads
to a posterior distribution

N
1
Gol6.,. .0y H~y~DP|(y+N,——_H S |, 2.206
ol 61,0y, Hyy ('y Py +7+N;e,. (2.206)

where g denotes a unit-mass measure concentrated at §. From Eq. (2.204), we see that
for any A C O,

N
/ ' __" 1 S 6y

implying that,
Jim E[Go(A) | 65,..... 0, H,2] = 3 Biudo, (4), (2.208)
k=1

where {6;}%2, are the unique values in the set of observations {6;}:2,, and Gy is the
limiting empirical frequency of 6. Assuming the posterior concentrates about its mean,
Eq. (2.208) implies that a realization from a Dirichlet process is discrete with probability
one. Sethuraman [149] provides a formal proof of the discreteness of the Dirichlet
process random measures Gy, and connects the weights G of this atomic measure with
a constructive procedure.

Stick-Breaking Construction

Consider a probability mass function (pmf) {8}, on a countably infinite set, where
the discrete probabilities are defined as follows:

vk | v ~ Beta(1,7) k=1,2,...
k—1
(2.209)
O :ka(l—vg) k=1,2,....
=1

In effect, we have divided a unit-length stick into lengths given by the weights fx: The
kt" weight is a random proportion v; of the remaining stick after the previous (k — 1)
weights have been defined. This stick-breaking construction is generally denoted by
B ~ GEM(y). Sethuraman [149] showed that with probability one, a random draw
Go ~ DP(v,H) can be expressed as

Go=) Bds, Ok|H~H, k=12, .., (2.210)
k=1

From this definition, we see that the Dirichlet process actually defines a distribution
over discrete probability measures. The stick-breaking construction also gives us insight
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into how the concentration parameter v controls the relative proportion of the weights
Br-

Alternative stick-breaking processes have been studied for cases in which the weights
vy, are drawn from a more general Beta(ay, br) distribution [72,74]. When considering
a two-parameter (a,b) family with ax = 1 — a and by = b + ka, one arrives at the
Poisson-Dirichlet, or Pitman-Yor, process [137]. This process has heavier-tailed weight
distributions than the Dirichlet process that have proven useful in applications such as
natural language processing [58, 160], in which word frequencies closely follow a power-
law.

Pdlya Urn Predictions

The Dirichlet process has a number of properties which make inference based on this
nonparametric prior computationally tractable. Once again, consider a set of observa-
tions {6/},

0; | Go ~ Go. (2.211)
Because probability measures drawn from a Dirichlet process are discrete, there is a
strictly positive probability of multiple observations ¢; taking identical values within the
set {0k}, with 6, defined as in Eq. (2.210). Blackwell and MacQueen [18] introduced

a Pélya urn representation of the 8] that results from integrating over the underlying
random measure Gq (distributed as in Eq. (2.204)):

i—1

T v 1
/ 0~ H S 2.212
9z|91a 10i1 y+i—1 +;7+i—15‘9j ( )
K
v N
~—" H . 2.21
v+i—1 +;'r+i—160k 2:219)

The second line is an equivalent representation of the first, but in terms of the unique set
of parameter {0;}72,, with N;, denoting the number of times each of these parameters
was observed in the set {6/} ;.

A formal argument is presented in [18]. We can informally begin to justify Eq. (2.213)
by once again considering Eq. (2.207). We first rewrite this expectation in terms of the
unique parameters 6,

o0

B(Go(4) |6f,....0h o) = T H(A) + — > M4 @24

Taking A to be the singleton set {0}, Eq. (2.214) implies that the marginal posterior

probability of @y, = 6 for all k such that N, > 0 is proportional to Nj, the number

of times this parameter was previously observed. New parameter values are observed
with probability proportional to +.

The representation of Eq. (2.213) can be used to sample observations from a Dirichlet

process without explicitly constructing the random probability measure Gy ~ DP(y, H).
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Chinese Restaurant Process

For each value 6/, let z; be an indicator random variable that picks out the unique value
0;. such that

0, =0,,. (2.215)

Eq. (2.213) implies the following predictive distribution on the indicator random vari-
ables:

K
1
p(zN+1 = 2| 21,...,2N,7) = NZ— 75(Z,K +1)+ Nto ZN@(z,k), (2.216)
k=1

where Ny = S°N | 6(z;, k) is the number of indicator random variables taking the value
k, and K + 1 is a previously unseen value.

The distribution on partitions induced by the sequence of conditional distributions
in Eq. (2.216) is commonly referred to as the Chinese restaurant process. The analogy,
which is useful in developing various generalizations of the Dirichlet process we consider
in this thesis, is as follows. Take 6/ to be a customer entering a restaurant with infinitely
many tables, each serving a unique dish ;. Each arriving customer chooses a table,
indicated by z;, in proportion to how many customers are currently sitting at that table.
With some positive probability proportional to 7y, the customer starts a new, previously
unoccupied table K +1. From the Chinese restaurant process, we see that the Dirichlet
process has a reinforcement property that leads to a clustering at the values 6.

Number of Unique Observed Values

From Eq. (2.216) we see that when
zi|B~0 B v~ GEM(y), (2.217)

we can integrate out 3 to determine a closed-form predictive distribution for z;. We
can also find the distribution of the number of unique values of z; (i.e., the number
of occupied tables in the Chinese restaurant process) resulting from N draws from the
measure 8. Letting K denote the number of unique values of {z1,...,zx}, Antoniak
[5] derives this distribution to be:

p(K | N,v) = %S(N, K)ny, (2.218)

where s(n,m) are unsigned Stirling numbers of the first kind [1].
Using Eq. (2.218), Antoniak [5] also observes that

N
E[K | N,] ~ vlog (13;—) (2.219)

implying that the number of occupied tables in the Chinese restaurant process ap-
proaches (almost surely) vlog(N) as N — oo.
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M 2.9.2 Dirichlet Process Mixture Models

The Dirichlet process is commonly used as a prior on the parameters of a mixture
model with a random number of components. Such a model is called a Dirichlet process
mizture model and is depicted as a graphical model in Fig. 2.12(a)-(b). To generate
observations, we choose
0; | Go ~ Go
Yi | 6; ~ F(6;)

for an indexed family of distributions F'(-). This sampling process is also often described
in terms of the indicator random variables z;; in particular, we have

zi|B~p
Yi | {ek}io:bzi ~ F(Oza;)'

The parameter with which an observation is associated implicitly partitions or clusters
the data. In addition, the Chinese restaurant process representation indicates that the
Dirichlet process provides a prior that makes it more likely to associate an observation
with a parameter to which other observations have already been associated. This re-
inforcement property is essential for inferring finite, compact mixture models. It can
be shown under mild conditions that if the data were generated by a finite mixture,
then the Dirichlet process posterior is guaranteed to converge (in distribution) to that
finite set of mixture parameters [75]. See Sec. 6.2.5 for further discussion of the vari-
ous asymptotic guarantees that have been established for models employing Dirichlet
process priors.

(2.220)

(2.221)

Limit of Finite Mixture Models

We can also obtain the Dirichlet process mixture model as the limit of a sequence of
finite mixture models, such as the one analyzed in Example 2.8.1. Let us assume that
there are L components in a finite mixture model and we place a finite-dimensional,
symmetric Dirichlet prior on these mixture weights:

B |~ ~ Dir(v/L,...,v/L). (2.222)

Let G = 25:1 Br0s, - Then, it can be shown [74, 76] that for every measurable function
[ integrable with respect to the measure H, this finite distribution G§ converges weakly
to a countably infinite distribution Gy distributed according to a Dirichlet process. That
is,

/ (6)dcE6) 2 / £(0)dGo(0), (2.223)
[} /]

as L — oo for Go ~ DP(v,H). One can begin to justify this result by considering
the K-component mixture model of Example 2.8.1 and taking the limit as K — oo of
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(8) A

N]|
(a)

Figure 2.12. Dirichlet process (left) and hierarchical Dirichlet process (right) mixture models rep-
resented in two different ways as graphical models. (a) Indicator variable representation in which
Bly ~ GEM(), 6kx|H, X ~ H(X), 2|8 ~ 3, and yi|{0x}R=1, 2i ~ F(8,). (b) Alternative representation
with Go|H,y ~ DP(vy, H), 0:|Go ~ Gy, and y;|0; ~ F(6;). (c) Indicator variable representation in
which 3|y ~ GEM(%), mk|a, 3 ~ DP(a, 8), Ok |H, A ~ H(X), zji|mj ~ mj, and y;:[ {0k }xZ1, 2ji ~ F(6:;,).
(d) Alternative representation with Go|H,v ~ DP(v,H), G;|Go ~ DP(a,Go), 6,;|G; ~ G;, and
y;i|@5: ~ F(8};). The “plate” notation is used to compactly represent replication [162].

Eq. (2.200), resulting in:

Nkui
N-1+¢
for each instantiated cluster k. The probability of generating a new cluster is given the
remaining mass /(N — 1 + v). Comparing these probabilities with those defined by
Eq. (2.216) (using exchangeability to treat z; as if it were the last observation), we see
the equivalence of both predictive distributions.

In some scenarios, such as one we examine in Chapter 3, it is desirable to maintain a
finite approximation to the Dirichlet process mixture model. One approach to producing
such a finite approximation is simply to terminate the stick-breaking construction after
some portion of the stick has already been broken and assign the remaining weight to a
single component. This approximation is referred to as the truncated Dirichlet process.
Another method, motivated by the convergence guarantee of Eq. (2.223), is to consider
the degree L weak limit approzimation to the Dirichlet process [76],

GEM (a) £ Dir(a/L,...,a/L), (2.225)

plzi = k | 24,7) = (2.224)

where L is a number that exceeds the total number of expected mixture components.
Both of these approximations, which are presented in [74, 76], encourage the learning of
models with fewer than L components while allowing the generation of new components,
upper bounded by L, as new data are observed. The two choices of approximations are
compared in [102], and little to no practical differences are found.
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B 2.9.3 Hierarchical Dirichlet Processes

There are many scenarios in which groups of data are thought to be produced by related,
yet distinct, generative processes. For example, take a sensor network monitoring an
environment where time-varying conditions may influence the quality of the data. Data
collected under certain conditions should be grouped and described by a similar, but
different model from that of other data. The hierarchical Dirichlet process (HDP)
[162] extends the Dirichlet process to such scenarios by taking a hierarchical Bayesian
approach: the group-specific distributions G, with

G; | Go,a ~ DP(e, Gp), (2.226)

are tied together via a global base measure Gy, which is itself given a Dirichlet process
prior:

Go | H,y ~DP(v,H), (2.227)
As given by Eq. (2.204), for every A C O,
E[G;(A) | Go] = Go(A). (2.228)

In this sense, we can interpret G as an “average” distribution across all groups. Below,
we demonstrate that this specific choice of hierarchy implies that atoms are shared not
only within groups, but also between groups, as desired. The HDP is depicted as a
graphical model in Fig. 2.12(c)-(d).

Stick-Breaking Representation

Let {yj1,---,Y;jn;} be the set of observations in group j. We assume there are J
such groups of data. Then, replacing each Dirichlet process random measure with its
associated stick-breaking representation (see Eq. (2.210)), the generative model can be
written as:

Go = > pey Brde, B v~ GEM(y)
6 | A~ HQ) k=1,2,...

Gj = X _¢21 Tjeder, 7ila~GEM(a) j=1,...,J (2.229)
0% | Go ~ Go t=1,2,... ’

See Fig. 2.12(d).
From this formulation, we clearly see how placing a Dirichlet process prior on Gg
creates a shared (and unbounded) support for each of the group-specific distributions
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G;. Namely, each group-specific set of support points 67, are drawn from the collection
of atomic masses of Gy. Thus, there exists non-zero probability that different G; share
support points. If Gy were instead absolutely continuous with respect to Lebesgue
measure, there would be zero probability of the group-specific distributions having
overlapping support.

Chinese Restaurant Franchise and the associated Table-Dish Representation

Teh et al. [162] have described the marginal probabilities obtained from integrating over
the random measures Gy and G;. They show that these marginals can be described
in terms of a Chinese restaurant franchise (CRF) that is an analog of the Chinese
restaurant process. The CRF is comprised of J restaurants, each corresponding to an
HDP group, and an infinite buffet line of dishes common to all restaurants. The process
of seating customers at tables, however, is restaurant specific. To build up to this CRF,
and to lay the foundation for modifications we make in Chapter 3, we first present the
generative process in terms of indicator random variables being drawn from the stick-
breaking measures (3 and 7; leading to a table-dish representation of the HDP. We then
marginalize these random measures to obtain the CRF.

More formally, we introduce indicator variables ¢;; and kj; to represent table and
dish assignments. There are J restaurants (groups), each with infinitely many tables
(clusters) at which customers (observations) sit. Each customer is pre-assigned to a
given restaurant determined by that customer’s group j. The table assignment for the
ith customer in the j restaurant is chosen as tj; ~ 7;, and each table is assigned a dish
(parameter) via kj; ~ . One can think of 3 as a set of ratings for the dishes served in
the buffet line. Observation y;; is then generated by global parameter

05 = 01, = Ok, .- (2.230)
The generative model for this table-dish representation is summarized below and is
depicted as a graphical model in Fig. 2.13:

kje | B~ B
ty; | T~ T (2.231)
yyi | {0k 3820, {Rje 321, i ~ F (O, )-

Marginalizing over the stick-breaking measures 7; and 3 yields the following pre-
dictive distributions that describe the CRF:
T;
p(tji | tjl, ce ,tji_ha) (6.8 Zﬁjt(s(tjht) + Ot(S(tji,Tj + 1)

t=1
- (2.232)

plkjt | By ko kg1 kg, kiee1,y) o Y md(kye, k) + 78(kse, K + 1),
k=1
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Figure 2.13. Graph of Chinese restaurant franchise (CRF). Customers y;; sit at table t;;|7; ~ ;.
The first customer at each table chooses a dish kj|3 ~ 3.

where m. = Zj mjx and k; = {kj1, ...,ijj}. Here, 7j; denotes the number of cus-
tomers in restaurant j sitting at table ¢, m;; the number of tables in restaurant j
serving dish k, T; the number of currently occupied tables in restaurant j, and K the
total number of unique dishes being served in the franchise. We note that m.; is a
pooling of the number of tables serving dish k£ in each of the individual restaurants,
from which we see the sharing induced by the defined hierarchical model.

Eq. (2.232) implies that upon entering the j* restaurant in the CRF, customer
yji sits at currently occupied tables ¢;; with probability proportional to the number of
currently seated customers, or starts a new table T; + 1 with probability proportional
to a. Whenever a customer is the first customer to sit at a table in any of the J
restaurants, that customer goes to the buffet line and picks a dish kj;; for their table,
choosing the dish with probability proportional to the number of times that dish has
been picked previously by any table in the franchise, or ordering a new dish Ay .1 with
probability proportional to . The intuition behind this predictive distribution is that
integrating over the dish ratings [ results in customers making decisions based on the
observed popularity of the dishes.

Compressed Indicator Variable Representation

Since each distribution G is drawn from a Dirichlet process with a discrete base measure
Go, multiple 67, may take an identical value 6 for multiple unique values of ¢, implying
that multiple tables in the same restaurant may be served the same dish, as depicted
in Fig. 2.14. We can write G; as a function of these unique dishes [162]:

Gy =Y mirde,. m;|a,8~DP(a,B), Ox|H~H, (2.233)
k=1
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Figure 2.14. Chinese restaurant franchise (CRF) with J = 2 restaurants. The currently occupied
tables each choose a dish 6};|G; ~ G}, where G;|Go,a ~ DP(a, Go) is a discrete probability measure so
that multiple tables may serve the same dish. Since G: has overlapping support with G2, parameters
(i.e., dishes) are shared between restaurants.

where 7; now defines a restaurant-specific distribution over dishes served rather than
over tables, with

Tik= Y Tt (2.234)

Let z;; be the indicator random variable for the unique dish eaten by customer y;;,
so that zj; = kjt;;. A third equivalent representation of the generative model is in terms
of these indicator random variables:

iy | @, 3 ~ DP(a, )
Zji | 5~ Ty (2235)
Yii | {0k}, Zji ~ F(ezji)!
and is shown in Fig. 2.12(c).

Limit of Finite Mixture Models

As with the Dirichlet process, the HDP mixture model has an interpretation as the
limit of a finite mixture model. Placing a finite Dirichlet prior on 3 induces a finite
Dirichlet prior on 7; (using Eq. (2.203) and the fact that 7; ~ DP(a, 3)):

81 ~Dir(+/L, .., /L) (2.236)
5 ‘ aaﬂ ~ Dir(aﬁla . -1aﬁL)‘

As L — oo, this model converges in distribution to the HDP mixture model [162].
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H 2.9.4 Beta Process

In Sec. 2.9.1, we described how the Dirichlet process, and its hierarchical extension,
are useful in clustering applications (i.e., when it is assumed that the collection of
observations are partitioned into a discrete set of classes, each described by a single
parameter.) However, in many applications it is more appropriate to associate each
observation with a binary feature vector indicating the set of parameters that describe
the observation. For the clustering application, this vector would simply have a single
1 in the location corresponding to the index of the observation’s cluster.

When given a large collection of observations, each described by multiple features, it
is useful to consider a featural model that induces sparsity in the feature space by encour-
aging sharing of features among the observations. Analogous to the Dirichlet process
inducing the Chinese restaurant process (CRP) clustering model with an unbounded
number of clusters, we explain how a different stochastic process—the beta process—
underlies the Indian buffet process (IBP) [62] featural model with an unbounded number
of possible features!8. Here, instead of associating a customer with a single dish as in
the CRP, each customer of the IBP chooses a collection of dishes. And, just as the
CRP encouraged the use of a sparse subset of the infinite collection of possible clusters,
the IBP encourages the use of a sparse subset of the infinite feature space.

The Beta Process - Bernoulli Process Featural Model

The beta process [67,161] is a stochastic process within the class of completely random
measures [95, 96]; that is, evaluating a draw from a beta process over disjoint sets results
in measures that are independent random variables. The definition of a completely
random measure implies that the realizations are discrete, and thus described by a
weighted collection of atoms, just as in the case of the Dirichlet process. We note,
however, that Dirichlet process does not produce completely random measures since
the weights of its realizations are constrained to sum to 1 (i.e., they are probability
measures), inducing dependencies between the measures over disjoint sets. One can
instead show [95] that Dirichlet process realizations are obtained by normalizing the
completely random measures generated by the gamma process.

Consider a probability space O, and let By denote a finite base measure on © with
total mass By(©) = a. Supposing first that By is absolutely continuous with respect to
the dominating measure, we define the following Lévy measure [93,106] on the product
space [0,1] x ©:

v(dw,df) = cw™ (1 — w)* LdwBy(dA) (2.237)

Here, ¢ > 0 is a concentration parameter; we denote such a beta process by BP(c, By).

189pecifically, the beta process is the de Finetti mixing distribution underlying the Indian buffet pro-
cess (IBP), just as the Dirichlet process is the de Finitti distribution underlying the Chinese restaurant
process. Historically, the IBP was introduced first by Griffiths and Ghahramani [62], who noted the
exchangeability of the feature vectors. From Theorem 2.1.2, exchangeability implies there must exist
an underlying measure yielding the feature vectors i.i.d.. As derived by Thibaux and Jordan [165], this
measure is distributed according to the beta process.
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Figure 2.15. (a) Top: A draw B from a beta process is shown in blue, with the corresponding
cumulative distribution in red. Bottom: 50 draws X; from a Bernoulli process using the beta process
realization. Each blue dot corresponds to a coin-flip at that atom in B that came up heads. (b) An
image of a feature matrix associated with a realization from an Indian buffet process with a = 10. Each
row corresponding to a different customer, and each column a different dish. White indicates a chosen
feature.

A draw B ~ BP(c, By) is then described by

B= Zwkagk, (2.238)
k=1
where (w1,61), (w2,62),... are the set of atoms in a realization of a non-homogeneous

Poisson process with rate measure v. This set is necessarily infinite, as v has infinite
mass. However, because v is o-finite, Campbell’s theorem [96] guarantees that for o
finite, B has finite expected measure.

For a base measure By containing atoms, the definition of the beta process measure
B must be altered. Let gx € (0,1) denote the mass of the k" atom. A sample B ~
BP(c, By) necessarily contains this atom, with associated weight

wy ~ Beta(cg, c(1 — qi)). (2.239)

The overall realization B is then the sum of independent contributions from the con-
tinuous and discrete components of By. For an example realization and its associated
cumulative distribution, see Fig. 2.15.

The beta process is conjugate to a class of so-called Bernoulli processes [165], de-
noted by BeP(B). A realization

X; | B ~BeP(B), (2.240)

with B an atomic measure (i.e., having a representation as in Eq. (2.238)), is a collection
of unit mass atoms on © located at some subset of the atoms in B. In particular, for
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each atom 0, in Eq. (2.238), we independently sample'®
fir ~ Bernoulli(wg) (2.241)

and then set

Xi=Y_ fbo, (2.242)
k

Example realizations of X; ~ BeP(B), with B a draw from a beta process, are shown
in Fig. 2.15(a).

For continuous measures B, we draw L ~ Poisson(B(0)) and then independently
sample a set of L atoms 6; ~ B(©)™1B. The Bernoulli realization is then given by:

L
X; = 2592. (2'243)
=1

In many applications, we interpret the atom locations 03 as a shared set of global
features. A Bernoulli process realization X; then determines the subset of features
allocated to object i:

B| By, c ~ BP(c, By)

2.244
X;|B~BeP(B), i=1,...,N. (2.244)

Because beta process priors are conjugate to the Bernoulli process [165], the posterior
distribution given N samples X; ~ BeP(B) is a beta process with updated parameters:

N
c 1
B|Xi,...,Xn,By,c~ BP B E ; .
I 1 y AN, Dp,C <C+N7'C+N O+C+Ni:1XZ) (2245)
=BP|c+N,——B +m§j e _s, (2.246)
N e+ N O k_lc—f—Ne’“ '

Here, my, denotes the number of objects X; that select the k** feature 6. For simplicity,
we have reordered the feature indices to list first the K, features used by at least one
object.

The Indian Buffet Process

Computationally, Bernoulli process realizations X; are often summarized by an infinite
vector of binary indicator variables f; = [fi1, fi2,...], where fix = 1 if and only if
object ¢ exhibits feature k. As shown by Thibaux and Jordan [165], marginalizing over

9One can visualize this process as walking along the atoms of a discrete measure B and, at each
atom 6y, flipping a coin with probability of heads given by wg.
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the beta process measure B, and taking ¢ = 1, provides a predictive distribution on
indicators equivalent to the Indian buffet process (IBP) of Griffiths and Ghahramani
[62].

The IBP is a culinary analogy inspired by the Chinese restaurant process, which is
itself the predictive distribution on partitions induced by the Dirichlet process [162].
The Indian buffet consists of an infinitely long buffet line of dishes, or features. The first
arriving customer, or object, chooses Poisson(a) dishes. Each subsequent customer 4
selects a previously tasted dish k with probability my /i proportional to the number of
previous customers my to sample it, and also samples Poisson(c/i) new dishes. The
image of a feature matrix realization from an IBP with a = 10 is shown in Fig. 2.15(b).
Each row corresponding to a different customer, and each column a different dish.
White indicates a chosen feature.

To derive the IBP from the beta process formulation described above, we note that
the probability X; contains feature 6 after having observed Xi,...,X;-1 is equal to
the expected mass of that atom:

p(fie =11 X1,..., Xiz1) =Epix;,.x,, [P(fik = 1| B)] = Epixy,.. x,_, [wk],  (2-247)

where our notation Ep[-| means to take the expectation with respect to the distribution
of B. Using the posterior distribution defined in Eq. (2.246), we consider the discrete
and continuous portions of the base measure separately. The discrete component is a

collection of atoms at locations 61, ...,0k, , each with weight
my
= — 2.248
k c+i—1 ( )
where K is the number of unique atoms present in Xj,...,X;—1. For each of the
currently instantiated features k € {1,..., K;}, we have
wr ~ Beta((c+7— 1)gg, (c+i—1)(1 — qx)) (2.249)

such that the expected weight is simply gk, implying that the i** object chooses one
of the currently instantiated features with probability proportional to the number of
objects that already chose that feature, mg. We now consider the continuous portion

of the base measure,
c

—By. 2.250
c+i—17° ( )
The Poisson process defined by this rate function generates
c c
Poi ————By(0) | = Poi _ 2.251
oisson (c+1l— ] o )) oisson (C—H'— 1a> ( )
new atoms in X; that do not appear in Xq,..., X;_1. Following this argument, the first

object simply chooses Poisson(a) features. If we specialize this process to ¢ = 1, we
arrive at the Indian buffet process of Griffiths and Ghahramani [62].

Just as with the Dirichlet process, hierarchical extensions [165] and stick-breaking
constructions [163] of the Indian buffet process have been developed. However, we will
not utilize such constructions in this thesis, so we omit the details of these processes.
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Chapter 3

The Sticky HDP-HMM

IDDEN Markov models (HMMs) have been a major success story in many applied

fields; they provide core statistical inference procedures in areas as diverse as
speech recognition, genomics, structural biology, machine translation, cryptanalysis and
finance. Even after four decades of work on HMMs, however, significant problems
remain. One lingering issue is the choice of the cardinality of the hidden state space.
While standard parametric model selection methods can be adapted to the HMM,
there is little understanding of the strengths and weaknesses of such methods in this
setting, and practical applications of HMMs often fix the number of states using ad hoc
approaches.

Recently, Teh et. al. [162] presented a Bayesian nonparametric approach to HMMs
in which a stochastic process, the hierarchical Dirichlet process (HDP), defines a prior
distribution on transition matrices over countably infinite state spaces. The resulting
HDP-HMM is amenable to full Bayesian inference; in particular it is possible to compute
and sample from posterior distributions over the number of model states. Moreover,
this posterior distribution can be integrated over when making predictions, effectively
averaging over models of varying complexity. The HDP-HMM has shown promise in a
variety of applications, including visual scene recognition [97], music synthesis [68], and
the modeling of genetic recombination [186] and gene expression [10].

One serious limitation of the standard HDP-HMM is that it inadequately models
the temporal persistence of states. This problem arises in classical finite HMMs as well,
where semi-Markovian models are often proposed as solutions. However, the problem is
exacerbated in the nonparametric setting, in which the Bayesian bias towards simpler
models is insufficient to prevent the HDP-HMM from giving high posterior probability
to models with unrealistically rapid switching. As demonstrated in Fig. 3.1, HDP-HMM
sampling algorithms often create redundant states and rapidly switch among them.

To illustrate the seriousness of this issue, let us consider a challenging application
that we revisit in Sec. 3.4. The problem of speaker diarization involves segmenting
an audio recording into time intervals associated with individual speakers [185]. This
application seems like a natural fit for the HDP-HMM, as the number of true speakers
is typically unknown, and may grow as more data are observed. However, this is not a
setting in which model averaging is the goal; rather, it is critical to infer the number
of speakers as well as the transitions among speakers. As we show in Sec. 3.4, the
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Figure 3.1. (a) Multinomial observation sequence; (b) true state sequence; (c)-(d) estimated state
sequence after 30,000 Gibbs iterations for the original and sticky HDP-HMM, respectively, with errors
indicated in red. Without an extra self-transition bias, the HDP-HMM rapidly transitions among
redundant states.

HDP-HMM'’s tendency to rapidly switch among redundant states leads to poor speaker
diarization performance.

In contrast, the methods we develop in Sec. 3.1 provide a general solution to the
problem of state persistence in HDP-HMMSs, and, along with other model extensions,
yield a state-of-the-art speaker diarization method. The success on this challenging
dataset is a profound demonstration of the efficacy of our methods for practical appli-
cations. The approach is easily stated—we simply augment the HDP-HMM to include
a parameter for self-transition bias, and place a separate prior on this parameter. The
challenge is to execute this idea coherently in a Bayesian nonparametric framework.
Earlier papers have also proposed self-transition parameters for HMMs with infinite
state spaces [11, 186], but did not formulate general solutions that integrate fully with
Bayesian nonparametric inference.

Another goal of this chapter, which we explore in Sec. 3.3, is to develop a more
fully nonparametric version of the HDP-HMM in which the emission distribution (the
conditional distribution of observations given states) as well as the transition distribu-
tion is treated nonparametrically. This is again motivated by applications—classical
applications of HMMs often find it necessary to use finite Gaussian mixtures as emis-
sion distributions in order to cope with multimodality. In the nonparametric setting
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it is natural to replace these finite mixtures with Dirichlet process mixtures (or with
hierarchical Dirichlet process mixtures so as to tie emission distributions across states).
Unfortunately, this idea is not viable in practice, because of the tendency of the HDP-
HMM to rapidly switch between redundant states. By incorporating an additional
self-transition bias, however, it is possible to make use of Dirichlet process mixtures for
the emission distributions.

An important reason for the popularity of the classical HMM is its computational
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