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Abstract

Stray load loss refers generally to the sources of induction machine loss not accounted

for by typical calculations of primary or secondary copper loss, no load core loss,
or friction and windage loss. Harmonic rotor bar currents from the non-sinusoidal

distribution of the slotted stator winding contribute significant stray load loss. Rotor

bars, especially on cast rotors for machines under fifty horsepower (37.3 kW), can be

skewed, helically twisted from one end to the other, to reduce loss, torque, and noise

from alignment of rotor and stator slots and from harmonic rotor currents. Inter-

bar currents flowing circumferentially through the laminations between skewed and

non-insulated rotor bars can significantly increase stray load loss.

Presented equations adjust the effective rotor resistance and skew factor of the

extended per-phase induction machine equivalent circuit model in order to account for

the impact of inter-bar currents. The average value of resistance between neighboring

rotor bars significantly impacts calculations of rotor bar and inter-bar current and loss

and has been determined for a number of measured rotors. Rotors fit into one of two

distinct categories where either the bar-to-lamination contact resistance dominates

the inter-bar resistance or the total resistance divides more equally between values of

bar, lamination, and contact resistance.
Performance calculations using the adjusted equivalent circuit model are verified

theoretically against previous calculation methods and experimentally by comparison

to measured test results including variations in rotor skew, conductor conductivity,
and inter-bar resistance. A number of different cast copper and aluminum five and

ten horsepower test induction motors performed differently than originally predicted

and variably between nominally identical machines. Inter-bar currents are part of the

cause of both the variation and additional losses measured on these machines. The

adjusted equivalent circuit equations improve estimations of motor performance and

allow identification of means to increase machine efficiency by minimizing the stray

load loss due to inter-bar currents.

Thesis Supervisor: James L. Kirtley, Jr.
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This investigation began within a program developing copper rotor casting in an ef-

fort to explain why a number of different cast copper and aluminum five and ten

horsepower induction motors performed differently than predicted, with lower than

expected efficiency from increased stray load loss and variation between nominally

identical machines. Calculations under-predicted stray load losses on both cast cop-

per and cast aluminum rotors with skew. Inter-bar currents are a likely contributor

to both the variation and additional losses measured on these machines. Traditional

induction motor analysis assumes insulated rotor conductors. Inter-bar currents flow-

ing between, instead of along, the rotor bars can alter the coupling between rotor and

stator as well as the distribution of rotor current and loss. These cross currents be-

tween bars depend on the induced rotor voltage, bar impedance, rotor skew, and total

impedance between bars which is often dominated by the bar-to-lamination contact

resistance. The value of contact resistance can depend on the rotor geometry, material

properties, and the casting process, varying both from one bar to the next on a given

machine as well as between average values from motor to motor. Measurements will

show significantly lower bar-to-core contact resistance for the cast copper compared

to the cast aluminum machines. The design of the bar, or associated casting param-

eters, also appear to impact the contact resistance value. This thesis examines the

ability of inter-bar currents to account for the differences between motor predictions

and measured performance results as well as the variation in test results between



individual rotors.

Decreased efficiency due largely to increased full load stray loss was one significant

rotor variation. Stray loss refers generally to any induction machine loss not accounted

for by the standard calculations of primary copper loss, secondary copper (or slip)

loss, core loss measured at no load, or friction and windage. Typically, stray load loss

accounts for around two percent of the total input power of induction motors rated

under fifty horsepower (37.3 kW), and several times this amount can be measured in

extreme cases. Even these losses of a relatively small magnitude can be important

both for the performance of individual machines as well as the aggregate power loss

of the millions of electric motors in operation. Minimizing stray loss from inter-bar

currents flowing circumferentially through the laminations between rotor conduct-

ing bars can slightly increase induction machine efficiency on skewed machines with

imperfect bar insulation. Adjusting traditional induction machine equivalent circuit

equations to account for total rotor bar and inter-bar losses can improve predicted

values of stray loss. The adjusted calculations include the dependence of bar and

inter-bar losses on bar-to-lamination contact resistance, rotor bar conductivity, and

rotor bar skew. These approximate calculations allow improved, more general per-

formance predictions as well as identification of means to increase machine efficiency

by minimizing the stray loss due to inter-bar currents.

1.1 Motivation for Maximizing Efficiency

There are practical reasons beyond the interesting engineering challenge for attempt-

ing to wring out an additional percent or two from already efficient machines. An

increase in efficiency of only a few percent can help to reach minimum required effi-

ciency levels, to provide economic benefits to both motor manufacturers and owners,

and to achieve significant net environmental benefits from avoided fossil fuel con-

sumption.

With millions of motors in use, even small individual improvements can add up.

Driving devices like pumps, belts, fans, and compressors, induction motors transform



significant amounts of energy in industrial and manufacturing applications as well as

behind the scenes in refrigeration and building heating, ventilation, and air condition-

ing. Surveys of industrial, commercial, and residential electric motors in 1998 and

1999 estimated that around fifty percent of all of the electricity in the United States

is consumed in electric motors. [1, 2] Similar figures have also been published for other

industrialized nations.[3] The United States consumed almost 4.2 trillion megawatt

hours of electric power in 2007 according to Department of Energy statistics, and

the world wide estimate for 2007 is around 18 trillion kilowatt hours per year. More

than two-thirds of this energy is produced by burning fossil fuels, primarily coal and

natural gas.[4]

Governments and manufacturing organizations have recognized the potential ben-

efits from small improvements in electric motor efficiency. The Energy Policy Act

passed by the US Congress in 1992 set minimum required nominal full load efficiency

levels for general purpose motors manufactured after October 24, 1997. The European

Union likewise developed an electric motor classification scheme in 1999 to promote

energy efficiency by specifying efficiency levels from the least efficient EFF3 to the

most efficient EFF1. The National Electrical Manufacturers Association, NEMA, also

publishes motor efficiency standards. Prior to the EPACT requirements, NEMA had

classified "energy efficient" motors using similar minimum efficiency levels, ranging

from 70% to 95.8% depending on motor size and type. NEMA has since established a

"Premium Efficiency" designation for even higher efficiency motors ranging from 77%

to 96.2% for 1 to 500 hp machines. The "Premium" labeling program is intended to

help purchasers more easily identify high efficiency machines that can reduce power

consumption, operating costs, and pollution from the avoided power generation.[5]

With minimum motor efficiency standards required by governments or supported by

manufacturing organizations, reducing stray loss can provide an alternative to com-

pletely redesigning an existing machine to achieve a small efficiency improvement.

Higher efficiency motors also provide a competitive edge among manufacturers

and can be sold at higher prices for potentially greater profit. List prices for 10

hp motors available on line in 2007 varied with the frame size and the number of



poles (or motor speed) but generally ranged from around $700 to $1700. For these

machines, an increase in motor efficiency of less than 3% corresponded to roughly a

$300 increase in list price. With rising energy prices, the additional expense of higher

efficiency machines can be more than offset by reduced operating costs. Increased

efficiency can also potentially prolong a motor lifespan if the reduced loss results in

a lower average operating temperature.

As environmental, political, and economic considerations fuel demand for ever

higher efficiency machines, efficiency gains of only a few percent can be a significant

improvement on an already good design, with the potential for substantial aggregate

savings.

1.2 Stray Loss

For typical machine designs, about a percent or two of the total input power is

attributed to "stray" losses, generally understood as the difference between input and

output power not included in the fundamental frequency stator and rotor conductor

losses, the no load iron loss, or the friction and windage loss. These losses range from

1.7% to 6.3% of the total input power (about 10% up to 27% of the total losses) on

the 29 different cast 5 hp rotors measured as part of this project. Similarly, induction

machine guru P.L. Alger found that typically, "[in practice] the stray-load loss may be

between 1 and 3 percent of the full-load input, or higher in poorly designed motors." [6]

The 2004 IEEE 112 Standard Test Procedure for Polyphase Induction Motors and

Generators lists values of stray-load loss to be assumed in common situations ranging

from 1.8% percent of the rated load for machines less than 90 hp to 0.9% for 1851 hp

and larger.[7]

Investigation into the source of stray losses have been ongoing ever since the

earliest machines did not perform as well as expected. During the discussion of a 1932

Transactions of the American Institute of Electrical Engineering paper written by

C.G. Veinott titled "Performance Calculations on Induction Motors," R.E. Hellmund,

the then chief electrical engineer at the Westinghouse Electric and Manufacturing



Company, contributed the following statement:

Those who designed induction motors many years ago and obtained

at that time a rather close agreement between calculations and load tests

undoubtedly wonder why new and improved calculation methods such as

that presented by Mr. Veinott and others (see bibliography given in pa-

per) should still be an active subject of discussion at Institute meetings.

At the same time, it may be a surprise to many to learn that the discrep-

ancy between the results obtained from load tests and those obtained by

calculating methods from no-load values and other motor constants has

been greater during recent years than it was, say, 20 to 25 years ago.

Hellmund then went on to discuss how the increased flux densities and ampere-

turns required in motors of decreasing physical size for a given output can increase

leakage flux and iron saturation, complicating performance calculations. Since then,

material advancements in the laminations and insulations have contributed to the

continued reduction in physical size of induction machines for any given power rating.

Meanwhile, papers on both the measurement and calculation of "stray," neglected

or misrepresented motor losses have continued to be published. More recently, a

letter in the February 1997 issue of the IEE Power Engineering Journal, "Stray losses

- a residue of ignorance" by Steve Williamson and another paper by C.N. Glew,

"Stray load losses in induction motors; a challenge to academia," from the 1997 8th

IEEE International Conference on Electrical Machines and Drives have addressed the

continuing issue.

1.2.1 Stray Loss "Measurement"

Traditionally, fixed, assumed (and potentially too low) magnitudes have been assigned

to stray loss regardless of the actual value because of the relatively small, second order

impact and the difficulty in accurately calculating or measuring the loss. Typically,

the reference values of stray loss from measured tests at any load point are not directly

measured but rather determined by subtracting out all of the other calculable losses.



A testing facility with measurement equipment of sufficient precision to observe small

changes in potentially large values of power, torque, and speed, as well as a consistent

procedure are required to obtain repeatable results. Test equipment and available

power must match the machine under test and may only be appropriate for a limited

range of motor ratings. Any errors in alignment, measured temperature, input power,
or output power can significantly impact determined values of stray load loss.

The 2004 IEEE 112 Standard Test Procedure for Polyphase Induction Motors and

Generators "Efficiency Test Method B" is an input minus output power measurement

including segregation of losses commonly used for determination of stray load loss.

The stator copper losses can be calculated using the measured input current and

the dc, room temperature, winding resistance adjusted to the winding temperature

measured for the given operating point. The "friction and windage loss" can be

determined by extrapolating the measured no load power loss with the stator copper

loss removed, roughly a function of the square of the voltage, down to the zero

applied voltage intercept. The "no load core loss" can be determined for full load

voltage by subtracting out the stator copper and friction and windage losses from

the measured total power loss. The rotor copper loss can be calculated as the slip

times the input power minus the stator copper and no load core loss. Despite the well

defined procedure, errors in measurement or calculation of the various loss components

can impact the determined values of stray loss. A dynamometer correction factor

accounts for any additional loss contributed by the dynamometer, showing up as a

vertical offset on the otherwise measured stray loss. Curve fitting is also used to

help eliminate error from the stray loss, assumed a function of the square of the load

torque.

Temperature rise can also have a significant impact on conductivity and measured

currents and losses. Values must be recorded quickly and temperatures accurately

measured. Motors are often tested at reduced voltage to reduce the temperature

rise, and the motor behavior must scale as expected with voltage in order for these

measurements to accurately predict the full voltage operation. Thermocouples mea-

sure motor temperature on each phase of the stator both along the winding length



and at the end turns. There is the possibility of some difference in temperature be-

tween the rotor and stator, especially on non-steady-state measurements where the

motor temperature is increasing. An increased rotor temperature decreases the rotor

conductivity, increasing the rotor resistance.

The performance test results later used for comparison to calculations in this in-

vestigation were completed at a Rockwell/Reliance Electric, now Baldor, industrial

motor testing facility. This dedicated testing facility has the personnel and measure-

ment and test equipment for fast and reliable results. Five different cast aluminum

rotors with no skew, and no expected loss or variation from inter-bar currents, mea-

sured extremely consistent stray losses, all within the range from 77 to 82 watts.

Five skewed cast aluminum rotors, expected to show some variation in stray loss due

to variation in contact resistance and inter-bar currents, still measured a reasonable

spread in stray load loss from 151 to 180 W. The stray loss measurement procedure

is consistent, repeatable, and capable of observing variations in stray loss and motor

performance on five and ten horsepower motors.

1.2.2 Previous Stray Loss Investigations

Many different sources of stray loss have been identified and investigated over the

past century. Some losses, like those from space harmonic rotor bar currents, can be

relatively easily calculated and included in an extended equivalent circuit machine

model. Certain losses, from sources like induced currents in motor housings and sta-

tor conductor eddy currents, have been identified, can be minimized through design

considerations or using stranded conductors, and are minimally impacted by rotor

variations. Many losses lack simple and generally applicable mathematical descrip-

tions. Approximate formulas exist to estimate stator iron losses, but empirical cor-

rection factors are typically included. Losses from skew leakage flux or high frequency

variations around the rotor surface and stator tooth tips are difficult to evaluate. The

challenge with "stray loss" is to identify which of the many potential sources of stray

loss apply for the given machine, with the goal of determining a generally applicable

equation to calculate the loss and ultimately minimize the loss once the source and in-



fluencing factors are known. Stray loss dependent on the rotor are observed by testing

and comparing different rotors inside the same stator and housing. This investigation

focuses on stray loss from inter-bar currents, including both the conduction losses in

the iron paths between bars as well as the accompanying harmonic currents in the

rotor bars and end rings completing the current loops.

Loss from currents flowing through the iron laminations between skewed rotor

bars, varying with the contact resistance between bars and laminations, is one gen-

erally accepted source of stray loss and discrepancy in test results between otherwise

identical machines. New York University's S.S.L. Chang in 1954 classified stray losses

according to their origin as either "theoretical imperfections" or "industrial imperfec-

tions," arising from either inadequate calculation methods or manufacturing issues.

He asserted "the predominant cause of stray load loss due to manufacturing processes

is the short circuiting of the rotor cage bars by the laminations. As these short-circuit

paths effectively circumvent the rotor skew, a substantial amount of rotor harmonic

current would be induced by the tooth harmonics." [8] As another investigation into

this subject, this thesis focuses on stray loss resulting from inter-bar currents in an

attempt to explain the differences in measured performance between nominally iden-

tical rotors and to improve motor performance predictions on a variety of five and

ten horsepower cast copper and aluminum motors.

1.3 Inter-bar Current Losses

This present study would not exist without the solid foundation of previous investi-

gations to build upon. A number of papers specifically examining inter-bar currents

have been published since the 1930's.

Rossmaier wrote one of the earliest referenced papers on machine losses due to un-

insulated rotor bars in a 1939 article published in Elektrotechnik und Maschinenbau. [9]

This foundational paper derived the differential equation for rotor bar current as a

function of position along the rotor length. The approach assumes sinusoidal vari-

ation around the rotor periphery and includes the continuous cross-path between



neighboring bars. Based on this initial work, Odok in 1958 added experimental mea-

surements of inter-bar resistance and equations for harmonic rotor loss in the case

of negligible end ring impedance. The losses from currents between neighboring bars

were found to peak at a certain intermediate value of inter-bar resistance, decreasing

as the resistance approached zero or as the bars became more perfectly isolated with

zero cross currents.[10] In 1966 Weppler incorporated the inter-bar calculations into

the equivalent circuit framework using a complex, real and reactive, skew factor to

adjust the referred rotor resistance and reactance values to account for the inter-bar

current paths. [11]

A series of more recent papers aimed at determining both numerical values of the

inter-bar resistance for a particular rotor as well as the general impact of bar-to-bar

currents on motor performance. Williamson and Smith in 2002 measured a reduced

starting torque, found an increase in harmonic rotor losses, and derived a complex

"inter-bar factor" to adjust each harmonic of the equivalent circuit, similar to the

complex skew factor used by Weppler.[12]

Studies commonly used dc resistance measurements between neighboring bars to

determine a value of bar-to-bar resistance on cast aluminum rotors. Willimason, Poh,

and Smith in 2004 measured average bar-to-bar resistance values between neighboring

bars on a set of 40 different rotors from 11 different machines, illustrating the increase

in bar-to-iron contact resistance from quenching cast aluminum rotors.[13] Using a

slightly different approach for determining bar-to-lamination contact resistance, Wat-

terson, Prescott, Bradford, Lockwood, and Bagk considered currents traveling around

the lamination iron, using measurement points on the same or opposite ends of bars

with one and two intervening bars, instead of only between neighboring bars.[14] The

general conclusions on stray losses from inter-bar currents have been consistent with

Odok's predictions. Both increased or decreased contact resistance between the ro-

tor bars and laminations can either raise or lower the stray losses depending on the

machine design and value of average resistance between bars.



1.4 Thesis Contributions

The main contribution of this thesis is a transparent loss calculation to directly adjust

equivalent circuit parameters to account for inter-bar currents. The new method

checks against previous calculations after slight modifications to the earlier work

and can be used with any equivalent circuit. The new approach still uses long and

complicated equations, but the direct adjustments to equivalent circuit resistance and

skew factor are simpler and more intuitive than using a complex skew factor. The

new method also directly applies to a wider range of skewed equivalent circuits, and

can be used on circuit models that divide the rotor skew equally between the rotor

and stator. It is hoped that the new adjustments may find more widespread use in

computer programs for motor performance calculations.

Average values of inter-bar resistance are necessary for calculations of rotor bar

current and total rotor loss. Average values of contact and total inter-bar resistance

from measurements on a number of both cast copper and cast aluminum rotors us-

ing several different slot shapes are also presented. The procedures and values are

consistent with earlier efforts going back at least to the 1950's, but some adaptation

is required for determining the lower contact resistance values of the cast copper ro-

tors. Additional published data, especially for cast copper rotors, will be useful for

estimating values of rotor loss.

The final comparison between calculations and measured test data is also useful

for validating the new approach and examining the extent of the impact of inter-bar

currents on stray load loss. This process has helped to identify equivalent circuit

parameters impacting stray loss and inter-bar currents as well as additional potential

sources of stray load loss that could be investigated in greater depth in future work.

1.5 Chapter Organization

This section presents a brief overview of the following chapters.



1.5.1 Chapter 2: Induction Machine Extended Equivalent

Circuit

Realistic rotor bar and inter-bar loss calculations require a reasonably accurate model

of the entire motor, including the interaction between the rotor and stator. The second

chapter introduces the extended induction machine equivalent circuit, a common tool

for approximate calculations of steady state behavior. This initial circuit model will

later be used as the framework for the calculation of rotor bar and inter-bar currents

and losses. Ultimately, the effective values of skew factor and rotor resistance will be

adjusted in order to account for the impact of the rotor cross currents. The second

chapter examines the traditional circuit model unmodified by inter-bar currents. The

first sections define and present standard formulas of resistance and reactance terms

before discussing the different methods often used to incorporate the impact of rotor

skew into the circuit model. The variables with the greatest impact on the motor

calculations in general and inter-bar loss calculations in particular are also highlighted.

This circuit model should be able to estimate motor behavior in the case of non-

skewed machines without high end ring impedance or skewed machines with insulated

rotor bars. Predictions of motor performance using this circuit model are compared

to measured test results on a series of non-skewed, five horsepower cast aluminum

induction motors. Modification of the equivalent circuit in order to account for skew

in the ideal case of insulated rotor bars is also examined in detail since this factor will

later change with the rotor current distribution in the presence of inter-bar currents.

1.5.2 Chapter 3: Inter-bar Loss Equations

The third chapter examines the calculations of bar and inter-bar rotor currents and

losses. This chapter begins with a derivation updating, extending, and adapting

to the circuit model the approach used by Odok with help from Kirtley to obtain

the differential equation for rotor bar current including inter-bar paths. Alternate

boundary conditions are also presented for arbitrary impedance end rings consistent

with Subba Rao, Weppler, and Rossmaier.[15, 11, 9] The resulting solution for the



equation of rotor bar current and the calculated induced bar voltage are integrated

along the rotor length to determine rotor loss along and between bars. Assuming

linearity, the process can be repeated to include the impact of any number of higher

order harmonics. The end ring losses are also added but are generally negligible

except for the fundamental. Plots display the predicted change in stray loss from

harmonic rotor bar and inter-bar currents with variation of bar-to-lamination contact

resistance under the constraint of fixed stator current and rotor slip.

These equations for rotor current and loss are a function of the equivalent circuit

parameters such as the mutual and leakage reactance values and the rotor impedance.

The current and loss equations also require previously measured or otherwise calcu-

lated values of motor operating slip and input stator current. Incorporating the rotor

loss equations into an equivalent circuit model will help to provide all of the required

variables as well as more directly and accurately calculate losses when the inter-bar

currents are significant enough to alter the motor operating current or slip. However,

before an adjusted equivalent circuit can make predictions for any given machine, an

average value of the impedance between bars must be determined.

1.5.3 Chapter 4: Determination of Resistance Between Bars

One of the critical parameters determining the value of inter-bar currents and loss

is the impedance between neighboring bars per axial unit length. This study as-

sumes the inter-bar impedance is primarily resistive and only dc current and voltage

measurements were used. The total inter-bar resistance is a combination of contact

resistance and the resistance of the lamination path between bars. Often, the bar-

to-lamination contact resistance dominates the resistance between bars. All of the

rotors examined can be grouped into one of two distinct categories of contact resis-

tance, with different measurements and calculations effective for each type. Rotors

with relatively high contact resistance can be measured directly, while lower contact

resistance values require comparison between measured and simulated sets of volt-

age data. The fourth chapter presents the procedures used to determine the contact

resistance values and the results for the five and ten horsepower rotors. The con-



tact resistance varies significantly from one bar to the next, but approximate average

values are identified for use in rotor current and loss calculations.

1.5.4 Chapter 5: Equivalent Circuit Modification

This chapter presents the equations to modify the equivalent circuit effective skew

factor and rotor resistance to account for inter-bar currents. The method is first ver-

ified theoretically by comparison to previous calculation methods by Weppler and by

Williamson and Smith.[11, 12] Then experimental verification is provided by compar-

ing the calculated motor loss and performance to measured test results. Variations

between similar machines are examined. Comparison between calculations with and

without inter-bar currents as well as the impact of variation in rotor skew, conductor

conductivity, and bar-to-lamination contact resistance are presented.

1.5.5 Chapter 6: Conclusions and Suggestions for Future

Work

The thesis ends with a discussion of the results, recommendations for reducing stray

loss resulting from inter-bar currents, and suggestions for additional work that could

help to improve future motor loss calculations.





Chapter 2

Induction Machine Extended

Equivalent Circuit Model

Even though calculations of rotor bar and inter-bar loss focus on neighboring pairs

of rotor bars, complete equations must be integrated into a larger machine model

in order to account for the interaction between the rotor and stator. In addition to

the rotor geometry and material properties, the bar-to-bar current and loss depend

on the induced rotor voltage as a function of the stator current, rotor slip, and

coupling between stator and rotor magnetic circuits. The extended induction machine

per-phase equivalent circuit can provide the required reactance and input values for

inter-bar loss calculations. Depending on the circuit parameters used, calculated

harmonic rotor losses including inter-bar currents can range from unrealistically small

to unrealistically high values. The entire system model must be reasonably accurate

in order to correctly identify the impact of inter-bar currents.

Provided that the rotor end rings do not have unusually high impedance, inter-

bar currents significantly impact only motors with skewed rotors and non-insulated

conductors. Skew, a helical twisting of usually the cast rotor bars, is a common

design attribute in smaller induction motors and one of the fundamental variables

significantly impacting slot harmonic bar and inter-bar currents and loss. Intended

to reduce noise, improve starting, and decrease pulsations and loss from the slot

harmonics, the resultant harmonic loss from inter-bar currents can increase with



certain combinations of skew angle and inter-bar resistance. This chapter presents

and discusses different possible modifications to the equivalent circuit to account for

skew, all a function of the same traditional skew factor. In later chapters, adjustments

to the equivalent circuit to account for inter-bar currents alter the traditional skew

factor.

This chapter presents a common equivalent circuit machine model often used to

predict motor performance. All circuit models are necessarily based on approxima-

tions and simplifications of the complicated machines they represent. One of the

underlying assumptions behind the circuit model is perfect insulation of the rotor

conductors restricting all currents to the rotor bars and end rings. After an overview

of the induction machine equivalent circuit including an introduction to the most

significant terms for calculating motor performance and inter-bar loss, calculations

are compared to measured performance on rotors with no skew. Modifications are

then made, particularly to the harmonic leakage reactance values, to improve the

correlation between prediction and test.

2.1 Basic Induction Motor Equivalent Circuit

One of the most fundamental and widespread tools for examining induction machines

is the equivalent circuit. The classic Steinmetz single phase equivalent circuit shown

in Figure 2-1 is based on the transformer model and can be used for quick, rough

analysis of induction machines. [16] The circuit includes winding resistance and leakage

reactance terms for both the stationary stator, R, and X 1, and rotating rotor winding

or conductor cage, R 2 and X 2, as well as a core resistance, R , to model losses in the

iron laminations and a magnetizing reactance, Xm, representing the inductance and

energy storage in the air gap of the machine. This circuit helps to define stray

load loss as the component of loss not included in the circuit model or rotational

losses. Rotational friction and windage loss is an exception, missing from the model

originally applied to stationary transformers, but otherwise the stator and rotor 12R

losses and the iron loss, typically measured at no load, are all included. Values of the



equivalent circuit elements can be estimated through design calculations as a function

of geometry and material properties or from measured locked rotor and no load motor

tests. Equations for circuit terms often include empirical correction factors based on

previous experience with similar machines already built and tested.

R1 X1 X2

Rc Xm R2/s

Figure 2-1: Induction motor equivalent circuit

The simple circuit represents most main aspects of motor behavior but cannot

exactly model all of the attributes of induction machines over their full range of

operation. The approximation omits elements required for more detailed analysis

and the parameters that are included are not always fixed constants. The terms in

the circuit vary with temperature, iron saturation, and frequency effects from no load

to full load and locked rotor conditions. Partly due to these changing parameters

dependent on the fields and currents in a machine, it can be difficult to accurately

model and predict the performance of induction motors. Many different programs and

formulas are used, generally based on an extended version of the equivalent circuit

model. Additional elements can be added, and the values can be adjusted to include

the effects of rotor skew, iron saturation, and changing impedance with frequency,

especially at start up or locked rotor.

2.2 Extended Equivalent Circuit

The basic circuit can be extended as shown in Figure 2-2 to try to account for har-

monic torques and losses by including any number of additional sets of series elements



representing the nth order stator winding space harmonic.[6] All calculations in this

study, with or without inter-bar currents, assume perfectly sinusoidal stator input

voltage and current. Time harmonics from distorted input at low loads or inverter

fed machines are not considered in this work, but could be similarly calculated if

they are approximately independent of the fundamental, space harmonics, and other

time harmonics. Any mention of harmonics hereafter refers to "space" harmonics.

These higher order fields arise from the pulsed and stepped distortions of the spacial

distribution of the stator winding coils in discrete slots, despite the assumed perfectly

sinusoidal stator current. The harmonic fields can induce harmonic rotor bar currents,

translated to higher frequencies by the motion of the rotor. The rotor frequencies de-

pend on the harmonic values of slip, and resulting in variation of the harmonic rotor

impedance values with frequency, analogous to the rotor fundamental with the varied

fundamental slip frequency.

The new parameters of the extended equivalent circuit for the higher order har-

monics are not directly measurable but determined from design calculations. As with

the fundamental circuit elements, these harmonic additions will also vary with ro-

tor skew, iron saturation, and frequency. Alger defines stray load loss, absent from

the basic circuit model, as "additional core and eddy-current losses caused by the

increase in air-gap leakage fluxes with load and by the high-frequency pulsations of

these fluxes." He continues "a large part of the stray-load loss is due to induced har-

monic currents in the secondary winding, which can be calculated by the extended

equivalent circuit." [61

Odok uses the same equivalent circuit to investigate stray losses in machines with

insulated rotor bars.[17] Although less clear from the per rotor bar notation in his

condensed AIEE paper, Odok's approach to calculating rotor loss is consistent with

equivalent circuit analysis. His equations for rotor loss require values of stator current,

rotor slip, and a number of unmeasurable reactance values, all calculable as part of

an extended equivalent circuit.

The extended equivalent circuit, even corrected for rotor skew and including inter-

bar current losses, still cannot account for all stray load losses. More complicated
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Figure 2-2: Extended induction motor equivalent circuit

circuits including terms to account for permeance harmonics and other losses are

possible, but the additional effort may still fail to accurately represent a machine.[6]

Equivalent circuit calculations can incorporate adjustments to account for fre-

quency effects in bar and end ring impedance and rotor bar skew. Fundamental and

harmonic rotor bar currents and losses are included and adjustments for inter-bar

currents and loss will be added. However, the stator teeth and tooth tips, rotor sur-

face, and rotor teeth are additional sites of potential loss not usually included in the

extended equivalent circuit or investigated here.

The equivalent circuit is a tool used to approximate motor behavior. The goal is

to improve the approximation in later chapters to apply more generally to all rotors,

including those with skewed, non-insulated bars, by adjusting terms to incorporate

the impact of inter-bar currents. However, inter-bar currents are only one of many



possible sources of stray load loss. The total stray load loss from measured tests

provides only an upper limit on the calculated losses due to harmonic bar and inter-bar

currents. The extended equivalent circuit may still not account for other significant

sources of stray loss and as a result fail to accurately estimate all aspects of motor

performance. Nevertheless, especially on these smaller-sized, five and ten horsepower

machines, where conduction losses are more significant than iron losses, the harmonic

bar and inter-bar currents are expected to be the most significant source of stray loss.

Improved calculations of these losses should help equivalent circuit motor performance

prediction to better match measured test results.

2.2.1 Resistance Calculations

Terms of dc resistance are calculable using the total conductor length, area, and

conductivity. The dc stator winding resistance can also be measured directly and

the estimated length of the winding end turns adjusted to minimize any error. The

equivalent rotor bar resistance is usually increased to account for the end ring losses,

assuming a sinusoidal rotor current distribution.[6] Some uncertainty remains as to

the exact value of rotor conductivity after casting, but there is a fixed upper limit.

The impact of operating temperature on conductivity must also be considered, as

well as frequency effects on the rotor bars with changes in the slip frequency. These

two factors can significantly increase rotor resistance values.

The core resistance term can be approximated using power loss density curves

from the lamination manufacturer along with calculated values of mass and peak

magnetic flux density for the motor teeth and back iron. This calculated value is

typically low by about a factor of two.[18] The large core'resistance value usually has

minimal impact on overall motor performance and the calculated loss can be checked

against test values of no load core loss. The combined values of no load core loss and

friction and windage loss can appreciably impact the value of stray load loss from test

results. Overall, the resistance terms are generally simpler to determine and check

than the reactance values.



2.2.2 Reactance calculations

The reactance terms are the most difficult equivalent circuit parameters to calculate.

These mutual and leakage inductances represent portions of the machine net magnetic

field linking all or part of one or both of the motor windings. The complicated machine

geometries, rotation of the rotor and fields, and material properties that change with

temperature and magnetic flux density make exact calculations unrealistic in many

cases. However, the equivalent circuit's goal is to quickly provide approximations,

and many people have worked on proposing, evaluating, and refining useful reactance

equations over the past century. A number of equations exist for calculating machine

reactance values. As these values govern the voltages induced in the rotor, they are

essential for accurately calculating rotor bar and inter-bar currents and losses. Any

reactance equations can be substituted into the general calculations for rotor current

and total rotor loss. Typical reactance calculations used in later rotor calculations

are presented here.

The air gap or magnetizing reactance can be approximated as the measured volt-

age divided by the input current from no load test points taken at varying input

voltage or calculated for the nth stator space harmonic on a non-skewed motor using

the following equation.
2 q c plo Na k R L

Xgn) wn (2.1)
i (n P) 2 G

In this equation q is the number of phases, w is the stator electrical frequency, Po is

the permeability of free space, Na is the number of stator turns per phase, k,,, is the

total winding factor for the nth harmonic, R is the rotor radius, L is the stack length,

nP is the number of harmonic pole pairs, and G is the equivalent air gap length.

The fundamental magnetizing reactance is typically a relatively large value that can

be reasonably well approximated. This equation seems to be universally accepted.

The effective air gap, G, is larger than the physical gap by a proportion calculable

using the Carter coefficient to account for slotted, non-smooth stator and rotor air

gap surfaces.

The air gap reactance equation assumes infinite lamination permeability, but a



"saturation factor" less than one is often included in the denominator, in part to

account for the actual lamination permeability. [19, 20] The reactive power stored and

the mmf "absorbed" by the laminations in the motor reduce the effective magnetizing

inductance, similar to a physically lengthened air gap. To adjust for this non-ideal

lamination behavior, Kirtley includes an additional core reactance in parallel with

the magnetizing reactance and core resistance. The core reactance can be calculated

similarly to the core resistance, using lamination manufacturer rms volt-amp exciting

power and real power loss density data along with calculated motor flux density and

mass for the motor teeth and back iron.[21]

There are many possible ways to breakdown and calculate leakage reactance values

resulting from the flux not completely linking both windings. All calculations pro-

vide only rough estimates. Veinott is one author who presents equations of leakage

reactance components useful for motor performance predictions. He also describes

how a detailed study showed his equation for end turn leakage reactance to calcu-

late values lower than measured. [20] Still, when combined with the rest of his design

calculations, the results closely match measured test results. Some complimentary

error in another component of the total reactance value seemed to regularly account

for the incorrect end turn reactance. There is not always a unique solution to match

measured tests results, and it can sometimes be difficult to differentiate between a

complete, theoretically sound solution and a combination of canceling errors.

The fundamental leakage reactance includes both stator and rotor terms. The

calculated fundamental stator leakage reactance includes components of slot, end

turn, and potentially a component of skew leakage reactance, depending on how the

rotor skew is included in the circuit model. The fundamental and all higher order rotor

leakage reactance values are calculated as the combination of slot, skew, and rotor

zigzag leakage reactance. The next section examines the rotor skew and skew leakage

reactance in detail. The fundamental and harmonic rotor slot leakage reactance are

determined together with the rotor resistance as both change with slip frequency using

a calculation routine developed by J. L. Kirtley, Jr. that breaks the bars into thin

slices and builds up the total impedance for any given frequency, conductivity, and bar



shape.[22] This method is similar to a circuit approach used by Babb and Williams

in their 1951 AIEE paper on the calculation of ac bar impedance.[23] The rotor

impedance is the only parameter adjusted with slip in this version of the equivalent

circuit model.

Alger gives the following "very rough" approximation for stator end turn leak-

age reactance.[6] The uncertainty in coil end leakage gives some leeway for small

adjustments to the total stator leakage reactance.

7f q N2 D
Xe = 10 (p - 0.3) (2.2)

P2 106

In this end leakage equation f is the stator electrical frequency, q the number of

phases, Na the number of series turns per phase, D the air gap diameter in meters,

P the number of pole pairs, and p the winding pitch expressed as the ratio of the coil

span to the pole pitch.

The zigzag leakage deserves particular attention because of its importance in de-

termining the harmonic bar and inter-bar rotor losses. The following equation from

Kirtley calculates rotor zigzag leakage reactance.[21]

X2z(n) = Xa (n) (n P) 2  P)2  + (R ) (2.3)

Xag(n) is the nt" harmonic air gap reactance, P the pole pairs, and NR the number

of rotor bars. This equation can account for some of the interaction between the

number of stator slots (through the slot harmonic numbers for n) and the number of

rotor bars.

An alternative approach uses the more broadly encompassing harmonic or dif-

ferential leakage reactance instead of the zigzag leakage. Liwschitz-Garrick defines

the differential leakage as the reactance accounting for the difference between the

fundamental and the total machine flux.[19] The components of differential leakage

reactance are built up using infinite series for each harmonic of interest to try to

account for the large number of interacting fields. Odok also includes a value of

differential leakage in place of the zigzag leakage terms used here. Both Liwschitz-



Garrick and Odok use the next equation to calculate values of differential leakage

reactance, roughly equivalent to the zigzag leakage reactance calculated using (2.3),

especially for the higher order harmonics.[17, 19]

7nP 1 (2.4)

X2d(n) Xag(n) sin2(- 1 (2.4)

The two equations for zigzag and differential leakage generally give similar results

and are each used by different authors to combine with rotor slot leakage to calculate

the total harmonic rotor leakage reactance.[6, 19] The harmonic rotor leakage reac-

tance, however calculated, together with the harmonic magnetizing reactance are two

of the key terms determining the magnitude of the harmonic rotor bar and inter-bar

losses. Calculated values of rotor bar and inter-bar loss depend on the reactance, but

the approach and general rotor equations can be used with any reactance equations.

The difficulties in calculating the measured performance on the non-skewed aluminum

rotor in Section 2.3, with insignificant inter-bar currents, suggest that neither of these

similar reactance equations are ideal for all cases. Determining equations for equiva-

lent circuit parameters applicable to a wide range of machines and operating points

continues to be a significant challenge.

All later calculations use the zigzag reactance equation because calculations using

the differential leakage reactance appear to underestimate measured stray loss. The

zigzag reactance does not increase as fast as the differential leakage reactance, allowing

increased second order slot harmonic loss. However, the corrections to rotor bar

and inter-bar currents can be applied independent of the specific equations used to

determine the equivalent circuit parameters in order to include the impact of inter-bar

losses and more accurately predict motor performance.

2.2.3 Determination of Parameters from Tests

The basic equivalent circuit parameters for the fundamental motor circuit can be

approximated from measured tests. The stator resistance is the only value directly



measurable. Determination of total impedance from the applied voltage and current

under locked rotor conditions gives roughly the sum of the rotor and stator resistance

and reactance. The rotor resistance can be solved by subtracting out the measured

stator resistance, adjusted to the measured operating temperature, and the reactance

can be split between stator and rotor. The values of rotor resistance and reactance

are measured at the full stator input frequency during the locked rotor test, and the

rotor resistance may be substantially higher and the rotor reactance lower than under

full load at slip frequency. The distribution of magnetic fields in the motor can also

vary substantially from no load to full load and locked rotor. At locked rotor, the

magnetic flux density concentrates around the air gap. The higher flux densities can

alter the permeability of sections of the laminations, potentially saturating leakage

reactance paths, and further reducing the reactance measured at locked rotor com-

pared to normal, full load operation. The magnetizing reactance and core resistance

can be estimated from no load tests. Impedance values for the higher order harmonics

are more difficult to measure so are typically calculated from the design equations

previously discussed.

2.3 Equivalent Circuit Calculations with No Skew

A set of four cast aluminum, five horsepower rotors are the only available test samples

with no skew. These rotors are more easily calculable since inter-bar currents are

typically insignificant on non-skewed rotors. Low enough bar and end ring resistance

values provide a low impedance path to effectively short circuit any voltage between

bars. The non-skewed aluminum rotors measured roughly half of the full load stray

loss of the skewed counterparts, at about 80 versus 160 W. The skew was the only

parameter intentionally changed and all rotors were tested within the same stator.

Equivalent circuit parameters are determined by test results whenever possible.

Both the rotor and stator conductivity are adjusted to the measured temperature at

each point. Measured torque, speed, current, input power, and stator winding tem-

perature are used for comparing measured motor performance to calculations. The



dc stator winding resistance as well as the measured locked rotor impedance are also

checked against design calculations and used to set equivalent circuit parameters. No

load current-voltage curves provide an upper limit on the calculated magnetizing re-

actance. No load voltage and power measurements are also used to determine friction

and windage loss by extrapolating the power at the two lowest voltage measurements

to zero voltage, using a quadratic approximation for the voltage curve.

The five horsepower pump motors examined here are designed to run submerged

in water. When tested in air at full voltage, they heat up dangerously fast. The

conductivities at each point of the torque speed curve use the temperature value

recorded with each measurement point. Due to the potentially extreme temperature

rise, most of the low speed torque measurements were taken using one half of the

rated voltage. The measured torques for these points have been multiplied by a

factor of four for comparison and plotting with the full voltage low slip points. In two

instances, the scaled torques were indistinguishable between similar rotors tested at

both full and half voltage. Still, it is possible that the reduced voltage measurements

could miss certain effects or not always be exactly representative of the full voltage

values.

Temperature corrections to conductivity are made at each point and have a sig-

nificant impact, much greater than frequency, on the rotor (and stator) resistance

values. The torque speed curves can be inconsistent between the high and low slip

regions, since high slip points were taken at half the rated voltage to limit currents

and reduce temperature rise.

Equivalent circuit calculations at varied load points are compared to measured

torque speed curves first for the non-skewed, five horsepower, cast aluminum rotors.

The measured speed and temperature are used in the circuits for each operating point.

Figure 2-3 compares the measured torque speed curve to an initial calculation using

the equivalent circuit.

The stars show the measured torque-speed points while the solid line gives the

equivalent circuit prediction. Typical error in measured torque is less than a tenth of

a newton-meter. The dashed line shows the equivalent circuit calculation for funda-
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Figure 2-3: Non-skewed aluminum equivalent circuit approximation

mental torque. The initial calculation underestimates stray loss and fails to reproduce

the dip in torque. The dip in the measured torque at the high slip points suggests

that there are significant stator slot harmonics influencing the torque speed curve

and stray load loss. These losses depend strongly on the values of harmonic magne-

tizing and leakage reactance. Reduced magnetizing reactance decreases the induced

harmonic rotor voltage and current, moving towards the extreme case of eliminat-

ing the harmonic rotor currents by providing a parallel short circuit path. Increased

harmonic leakage reactance reduces the harmonic rotor current for a given induced

voltage, moving towards eliminating the harmonic currents and losses by effectively

open circuiting the high impedance harmonic rotor branch.

Minor adjustments have slightly reduced rotor bar conductivity, calibrated core

resistance and reactance, set the correct value of friction and windage, and increased

the stator end turn leakage reactance to better align the measured and calculated

curves.

Adding a correction factor to decrease the harmonic leakage reactance, or equiv-

alently, to increase the harmonic magnetizing reactance, or a combination of both,



increases the calculated stray load loss. The adjustment increases stray load loss in

the rotor bars from induced high frequency stator slot harmonic currents and exag-

gerates the torque dip at high slip, as shown in Figure 2-4. Again, the stars show the

same measured torque-speed points, with an error of about 0.1 newton-meter, while

the solid line gives the equivalent circuit prediction, now including a correction fac-

tor to reduce the harmonic leakage reactance. The dashed line shows the equivalent

circuit calculation for fundamental torque.
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Figure 2-4: Equivalent circuit approximation with altered leakage reactance

The adjusted harmonic reactance value is not the only possible solution to improve

the match between measured and calculated motor performance. A core loss varying

with slip and significantly increasing towards locked rotor or an unsymmetrical ratio

between the reactance values for two counter-rotating slot harmonics are two alter-

native adjustments to the equivalent circuit that could also improve the correlation

between measured and predicted values of torque and loss. The slot harmonic leakage

reactance is the value most likely to require correction, because significant increase in

the magnetizing reactance can increase the total motor reactance and the altered core

loss reduces the fundamental rotor losses more than seems consistent with measured

"'



tests. However, in general, with skewed machines, some combination of decreased

harmonic leakage reactance, slightly increased magnetizing reactance, and the addi-

tion of a load and skew dependent iron lamination loss seem to be necessary along

with the inter-bar adjustments for matching calculated and measured test results.

Adjusting the rotor conductivity to 91% of the ideal, 100% IACS value and adding

a 0.08 correction factor to largely eliminate the harmonic zigzag or differential leakage

reactance terms generates a qualitatively good fit between calculated and measured

performance for the non-skewed aluminum rotor. The fundamental magnetizing re-

actance used was 180 ohms and the fundamental leakage reactance terms were arbi-

trarily set to match the locked rotor conditions. The change in conductivity is not

unreasonable considering the potential for conductor voids and impurities during the

casting process.

The predicted torque for the low slip points around the machine operating region

is easier to match and agrees fairly well with measured test results for most of the

examined machines. However, it is possible to closely match the measured torque

and still have a poor representation of the actual motor from difference between

other measurements and calculated predictions of total input real or reactive power or

current, for example. Total equivalent impedance, efficiency, power factor, and losses

are also useful values for comparison between calculations and tests. The calculated

stray loss from harmonic bar currents is only 21 watts without the reactance correction

factor compared to 91 watts with the adjustment and about 82 watts measured. A

comparison of the calculated and measured stray losses for a range of load points is

given in Table 2.1. The approximate error in measured stray loss in this case is about

ten percent of the measured value. This is roughly equal to the measured spread

of about eight watts in the values of full-load stray loss for the non-skewed rotors.

The un-adjusted calculations significantly underestimate both stray load loss in the

operating region and the torque dip approaching locked rotor in Figure 2-3. Including

the reduced harmonic leakage reactance results in a much closer approximation for

both stray load loss and torque.

Inter-bar currents are not yet a factor in this non-skewed case with low conductiv-



ity end rings. However, the traditional reactance equations still seem to require some

adjustment, especially for the stator slot order harmonics which have the greatest

impact on both stray load loss and harmonic torques in this case, in order to bring

equivalent circuit calculations closer to measured test results. The slot harmonic re-

actance values will similarly impact the calculated rotor losses in the skewed rotor

cases discussed in Chapter 3, complicated there by the presence of inter-bar currents.

Table 2.1: Comparison of stray load loss cast aluminum no skew
Load Calculated No Adjustment Adjusted Harmonic Leakage Measured
25% 3 12 5
50% 6 28 20
75% 12 54 45

100% 21 91 79
110% 32 142 123
125% 48 210 178

Besides the stray losses, the full load prediction remains nearly unaltered. There

is a more significant difference in torque, current, input power, efficiency, and power

factor at locked rotor and high slip, favoring the circuit with adjusted reactance

values.

The three plots below, Figures 2-5, 2-6, and 2-7, illustrate the impact of varying the

rotor conductivity, harmonic leakage reactance, and magnetizing reactance. Excellent

agreement is possible on the steep slope, at high speed and low slip around the normal

motor operating points. Matching the measured test results becomes more difficult

at the peak torque and especially at locked rotor and in the region of low speed, high

slip. The expected error in measured torque for these plots is again less than a tenth

of a newton-meter.
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Figure 2-5: Equivalent circuit predicted and measured torque-speed curve - varied
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Figure 2-6: Equivalent circuit predicted and measured torque-speed curve - varied
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Figure 2-7: Equivalent circuit predicted and measured torque-speed curve - varied

leakage reactance by about 25%

2.4 Rotor Bar Skew

At least as of 1970, "the majority of induction motors have skewed slots, most com-

monly on the rotor, but sometimes on the stator; and, with small machines, skewing

is virtually the rule." [24] Conversely, another perspective from 1974 held a different

view.

It is well known that harmonics give rise to important losses, particu-

larly when the rotor insulation is not perfect. In this case, it is not possible

to reduce the harmonic currents by means of an appropriate skew. This

explains why most manufacturers forgo the rotor skew.[25]

Experience with skew on the motors of this study has been equally confusing, and

these two authors may both be correct in talking about different classes of machines.

The second quote also mentions how skew fails to reduce harmonic losses when inter-



bar currents are present. New equations to calculate this long observed effect are

presented in Chapter 5 to adjust the effective skew factor.

Rotor skew is an important variable in the calculation of inter-bar currents and

losses. This section examines how variations in rotor skew impact insulated rotor

equivalent circuit models without inter-bar currents.

2.4.1 Theoretical Impact of Skew

Skew is a common design and manufacturing variable interlinked with stray losses.

Rotor bars are skewed, twisted from one end to the other, in order to reduce loss,

torque, and noise from slot permeance and mmf effects.[26, 18] Interaction between

the discrete stator teeth and rotor bars can result in cogging, current and torque

pulsations, and losses in both the rotor bars and iron laminations from the high

frequency variations in fields and currents. Skewing the rotor bars, typically through

the angle between adjacent stator slots, creates a relative phase change along the

length of the rotating bar, with each bar section opposite a slightly shifted air gap

flux. This helps to smooth out the fluctuations in induced rotor harmonic currents

caused by the bars alternately passing through regions of high flux density directly

below stator teeth to regions of low flux density opposite stator slot openings.

Bgap
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Figure 2-8: Cartoon explanation of skew and inter-bar currents



As shown in the cartoon of Figure 2-8(a) for the case of skewed, insulated bars, the

currents induced by the locally increased flux density cancel out in the center bar.

The currents of the outside bars would similarly cancel with the induced currents

from neighboring tooth fields. Alternatively, if the neighboring poles of oppositely

directed harmonic flux were also included, the net flux linked by the skewed loop

of any two neighboring bars is roughly zero. Imperfect insulation between the rotor

bars and laminations creates additional current paths through the iron between bars.

With currents no longer restricted to the bars and end rings, any region of changing

flux density between bars can induce currents in local loops formed, for example, by

neighboring pairs of bar halves, as in Figure 2-8(b), with increased stray loss due to

the currents now flowing along parts of the bars and through the iron laminations

between bars.

With non-skewed rotor bars, the typically much lower impedance path through the

sections of bar and end rings short circuit the inter-bar path. Plus, any cross currents

through the iron would also tend to largely cancel each other out as in Figure 2-8(c).

In a real machine, any inter-bar currents distribute along the full length of the bars,

and the rotor bars carry a combination of fundamental and harmonic field currents.

Furthermore, components of the air gap magnetic flux density tangential to the rotor

surface from the combined stator and rotor leakage flux complicate the picture of slot

flux radially directed and conveniently aligned with the stator teeth and slot openings.

Ignoring the discretization effect of slots and bars, skew introduces a relative

phase shift, varying with position along the motor stack length, between the ideally

sinusoidal stator and rotor current distributions. Since the resultant air gap magnetic

field is a function of both rotor and stator currents, the phase shift with skew results

in an air gap field varying along the rotor length, strengthened at one end and reduced

at the other for the fundamental.[27] Neglecting the slight increase in skewed rotor

or stator resistance from the slightly increased length and reduced area of the angled

conductors, the air gap field, motor loss, and performance are theoretically identical

when applying equal (and opposite) skew to either rotor or stator conductors or any

equivalent combination to both.



Motor symmetry also requires ideally equal impact from either a positive or neg-

ative skew angle. Flipping the axial orientation of a uniform rotor, inside a uniform

stator will have no impact on the motor's performance. Linked flux and induced

voltage are identical whether the rotor or stator are skewed a positive or negative

given skew angle.

In addition to smoothing out the slot harmonics, skewing the rotor also slightly

reduces the coupling between stator and rotor and marginally increases the length

and decreases the area of the rotor bars, adding an additional leakage reactance com-

ponent and slightly increasing the rotor resistance. [24, 6] Apart from skew, different

combinations and larger numbers of stator slots and rotor bars, magnetic slot wedges,

and controlled starting can help to minimize the impact of slot effects; so typically

in practice, smaller machines are often skewed while larger motors and generators,

with more design flexibility and more difficulty in skewing fabricated rotor bars, are

straight.[18]

However, even with smaller machines, there does not seem to be universal con-

sensus on the benefits of skew, firm rules on optimal skew angles, or one generally

accepted method to model the effects of skew. Butler and Birch in 1971 published a

paper discussing the reasons for skewing rotors and examining five different ways that

authors have modified induction motor equivalent circuits to account for the effects

of skew. [28] With and even without inter-bar currents, the net result of skewing the

rotor bars can vary between seemingly identical machines. The sometimes puzzling

results from rotors tested in this study can be explained by both variations in the av-

erage resistance between bars as well as variations in the manufactured angle of skew.

Confusion can easily arise over what angle defines the rotor skew, and even with

agreement on the designed skew angle, skewing a stack of rotor lamination exactly

a desired amount can still be a challenge. The resultant bar skew as manufactured

may only be visible from any shifting in the lamination keyway of closed slot rotors,

and accurate measurements of the skew angle as cast are difficult even with visibly

skewed bars. Designed or unintended variations in skew between otherwise identi-

cal machines impact measured motor performance, peak torque, and stray load loss.



A number of different adjustments to the equivalent circuit are possible to try and

predict the impact of skew on the motor performance.

2.4.2 Impact of Skew on Equivalent Circuit

The standard induction machine equivalent circuit can be modified to more accurately

model a skewed rotor motor. The reduction in magnetic coupling and corresponding

increase in leakage reactance due to rotor skew are universally calculated using an

established skew factor. However there is no single accepted method on how to apply

the skew factor to adjust the equivalent circuit. The two different circuit models

most commonly used are shown in Figures 2-9 and 2-10. These two circuits are

functionally equivalent, and can be used interchangeably to calculate identical total

motor impedance, losses, and performance. The circuits can be derived from the

original equivalent circuit by applying skew to either the rotor for Figure 2-9 or

splitting the skew equally (and oppositely) between the rotor and stator for Figure

2-10. Butler and Birch include a derivation of the circuit in Figure 2-9 in their

paper examining different equivalent circuits used to include the impact of skew. [28]

Both Vienott in his 1959 book, Theory and design of small induction motors and the

Appendix of the 1954 AIEE paper "Speed-Torque Calculations for Induction Motors

with Part Windings" by Alger, Ku, and Pan include derivations of the circuit with

equally divided skew shown in Figure 2-9.[20, 29]

R1 jX1 jXm(1/Ks^2-1) jX2/Ks^2

jXm R2/(s Ks^2)

Figure 2-9: Equivalent circuit adjusted to include a skewed rotor

The circuit component values are different in the two cases because of the altered

winding and referral factors. The skew factor is an additional winding factor that

must be accounted for on either the rotor or stator winding or both when referring



Figure 2-10: Equivalent circuit adjusted with equal and opposite skew split between
rotor and stator

the per-bar rotor component values to the stator winding. With equally split skew,

the two factors cancel out and the commonly used referral factor with the rotor cage

winding factor equal to unity, k2 = 1, can be used.

q1(Niki)2  3(Nakw) 2  12N 2 k2  (2.5)
q2 N2k22J Nr,0.5212 J Nr

In (2.5), q gives the number of phase for either the stator or rotor, depending on

the subscript; N is the number of turns per phase except Nr is the number of rotor

bars; and k is the total winding factor. With a fully skewed rotor, the rotor winding

factor equals the total skew factor, and the effective turns ratio and impedance referral

factor must be increased accordingly.

Additional combinations could differently divide the skew between the rotor and

stator conductors to create new alternative equivalent circuit models. Two of the

most useful and popular circuit models have already been presented in Figures 2-9

and 2-10. The split skew model eliminates the skew factor from the referral ratio.

The skewed rotor includes the additional leakage reactance from skew only in the

rotor branch. At the opposite extreme, one alternative circuit skews only the stator

conductors. This results in the circuit model given in Figure 2-10 with the skew

leakage reactance confined only to the stator branch.

Final calculations generally use the equivalent circuit of Figure 2-9, because the

skewed rotor circuit most accurately represents the physical motors with skewed rotors

and the existing, complex skew factor equations by Weppler and by Williamson and

Smith require the skewed rotor circuit. The circuit model of Figure 2-10 was also

used regularly to check the calculated values. With consistently calculated circuit



elements, no errors, and the new rotor adjustments, the two circuits give identical

results and can be used interchangeably.

R1 jX1 jXm(1-Ks^2) jX2 Ks^2

jXm(Ks^2) Ks^2 R2/s

Figure 2-11: Equivalent circuit adjusted for a skewed stator

2.4.3 Skew Factor

Without exception, all of the different versions of skewed equivalent circuit models

use the same universal skew factor in their varying calculations to adjust values of

resistance and reactance. The skew factor gives the reduction in induced voltage

of a skewed compared to a non-skewed rotor bar. The skew factor can be derived,

among other methods, from examining the change in flux linked by a non-skewed,

full-pitched square rotor bar loop with an angled, trapezoidal, skewed cross-section.

sin( - )
ksk,n -in ce2  (2.6)

2

In this equation n is the harmonic number and ao is the electrical angle of skew

measured as the electrical angle of rotation of the face of a rotor bar from one end

to the other around the axis of the machine. For one stator slot pitch, and P pole

pairs, this angle is 27rP radians divided by the number of stator slots. This angle is

another opportunity for confusion, and the rotor skew can also be described by the

more visible angle for open slot designs measured between a skewed bar and a line

parallel to the straight axis of the rotor.

Figure 2-12 illustrates the two angles involved with skewed rotor bars. The circle

represents the face of one end of the rotor and the lighter lines, axially straight down

the rotor, would be the location of non-skewed rotor bars. The darker line is a rotor



bar skewed through one rotor bar pitch, the angle between rotor bars. The mechanical

skew angle is measured as an angle of rotation around the rotor axis, equal to 2,
NR

in this case with NR rotor bars. This translates to the electrical skew angle, a, by

multiplying by the number of pole pairs, P. The more visible angle, 3, is a function

of the bar length and rotor radius. The skew is often specified as a fraction of rotor

or stator slot pitch to try and avoid any confusion with the different angles.

Figure 2-12: Angles of skewed rotor bars

Including the skew factor typically has only a slight (few percent or less) impact

on the rotor fundamental values but can significantly reduce the rotor slot harmonic

current, torque, and loss by a combination of increased slot harmonic leakage reac-

tance and possibly a decrease in slot harmonic magnetizing reactance, depending on

the choice of equivalent circuit. The rotor skew often aims to eliminate the stator

slot harmonic currents unreduced by the winding factor and otherwise contributing

potentially significant harmonic loss and torque. However, with inter-bar currents

flowing between imperfectly isolated rotor bars, the skew is less effective at canceling

out the slot harmonic currents. In fact, measured stray loss and torque dip increased

for the skewed cast aluminum rotors compared to the only available non-skewed case.

The non-skewed equivalent circuit calculations better matched measured results

with an adjustment to the slot harmonic reactance values. Equivalent circuit calcula-

tions of the skewed five horsepower aluminum rotors require an even further decrease

in slot harmonic leakage reactance and/or increase to slot harmonic magnetizing re-

actance, opposite the theoretical impact of skew, to reproduce the dip at high slip in



the measured torque speed curve. The impact of inter-bar currents to the effective

rotor resistance and effective skew factor can help to better calculate the observed

behavior of the skewed motors.

An additional correction can also be included to account for the slight decrease in

bar area from the incremental offset of successive rotor laminations to create the bar

skew. In normal cases, this is again, insignificant. However, the reduced bar area can

have a greater impact than the increased length and could significantly impact rotor

behavior with extreme skews and bar shapes with thin sections.

2.4.4 Skew Variation

Variation of the manufactured rotor skew partially explain the observed variations

among nominally identical rotors. All of the five horsepower copper rotors and the

skewed aluminum rotors were designed for a rotor bar skew of twelve degrees, eighty

percent of a stator slot pitch. Measured skew angles vary significantly between rotors.

Rotor skew can be a difficult to identify source of variation between otherwise identical

rotors and is an important variable for inter-bar loss equations.

Comparing a group of four skewed to four otherwise identical but non-skewed

rotors, the motors with skew measured increased variation in all quantities. The skew

angle is difficult to accurately measure on a completed rotor. Binns, Hindmarsh, and

Short planned to compare three rotors, one non-skewed, one with 1.0 rotor slot pitch,

and the last with 1.3 rotor slot skew.[24] The machines were 100 hp with 52 rotor

slots and 60 stator slots. The final rotors ended up measuring 0.024, 0.936 and 1.263

rotor slot skews. The difference is small, but more than typical care and attention

must have been spent on these experimental rotors and the actual skew values still

varied somewhat from the nominal design values.

Measured variations in skew and stray load loss are shown in Figure 2-13 below.

The skew measurements were rough but repeatable, with a likely range of error around

plus or minus 2.5 degrees. The stray losses generally increased with increasing skew,

consistent with inter-bar loss.

Approximate estimates of the rotor bar skew were made by measuring the cir-



cumferential length between the center of a bar and an axially straight line from the

center of the same bar at the far end of the rotor. The measurements are only as

accurate as visual estimations of bar centers, but were consistent and repeatable. The

values are not exact but give a reasonable comparison between rotors. The variation

in skew alone is insufficient to explain the differences in stray load losses and cannot

explain the unexpected differences between skewed and non-skewed rotors. Still, Fig-

ure 2-13 shows a rough trend. Stray load loss for these rotors generally increases with

increasing skew. Rotor bar skew is an important parameter in determining stray load

loss and will also be a key variable in calculating the impact from inter-bar currents.

10 15 20
Approximate Skew [deg]

25 30 35

Figure 2-13: Comparison of 5 hp rotor skew and stray load losses

The Copper %1 and Copper %2 are similar rotors, each with twenty nine cast

copper rotor bars. The #1 design uses a "double" bar design including a leakage

neck and round starting bar and is slightly taller and thinner than the basic tear-

drop shaped conductors of design %2. The cast aluminum rotors are slightly longer

and operate in a stator with slightly reduced number of turns, so it should not be

directly compared. The twenty-nine cast aluminum bars are the same tear-dropped
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shape as the #2 copper design.

2.5 Summary and Conclusion

This second chapter has examined the classic induction motor equivalent circuit model

and how it can be extended to incorporate multiple space harmonics and adjusted to

include the impact of rotor skew. Equivalent circuit calculations have been compared

to measured test results for the case of no skew. The reactance values influencing

the rotor currents and stray loss have also been introduced. This circuit model pro-

vides a common framework for motor calculations and, in Chapter 5, will have the

rotor resistance and effective skew factor adjusted to include the presence of inter-bar

currents. The next chapter presents the equations for rotor current and total loss

including inter-bar currents required for adjusting the equivalent circuit parameters.





Chapter 3

Inter-bar Loss Equations

This chapter presents and evaluates classic inter-bar loss calculations. It begins with

the presentation of the differential equation derivation based on the 1955 doctoral

thesis by Adnan M. Odok at the Swiss Technical University, Zurich.[10] Odok's ap-

proach is compared to a modernized adaption more consistent with equivalent circuit

analysis. The differential equation is then solved following Odok's solution process to

calculate total rotor bar and inter-bar losses. A condensed version of the derivation

and solution process also appears in an often cited April 1958 AIEE paper "Stray-

Load Losses and Stray Torques in Induction Machines." [17] Odok's work was based

on a 1939 Elektrotechnik und Maschinenbau paper in German by Von V. Rossmaier,

the earliest commonly cited publication to use a transmission line approach for rotor

bar and inter-bar losses.[9] The results of the derivation are not new but are included

here to provide a complete and more accessible derivation of the differential equation

commonly solved to determine rotor bar and inter-bar losses. The complete rotor

losses can be calculated using these equations only when the motor operating point,

in terms of the stator input current and rotor slip, have already been measured or

otherwise determined for every point of interest. This chapter compares the calcu-

lated fundamental and space harmonic rotor loss to measured rotor loss at specific

load points of measured current and slip. Since inter-bar currents can impact the

motor operating point, a more general solution to predict motor performance for any

operating conditions requires incorporating the full rotor loss equations into an ad-



justed equivalent circuit model. The rotor loss equations from this chapter are later

used in the calculations to adjust the equivalent circuit parameters to account for

the presence of inter-bar currents, presented in Chapter 5. The only parameter in

the rotor loss calculations not available from an extended equivalent circuit model

is the average value of total inter-bar resistance. The measurement procedures and

estimated average values of inter-bar resistance are presented in Chapter 4.

Following the equation for total rotor losses, new separate calculations for both

bar and inter-bar losses are presented and compared to Odok's findings. After de-

riving an initial general solution, Odok focuses on the simplified case assuming end

rings to have negligible impedance compared to the cross-path impedance in the lam-

inations between neighboring bars. This assumption is common and reasonable for

the higher order space harmonics on most machines, resulting in negligible difference

in calculated losses. Low impedance end rings, compared to the cross-path between

bars, do not significantly alter the distribution of inter-bar currents, but unusual ma-

chines can be constructed with increased end ring resistance. Plus, even relatively low

impedance end rings can still contribute enough loss to adjust the motor operating

point, and the changing slip and input current impact the calculation of inter-bar

currents. End ring boundary conditions were given in the original Rossmaier paper

and later applied in calculations by Weppler, Subba Rao, and others. [9, 11, 15] Calcu-

lations including the end ring boundary conditions for the cases of negligible, infinite,

and as designed end ring impedance are compared between the adjusted single Odok

calculation and separate calculations of bar, inter-bar, and end ring losses.

Plots illustrate the calculated total rotor loss at full load including the end ring

boundary conditions under the assumption of near constant current and slip with

varied inter-bar resistance for the five and ten horsepower test motors. The motors

include variations in bar conductivity, skew, and air gap length. The calculations for

each motor are compared to the single points of average inter-bar resistance (from

Chapter 4) and full load stray load loss from test measurements. If the input current

and rotor slip are known then these calculations using values from a representative

circuit model can accurately calculate the total rotor losses. Additional plots and



tables compare rotor fundamental and space harmonic bar currents from calculations

and measured tests over a range of eight specific load points. Later, Chapter 5

incorporates the total rotor loss equations into the extended equivalent circuit model

allowing the prediction of motor performance at any operating point, under any

arbitrary variation in parameters.

3.1 Differential Equation for Rotor Bar Current

The following differential equation has often been used to model total rotor losses,

both along and between rotor bars.[9]

d2 Ib(y)
dy 2 Zs + Ib(y)Zr = Ee (3.1)

This equation can be solved for Ib(y), the rotor bar current at axial position y

along the rotor length. The remaining terms are known, calculable, or measurable

design variables and rotor quantities. Zqs is a scaled version of the average impedance

per unit length between neighboring bars, Zq, with units of ohm meters, calculated

according to the following equation.

Z Z e-j6
q s ' - (3.2)4 sin2() (1 - -)2 (3.2)

The variable 6 is the electrical phase angle between neighboring bars, equal to
27nP for the nth space harmonic field. P is the number of fundamental pole pairs,NR

and NR is the number of rotor bars. In general, the inter-bar impedance could be a

complex quantity, but only real values of inter-bar resistance measured from Chapter

4 are used for Zq in all calculations. This is discussed in more detail in Chapter 4.

Zr, nominally the "bar impedance," is a per bar rotor impedance value including

bar impedance, additional rotor leakage reactance, and per bar magnetizing reactance

terms. E is the working axial electric field along the rotor length, equal to the induced

voltage per rotor bar per unit length with no skew, in units of volts per meter.

Odok gives the following equation for E:



.j 12. oRf2Nk,,
E = j X2hv I1 i 2  (3.3)

gp 2 ,2

In this equation N, is the number of stator conductors per phase, equal to twice

the number, Na, of series turns per phase. I1 is the input stator current; Po is

the permeability of free space; R is the rotor radius in meters; and f2 is the rotor

frequency. The total stator winding factor is k,; g is the effective air gap length; P

is the number of poles; and v is the space harmonic number.

Finally, a represents the electrical angle of rotor bar skew per unit length, the

twist built into usually the rotor conductors, measured as the angle of rotation of

each bar from one end to the other around the motor shaft.

As the rotor bars become perfectly isolated with no inter-bar currents, the current

remains constant along the bar length and the first term in (3.1) drops out. In this

case the current is the ratio of voltage to impedance and the rotor losses can be

calculated as the square of the bar current (typically assumed sinusoidally distributed

across all bars) multiplied by the frequency and temperature adjusted bar impedance,

consistent with standard induction machine theory. [6]

With non-insulated rotor bars, (3.1) is solvable when the machine geometry, mate-

rial properties, and operating conditions are known. The electromagnetic interaction

between the motor rotor and stator dictate the solution of the rotor losses. The

induced rotor bar voltage, E, arises from linked flux and relative motion driven by

the input stator current. The resultant air gap field in the machine is a function of

both the rotor and stator currents. The rotor impedance, Zr, is a function of the

magnetic interaction between rotor and stator in addition to the bar geometry and

material properties. The solution at any particular point is an equilibrium condition

that changes with stator current and rotor slip.

The remainder of this section presents and compares interpretations of the deriva-

tions of the differential equation (3.1) based on work by Odok and Kirtley, both

following the circuit approach originally from Rossmaier's paper, examining a short

segment along two neighboring rotor bars. Assuming a sinusoidal distribution of rotor



current around all of the NR rotor bars, the values of current in successive neighboring

bars, end ring sections, or inter-bar paths are all phase-shifted by an angle 6 =2,

around the rotor outer diameter, where P is the number of pole pairs.

end ring

end ring

Figure 3-1: Rotor section used in inter-bar loss equation derivation



Kirchhoff's current law applied at a point along a bar gives the change in current

along the bar as the net change in current flowing in or out from both neighboring

bars. The change in current at a point on the center, nth, bar shown in Figure 3-1

must be equal to the sum of the currents between the n - 1 and nt h and between the

ntth and the n + 1 bars, all at the same position y along the bar length.

db = Kq(1 - e j )  
(3.4)

dy

Here Ib is the bar current in amperes and Kq is the current per unit length in

amperes per meter between bars. Equation (3.4) can also be solved for the inter-bar

cross current.

db 1

q dy (1 - e-j 3 )

Similarly, Kirchhoff's voltage law can be applied around a loop formed by thin

lengths dy of the nth and n + 1 neighboring bars linked by the two lamination sections

across the n + 1 inter-bar path at positions y and y + dy as shown in Figure 3-1.

The sum of the total voltage around this loop, due to both voltage drops across

impedances as well as the source-like total induced voltage around the loop, V, must

equal zero.

Ib(n) (Y) Zr dy + Kq(n+l) (y + dy) Zq - Ib(n+1) Zr 6Y - Kq(n+ 1) () Zq = V (3.6)

Again, Z, is the rotor impedance per unit length with units of ohms per meter;

the bar current Ib has units of amps; the inter-bar impedance Zq is in units of ohm

meters; and the inter-bar current, Iq, has units of amperes per meter so all terms

have units of volts.

Dividing through by dy and substituting in the phase shift for the n+l bar and

inter-bar currents gives the following equation:



Ib(n) 1 - -j)Zi Z + ' Z e-0 V (3.7)
dy dy

Assuming a sinusoidal fundamental distribution of air gap flux, the induced bar

voltages will also be phase shifted from bar to bar, and the loop summing the voltages

will traverse the bars in opposite directions.

V = (E(n) - E(nl)) dy = E(1 - e- 6)dy (3.8)

Again, E is the rms value of the sinusoidal distribution of the non-skewed, induced

voltage per bar, per meter length. E dy gives the voltage induced along the length

dy of the rotor bar at the peak of the assumed sinusoidal distribution around the

bars, assumed here to be the nth bar. The subscript n or n - 1 indicates the value of

induced voltage at a particular bar, with a corresponding phase shift away from the

n th bar.

Substituting (3.5) and (3.8) into (3.7) and dividing through by (1 - e- j ) gives an

equation nearly equivalent to the desired differential equation, (3.1).

d2 Ib Z e -
b()1 (by) Z + = E (3.9)dy 2 (1 - e-j6)2

Equation (3.9) lacks the phase shift as a function of position along the rotor

length, de ~ , applied to the induced voltage to account for skew and the substitution

of Zq, - Zq j7)2 to scale the inter-bar impedance. Otherwise, this is the same

differential equation as (3.1) solvable for the rotor bar and inter-bar currents required

to calculate total rotor losses. The four main parameters are the electrical angle of

rotor bar skew per unit length, a, included as a phase shift to the induced voltage,

the voltage induced along the bars, E, the rotor per-bar impedance, Z,, and the

impedance between bars, Zq. The rotor impedance Z, also includes mutual and

leakage reactance terms since the induced voltage depends on both the rotor and

stator currents. Approximate values of all four terms are required for accurate loss

calculations. Each of the four critical parameters are briefly discussed in order to

examine their potential impact on the rotor losses.



3.1.1 Rotor skew

Rotor skew, the electrical angle of twist or slant in each bar from end to end, is a

straightforward variable for this chapter. The value of skew is assumed to be known

from design data or measured on the completed rotor. The measured skew is used in

the loss equations for each rotor. The impact of skew on insulated rotor equivalent

circuit parameters was discussed in the previous chapter. The angle of skew will

impact each space harmonic differently, with different series of values resulting in

minimum and maximum rotor losses. The impact of varied skew is examined on the

five horsepower motors with similar characteristics except altered skew. Calculations

of the impact of varied skew on a particular motor design are not evaluated here

because the constraint of constant input current and slip may produce unrealistic

results. Varied skew and inter-bar resistance are considered in the equivalent circuit

adjustments and loss calculations in the fifth chapter.

3.1.2 Per-Bar Rotor Impedance

The components of the per-bar rotor impedance are also briefly discussed in the

previous chapter as part of the equivalent circuit model. X, is a combination of the

rotor bar impedance together with a per-bar value of magnetizing reactance as well

as any additional rotor leakage reactance components, often expressed as zigzag or

differential leakage reactance terms. The rotor bar resistance is one of the easier circuit

parameters to calculate. Some reduction in the bar conductivity is possible from voids

and impurities as a result of the casting process. For the five and ten horsepower cases,

the decrease in cast rotor conductivity were small, less than about 10%. Changes

even of this magnitude noticeably alter the motor performance. Surface conductivity

measurements showed almost no decrease in conductivity following the rotor casting.

Frequency effects must also be taken into account. A routine written by J.L.

Kirtley, Jr., is used to calculate the impact of changing rotor frequency on rotor

bar resistance and rotor slot leakage reactance values. The method breaks the bars

up into many horizontal slices, simplifying the synthesis of complex bar shapes and



building up the total bar impedance from the combination of every slice. [21]

Unfortunately, the slot leakage reactance is not the only reactance term included

in the total equivalent per-bar rotor impedance, X,. The magnetic coupling and in-

teraction between the rotor and stator impact the induced rotor voltage, currents,

and loss. The total rotor reactance, representing both the useful fields and leakage

magnetic fields not fully linked by both windings, should be included. Odok includes

as part of Xr, the reactive component of the per bar rotor impedance, Z,, a magne-

tizing reactance term in addition to slot and differential leakage reactance coefficients

consistent with those given by Liwschitz-Garrick. [19, 10] The differential leakage reac-

tance term is roughly equivalent to the zigzag leakage reactance as given by Alger.[6]

Equations for these reactance values are presented in the second chapter as part of

the equivalent circuit discussion. These reactance values, above all for the stator slot

harmonics, greatly impact the calculated rotor losses. At least in the case of the five

horsepower motor, unadjusted traditional formulas do not adequately calculate the

measured space harmonic rotor loss and torque.

3.1.3 Inter-bar Impedance

The scaled inter-bar impedance, Zqs, is the only new parameter not included in tra-

ditional equivalent circuit calculations where the bars are assumed to be perfectly

insulated. Previously, Zqs had been defined in 3.19.

Z e-j6 Zq e- j6  Zq
Zq (1 - e )2 -j6 / 2 (ej6/ 2 -_ Cj6/2)2 4 sin 2() (3.10)

The literature generally neglects any reactance associated with the bar-to-lamination

interface, and measurements by both Odok and Christofides determined the reactive

components to be negligible.[17, 30] However at least one exception by Watterson et

al. measured an appreciable variable inductance. [14] As an insulating layer between

two conductors, the contact seems like it could add capacitance, but no reactance

measurements were taken as part of this investigation. The inter-bar reactance is

assumed small enough not to significantly impact the inter-bar losses, and dc mea-



surements determine contact resistance values. The contact resistance measurements

and calculations are presented in Chapter 4. Still, identical equations apply with

either an inductance or capacitance term included or neglected from the impedance

between bars. The inter-bar impedance can easily be updated to reflect the latest

measurement results.

The total inter-bar resistance is at least twice the contact resistance, plus the

resistance of the section of laminations between bars, if appreciable. The lamina-

tion impedance, assumed resistive along with the contact term, contributes a finite

resistance, typically negligible compared to the much larger contact resistance, but

more significant for rotors with low contact resistance. The lamination impedance

also imposes a fixed lower limit on minimum practical value of inter-bar resistance

when approaching zero contact resistance. With low enough lamination conductivity,

the point of maximum cross-path loss might never be achievable. On the twenty-nine

bar, almost three inch diameter, five horsepower rotors, the resistance of the iron path

per unit length between neighboring bars was estimated to be around 0.1 micro-ohm

meters.

Frequency effects should also be considered in dealing with the inter-bar resistance

values. Even though the cross path is assumed purely resistive, the axial path along

the bars includes both bar resistance and reactance. The rotor bar currents crowd

towards the upper sections of the rotor bars under conditions of high slip and rotor

electrical frequency, increasing the equivalent rotor resistance from rotor currents

crowding towards the top of the bars. The inter-bar currents will similarly concentrate

in the regions of higher current density, increasing the effective inter-bar resistance.

As a first order approximation, the increase to the contact resistance is assumed to

be proportional to the increase in rotor bar resistance.

3.1.4 Induced Rotor Voltage

The induced rotor voltage is another rotor parameter accounting for the coupling

between rotor and stator. Dependent on both the useful reactance terms representing

the magnetic fields jointly linked by both rotor and stator and the leakage fields



linking only one or the other winding, the induced rotor voltage varies with the

stator operating point as well as the design of the rotor and stator.

The working axial electric field along the rotor, equal to the induced rotor bar

voltage per unit length with no skew, can also be calculated as the integral of the

induced axial electric field along the bar, divided by the bar length. With radially

directed air gap flux density, Bg, the electric field along the bar is equal to the cross

product of Bg and the bar velocity. Integrating the electric field over the full bar

length, L, and dividing by the total length of the bar gives the induced voltage per

unit length, E. There is no induced voltage in the orthogonally oriented end rings.

Normally, the air gap magnetic flux density and the induced rotor electric field are

assumed sinusoidally distributed around the air gap and uniform along the bar length

in the absence of skew.

E = usR BgP (3.11)

In this equation, R is the rotor radius in meters, B9 the rms air gap flux density

in tesla, P the number of pole pairs, w the stator electrical frequency, and s the

rotor per unit slip. The induced bar voltage for each space harmonic is the only rotor

source term driving the rotor currents. With no end ring impedance, the magnitude of

induced voltage per unit bar length exactly matches the voltage drop along the bars,

calculated as the bar current multiplied by the bar impedance per unit length with

a uniform bar current. With appreciable end ring impedance and otherwise identical

conditions, the same induced voltage now drives a somewhat reduced current through

both the bar and ring impedances.

Still assuming a sinusoidal distribution, the next bar will be phase shifted by

an angle 6, and the total induced voltage, V, around the loop of a small section

of neighboring bars, as illustrated in Figure 3-1 can be calculated as the difference

between the induced voltages of the two neighboring bars.

V = d( 1 - e- S) (3.12)



Kirtley uses a slightly different equation than Odok for Bg, with the vector dif-

ference in stator and rotor currents determining the magnetizing current and air gap

flux density. This more clearly shows the interaction of rotor and stator and leads to

the additional per-bar magnetizing reactance term, Xb combined with the rotor bar

reactance, Zb, to give Odok's full per-bar rotor impedance, Zr.

3 4 Ns kw
B (11 - 2) (3.13)

2-F 2pg

Here the stator and rotor currents are defined positive when directed into the

motor stator terminal or rotor branch.

The rotor current, 12, referred to the stator and the physical current per bar, Ib,

are related by the normal referral ratio as shown in Equation (3.14) for a three-phase

squirrel cage machine with no skew or skew evenly split between stator and rotor.

The skew factor can also be included as a rotor winding factor, depending on how

the equivalent circuit incorporates the skew.

NR
12 = IbNR (3.14)

6 Na kw

In this equation, NR is the number of rotor bars, Na the series turns per phase,

and kw the total stator winding factor. Substituting into the equation for induced

rotor voltage, (3.11), gives the following equation:

E 3= owR k( - e ) ( (3.15)
7 p 2 g 6 Ns k

Plugging this induced voltage into the differential equation from (3.9) results in

an expanded form.

d12 e - j  j 3 o rRNskw Na
b Zb (bye ) Z) slightly simp)(-lifies (316)

dy2 (I e-y6) P2 g 6 Ns kw

Dividing through by (1 - e-j6) slightly simplifies the equation.



So rR N dy dlb2 Zgs e-j j 3 o rR N k,
Ib ( RNRdy Zb)  dIb Zq8e- powRRN 11 (3.17)

3 p2 g dy2 (1 - e- )2 7r P2 9

And substituting in

Po s R NRXg sRNR (3.18)
3 p2 g

as well as

Zq e- j  Zq=q = Zqs (3.19)
(1 - e- 1)2 4 sin (3.19)

gives the final version

d2 b Na k, 6 Ja
Ib(Zb + jXg) + Zqs dy 2 = Xg N Ile L (3.20)dy2  NR

This derivation from J.L. Kirtley, Jr. based on the method used by Odok and

Rossmaier more clearly shows how both the rotor and stator currents impact the

air gap flux density and how the additional reactance, X9 , combines with the bar

reactance Zb.

3.2 Rotor Loss Solution

This section initially presents Odoks solution for rotor bar and inter-bar losses before

solving for arbitrary end ring boundary conditions. Odok starts with the following

homogenous and particular solutions to (3.1) for the rotor bar current, verifiable by

evaluation in the differential equation.

IH(Y) = CleY + C 2 Ce (3.21)

Ip(yE)= (3.22)
Zq,s(I 2 + a2)

In these and future equations, the new term 7 is a propagation constant given by



F-Z, while C and C2 are complex integration constants set by applying boundary

conditions. Combining these two equations gives the total solution for the rotor bar

current.

EeaY
Ib(Y) = C1e Y -- C2e-'y + (3.23)

Zqs (y 2 + 2)

Expressions for the current and voltage between bars in terms of the bar current

can also be used to calculate the losses from currents between bars. The current

between bars, Iq, can be determined by current continuity along a thin section of bar.

The difference in the bar current must equal the difference in cross currents entering

and leaving the bar along the section. Taking the limit as the length of the section

approaches zero gives the derivative of the bar current in terms of the two adjoining

inter-bar currents.

dlb(y) ej6/2

dy 2j sin() (3.24)

In this equation 6 is the phase angle between adjacent rotor bars. The bar-to-bar

voltage, V(y), is the product of the inter-bar current and impedance.

Vq(y) = Iq(y)Zq (3.25)

Evaluating the inter-bar voltage in terms of the bar current produces the following

equation for the voltage between bars.

d C e y + Eeay
.V,(y) = -Zqs2j sin(6/2)ej/2 dy [1 CiE + ( 2 e + 2) (3.26)

Odok first solved for the integration constants, C, and C2 , in terms of generic

boundary conditions given by Ib(y = 0) = I for the bar current at the starting end

of the rotor and V,(y = 0) = V1 for the voltage between bars. This exchanges the

two unknown constants for functions of two other, more specifically defined unknown

constants.



II V E(ja + y)
C1=

2 2Z,, 2Zsy(y 2 + 2)

and

II Vs E(ja - y)
C2 I + +

2 2 Zqs 2Z,sy(7 2 + a 2 )

The substitution Vs = 2jsin(2)eJ/ 2 makes the equations a little cleaner. Now,

plugging in the results for C1 and C 2 and simplifying using the hyperbolic functions

2 cosh(x) = e + e- and 2 sinh(x) = ex - e - x yields equations (3.27) and (3.28) for

the bar current and inter-bar voltage.

Ib(y) = I, cosh(yy) - sin(y) - sinh(Qy) - cosh(Qy) + (3.27)
Zv ZV, Zqs ZqsG

jaE EZ ih(y Vie j
Vqs(y) = -I 1Z, sinh(Qy) + Vs cosh(yy) + cosh(/y) + sinh(-yy) -

(3.28)

In both of these equations substitutions have been made for = 2 + a2 and

Z = /ZqsZ. There are a number of different ways these equations can be used to

find the rotor power loss. Odok uses the most direct approach to find the total rotor

losses, the sum of losses along and between bars. He integrates along the bar length

the product of the bar current and the complex conjugate of the induced voltage for

the case of no skew. The non-skewed induced voltage is multiplied by a phase shift

dependent on the position along the bar to account for the rotor bar skew. This

allows the calculation of the sum of the rotor bar, inter-bar, and end ring losses by

evaluating a single integral. In any loop between bars along the rotor length, as shown

in Figure 3-1, the sum of the induced voltage along the bars drives all rotor current,

both along and between bars, and must be equal to the total voltage drop, both along

and between bars. The end rings are included as boundary conditions with altered

inter-bar resistance, cross-current, and voltage drop at either end of the bar.



With insulated rotor bars and negligible impedance end rings, the voltage drop

along a section of a rotor bar equals the induced voltage along the bar. Add in

end ring impedance and inter-bar paths and now the induced voltage along a length

of a bar equals the sum of the voltage drop along the same bar length, plus the

voltage drop between a section of the rotor bars, and a voltage drop accounting for a

proportional section of both end rings. The phase shifted induced voltage E represents

the combination of all three areas of voltage drop. The total rotor loss both in the

rotor bars, end-rings, and paths between bars can be simultaneously calculated using

the single expression below, multiplying the total number of rotor bars by the integral

of the IV*, with the complex conjugate of the phase shifted voltage drop for the total

voltage drop.

P2  NR-e [Ib(y)E*e Ydy] (3.29)
y=0

The starred variable, E* represents the complex conjugate of the induced bar

voltage in the case of no skew, E. The variable NR is the number of rotor bars,

and Re{} represents the real component of a complex number.[17] Inserting Ib from

equation (3.27) and evaluating the integral results in equation 36 from Odok's AIEE

paper or, equivalently, equation 30 from his thesis.[17, 10]

(E 2 L (E2 __ -aL

P2  NR e + I 1E* - __- (7 sinh(L) + ja cosh(iL)) -

SV1 * +  aE2 ) -ja (y cosh(/L) + ja sinh(-yL)) - ) (3.30)

Still including the generic I1 and V boundary conditions, equation (3.30) could be

applicable to any case. However, one of the most practical and easiest to evaluate cases

assumes the rotor end rings behave as ideal short circuits with negligible impedance.



3.3 Negligible End Ring Impedance

Physical rotor end rings contain a finite impedance value, generally less than the bar

impedance and typically negligible compared to the resistance of the lamination path

between bars. In the low current de voltage measurements of Chapter 4, even copper

tendrils of millimeter dimensions squeezed between the outer most lamination layers

could effectively short out the voltage measurable between neighboring bars.

The larger solid copper or aluminum rings cast together with the rotor bars as

a single conductor cage provide an even closer approximation to a short circuit in

typical machine designs. Negligible end ring impedance gives effectively zero voltage

between bars at both ends of the rotor and V = 0. The value of Odok's other

boundary condition value, II is not as obvious but can be determined using the

second boundary in equation (3.28), solving Vqs(y = L) = 0 with V = 0 for II.

I ja cosh(L) 1 jyeJ~IaL (3.31)

Z,p sinh(QL) Zq, s Z,0 sinh(yL)

Substituting these values for V1 and I, into equation (3.30) yields equations 37 and

31 from the Odok AIEE paper and doctoral thesis, the equation for total rotor losses

in the case of negligible end ring resistance, reproduced below as equation (3.34).

Alternatively, when only considering the case of negligible end ring impedance, the

boundary conditions, Vs(y = 0) = Vqs(y = L) = 0, can be applied earlier to equation

(3.26) to directly determine the integration constants, Cl and C2, for this particular

case.

l aE (e - y
L - ejaL) (332)

2'yZ s sinh(y/L)

jacE (e - ejL)
C =- (3.33)2Zq,,s sinh(yL)

These alternate integration constants can be substituted into the equations for

bar current and inter-bar voltage, (3.23) and (3.26). Repeating the integration of the

product of this new bar current and the induced bar voltage identically reproduces



equation (3.34) for total rotor losses under the assumption of negligible end ring

impedance. Again, this equation gives the combined total of both the traditional

rotor bar losses along with the inter-bar losses but omits any end ring loss.

NRL 2 2 (cosh(yL) - cos(aL)) (334)
2 E Zs + /3Z, sinh(-yL) I

While this equation is derived and written for the fundamental air gap field and

rotor currents, the same equation with adjusted parameters for the higher order har-

monics can be used to calculate non-fundamental frequency rotor losses. Frequency ef-

fects must be taken into account when determining the bar and inter-bar impedances.

The physical rotor skew angle, if about equal to one stator slot pitch, may be a small

percentage of the fundamental field pole pitch but will be more significant for the

higher order harmonics.

3.4 Infinite End Ring Impedance

The opposite extreme provides equally simple, if less realistic, boundary conditions.

Infinite end ring impedance is equivalent to removing both end rings. This case can

be used as a sanity check to verify the equations are behaving as expected. With

infinite end ring impedance, total rotor losses should go to zero as the inter-bar

impedance gets large, no currents flow, and the motor fails to operate. Inter-bar

losses will still approach zero as the bar-to-bar impedance approaches zero, matching

the previous case with no end ring impedance. Again, this extreme model does not

represent physical reality for normal machines. These equations are calculated using a

fixed current and slip that will only remain approximately constant provided that the

additional rotor losses do not significantly alter the motor operating point. Especially

without end rings, the original full load operating point does not apply and incorrect

values of stator current and slip are used. Still, the no end ring case can be useful for

comparison against separate bar and inter-bar loss equations.

Applying the new boundary conditions, Ib(y 0) = Ib(y = L) = 0, produces new

integration coefficients.



-aE (e-jaL - eL
C10 = (3.35)2 Zq/ 3 sinh(Q-L)

(e-yL - ejieL)
C2o 2 Zq sinh(L) (3.36)

Substituting these coefficients into the equation for bar current and repeating the

integration of the bar current multiplied by the phase shifted induced bar voltage gives

the following equation for total rotor losses in the case of no, or infinite impedance,

end rings.

P2=NR 1 L + 2y(cos(aL) - cosh(Q-L)) (337)
[Zq, 132Z,s sinh(-yL)

3.5 Separate Bar and Inter-bar Loss Equations

The total rotor losses can also be found by separately integrating the square of the bar

current times the bar impedance to find the rotor bar losses,P2 b , and then adding the

integral of the square of the voltage between bars divided by the inter-bar impedance

for the inter-bar losses, P2q, with both integrals taken over the full rotor length. Since

both bar current and inter-bar voltage are complex quantities, the squared term for

both power equations must multiply each value by its complex conjugate. This more

complicated method separately calculates the rotor losses physically located either

in the rotor bars or in the lamination paths between bars. With non-insulated bars,

new loops between bars allow currents to flow along and between sections of bars.

These currents cannot exist in the case of an insulated rotor. The total change in loss

due to inter-bar currents arises from the new currents and total losses in both bar

and cross-path. The total rotor losses from each case should be compared in order

to determine the impact from non-insulated rotor bars, but the separately calculated

bar and inter-bar losses provide a useful check against the previous total rotor loss

calculation.



P2b NRe Ib (y)I*(y)Z*dy (3.38)

L V (y)(

P2q NR~e ( (dy (3.39)

Evaluating these integrals gives separate nine term equations for the bar and inter-

bar rotor losses. Substituting in the integration constants for the negligible end ring

impedance case and evaluating, the sum of these two equations matches the single

total rotor loss from equation (3.34).

P2b =NRwe Z* ' (e2L2 - ) - 2 (e-2L 1)
2- , 2-y,

jCI2* 2 L jC2C 2L; E 2 L
- (ei7 - 1C+ (e j2Ly. -1) +

274( 27- QB
EC1  (eL(y-ja) - EC2  (e-L(-y+ja)

Zq,3*(7 - ja) Zs/3*(7y + jc)

EC* EC*
+ Z (eL(*+ja) 1) C (eL(*j) - 1) (3.40)

ZqP(-* + ja) z ,sP(1* - ja)

P2q =NRRe Z*s[ C 1C (e2Lry, _ 2- 1) 1)2L
S27, 2y,

jFCC j2LC a2 * 2 2 E2 L
+ j (e2Lyi - 1) j CC (e-j2L'y - 1) + --

27- 2-7 QB
_ _ _ _ jcre'EC2caiEC1 (eL(-ja)-1) (e (L(T-J)-1))

Zqp* (7 - jca) Z /*,* (7 + ja)

cryEC1  (e(+jc)- *EC (e-L(y*+ 1)] (3.41)
Z ±s *(7* + j)(el z * (*Q0 * - j( )

The following plots compare the sum of the bar and inter-bar losses, P2b + P2q,

to the loss calculated first using Odok's equation with negligible end ring impedance

in Figure 3-2 and second, assuming the opposite extreme case of infinite end ring

impedance in Figure 3-3. The exact matches suggest the separate bar and inter-bar

;~-i:~tii2~~"i*r~l;r~i~T;-':L~~;i; r;.- ----;_ :: ---r: ; :; -;i;;-l;_ -; iii; ; .---- Ir;--L ;- "~-;;~ri: :;;:r ;..;i._::;.~l;-; i ; I~1 --- i--ii i;~;--" ~~~~'-;- ;i~i)-~ -i""~ls~~~~~~7tri;~;=:-:



loss equations are functioning correctly.
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Figure 3-2: Comparison of calculated total rotor power loss between the single equa-
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rings

x Odok No Rings

X - real(PB+PQ)

0
O Odok No Rings

- imag(PB+PQ)

... ..........

------- ~------------L------
,jI

I I I IL



2000

S1500 -

n:1000 _ xUxxx x Odok No Rings

S-- real(PB+PQ)

500 -
" 0 - 10 10

10-10 10 10
-6  

10
-4  

10
-2  

100

Contact Resistance [Q m]

< 0

-1000 -

-2000 O Odok No Rings
-0 imag(PB+PQ)

a) -3000

0 -4000
10 10 10- 6 10-4  10-2  100

Contact Resistance [Q m]
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the single total equation and the combination of separate bar and inter-bar losses
with no end rings (infinite end ring impedance)

Since the Figures 3-2 and 3-3 compare only the sum of both bar and inter-bar

power equations, there could still be an error in the division between the two cate-

gories. The next two plots show the separate calculations of bar and cross-path loss

for the same two cases of negligible end ring impedance, in Figure 3-4, and infinite

end rings, in Figure 3-5. The results make sense for the zero impedance case, where

all of the cross-path losses go to zero as the rotor resistance gets large enough to

prevent any rotor currents from flowing. Similarly, the inter-bar losses will approach

zero and the bar currents a maximum value as the inter-bar resistance goes away. For

the less realistic case of completely removed end rings, all losses vanish as expected

as the cross-path impedance increases and all rotor currents approach zero. Again,

the bar current and loss should reach a maximum as the inter-bar resistance and loss

approach zero.
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Lastly, since all of these plots examined only the fundamental rotor losses, Figures

3-6 and 3-7 show the 23rd space harmonic power for the case of negligible end rings.

First, Figure 3-6 again compares the real and imaginary component of the sum of both

to the independently calculated power. Then, the real power is plotted broken down

into bar and inter-bar losses in Figure 3-7. The inter-bar losses are more significant

on this slot harmonic than on the fundamental.
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3.6 Arbitrary End Ring Conditions

Both of the rotor loss equations with assumed zero or infinite end ring impedance

do not consider end ring losses. In most typical machines, the end rings may act as

ideal short circuits when compared to the much larger cross-path impedance, but each

ring retains a small, non-zero, impedance. The bar currents still travel through the

copper or aluminum end rings and can produce significant 12R losses and heat despite

the relatively low end ring impedance. Adjusting the equivalent rotor conductivity,

or equivalently, assuming a somewhat longer effective bar length, are two common

equivalent circuit strategies to calculate more accurate total rotor losses by examining

only the bar losses with appropriate adjustment to account for the impact of the end

rings. The inter-bar losses vary with both the bar length and rotor bar conductivity,

so both of these strategies will introduce additional error in the calculated inter-bar

currents. An improved but more complicated solution considering arbitrary end ring



impedance can be used to more accurately calculate the total rotor losses of any rotor.

This is the most general and realistic case that will be used for all future calculations.

3.6.1 Alternate Integration Constants

The goal is to solve the same differential equation using alternate boundary condi-

tions to determine the new rotor bar current, now including end rings of arbitrary

impedance. A hybrid strategy combining methods from Rossmair and Alger, con-

sistent with the equations given by Weppler and Subba Rao, determines integration

constants for any given end ring impedance while aligning with equivalent circuit

calculations. Odok's original simplified expression assumes end ring impedance to

be negligibly small and was applied only to higher order harmonics. Applying this

approximation to the rotor fundamental can significantly underestimate losses. The

difference may be on the order of 10-20% in typical induction machines but are closer

to 30% on the tested five hp machines. The end ring impedance is much less signifi-

cant for the higher order harmonics, with smaller pole pitch and reduced ratio of end

ring path to bar length.

The diagram of a section of the rotor, repeated here as Figure 3-8, will again be

examined, now with arbitrary end ring resistance between neighboring bars, RR, at

both ends.



end ring

end ring

Figure 3-8: Rotor section used in inter-bar loss equation derivation



The voltage between bars at either end of the rotor will be equal to the current

in the ring times the resistance of that section. The bar current at either end of the

stack is Ib(y = 0) or Ib(y = L). However, the bar currents flow a varying distance

around the end rings, with currents from multiple bars combining at any point along

the ring. Assuming an approximately sinusoidal distribution of rotor currents around

the rotor bars, Alger integrates the bar currents over a half pole pitch to obtain the

ratio of end ring to bar current as 2 -R where NR is the number of rotor bars and

P the number of pole pairs. [6] Multiplying the square of this ratio with the end ring

impedance gives the effective end ring resistance for use with the rotor bar current

to calculate equivalent total end ring loss without using the actual, larger end ring

currents combined from multiple bars.

Rossmaier applied an additional constraint to the end ring current. Still assuming

a sinusoidally distributed end ring current results in a phase shift between consecutive

end ring sections. As with the also sinusoidal bar or inter-bar currents, the current

in the "nth" end ring segment is equal to the next section phase shifted by the angle

between neighboring bars.[9]

IR(n) = I(n+1) e-j6  (3.42)

Current continuity at each bar end also requires that the bar current at either end

must equal the difference in neighboring end ring currents.

IR(n) = InR(n+l) + IB(n) (3.43)

These two equations, (3.42) and (3.43), combine to give the following relation

between the ring and bar current.

IB(n)
IR(n) - (3.44)

1 - e-

Using this ratio to refer the actual end ring resistance to a value for use with the

bar current results in another correction factor, this time equal to the square of the



magnitude of , or 4sin(/2) as given in Rossmaier's equation (5).

The above equations are correct regardless of the bar and end ring currents, but

the correction factors applied to the end ring resistance relate the peak or rms value

of the sinusoidally distributed rotor bar current to the peak or rms value of the

also sinusoidally distributed end ring current. However, the peak ring current occurs

physically near the minimum bar current, out of phase by " with the peak bar current.

Minimum actual ring current flows either into or away from the bar carrying peak

current. This generates some difficulty and error in the simple application of end ring

boundary conditions. Ideally, results from analyzing a single bar and section between

two neighboring bars could be multiplied by the number of bars to account for the

full rotor.

The actual, physical resistance of a section of end ring combined with the rotor

bar current will underestimate end ring losses, neglecting the combination of bar

currents in the end rings, and result in an underestimated stator current and rotor

losses. Conversely, employing the effective, adjusted resistance of an end ring section

together with the bar current calculated correct total end ring losses. This calculation

overestimates the voltage across the section of end ring acting. The values of peak bar

current and effective end ring section resistance are both greater than the physical

end ring current near the peak bar and the actual resistance of an end ring section

and calculate an inflated end ring boundary voltage. However, for typical machines,

even this overestimated voltage for the end ring section still does not significantly

impact the distribution of inter-bar currents.

The fundamental end ring losses may be appreciable and should be included, but

the error in end ring voltage has had negligible impact on the current and loss calcu-

lations for the motors examined. The end ring impedance is necessary for calculating

total fundamental rotor losses and determining the stator current and rotor slip of the

motor operating point but otherwise has not significantly impacted the calculation of

either fundamental or harmonic rotor losses.

The final effective resistance of a single section of end ring between neighboring

bars, RRe, not yet referred to the stator winding, is given by equation (3.45).



RRe -Rr 2 (3.45)

With both inter-bar and end rings currents defined positive as flowing from left

to right in Figure 3-8, the two boundary conditions for determining the integration

constants in (3.46) and (3.47) equate the end ring and bar-to-bar voltages across the

end ring and lamination sections at either end of the rotor.

VRO = V(Y = 0) (3.46)

VRL = Vq(y = L) (3.47)

The physical resistance, RR, of a section of end ring between neighboring bars

is roughly approximated as the length between bars divided by the area of the end

ring cross section and conductivity. This assumes that the current is roughly equally

distributed over the end ring. If the end ring is over sized, the current may not be

equally distributed resulting in a larger effective ring resistance. The length between

bars is slightly overestimated here as the total rotor circumference divided by the

number of bars. This distance could be taken at the middle of the end rings or aver-

aged from the inner to outer end ring radius, but there is more significant uncertainty

in the exact value of the as-cast ring conductivity.

25 R
RR = (3.48)

NR aR LE hE

In calculating the end ring segment resistance, R is the rotor radius, NR the

number of rotor bars, UR the ring conductivity, LE the axial ring length, and hE the

radial ring height.

The solution for the rotor bar current, Ib, as a function of axial position along the

rotor, y, in terms of the complex integration constants C1 and C2, is repeated below

as (3.49). End ring boundary conditions can be applied to solve for the unknown

complex constants, C1 and C2 .



Ib( )  , 1e 'Y + C 2 e- + (3.49)
Zqs(~y 2 + a 2)

The inter-bar current Iq can be found as a function of the bar currents, repeated

below as (3.50).

dlb(y) e46/ 2

Iq(Y) = . (3.50)dy 2jsin(6/2)

In these equations, as before, Zq is a scaled version of Zq, the impedance between

bars, E is the induced voltage per bar per unit bar length, and the per bar impedance

Z, also includes mutual and leakage reactance terms since the induced voltage de-

pends on both the rotor and stator currents. The term 6 is the phase angle between

adjacent rotor bars, a is the rotor bar electrical skew angle per unit length, and y is

a propagation constant given by .

The voltage between bars can be found by multiplying the inter-bar current and

resistance values.

V(y) = -Zq,2jsin(6/2)e j6 / 2  Cie "'Y 7YC 2 e -  + J 1 (3.51)
[ Zqs (1Y 2 + a 2

The two arbitrary, complex integration constants can be solved by substituting

the equations for Vq and I, into the two boundary conditions at either end of the

rotor given by (3.46) and (3.47) and simplifying.

The first boundary condition including the equations for inter-bar voltage and bar

current is evaluated at y = 0.

jaXE E
X -C 1 - X C 2 + -- C 1  C 2 + -- (3.52)

Zq3 s

A number of terms have been grouped together and written as X to simplify the

expression.
x 4x7PZq, sin(6/2)e (3.53)

X = NRRR(3.53)
NnR



This first boundary condition can be solved for the integration constant C1 in

terms of 02.

C2(X _+ 1) + E (1 -j X)
C1 -- = (3.54)

Similarly, the second boundary condition is evaluated at y = L.

X [iC1e' - C2 -L ,,  ce e ] =c + C2- + e--j (3.55)

The second boundary condition can be solved for C2 by substituting the solution

for C1 in terms of 02.

SE (1 - jC X) (er L j- eaL)
Zqs (X 7 + 1)(e--L eL) (3.56)

Comparing calculations using these new integration constants, the sum of the bar

and inter-bar losses still agree exactly with the single equation calculations for the

extreme cases as the ring resistance approaches zero or infinity. These two complex

integration constants can be used along with the equations for bar and inter-bar losses

to determine the losses for any rotor, regardless of end ring impedance.

3.7 Comparison of Rotor Loss From Calculation

and Measured Tests

The restriction of the fixed operating current and slip restrict the application of the

rotor loss calculations to known test points. Examination of variations in rotor pa-

rameters remains for Chapter 5, using the rotor loss calculations as part of a full

circuit model. The following set of plots compare values of stray load loss and fun-

damental rotor conduction loss from measured test results and calculations. The

calculated stray load loss consists of the rotor 12R conductor losses from eight cal-

culated harmonics, the four lowest, "belt," space harmonics of order 5, 7, 11, and 13

as well as the first and second order pairs of stator slot space harmonics, N ± 1 and
p



2N 1, where N, is the number of stator slots and p the pole pairs. The harmonicsp
generally decay as the inverse of the square of the harmonic number, so this limited

set is expected to be representative of the appreciable harmonic bar losses in the rotor

for most cases. Eight different load points from no load to 150% of the full load are

displayed for a selection of cast five and ten horsepower motors in the remaining plots,

Figures 3-9 to 3-15 in this section. For all of these plots, an error of less than plus or

minus ten percent is a reasonable estimate for the error in "measured" fundamental

rotor and stray load loss. As shown in Chapter 5, the worst case measured stray load

loss error could reach as high as plus or minus thirty or forty percent, but that is an

unlikely extreme, and the non-skewed aluminum rotors showed about a 10% variation

in measured stray load loss.

The triangular points compare the calculations of the fundamental rotor loss to

values determined according to the IEEE 112 test standard as the measured slip

multiplied by the air gap power, calculated by subtracting the stator copper and no

load core losses from the measured input power. The calculations of fundamental

rotor losses generally agree with the test data, across all of the machines and rotors.

Calculations of stray load loss are more difficult and variable, but including the

impact of inter-bar currents universally improves the correlation between predictions

and test values. Stray load loss calculated assuming infinite inter-bar impedance

is equivalent to traditional equivalent circuit calculations without inter-bar currents.

With insulated rotor bars, skew can effectively reduce slot harmonic rotor bar currents

and losses, minimizing stray loss from slot harmonic rotor conductor loss.
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Figure 3-9: Design #1 10 hp cast copper load points with fixed speed and stator
current without combining core and air gap reactances

Initial calculations overestimate the stray load loss for the Design #1 ten horse-

power machine in Figure 3-9. However, using the parallel combination of the air

gap reactance and a core excitation reactance for an effective value of magnetizing

reactance in the calculations of harmonic reactance values produces a much closer

match. The core excitation reactance represents the energy stored and mmf drop

over the non-infinitely permeable motor laminations and can be calculated similarly

to the core loss using manufacturer excitation power data and calculated mass and

magnetic flux density for the motor teeth and back iron.

All harmonics have magnetizing and components of leakage reactance calculated

as a function of the fundamental air gap reactance. The fundamental air gap reactance

is typically reduced through an effective Carter-corrected air gap length, greater than

the physical dimension to account for the redistribution of air gap magnetic fields

from the stator and rotor slots. An additional "saturation" correction factor is also

often applied to further reduce the fundamental air gap reactance. [19] The equivalent

reactance as the parallel combination of core and air gap values is consistent with the



"saturation" factor, used to account for the mmf drop in the core laminations.[20]

The next plot repeats the calculations on the same design #1 cast copper ten

horsepower motor, but now, the effective, combined air gap and core reactance value,

is used in the harmonic reactance calculations. The calculated stray load loss in

Figure 3-10 now agrees with the test values.
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Figure 3-10:
current with

Design #1 10 hp cast copper load points
combined core and air gap reactance

with fixed speed and stator

The next two figures compare results for a completely different ten horsepower

cast copper motor, design #2. The original motor of Figure 3-11 includes an 18

mil air gap. This motor measured higher than expected stray losses. Including the

impact of inter-bar currents increase the calculated loss closer to the test results, but

the predictions still significantly underestimate the measured stray loss. Additional

sources of potential stray loss are examined briefly in Chapter 5. Figure 3-11 gives

results for the exact same motor except with the rotor outer diameter machined down

to give a 25 mil air gap. The increased air gap effectively reduced the stray load losses

and improved the correlation between prediction and test.
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gap "Low SLL" 10 hp cast copper load points with

The next plot, Figure 3-13, compares calculations to values from test on a cast

aluminum five horsepower motor with skew. As with the non-skewed rotors, the

predicted stray loss falls well below the test value.
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Figure 3-13: 5 hp cast aluminum load points with fixed speed and stator current

As designed, with reactance values as calculated and one stator slot of skew, the

predicted losses are low on the five horsepower machines. The calculation including

inter-bar currents is still an improvement, slightly closer to the measured values when

compared to the insulated case. The remainder of the stray losses could be from a

completely different source, but the pronounced dip in the measured torque speed

curves for these machines in the high slip region around the synchronous speed of the

slot harmonics suggests that the stator slot space harmonic losses are more significant

than predicted. This is consistent with the equivalent circuit calculations of the non-

skewed aluminum rotors from the previous chapter. Calculations of space harmonic

loss and high slip torque appeared to significantly underestimate the impact of slot

harmonic loss and torque. Reducing the differential or zigzag leakage reactance terms

is one option to increase the predicted rotor losses closer to measured levels.

The final rotor examined in this section is a skewed, five horsepower cast copper

motor. Figure 3-14 shows an example plot of six different rotor harmonic losses

plotted against a varied value of average inter-bar contact resistance. In this case,

the stator current and slip are assumed constant at the measured full load values

100



and the measured full load stray loss was about 112 watts. The total stray loss

peaks rather strongly at values of inter-bar contact resistance of around 10 micro-

ohm meters. The measured value of inter-bar resistance in this case (from Chapter

4) was about 2 micro-ohm meters.
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Figure 3-14: Baseline case Cu in Al rotors with 1 slot skew and unadjusted reactance

Adding an arbitrary adjustment factor of 0.6 to the harmonic leakage reactance

terms increases the harmonic losses as shown in Figure 3-14. The total sum of the

peak values of all six harmonics, at about 108 watts is now very close to the 112 watt

"measured" value.
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Figure 3-15: Cu in Al rotor with 1 slot skew and 0.6 reactance

3.8 Summary and Conclusion

This chapter re-derived and then re-solved the classic differential equation for rotor

bar current as a function of position along the rotor length. Total rotor loss calcula-

tions have been checked by comparing single evaluations of the total loss to separate

calculations of bar, between bar, and end ring loss. The full range of possible bound-

ary conditions have been examined from negligible to infinite end ring resistance, with

the arbitrary resistance case applicable for these extremes as well as any intermediate

value. Finally, plots compared calculation results for rotor loss to measured values

for a series of load points on a number of different machines. The rotor losses includ-

ing inter-bar currents were an improvement over the insul~d case, producing results

closer to the measured values. However, as with the cast aluminum rotors with no

skew from the previous chapter, the equivalent circuit reactance values required some

adjustment in order to calculate more realistic values. These rotor equations depend

on a number of motor design and operating point values that must be previously de-
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termined through measurement or calculation. Incorporating the rotor loss equations

into an equivalent circuit framework will allow for predictions of motor performance

under any operating conditions. An average value of inter-bar resistance is the only

new variable. The next chapter describes the measurements of inter-bar resistance,

before using the values in the adjusted equivalent circuit calculations of Chapter 5.
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Chapter 4

Inter-bar Resistance Determination

Accurate rotor current and loss calculations require an approximate average value

of bar-to-bar resistance. The cross resistance includes the bar-to-lamination contact

resistance from each bar together with the impedance of the lamination path between

bars. All of the measured rotors fit into one of two classes of inter-bar resistance. The

large contact resistance values on some rotors dominate the total bar-to-bar resistance

and allow direct calculation of the contact resistance from measured de voltage and

current. On other rotors, smaller values of contact resistance were closer to the now

appreciable values of bar and lamination resistance, and comparison between mea-

sured and calculated voltage profiles were used to determine approximate resistance

values. In all cases, the value of contact resistance appears to vary with the rotor

bar shape, conductor composition, and casting procedure and is difficult to predict or

measure. Values can vary significantly, and seemingly arbitrarily, among nominally

identical rotors and among individual bars around a particular rotor. This chapter

describes the procedure and results of the determination of rotor bar-to-bar resistance

on sets of five horsepower (about 3.75 kW) cast copper and aluminum and ten horse-

power (about 7.5 kW) cast copper rotors. The determined resistance values will later

be used to calculate total rotor loss for comparison to stray load loss from measured

tests.
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4.1 DC Voltage Measurements

Only dc voltages have been used in this study to determine values of contact resis-

tance which, more generally, could be impedance values. The literature also usually

neglects any inter-bar reactance. Independent measurements over a wide range of

frequencies by both Odok and Christofides concluded that the inter-bar impedance

was dominantly resistive, although adjustments were included to account for the con-

centration of current towards the bar tops as the rotor frequency increases.[17, 30]

However, at least one dissenting opinion more recently by Watterson et al. measured

an appreciable inductance as part of the inter-bar impedance term.[14] It also seems

plausible that a thin insulating layer between the conducting rotor bar and lamina-

tions could contribute a small amount of capacitance. Any small contact reactance

would also assume greater significance for rotors with low contact resistance. No

inter-bar reactance has been measured or included in this study, although the resis-

tance value in later equations can easily be adjusted to include additional reactance

values. The main contribution of previous inter-bar loss studies has been identify-

ing that maximum stray loss due to inter-bar currents can exist at intermediate, as

opposed to extreme high or low, values of bar-to-iron contact resistance. Increasing

or decreasing the contact resistance can either raise or lower losses depending on the

motor design and initial value of inter-bar resistance. The actual value of contact

resistance must be known in order to identify the starting location on the loss curve

and to predict how a change impacts rotor loss.

A variety of methods have been used in the past to measure the approximate

bar-to-lamination contact resistance. Odok used a non-destructive method, applying

current to the rotor shaft and one end ring while measuring the average voltage drop

between the open-slot rotor bars or opposite end ring and laminations. [17] A number

of other authors performed destructive rotor measurements where the rotor shaft is

pressed out and the end rings removed.[30, 15, 13, 14, 31, 32] This procedure allows

contact to be made directly at the end of each bar. While requiring more preparation

and ruining the rotor, this method exposes the variation between bars and reduces
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the number of unknowns in the rotor model by removing the shaft resistance and the

shaft-to-lamination contact resistance.

The rotors of this study were prepared for dc voltage measurement following the

destructive method of removing the rotor end rings to provide contact points to each

individual rotor bar.[30] With the end rings removed, a current can be applied to or

removed from the ends of any two rotor bar, and voltages can be measured between

any two points on the rotor, typically other bar faces. For all dc voltage measurements

in this study, a fixed ten amp current was driven through the exposed ends of different

pairs of bars while measuring the voltage between the same two bars at the free ends.

The voltage measurements are taken at the bar ends opposite the current connections

to eliminate any error from varied current distribution on the bar face around the

connection point and because the bars with current connections are easy to identify

and are separated by relatively large voltages. Current connections using brass screws

in each bar or banana clips attached directly to each bar yielded identical results.

As the rotor is one solid block of conducting metal, any measured voltages are

small, typically in the range from micro-volts to milli-volts when applying a ten amp

current, depending also on the rotor resistance values and location of the current

leads. Four wire measurements were used to prevent any resistance from the current

source or measurement leads from impacting the measured voltages. Two sets of

measurements, often used for inter-bar resistance measurements, applied current to

bars faces at either the same side or opposite ends of the rotor while measuring the

resistance between the same two bars at the ends opposite the current leads.[31]

These two types of tests can be repeated with any number of bars separating the bars

where current is applied and removed, as shown in Figure 4-1 for the case of a single

intervening bar. Measurements are repeated on every bar, using successive pairs of

rotor bars rotated around the rotor, in order to observe variation between bars and

provide an accurate average value over the entire rotor.

107



Figure 4-1: Common rotor dc voltage measurements

The measured dc voltage profiles can be grouped into one of two different cat-

egories. The two classes of rotors display either "high" or "low" contact resistance

compared to the bar and lamination resistances. Different sets of measurements and

methods of solving for the contact resistance are more effective for each type.

For the "high" contact resistance rotors, the contact resistance is much greater

than the bar or lamination resistance. The voltage drop across the contact resistance

dominates the equivalent circuit calculations. Each rotor bar may be treated as an

equipotential node with the total resistance between any two bars equal to the sum

of the contact resistance of the two bars and found by dividing the voltage measured

between bars by the applied current.

Rotors with "low" contact resistance require a more complicated procedure be-

cause the voltage drop along bars is significant. The contact resistance is determined

by comparing a number of dc voltage measurements to calculated voltages using a

lumped parameter resistor model of the rotor and identical current conditions. An

approximate average contact resistance can then be determined as the value that

minimizes the total error between the predictions and the average measured voltages.

This strategy requires a relatively accurate model of the rotor. Both the structure, in-

cluding the position and interconnection of different resistors to recreate the available

current paths, as well as the values for each of the individual elements, must ade-
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quately represent the physical rotor. The measurement and calculation procedures

for the "high" contact resistance case will be briefly discussed before examining the

resistor model and calculations for the "low" contact resistance rotors.

4.2 "High" Contact Resistance

The bar-to-lamination contact resistance in the "high" case is much simpler to deter-

mine than on rotors with "low" contact resistance. In the inter-bar current literature

traditionally measuring cast aluminum rotors, the resistance of the iron path between

bars is typically assumed to be negligible compared to the much greater rotor bar con-

tact resistance. For the case of "high"contact resistance rotors, the contact resistance

per unit length must also be much greater than the bar resistance per unit length.

The two types of de voltage measurements, with connections at the same side or

opposite ends of the rotor, yield essentially identical results on the "high" contact

resistance rotors. The spacing, in number of skipped bars, between the current con-

nections is also irrelevant. With the contact resistance far greater than the bar or

lamination resistance, any measurement records only the sum of the contact resis-

tances of the two bars with the current connections. The dc inter-bar currents (on

the rotor with no end rings) distribute uniformly along the rotor length to minimize

the voltage drop over the contact resistances between bars, and each rotor bar can

be treated as a single voltage point.

As the current injection and removal points are spread out, with higher numbers

of bars between the two points, there is a slight voltage increase from the greater

resistance of the longer path length through the iron laminations between the two

bars. However, this slight increase is obscured by the much greater variation in

contact resistance among particular bars. Voltages on neighboring bars with contact

resistance on the higher end measure much larger than similar readings taken on bars

with lower contact resistance, even if they are on opposite sides of the rotor.

The rotors having relatively high contact resistance can be modeled by a two

dimensional, star-like resistor arrangement shown in Figure 4-2. Each resistor rep-
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Figure 4-2: "Large" contact resistance dc rotor circuit model

resents the full length contact resistance in ohms of a different rotor bar and should

be multiplied by the total stack length in order to compare per-unit-length values in

units of ohm meters between machines. The total resistance between bars is multi-

plied by the rotor length because if the contact resistance for each bar is treated as a

traditional, linear, L, resistance, the resistance value is inversely proportional to the

bar length and total contact area, A. The "length" term, L, directly proportional to

the contact resistance, would be a function of the thickness of the oxide layer or the

depth for an average conductivity value, o, around each bar.

The contact resistance, and variation in contact resistance from bar to bar, are

large and dominate the measured rotor voltages for the rotors with the "high" type

of inter-bar resistance. In this case, the bar and iron resistances can be ignored with

negligible error. There appears to be insignificant change along the length of this type

of rotor because measurements show negligible difference taken with currents applied

either at one end or end-to-end across the rotors, using any combination of ends for

each particular pair of bars. Every bar acts as a single equipotential node.

Measurements are simplified on these rotors with "large" contact resistance as

the only measurable quantities are the contact resistances for each bar. Voltage

measurements between any two bars divided by the applied current give the sum

of the contact resistances for those two bars. Contact resistance values for each

individual bar can be solved directly by combining measurements on bar pairs. For

example, voltage measurements of all three combinations of bar pairs on any group of
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three bars could be combined to solve for each of the three contact resistance values.

However, only a single average value of contact resistance per rotor is required for

inter-bar loss approximations, so one half of the contact total resistance from each

pair of bars can be averaged directly. The contact resistance for each individual bar is

unnecessary. However, an accurate average of the varying bar values around the rotor

requires the measurement of pairs of contact resistance including every bar. Figure

4-3 below shows the measured contact resistance values for all twenty-nine bars on a

five horsepower cast copper rotor. The three sets of measurements were taken with

current injection and removal points on neighboring bars or separated by seven or

thirteen intervening bars. Typical error in the contact resistance values and dc voltage

measurements was less than plus or minus two percent of the measured total for the

cast aluminum rotors, with measured voltages around 1 millivolt. This combines

possible variation in input current, rotor temperature, and a worst case plus or minus

five microvolt drifting offset in the voltmeter. The copper rotors measured dc voltages

in some cases around one-hundred microvolts, so typical error could be as high as plus

or minus six percent for those cases. However, even though the percent uncertainty

in measurement voltage values and determined contact resistance increase with the

smaller measured voltages, the variation in values from bar to bar also reduce. As

shown in Figure 4-3, the total bar contact resistance varies by at least about a factor

of five from the lowest to the highest measured bars. As the final rotor equations

use only a single average value of inter-bar resistance, this factor of five variation is

much more significant than the measurement uncertainty and is an important source

of error in the approximate average values of inter-bar resistance and calculated total

rotor loss.

Total average values of contact resistance increased slightly when comparing mea-

surements taken on bars on opposite sides of the rotor (skipping 13 bars) compared

to neighboring bars (skip 0). On a few rotor bars near the end rings, visible conduc-

tor dendrites had leached between laminations to make contact between neighboring

bars. If not removed, these pathways reduced or fully short circuited the measured

voltages between neighboring bars. In a few cases, insufficient laminations were re-
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Figure 4-3: Variation in cast aluminum bar contact resistance

moved to eliminate all of these small connections between bars, and the low voltage

measurements between these adjacent bars provided no information on the value of

contact resistance. This contributes to the lower contact resistance values measured

between neighboring bars.

The border between "high" and "low" values of contact resistance depends on the

ratios between contact, rotor bar, and lamination resistance values rather than fixed

numerical limits. Average contact resistance values down to 1.0 PQm were measured

on a "high" contact resistance rotor while a 1.2 1u pm value was determined for a

"low" contact resistance rotor. Despite the similar magnitude of contact resistance

values for these cases, the measured voltages still clearly fit either the "high" or "low"

contact resistance profile. With "low" contact resistance rotors, the measured voltages

consistently increase with bar spread and are different for the two sets of tests with

current applied and removed from one same side or opposite ends of the rotor. The

voltages from "high" rotors are independent of the testing arrangement, depending

only on the particular bars measured. The "high" type rotors could be described

more accurately as "contact resistance dominated," independent of the actual value
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of contact resistance. The more general "low" category of contact resistance describes

any rotor where the contact resistance is not completely dominant, again independent

of the actual resistance value.

4.3 "Low" Contact Resistance

For "low" contact resistance rotors, the voltage drop along both the rotor bars and

the lamination sections between bars become appreciable. For this case, the same

side and opposite end current configuration tests yield different results, and the mea-

sured voltage between bars rises significantly as the length of the path through the

laminations increases with bar spacing. The current crowds toward one end of the

rotor if the current is injected and removed from the same side. The current travels

into and along multiple bars if the current leads are on opposite rotor ends. With

both the bar and lamination conductivities as well as the test setup impacting the

voltages, additional measurements are necessary to determine the values of "low"

contact resistance rotors.

4.3.1 Voltage Measurements

Again, the same two sets of measurements record the voltage difference between the

exposed bar faces opposite the current leads either both on the same or on opposite

ends of the rotor, as shown in Figure 4-1. After initially recording these same side

and opposite end measurements at every possible separation, from neighboring bars

to half a circumference with maximum intervening bars between current leads, five

measurement points distributed between the spacing extremes give approximately

equivalent results in far less time. The twenty-nine bar rotors use sets of measurements

with currents applied to and removed from neighboring bars and bars separated by

three, seven, ten, and thirteen bars. For each of these spacings, both same side and

opposite end measurements are recorded between different bar pairs until every bar

has been included in order to obtain the impact of each bar on the total average.

To determine an average value of bar-to-lamination contact resistance the averages
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of the sets of voltage measurements are compared to calculated voltages using a

rotor resistance model. The average measured voltages for both the same side and

opposite end measurements on four different five horsepower, cast copper rotors with

"low" contact resistance are shown below in Figures 4-4 and 4-5. Typical error in the

measured values is less than plus or minus six micro-volts. The voltages are measured

opposite the bar ends where current is injected. This results in negative values for

the tests with current applied and removed from opposite ends of the rotor and few

intervening bars. With the low contact resistance, currents disperse through nearby

bars before flowing along the rotor length, and the bar faces around the current input

bar are at a higher potential than the bar faces around the current output bar. As

the spacing and resistance between current leads increase, the current more uniformly

distributes along the input and output bars to take advantage of all available iron

lamination paths around the rotor between bars. All four of these different rotor

designations are nominally of identical cast copper #1 design. All four rotors include

rotor bars with the "double" rotor bar design and were expected to perform close to

identically.
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Figure 4-5: Average measured voltages on 4 different low contact resistance 5 hp
rotors - Same side tests

4.4 Rotor Resistance Models

A variety of lumped parameter resistor combinations can model the physical rotors.

The ideal configuration correctly recreates the voltage and current distribution across

the rotor with a minimum number of elements. One of the simplest models includes

only two neighboring bars of uniform conductivity and a uniform total resistance

between them as shown below in Figure 4-6. Ra represents the resistance of axial

subdivisions of the rotor bars and Rb the resistance of a section between neighboring

bars, the sum of twice the contact resistance and the resistance of the iron path

between bars.

The discrete model sections the rotor into any given number of slices, with the

resistance values adjusting with the number of slices to give a finer or coarser repre-

sentation of the rotor. If only two bars are considered, a set of ordinary differential

equations can solve for the voltages continuously along the entire length of the ro-
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tor, giving the limiting result of the discrete model with a large enough number of

slices. The analytical solutions become difficult beyond the two resistor model consid-

ering only two neighboring rotor bars. The error between the exact and approximate

solutions decreases as the number of slices increases, ranging from 7% of the total

equivalent impedance between same side bar ends for the simplified two bar case at

50 slices down to 2% at 200 slices. This exact solution verifies the performance of

the discrete rotor model in the simplest case. Later, the complexity of the discretized

model is increased with additional bars, three-dimensional looping of the first and last

bars through another inter-bar resistor, and additional resistors to provide alternate

current paths.

The voltage at every bar face can be calculated with the lumped circuit model

for any given current condition and compared to the actual measurements. With a

representative model of the rotor and appropriate element values the voltages should

closely match. The two element model works well when considering only two neigh-

boring bars or when the contact resistance is negligibly small. However, this simplest

model does not include all of the possible current paths and fails to accurately rep-

resent the measured voltages. Especially with higher contact resistances and greater

separation of the current probes around the rotor, currents can circulate through the

iron laminations, around any intervening bars. Current can travel in the iron from

one bar to any other, bypassing the high contact resistance of every bar in between,

as opposed to having to pass into and out of each bar while traveling around the rotor

as in the first model. An additional resistance accounting for the voltage drop and

conduction losses in the laminations between bars can be added to the total resistance

between bars. This additional element also provides the path for current to flow from

one bar to another without having to cross the potentially large contact resistance of

each intervening bar.
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Figure 4-6: Simplest equivalent dc rotor circuit with shaft and end rings removed

Figure 4-7 shows a modified rotor resistance model, now including the resistance

of the iron path, Ri, between the bars. Ra is again the resistance of an axial slice

of a rotor bar. Rc is the average bar-to-iron contact resistance. The total resistance

between two adjacent bars, Rb (not shown), would be the sum 2Re + Ri. Behdashti

and Poloujadoff proposed a similar model in 1979 with the rotor shaft providing a

zero resistance current path around the rotor and Watterson et al. in 1989 used this

same model with a single resistance value for current paths between and around rotor

bars. [25, 14] The average bar-to-lamination contact resistance for the "low" contact

resistance rotors is determined by minimizing the error between the average measured

voltages and those calculated using the resistor model shown in Figure 4-7 with varied

resistance values.
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Figure 4-7: Reduced equivalent dc rotor circuit including iron path

4.5 Contact Resistance Determination

For the "low" case when the magnitude of the contact resistance is comparable to

the resistance of the rotor bars, there is appreciable voltage drop across bar and iron

resistances and determining the contact resistance becomes more complicated. The

resistance along the length of an isolated, single bar can be approximately calculated

using the standard resistance equation.

LbarPbar Lbar
Rbar (4.1)

Abar 9barAbar

Here a is the bar conductivity or p is the bar resistivity, L is the length of the

conductor, and A is the area of the bar cross-section. Using the rotor length, cross

sectional area of a bar, and 100% IACS (International Annealed Copper Standard)

copper conductivity (58 MS/m) give an end-to-end dc resistance of about 73.7p u for a

single, isolated bar on a five hp cast copper rotor. The actual, as-cast conductivity will

be somewhat decreased by any impurities or voids from the casting process, giving an

even higher bar resistance. Rough measurements of the dc resistance across each bar,
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taken as the end-to-end voltage drop divided by the current applied across the same

bar, revealed a significantly lower average resistance of about 22.1 /tQ. With perfectly

isolated rotor bars (infinite inter-bar resistance), the only current path is straight

down the rotor bar. As the bar-to-bar resistance decreases, current takes advantage

of the available parallel paths, flowing through and between increasing numbers of

bars, and decreasing the measured voltage drop and total equivalent resistance across

a single bar for a given applied current. For these low contact resistance cases,

simulated rotor voltages must correctly account for all of the rotor current paths.

Rotors with "low" contact resistance measure zero or near zero voltage between

neighboring bars on the same side tests with current applied and removed at one end

of the rotor. The contact resistance is small enough compared to the bar resistance

that all of the applied current flows between bars before reaching the far end of the

rotor, as opposed to being evenly distributed along the bars as in the "high" contact

resistance case. With "low" contact resistance, the voltage drop along the bar is a

significant factor and comparable to the drop between bars through a lamination at

any point along the rotor.

Determining the contact resistance for this case is complicated by having to also

consider the current paths and voltage drops along bars and around the rotor lami-

nations. The two sets of opposite end and same side de voltage measurements from

Figure 4-1 are compared to calculated voltage predictions using the resistance model of

the rotor and consistent current placement. The final contact resistance average value

minimizes the error between the measured and predicted voltages. Multiple points of

local minimum error exist at different combinations of resistance values. Combining

optimization for both the same side and opposite end tests, where changes to the

resistance parameters can have opposite impact, results in convergence to a best fit

set of voltage values.

Ideally, this strategy should be able to observe changes in "as-cast" bar or iron

conductivity while simultaneously determining the average contact resistance. How-

ever, this has not yet been accomplished. There is significant variation between the

actual measurements for each bar and the average value, and the model applies a
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single value of average contact resistance to all of the rotor bars. This average value

provides a realistic approximation to the averaged measured dc voltages and is the re-

quired parameter for motor inter-bar loss equations. However, this inherent variation

adds significant error to the average calculation and makes accurate determination of

the rotor bar or lamination iron resistance values difficult.

The value of rotor bar conductivity in the rotor model and calculations was manu-

ally constrained to fall in the reasonable range of 80% to 100% IACS. An approximate

bar conductivity of about 90% IACS was used to calculate final contact resistance

values. Surface conductivity measurements had recorded about 100% IACS after

casting so this value may be low but remains a safe estimate in the neighborhood of

the actual conductivity. For all of the "low" contact resistance five hp rotors tested

except "R4", the unconstrained optimization process converged to a solution with too

low of a rotor bar resistance, resulting in an impossibly high copper bar conductivity

in the range of 10% above the maximum limit near 100% IACS. In the unconstrained

optimization program, the range of possible resistance values ran from 10- 5 to 105

micro-ohm meter (10 - 1 to 10- 1 ohm meters) for the iron and contact resistance val-

ues or 10- 5 to 105 micro-ohms per meter for the bar resistance term. Again, the

difference in units arises from how the rotor length is included, directly or inversely

proportional to the given resistance value. The rotor "R4" was the only sample to

yield reasonable bar resistance values when unconstrained. The rotor "R4" also mea-

sured the lowest voltage magnitudes and variations, so the measured averages align

closest with the actual measurements. The contact and iron resistance values, though

more difficult to bound, remained in realistic ranges for all of the tested rotors.

An approximate sanity check for the resistance per unit length of the iron path

through the laminations between bars can be calculated from the rotor geometry

and lamination conductivity. The total iron resistance between neighboring bars is

approximately equal to the average distance between bars divided by the lamination

conductivity, the stack length, and the bar height. Multiplying by the stack length

gives the resistance per unit length in Qm, because the resistance of the iron path

between bars can be approximated as directly proportional to the average distance
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between bars and inversely proportional to lamination conductivity and the area of

the iron path calculated as the bar height multiplied by the bar length. With a

conductivity of about 1/20th 100% IACS, the iron resistance value is predicted to be

in the vicinity of 0.1 micro-ohm meter. Similarly, the calculated contact resistance

values are expected to be lower but of a similar order of magnitude as the values

measured on the "high" contact resistance cast aluminum rotors with simpler bar

shape.

The solutions, with the bar conductivity constrained, converge to realistic values

of bar, lamination, and contact resistance, but the solutions are not unique. Equally

good solutions, with similar total difference between calculation and measurements,

can be obtained with small variations in the resistance values. These small variations

are not as important for the roughly determined average value of contact resistance

where even an order of magnitude estimation is generally sufficient for loss calcula-

tions. However, the variations prevent the differentiation of a five percent change in

rotor bar conductivity that could be another potentially important variation between

cast rotors. Approximate, reasonable values have been determined for total inter-bar

resistance, but it has not yet been possible to precisely determine the rotor bar or

lamination resistances or observe changes to these parameters between rotors. More

accurate determination of all three resistance values may be possible if individual

values of contact resistance are used for each rotor bar. The present method success-

fully generates order of magnitude estimates of the rotor-bar contact resistance and

provides consistent results for comparison between similarly measured rotors. The

following table and plots summarize the contact resistance values determined for each

of the measured rotors.

4.6 Contact Resistance Results

A summary of the determined contact resistance along with the measured stray loss

for both the five and ten horsepower, "high" and "low" resistance rotors is given

below in Table 4.1. The data shows a general trend of increased stray load loss with
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increasing contact resistance. The estimated average values of inter-bar resistance

vary between rotors, but the OPT and R4 rotors of design #1 with the double rotor

bars measured uniformly lower contact resistance than the CuinAl and R3 rotors,

all of design #2 including the teardrop shaped bars. The cast aluminum rotors also

measured significantly higher inter-bar resistance than the cast copper rotors, by as

much as a factor of around 250 to 300 in some cases.

Table 4.1: Comparison of measured inter-bar resistance and full load stray loss

Rotor ID Full Load Stray Loss [W] Inter-bar Resistance [micron meters]

10 HP 5 95 2.5
10 HP 7 156 101.2

10 HP 11 92 1.8
10 HP 15 164 4.0
10 HP C6 126 4.6
10 HP C9 181 14.2

10 HP C10 250 21.6
10 HP G4 92 3.6
10 HP S 65 2.5

5 HP R4 128 0.8
5 HP OPT 2 182 0.9
5 HP OPT 4 234 1.6
5 HP OPT 5 250 1.9

5 HP R3 112 2.0
5 HP CuinAl 1 298 21.2
5 HP CuinAl 2 253 4.2
5 HP CuinAl 3 160 3.8

5 HP Al 1N 77 290
5 HP Al 4N 79 276
5 HP Al 2S 180 244
5 HP Al 3S 157 236

Figure 4-8 below compares the measured and simulated results for the five different

ten horsepower rotors with "low" contact resistance. The lines show the measured

data as best fit splines through five points of increasing separation between the applied

and removed currents, with each point averaged from measurements taken on every

bar around the rotor. All voltage measurements are recorded while injecting a fixed
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ten amp de current. The individual points using different shaped markers are the

calculated voltage values that best fit the measured curves. The value of contact

resistance used for each rotor, rc, is given in units of micro ohm meters. All of the ten

horse power rotors included a "double" bar shape with a leakage neck and starting

bar.
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Figure 4-8: Comparison of calculated and measured 10 hp dc rotor voltages

Similar plots for the same side and opposite end tests on the "low" contact resis-

tance cast copper five horsepower machines are shown in Figures 4-9 and 4-10. The

inter-bar resistance values for these rotor are presented in Table 4.1. The total inter-

bar resistance is twice the contact resistance plus an approximately 0.5 micro-ohm

meter impedance of the core path between bars for these machines. The OPT and

R4 designated rotors are the copper #1 design with the double bar shape. This more

complicated bar shape, with tighter curves and a relatively thin leakage neck must

be more difficult to cast and measure lower inter-bar resistance compared to the cast

copper in the single, tear dropped shaped bars. For the five horsepower machines, the

double bar designs all fit in the "low" category of contact resistance. All of the tear

dropped cast copper measured the "high" type of contact resistance, although some

were approaching the limit and all were significantly lower than the cast aluminum

rotors.

Five different bar spacings between zero, measuring neighboring bars, and skipping

fourteen bars halfway around the rotor were measured and used for comparison to
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predicted voltages. Adding additional data points did not significantly alter the

results. Again, the solid lines are smooth curves through the measured data points for

each of the rotors. The star shaped points are the five voltages calculated by applying

the resistance value that result in minimized total deviation between calculation and

average measurement. The error bars in these plots show plus and minus one standard

deviation of the average measured voltage value for that spacing.
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Figure 4-9: Comparison of calculated and measured 5 hp dc rotor voltages - Opposite
end measurements
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Figure 4-10: Comparison of simulated and measured 5 hp dc rotor voltages - Same
side measurements

Finally, the last three plots show the sensitivity of the calculated voltages to

changes in the rotor bar, lamination iron, or contact resistance. The solid lines are

the spline curve fits through the measured average points. Figure 4-11 illustrates

the impact of altering the lamination resistance. Figure 4-12 shows the change in

calculated voltages with increased or decreased bar impedance. Figure 4-13 pictures

the dependence of the calculated voltages on the bar-to-lamination contact resistance.

All of these values are only approximately determined. Curve fitting to the average

measured data cannot distinguish between small changes in any of the three resistance

parameters, but significant departures from the selected values give unrealistic results.

An approximate average value of inter-bar resistance is all that can be determined

but this is the unknown value required for calculations of rotor currents and losses.
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Figure 4-11: Sensitivity of calculated 5 hp voltages to iron lamination resistance
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Figure 4-12: Sensitivity of calculated 5 hp voltages to bar resistance
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Figure 4-13: Sensitivity of calculated 5 hp voltages to contact resistance

4.7 Summary and Conclusion

This Chapter presented the method and results for determining the average inter-

bar resistance for the two different categories of "high" and "low" contact resistance.

These values will no be used to evaluate total rotor bar, inter-bar, and end ring losses

in the next chapter.
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Chapter 5

Equivalent Circuit Modifications

for Inter-Bar Currents

This chapter explains how the traditional equivalent circuit model can be adjusted

to include the impact of inter-bar currents. Equations for both the fundamental and

higher order space harmonics are presented to increase the effective rotor resistance

and bring the effective skew factor closer to unity. This strategy is compared to

previous methods used by Weppler and Williamson with a single complex skew factor

to account for the inter-bar currents.

The adjusted equivalent circuit can now predict the impact of variations in motor

parameters like skew, inter-bar resistance, and rotor impedance with appropriately

adjusted calculations of motor operating point slip and input current.

5.1 Introduction

With no skew, as long as the end ring impedance is small compared to the cross-

impedance between bars through the laminations, as is usually the case, only small

cross currents are possible near either end ring. For normal non-skewed machines,

these cross-currents are negligible. With skew and non-insulated rotor bars, more

appreciable currents are possible, concentrated around the center along the rotor

length. Slot harmonics with a pole pitch close to the distance between rotor bars will
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be most effective at inducing harmonic inter-bar currents.

The rotor bar skew is intended to prevent neighboring bars from linking slot

variations in air gap flux by physically arranging the rotor bar loops to link a net

total of near zero slot harmonic flux along their full length. The slot harmonics are

specifically targeted because the arrangement and chording of the stator winding and

resulting winding factors can be used to reduce lower order harmonics. The slot

harmonics depend on the number and geometry of the stator slots and rotor bars.

With insulated bars, the skew works to reduce the slot harmonics at the expense of

mainly a slight reduction in coupling with a slight increase in leakage reactance, both

calculable using the standard skew factor.[6] With imperfect isolation between rotor

bars and the surrounding laminations, currents can flow along and between sections

of the rotor bars, locally linking changes in slot harmonic air gap magnetic fields.

The rotor currents vary continuously along the length of the un-insulated rotor bars,

complicating loss calculations. The currents flowing in the laminations between bars

contribute a new component of rotor conduction losses. The standard equivalent

circuit uses a single value of rotor resistance and rotor current for each harmonic,

treating all of the rotor loss as if it were uniformly distributed bar loss. An adjusted,

"effective" value of rotor resistance can be used within the standard equivalent circuit

to more accurately calculate and represent the total rotor losses including the end

rings, inter-bar terms, and the variations along the bars.

In addition to the altered resistance values, the standard skew factor must also be

adjusted to reduce the rotor leakage reactance terms and account for the increased

coupling compared to the skewed case with insulated bars. In the unrealistic limit of

negligible cross-impedance, the effective skew factor becomes unity. In this case the

skew and phase shift along the rotor bar are irrelevant when currents can flow freely

between any combination of bars. This extreme scenario approaches the limiting case

of no skew, but with negligible end ring impedance resulting in reduced fundamental

equivalent rotor resistance and input stator current. In both cases, the only rotor loss

is along the bars and uniform along the rotor length.

The end ring impedance typically has little impact on the calculations of space
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harmonic rotor losses, because of the low end ring impedance and small space har-

monic pole pitch. The end ring resistance also appears to have little impact on

the distribution of fundamental inter-bar currents. The end rings usually act as ef-

fective short circuits. However, both fundamental and harmonic inter-bar currents

depend strongly on the input stator current, and the end ring resistance, even though

negligible compared to the cross-impedance, can still contribute significantly to the

fundamental equivalent circuit effective rotor resistance, loss, and the resultant input

stator current. The fundamental end ring impedance must be included in calculat-

ing fundamental rotor resistance, loss, and current, but typically will not otherwise

impact the distribution of inter-bar currents and losses.

Adjusting both the rotor resistance and skew factor can allow the equivalent circuit

rotor resistance and reactance to represent a skewed rotor with un-insulated rotor bars

and continuously varying rotor bar and inter-bar currents.

5.2 Effective Rotor Resistance

The following approach is intended to be more straightforward and intuitive than

previous methods of adjusting equivalent circuit parameters to account for inter-bar

currents. The equations required to calculate the components and final effective

values are not especially simple or elegant, but the underlying theory is basic to the

equivalent circuit model. Just as the total equivalent circuit rotor losses are calculated

as three times the effective rotor resistance times the square of the effective rotor

current, the goal is to determine the value of effective rotor resistance by dividing the

calculated total, end, bar, and inter-bar rotor losses, by three times the square of an

effective rotor current.

Assuming sinusoidal distributions of rotor bar, inter-bar, and end ring currents,

the total rotor losses, including bar, inter-bar, and end ring terms, can be calculated

using the equations derived from the field equations in Chapter 3. The current in the

rotor bar carrying peak current, Ib(y), varies continuously along the rotor length.
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Ib(Y) = Cle y + C 2 e - y + (5.1)

In this solution to the differential equation from Chapter 3, = ~2  a o2, is a

propagation constant given by Zf, Zr is the per bar rotor impedance per unit length

including resistance, leakage reactance, and per-bar magnetizing terms, Zq, = zq

is a scaled version of the impedance per unit length between neighboring bars, Zq, 5

is the electrical angle between neighboring bars, E is the induced bar voltage per unit

length in the absence of skew, and a is the electrical skew angle per unit length. This

equation is equally valid for higher order space harmonics with the terms adjusted

for the harmonic frequencies and pole pairs. Also fully defined in Chapter 3, C1 and

C2 are complex integration constants set by applying end ring boundary conditions.

A number of terms have been grouped together and written as X to simplify the

expression.

S= 4PZ sin(6/2)ej6/ 2

X-= (5.2)
NRRR

C 2 (X 1)+ Z) + (1 - j X)
C1=, (5.3)

E(1 - jcX)(eL - ejiL)
Z,s 3(X y + 1)(e- L - etL)

The solution of the actual rotor current in non-insulated rotors, continuously

varying as a function of position along the rotor length, can be multiplied by the

skewed, working electric field and integrated to calculate total rotor losses, as in

Chapter 3. However, a single, uniform value of effective rotor current is required by

the equivalent circuit. A single-value rotor current can be calculated as the spacial

rms value of the continuously changing rotor bar current, effectively "averaging" the

magnitude of the bar current along the axial length of the rotor, and referred to the

stator for comparison to the equivalent circuit value. The following calculations of

effective rotor resistance and effective skew factor are a function of the spacial rms

bar current.
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One method to calculate the total (bar, end ring, and inter-bar) rotor losses, P, is

to integrate the product of the bar current and the complex conjugate of the skewed,

per-unit length, induced bar voltage along the full rotor length and then multiply by

the number of rotor bars, NR. This calculation, presented previously and explained

in more detail as (3.29), gives the total rotor bar, inter-bar, and end ring losses when

the end rings are considered in the boundary conditions.

P,= NR (d (5.5)

After integrating, the terms in P, can be somewhat reduced. One possible form

is shown below.

P, = N, e - sinh ( ) cos - [(Ci + C 2 ) +jo(C - C2)
2 2

+ cosh j)sin a [jy(C2 - C1) + a(C + C2)]

SEE*L (5.6)

Total rotor losses in the induction motor equivalent circuit model are calculated as

three times the product of the equivalent rotor resistance and the square of the single-

valued rotor current. In the equivalent circuit, both resistance and current are referred

to the stator winding. A single, equivalent value of per-bar rotor resistance consistent

with the total bar, inter-bar, and end ring losses can be similarly determined using

the calculated net rotor loss, P,, and the equivalent, single value of effective rotor

current, Ibrms the spatial rms value of the continually varying bar current.

Rb = (5.7)
NR |Ibrms 2

Rb is the per-bar, effective rotor resistance not yet referred to the stator. The

spatial rms value of the bar current can be calculated using the following equation:
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(5.8)

L

LL

The I*(y) represents the complex conjugate of the bar current. The product of

bar currents can be evaluated to give the following terms:

L

C2 Ce y( + *) + C2C2e - -Y+ - *) + CIC ey(- *) +
2

Cl*C2 e--Y--Y*)

EE* C1E*
+ +  ey( Z

qsr Zqs/

C2
E * e-y(Y+ja)

Zqs

-ja) C, ey(,Y*+ja)

+CE e-Y( *je:)
zqp

dy)

A few of the terms in this expression combine while evaluating the integral.

brm2 sinh( (Y + y*)) ( + CIb=- (CI C + C2 2

2CiE* L
+ 2CE* sinh(( 7 - ja)) +

Zq/*(7 -ja) 2

2C2E* sinh( L
+ sinh( (Y

Zqs*(s+ ja) 2

LEE*

Z -- )) )0.

2 sinh(L(y - 7*))
S(C(Y - Y*)

2C*E

ZsP3 (* + ja)

+ ja)) +
ZqsP(q* - Ja)

C CIC 2)

L
sinh(L (7* + ja))

2

L
sinh( (y* -Ja))2

(5.10)

The bar current equation can also be rewritten to better align with Equation (5.6)

for the total rotor losses.
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S2 sinh( (7 + y*)) 2 + sinh( r (c- * - 1*)2 )
L ( :(2si+ +n2+*) ((1 C-

2E* F L L
+ sinh - cos [Y(C + C2) + J (C -C 2)]

ZqsO3*S (4 2) ( 2

+ cosh ) L sin ( [jy(C 2 - C1 ) + C1  2

2E 17*L aL
+Zq3* sinh C aos ) [2(C + C2) + jc(C- C2)]

+ cosh (sin [jY(C - ) + c(C 1 + C /)] (5.11)

The following term is introduced as a substitution to somewhat simplify the equa-

tions for effective rotor resistance. Again, the effective rotor resistance is determined

by dividing the total rotor loss by three times the square of the spacial rms bar

current. Equivalently, a rotor resistance correction factor is the ratio of the actual

effective resistance to the traditionally calculated resistance of an insulated rotor

without inter-bar currents.

XX = sinh L cos [(C + C2) + (CI - C2)]
ZqsB -/L2 a(2

+ cosh f) sin a [(2 C1 ) 1  2) (5.12)

The following substitution is also made to simplify the equation.

2 sinh(' (7 + 7*))I 2 sinh(L(7 - 7*))

zz + (CIC + C2 h1 'b (CC - Cc 2 ) (5.13)

The adjustment factor to include the impact of inter-bar currents and non-negligible

end ring impedance in total rotor loss calculations is given below:
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Re EE*LZ + XX
AFR2 = (5.14)

RS ZZ + zEE* X X*
Zqs qsO* Z,3* Zqso

The adjustment factor can be calculated individually for each harmonic. RS

is the bar resistance per unit length for the given harmonic. This rotor resistance

correction helps to more accurately model an induction motor with non-insulated

rotor bars. The equations are long but easily included in motor analysis and design

software. The variables consist of traditional equivalent circuit parameters with the

addition of an average value of inter-bar resistance or impedance.

However, this single correction to the equivalent circuit is insufficient for consistent

calculations. The rotor current of the equivalent circuit model will not, in general,

match the calculated, spacial rms rotor bar current. Errors will result in calculated

rotor losses because the inter-bar currents also adjust the reactance of the rotor

through the skew factor. An additional correction factor to calculate the effective

skew factor is presented in the next section.

5.3 Effective Skew Factor

The adjusted rotor resistance from the previous section is used in calculating the

effective skew factor. Skew decreases the coupling between rotor and stator. The

skew factor is equal to the reduction in the induced rotor voltage compared to the

non-skewed case. The induced rotor bar voltage per unit length in the case of no

skew is already calculated as the term E in the previous equations. With negligible

impedance end rings and no cross currents, the only voltage drop is along the rotor

bars. The induced voltage must equal the total voltage drop, so the induced voltage in

the skewed case can be calculated from the total voltage drop. Instead of considering

bar, end ring, and inter-bar terms and having to integrate the changing values along

the rotor length, the adjusted, effective rotor bar resistance together with the spacial

rms bar current, both calculated in the previous section, can be used to estimate the

actual, total voltage drop but now taken only along the rotor bars. The effective

140



voltage drop per unit length is the product of the adjusted bar impedance per unit

length with the spacial rms bar current calculated in the previous section. The

adjusted bar impedance is the original per-bar slot leakage reactance per unit length

(excluding any additional leakage or magnetizing terms here) combined with the newly

calculated value of adjusted, effective rotor resistance per unit length. This value of

effective rotor voltage drop per unit length can be divided by the non-skewed, induced

voltage term, E, to determine the effective skew factor in the case of negligible end

rings.

With end rings of non-negligible impedance, the induced voltage along the bar

length still must equal the total voltage drop now across both the bars and end rings.

The adjusted rotor resistance already accounts for the voltage drop of the end rings in

addition to the bar and cross-path components, so the product of the spacial rms bar

current and the equivalent bar impedance again gives the skewed total voltage drop

per unit length. The effective skew factor can now be calculated as the ratio of the

voltage drop per unit length in the skewed bars to the voltage drop per unit length

with no skew, now with both terms also including the voltage drop over the rotor

end rings. The voltage drop along the bars in the non-skewed case is the induced,

non-skewed, voltage per unit length E but now including an average per bar end ring

voltage subtracted for each ring and divided by the bar length to uniformly impact

the non-skewed bar voltage drop.

Kk = Ib b (5.15)

E VR(Y 2=-)+ VR(Y L)
L

The average voltage drop in a section of end ring between bars can be calculated

at either end of the rotor from the rotor bar current at that point.

2TXR|Ib(y = L
Vring(y ± - 2 (5.16)

In this equation, R is the rotor radius (or effective end ring radius if more accuracy

is needed), a,r is the end ring conductivity, le is the axial end ring length, and he is
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the radial end ring height.

These end ring voltages can be added together for use in the calculation of skew

factor, and it is interesting to observe the dissymmetry in the case of inter-bar currents

and changing bar current with length. If the casting process also produces an end ring

with somewhat decreased conductivity at the end farthest from the entrance of the

molten conductor, a very slight decrease in locked rotor current may be possible by

ensuring that this higher resistance end ring experiences the higher end ring current.

Except in extreme cases, this effect, calculated at only a few watts difference, would

be difficult to observe.

A more consistent calculation for an average value of end ring voltage drop can

be calculated using the spacial rms bar current. This strategy is simpler and gives

effectively identical results. The voltage per end ring section for both rings can be

expressed by the following equation:

4wR jIb I
V2ring le (5.17)

Nr (1- ej)r, le he

Substituting into (5.15) and dividing each term by the equation for spacial rms

bar current gives the following equation for effective skew factor:

Zb
Ksk E Zb 47R (5.18)

ZZ+ EE* + X + X* ) 0.5 Nr(I-ej6)7r le he
ZZ-F ZqsZq** Zqs. qsO*

This effective skew factor combined with the previously calculated effective rotor

resistance together allow more accurate calculation of total rotor losses in skewed

induction motors with non-insulated rotor bars. These two equations, (5.18) for the

effective skew factor, and (5.14) for the effective rotor resistance, can be substituted

into motor design software in place of the existing skew factor and as a correction

factor to the rotor resistance to account for the impact of inter-bar currents. The

next sections compare calculations using the adjusted equivalent circuit to previously

existing equations and to measured test data on a variety of rotors.
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5.4 Theoretical Verification - Comparison to Pre-

vious Calculations

The goal of this section is to use previous work as support for the validity of the new

calculations while also differentiating the new method from what has been done in

the past. Both Weppler and Williamson et al. use a complex skew factor, including

both real and reactive terms, to incorporate the impact of inter-bar currents in the

traditional equivalent circuit. This approach seems to apply only when using the

equivalent circuit resulting from considering the skew as implemented strictly on the

rotor conductors. This skewed-rotor model is usually the most representative of phys-

ical reality, since the rotor bars are typically skewed. However, Chapter 2 discussed

how equally valid and consistent circuit models for the same physical machine can

treat the fixed angle of total, relative skew as divided arbitrarily in any proportion

between the rotor and stator conductors. The circuit treating skew as equally split

between rotor and stator is also commonly used. With equal (and opposite) skew

assigned to both the rotor and stator conductors, no skew factor arises in the referral

factor between windings. The equivalent circuit with the skew evenly divided be-

tween rotor and stator includes a leakage reactance component in the stator branch

of the circuit, so applying a complex skew factor to this circuit alters the stator re-

sistance and reactance, even with insulated stator conductors. Moreover, calculated

rotor losses using all three methods agree when using the skewed-rotor circuit, but

only the new method gives identical results with the split-skew model. When used

with the skewed-rotor equivalent circuit, the complex skew factor gives six new com-

ponents for the real and reactive parts of the adjusted rotor skew leakage reactance,

the adjusted rotor slot and differential or zigzag leakage reactance, and the adjusted

rotor resistance. Combining these six terms results in an adjusted, effective rotor

resistance and leakage reactance consistent with the previous method of equivalent

circuit modification.
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5.4.1 Weppler

Rudolf Weppler presented the following equations in his 1966 Archiv fur Elektrotech-

nik paper.[ll] Integration constants U and B are calculated from end ring boundary

conditions, similarly to C1 and C2 in Chapter 3.

SRRw cos( ) - cZs sin() (5.19)
RR-Wcosh( ) + Zqs sinh())

RRW sin( ) + aZqs cos( )

B = RRsinh(J co (5.20)
RRW sinh( 2 -) + -Zq, cosh( 2)

In these equations, the same scaling factor as a function of the angle between bars,

6, is used on both the inter-bar resistance and on the end ring section resistance, RR.

RR
RRW = RR (5.21)

4 sin 2 (1)

These values are combined to give the square of the complex skew factor, X. Shown

here for the fundamental, the same equation can be used to calculate complex skew

factors for each harmonic.

L Z + 2RRW sinh((+j)) sinh(L(-J)

x2  L Z + 2 Zqs L (UL( + a) (U B)L( - a) (5.22)

Weppler then uses the magnitude and phase of the complex skew factor to de-

termine total rotor resistance and impedance from the real and reactive components

associated with the traditional skew leakage, rotor leakage, and rotor resistance val-

ues. This total rotor impedance can be compared to alternative calculations, as in

Figure 5-1.

5.4.2 Williamson and Smith Calculation

The following equations are slightly adapted from the 2002 IEE paper "Equivalent

circuits for cage induction motors with inter-bar currents," by S. Williamson and
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A.C. Smith. The original equations use a more general end ring impedance and

a less general inter-bar resistance in place of the end ring resistance and inter-bar

impedance included in the following equations. More significantly, the factor of z,Zqs 3

is added to the original equations (22) and (23) for F in the Williamson and Smith

paper. This is only a regrouping of terms from the complete original equations. The

additional factor is not expected to impact the resulting calculations from the paper,

where there may have been no reason to use the independently calculated correction

factor, F. The adjusted factor is thought to improve substitution into the equivalent

circuit model. Calculations including the alteration matched calculations from both

Weppler and the new adjusted circuit equations.

The following two integration constants are determined using end ring boundary

conditions as in Chapter 3 and Weppler's equations. The sum and difference of A

and B can be used to calculate the previously used constants Cl and C2.

-1 R cos( ") - aZq sin( .)A = (5.23)
Z Z( R cosh(-2 ) + z, sinh(- 2

B (RRsin() COS(i) (5.24)Zq-O3 RR sinh(2 ) + qz, cosh( -)

Z 2Z yL
F Z= [1 + (yA + joB) sinh( )

Zs3 L 2

YL aL
+ (a A - J y B) cosh( ) sin( ) (5.25)

2 2

Shown here only for the fundamental to avoid additional subscripting, different

values of F can be calculated for each harmonic using the same equation and ap-

propriately adjusted variables. The "complex dimensionless harmonic constant" F

from (5.25) is used in place of the square of the traditional skew factor in the skewed-

rotor equivalent circuit models. This results in real and reactive components in place

of each of the traditional skew leakage reactance, rotor leakage reactance, and ro-

tor resistance, but combining real and reactive terms results in an equivalent rotor
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impedance comparable to the rotor impedance calculated using Weppler's equations

or the new equations for adjusted skew leakage and rotor resistance.

Figure 5-1 compares the amplitude of the 2 3 rd space harmonic, the negative ro-

tating first order stator slot harmonic, rotor impedance for different operating speeds

as calculated by the three calculation methods. The arbitrary case is for a cast

aluminum five horsepower rotor, using the measured values of skew and inter-bar

resistance. The main point is that the three calculations yield identical results. This

is true for both real and reactive components for all harmonics. The different calcu-

lations, as implemented, give equal results in the case of a skewed-rotor equivalent

circuit model.
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Figure 5-1: Comparison of circuit adjustment equations
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5.5 Experimental Validation - Comparison to Test

Results

In order to help develop new motor designs or identify means to improve or modify

existing designs while minimizing the number of machines built and tested to eval-

uate alternatives, the circuit model must be capable of accurately predicting motor

performance.

The equivalent circuit model can relatively easily match calculations to test data

for any individual measured value on a particular machine. Justifiable adjustments

to only roughly determined parameters and components, for example the stator end

winding reactance or rotor conductivity, allow for custom tuning of the circuit calcula-

tions, especially over the near linear, low slip, region of normal operation. Agreement

between any particular measurement and test does not necessarily prove a generally

accurate circuit model. If, for example, the calculated stray load loss matches mea-

surements but the input current or torque are off by twenty percent or more, then the

circuit model fails to accurately represent the motor, and the apparent agreement in

loss arises from a coincidental combination of errors.

On the other hand, simultaneous comparison of multiple values, like power, torque,

current, and total impedance, over a wide range of operation, and consistently applied

among different sizes and types of machines is a significant challenge.

Two of the most important test points for general purpose induction motors are the

locked rotor and full load operating points. Comparison between measured and calcu-

lated values of current, power, torque, input impedance, and stray loss are compared

for these two points are used together with a full torque speed plot to approximate

circuit values used for motor predictions in the operating region. The torque-speed

curves for some motors show abrupt variations in calculated torque near the locked

rotor point because of the impact of the higher order space harmonics used in the

calculations. The calculated motor performance includes the fundamental, 5th, 7th,

11th, 13th, and the four lowest stator slot harmonics, _ ± 1 and 2Ns ± 1. These space
harmonics can contribute visible dips to the motor torque and incr

harmonics can contribute visible dips to the motor torque and increased stray loss,
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especially significant in the high-slip, low-speed region around locked rotor. Half of

the slot harmonics have low, positive synchronous speeds, and around these speeds

the harmonic torques will swing between peak positive and negative values.

5.5.1 Design #1 Ten Horsepower Motor

Figure 5-2 presents the torque speed curve for a high efficiency, wye-wound ten horse-

power motor. Calculations for this machine include a 10% reduction in as-cast rotor

conductivity. A stator end turn leakage reactance value of 0.65 ohms is included as

part of the 1.28 ohm fundamental stator leakage reactance. The fundamental rotor

leakage reactance, including slot, zigzag, and skew leakage reactance components,

is about 1.66 ohms. The conditions between the measured points and calculations

are not exactly matched. The high slip points are scaled from half voltage, with a

lower operating temperature than the full load points. The temperature is held fixed

around the full load value for the calculated curve. The strange, non-smooth behavior

in predicted torque approaching the locked rotor is believed to arise from interaction

of the slot harmonics.

0 200 400 600 800 1000
Speed [RPM]

1200 1400 1600 1800

Figure 5-2: Design #1 10 hp cast copper torque speed curve
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The following set of plots compare "measured" and calculated values of torque,

input current, and fundamental rotor conduction loss. Calculations are presented

using the traditional equivalent circuit and the adjusted version to account for inter-

bar currents. The measured data is taken at eight different points from no load to

150% load. The calculations assume values of inter-bar resistance equal to the average

value determined in Chapter 4 for each motor. Both the ten horsepower motor designs

evaluated in this section measured an average inter-bar resistance per unit length of

about 2.5 micro ohm meters.

calculation

measurement

- calc insulated

0.2 0.4 0.6 0.8 1
Output Power [% FL]

1.2 1.4 1.6

Figure 5-3: Design #1 10 hp cast copper load torque
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-- calculation
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0 0.2 0.4 0.6 0.8 1
Output Power [% FL]

1.2 1.4 1.6

Figure 5-4: Design #1 10 hp cast copper input stator current

The input stator current is somewhat under-predicted, by 0.765 amps or about

6% of the measured 12.7 A stator current.
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Figure 5-5: Design #1 10 hp cast copper fundamental rotor loss

The stray load loss from measured tests is also compared to calculated stray

loss from space harmonic rotor bar currents. This is an important distinction since

it is possible that the measured stray load loss includes losses from other sources.

The measured value provides only an approximate upper bound for the calculated

harmonic rotor bar loss. Additional stray load loss plots include predictions for cases

of altered inter-bar resistance and contact resistance.

No error bars are included with the plots of torque, stator current, or rotor fun-

damental loss because the error is expected to be less than two percent for all points

on these graphs, often falling within the size of the starred points. The current and

torque are measured directly, with reported precision of 0.001 amps and 0.01 pound

feet. Combining error in stator copper loss and no load core loss with a one rpm error

in speed and slip, still results in less than a two percent, or plus or minus three watt

error on the fundamental rotor loss.

Any error in the individual "measurements" of stator or rotor conductor losses,

no load copper loss, input and output power, and friction and windage losses can

potentially combine for larger cumulative errors in the determined values of stray load
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Figure 5-6: Design #1 10 hp cast copper stray load loss or harmonic rotor conduction
loss

loss. Typical error should normally fall within plus or minus 10% of the measured

stray load loss, but the error bars show the worst case of about 43% of the measured

values of stray load loss. At lower loads, the error should be a larger percentage,

but the magnitude of the error is much less significant. Around full load, an extreme

variation in stator copper losses of about ten watts is possible with an unlikely ten

degree error in temperature. Calculations of friction and windage and core loss from

measured no load data are repeatable to within a few watts, but a ten watt error

is assumed for the combined friction and windage and no load core loss. Since the

value of friction and windage loss is subtracted from the measured input power in

calculating the no load core loss, most errors will cancel out in the sum of the two

values. These errors in stator, core, and rotational losses combine, together with a

+1 rpm error in measured speed and slip, to give less than a ±3 watt error in the

calculated fundamental rotor losses. Lastly, the IEEE 112 test standard calls for

curve fitting the measured stray load loss values to a function of the torque squared.

Intended to help smooth out errors in measurements between points, the curve fitting
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process was found to alter measured data points around full load by up to about 10%,

or 7 watts in the case of the design #1 connected ten horsepower motor. Vibrations

in the test setup can impact measured values at particular speeds and loads. These

sources of error combine to give a boundary on the potential error in the "measured"

value of stray load loss of about 30 out of 70 watts, or 43%. Most measurements are

likely to be more accurate, but even on these relatively low power machines, the stray

load loss is difficult to exactly determine.

Two different testing facilities independently determined values of stray load loss

for this motor. Figure 5-7 compares their results, together with calculations using

both sets of measured test values. The results from the second facility do not exactly

match but remain within the 43% confidence interval of the original measurements.

250

200
* Test Facility 1

A Calcs from Data 1

0 Test Facility 2
(1 150
0y Calcs from Data 2

-1
0

-J/

50 - 4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Output Power [% of FL, 10hp]

Figure 5-7: Comparison of stray load loss determination on design #1 10 hp cast
copper motor

Next, variations in predicted stray, harmonic rotor loss are calculated for variations

in rotor skew and contact resistance.

Figure 5-8 suggests the stray load loss of the design #1 ten horsepower motor,

with the as measured value of inter-bar resistance, is rather insensitive to changes in
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Figure 5-8: Design #1 10 hp cast copper stray load loss or harmonic rotor conduction
loss with varied rotor skew

skew. The lowest order, 5th and 7th, belt harmonics contribute more loss than the slot

harmonics for this motor. These losses maintain a minimum value of stray loss even

as the rotor bars become insulated as plotted in Figure 5-9 along with intermediate

values of inter-bar resistance. Generally, small changes in inter-bar resistance have

minimal impact, but the stray load loss in this case is expected to decrease with

increasing inter-bar resistance. The fully insulated case would also be the result

of traditional equivalent circuit calculations not including the adjustments to rotor

resistance and skew factor to account for inter-bar currents.

154

:::~i;;i~~;c~~~~~~i;---~~~i~i- ;::~-'a~ -~i;--~ ~i~w~~~r i~ ~ii;;-~; ~,~-- ;j;



Y Wound 10 hp Cast Cu - SLL or Harmonic Rotor Loss
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Figure 5-9: Design #1 10 hp cast copper stray load loss or harmonic rotor conduction

loss with varied inter-bar resistance

Next, Figure 5-10 examines the impact of variation in inter-bar resistance on the

full load harmonic rotor losses. The bar-to-bar resistance varies over the full possible

range from the approximate resistance of the of iron path between bars, at around

0.1 micro-ohm meter, up to effectively insulated bars. All of the calculations use a

fixed, ten horsepower, output power for a fair comparison. The stator input current

and slip are unconstrained but do not vary significantly in this case. The range of

speed is around 0.72 rpm and input current around 0.06 A, along with variations in

output power of up to 2.3 W. In this case the simplification of constant speed and

input current gives negligible error. The single plotted point, *, shows the value of

stray load loss and inter-bar resistance from measured tests.

The error bars in the "measured" value of inter-bar resistance are also included in

this plot. From Chapter 4, the average value of inter-bar resistance for this "low" con-

tact resistance motor was approximately determined by minimizing the error between

measured de voltage profiles and calculated voltages using a rotor resistor model. The

voltage measurements on any particular pair of rotor bars are repeatable to within
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Figure 5-10: Design #1 10 hp cast copper full load stray load loss or harmonic rotor
conduction loss with varied inter-bar resistance

a few micro-volts, with minimal error contributed from variations in temperature or

applied current. However, measurements of different pairs of bars varied significantly

from the changing bar-to-lamination contact resistance values of every bar. Bound-

aries on the error in inter-bar resistance were found by determining extreme values

of inter-bar resistance that resulted in calculated voltage profiles at the boundary of

three standard deviations away from the average measured voltages. The points of

maximum error reflect the measured variation in rotor voltages but represent unlikely

extremes for calculated values. Variations of the average contact resistance around

the measured order of magnitude have minimal impact on the calculated stray loss.

The adjusted equivalent circuit model can fairly accurately reproduce the perfor-

mance of this high efficiency machine. With relatively low stray load, at less than one

percent of the full load output power, the harmonic rotor bar and inter-bar currents

can account for essentially all of the measured stray load loss on this ten horsepower

machine.
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5.5.2 Design #2 Ten Horsepower Motor

Another four pole, ten horsepower motor of a completely different design including

a delta-wound stator is more difficult to predict. Two versions of this machine were

examined. The original motor, designed with an 18 mil air gap, measured surprisingly

high stray load loss. The outer diameter around the closed rotor bars was carefully

machined to increase the air gap length to 25 mils. The same machine with increased

air gap measured significantly reduced stray load loss. The following plots compare

calculated and predicted values with and without the inter-bar corrections for this

motor design #2, similar to the previous section on the design #1 motor.

The full torque speed curves for the more well behaved motor with increased

air gap is presented first. Again, there is visible distortion of the calculated torque

approaching locked rotor, presumably from interaction of the four terms representing

the first and second order slot harmonics. Both the disturbance as well as the torque

dip are more pronounced on the lower air gap, higher stray load loss machine.

800 1000 1200 1400
Speed [RPM]

Figure 5-11: Design
loss, 25 mil gap

#2 10 hp cast copper torque speed curve with low stray load
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Figure 5-12: Design #2 10 hp cast copper torque speed curve with 25 mil gap and
adjusted reactance values

The following set of plots, Figures 5-13, 5-14, and 5-15 compare "measured" and

calculated values of torque, input current, and fundamental rotor conduction loss.

Calculations are presented using the traditional equivalent circuit and the adjusted

version to account for inter-bar currents. The measured data is taken at eight differ-

ent points from no load to 150% load. The calculations assume values of inter-bar

resistance equal to the average value determined in Chapter 4 for each motor, about

2.5 micro ohm meters for the delta connected ten horsepower rotor examined in this

section.
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Figure 5-13: Design #2, 25 mil gap, 10 hp cast copper load torque
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Figure 5-14: Design #2, 25 mil gap, 10 hp cast copper input stator current
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Figure 5-15: Design #2, 25 mil gap, 10 hp cast copper fundamental rotor loss

The overall behavior of the motor is still determined largely from the fundamental

fields and circuits of the machine, practically independent of inter-bar currents. The

inter-bar currents do not noticeably impact calculated torque, but there is a slight

improvement in the calculations of current and fundamental rotor loss, more notice-

able at larger loads. The stray load loss from measured tests is also compared to

calculated stray loss from harmonic rotor bar currents below in Figure 5-16.
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Figure 5-16: Design #2, 25 mil gap, 10 hp cast copper stray load loss or harmonic
rotor conduction loss

The motor with smaller air gap and increased stray load loss is more difficult to

model. Likely, there is still another source of stray loss not included in the equivalent

circuit model as implemented here. The circuit model requires additional refinement,

but the correction factors for inter-bar currents still improve predictions of stray load

loss in Figure 5-17. Adding the additional harmonic reactance correction factor brings

the calculated stray loss even closer to the measured values as shown in Figure 5-18.
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Figure 5-17: Design #2, 18 mil gap, 10 hp cast copper stray load loss or harmonic
rotor conduction loss
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Figure 5-18: Design #2, 18 mil gap, 10 hp cast copper stray load loss or harmonic
rotor conduction loss with adjusted harmonic reactances

Next, variations in predicted stray, harmonic rotor loss are calculated for variations

in rotor skew and contact resistance for the 25 mil gap rotor in Figures 5-19 and 5-20.
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Figure 5-19: Design #2, 25 mil gap, 10 hp cast copper stray load loss or harmonic
rotor conduction loss with varied rotor skew

165



250 - calc Rbb=2.5 (from test)

measurement

- - - calc Rbb=25
. 200 - calc Rbb=75

o ....... calc Rbb=250 /

150 -- calc Insulated
S150 /

0

-- 100

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Output Power [% FL]

Figure 5-20: Design #2, 25 mil gap, 10 hp cast copper stray load loss or harmonic
rotor conduction loss with varied inter-bar resistance

Finally, the last figure of the chapter, Figure 5-21 figure examines the impact

of variation in inter-bar resistance on the full load harmonic rotor losses of the 25

mil gap, low stray load loss version of the ten horsepower motor. The bar-to-bar

resistance varies over the full possible range from the approximate resistance of the

of iron path between bars, at around 0.1 micro-ohm meter, up to effectively insulated

bars. All of the calculations use a fixed, ten horsepower, output power for a fair

comparison.
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Figure 5-21: Design #2, 25 rmil gap, 10 hp cast copper full load stray load loss or
harmonic rotor conduction loss with varied inter-bar resistance
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Chapter 6

Conclusion and Suggestions for

Future Work

6.1 Summary and Conclusion

Inter-bar currents, flowing in loops including sections of rotor bars and circumferential

paths through the laminations between neighboring rotor bars, contribute substantial

stray load loss to skewed induction motors with non-insulated rotor conductors. The

stator slot order harmonics, with a pole pitch closest to the length between neighbor-

ing rotor bars, are particularly effective at creating stray load loss. With insulated

rotor bars, skew can be used to nearly eliminate these slot harmonic currents and

losses, but in general, the effective rotor resistance and skew factor must be adjusted

from the traditional values in order to account for the presence of currents between,

as well as along, the rotor conductors.

The classic solutions for rotor bar current as a function of axial position use the

average values of inter-bar resistance to calculate total rotor bar, inter-bar, and end

ring losses, as in Chapter 3. However, these rotor equations depend on a number of

motor design and operating point values that must be previously determined through

measurement or calculation. Incorporating the rotor loss equation into an equivalent

circuit framework allow for predictions of motor performance under any operating

conditions.
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The second chapter gives an overview of the equivalent circuit model commonly

used for evaluating motor performance. The impact of rotor skew, a twisting of the

rotor conductors, on the circuit model is examined in detail. The impedance values

in the circuit model are also required in the rotor current and loss equations.

The main contribution of this work is the set of equations presented in Chapter 5

to adjust the rotor resistance and skew factor for the fundamental and higher order

space harmonics used in equivalent circuit models to include the impact of inter-

bar currents. These two equations can be included in any motor design software to

improve the calculations of skewed motors with non-insulated rotors. Estimations

of minimum and maximum torque as well as stray load loss at any load and locked

rotor torque and current all benefit from the adjusted equivalent circuit, including the

effects of inter-bar currents. Without the adjusted parameters, stray load losses may

be significantly underestimated because the inter-bar currents can greatly reduce the

effectiveness of skew in canceling out slot harmonic rotor currents. The new method

is consistent with previous efforts, but the new calculations result in a simpler, more

intuitive modification of the equivalent circuit and apply more generally, independent

of how skew is incorporated into the circuit model. The only additional variable

required is the average value of resistance between neighboring rotor bars.

The effective values of rotor resistance and skew factor are calculated as a function

of the resistance of the cross path between neighboring bars. Chapter 4 presents the

method for determining average values of the inter-bar resistance on a number of cast

copper and aluminum rotors. Two general classes of rotors displayed either relatively

"high" or "low" inter-bar resistance compared to the bar impedance. The values of

inter-bar resistance determined for these machines can be compared to other published

results and used for developing estimates of similar machines for future calculations.

Ideally, a large enough library of inter-bar resistance measurements could reduce or

eliminate the need for additional testing.

Altogether, the circuit model, adjusted to include inter-bar currents, can be used

as an improved tool for induction motor design and analysis.
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6.2 Calculations of Stray Load Loss

A number of factors can significantly impact predictions of stray load loss. This

work has addressed some of these issues and identified additional topics requiring

further investigation. Calculations of stray load loss from harmonic rotor bar and

inter-bar currents more accurately represent measured values with the resistance and

skew factor adjusted to include the impact of inter-bar currents. However, equivalent

circuit reactance values also significantly impact harmonic rotor bar currents and stray

loss. For each higher order space harmonic, sufficiently high rotor leakage reactance or

sufficiently low air gap, magnetizing reactance will nearly eliminate the rotor current

and loss, as with a fully effective skew factor much less than unity. As discussed

in Chapter 2, these reactance values are difficult to accurately calculate, especially

for the higher order slot harmonics. Underestimating space harmonic magnetizing

reactance or overestimating the rotor leakage reactance will under predict stray loss

from harmonic bar and inter-bar currents, and opposite errors will over predict stray

loss.

Two reasonable strategies to adjust the values of magnetizing reactance, in op-

posite directions, are including the traditional Carter coefficient or adding in an ad-

ditional reactance parallel to the core resistance and air gap reactance to model the

reactive power drawn by the non-infinitely permeable core laminations. The Carter

coefficient increases the effective air gap length to account for the stator and rotor

slotting, decreasing the calculated air gap reactance. This factor may not be neces-

sary for the slot order harmonics, where the fields cross the gap many times and the

majority of the fields concentrate in the positions directly between the teeth. The

additional core reactance term has only been included for the fundamental circuit

in this study. No load reactive power data can be used to estimate the reactance

value. The parallel combination can significantly reduce the net, effective magne-

tizing reactance value, especially as core flux densities increase. The reduction in

fundamental magnetizing, air-gap reactance values can also used impact calculations

of higher order reactance values.
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Harmonic rotor bar currents account for the majority of inter-bar currents on

motors rated under fifty horsepower (37.3 kW), where iron losses are generally less

significant than conduction losses, but there are other sources of stray load loss in

addition to harmonic rotor currents. Two possible sources of additional stray loss on

skewed rotors warranting additional investigation are mentioned here. Lamination

eddy current losses in the plane of the laminations, perpendicular to the shaft, are

one potential source of stray load loss, driven by the small, circumferential component

of rotor bar current in the case of skewed rotor bars. Additionally, the increase in

net air gap magnetic field towards one end of skewed machines can also contribute

potentially significant stray load loss in the form of traditional hysteresis and eddy

current core losses. Similar to inter-bar currents, these two sources of stray load loss

exist only on skewed machines.

6.3 Strategies to Minimize Stray Loss

This section discusses strategies to reduce the component of stray load loss from

harmonic bar and inter-bar currents. Any design modifications decreasing the air

gap harmonic fields will reduce the stray rotor currents and loss. The lower order

harmonics can be reduced by stator winding factors from the distribution and pitch of

the stator winding. If the rotor bars can be insulated, then inter-bar currents are not

an issue, and skew can nearly eliminate the higher order slot order harmonic losses.

With un-insulated rotor bars, the slot harmonics may contribute unexpectedly

high stray load losses, increasing with the skew angle. If the skew is not required to

reduce noise or increase the starting torque, stray load loss on non-insulated rotors

will be lower with no skew. The improvement should be compared to the increase

in no load loss without skew. Any individual slot harmonic can also theoretically be

nearly eliminated by selecting a number of rotor bars equal to the particular harmonic

number, but this also should be weighed against impact to no load and locked rotor

conditions.

Increasing the number of rotor and stator bars per pole also increases the order
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of the slot harmonics, generally reducing their field strength, current, and loss. The

length of the air gap can also be increased as shown for the ten horsepower machine.

6.4 Suggestions for Future Work

Two main issues complicating the comparison between measured test results and

calculations including inter-bar currents have been variations in reactance values and

additional sources of loss for skewed machines. Determining generally applicable

calculations of both magnetizing and leakage reactance values, especially for the slot

order harmonics, is a significant challenge that would greatly improve the accuracy

of motor performance calculations. Values can change with operating conditions and

motor design. This ongoing issue is more than a century old, but modern finite

element analysis may provide an increasingly quick and relatively easy method to

evaluate motor reactance values. Major manufacturers may already have proprietary

equations that work well, but uncertainty in reactance values complicated evaluation

of the new, adjusted circuit models.

Similarly, loss predictions for the motors with highest measured stray loss were

also inconsistent. Calculated rotor bar and inter-bar conduction losses are not capable

of providing all of the measured stray load loss without altering a different measure of

motor performance like current or torque. The harmonic rotor conduction losses are

a significant, but not the only, source of stray loss. Lamination tooth tip and surface

losses from high frequency field variations are another commonly cited source of stray

load loss.[6] Motor models must include all appreciable sources of loss to accurately

reproduce or predict behavior. Lamination eddy current losses in the plane of the

laminations, perpendicular to the shaft, are a potential source of stray load loss,

driven by the small, circumferential component of rotor bar current in the case of

skewed rotor bars. Additionally, the increase in net air gap magnetic field towards

one end of skewed machines can also contribute potentially significant stray load loss

in the form of traditional hysteresis and eddy current core losses. Similar to inter-bar

currents, these two sources of stray load loss exist only on skewed machines.

173



One final area of investigation could be inexpensive and effective insulation meth-

ods for the higher temperatures required for copper casting, eliminating inter-bar

currents altogether.
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