

The ttH Physics Channel at the LHC

Georges Aad - CPPM Marseille Jan Steggemann - RWTH Aachen On behalf of the ATLAS and CMS experiments

The SM Higgs Boson

The SM Higgs at the LHC

- Production mechanism:
 - Dominated by gluon-gluon fusion
 - Vector Boson Fusion production 10 times smaller
 - Associated production with top quark pairs or gauge bosons
 - Important for low Higgs mass and Yukawa coupling measurements
 - ttH cross section : 0.519 pb (LO) @ 120 GeV/c², k-factor =1.2

- Decay modes:
 - − H→bb is the main channel for $m_H < 135$ GeV/c² (BR : 0.68 @ 120 GeV/c²)
 - Direct production is swamped by QCD background
 - Only detectable via associated production
 - For $m_H > 135 \text{ GeV/c}^2 \text{ H} \rightarrow \text{VV}$ dominates

Difficult for low mass: we need to associate more than one channel

The LHC Experiments

- LHC:
 - Proton-Proton collisions @ 14 TeV
 - First run @ 10 TeV expected at the end of this summer
 - Luminosity:
 - Low luminosity regime $\sim 10^{33}$ cm⁻²s⁻¹
 - \sim 30 fb⁻¹ between 2008 and 2011
 - High Luminosity regime $\sim 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - $\sim 300 \text{ fb}^{-1} \text{ by } 2014/2015$
- ATLAS and CMS:
 - Generalist experiments
 - Classic detectors composed mainly by 3 sub-systems
 - Inner tracker
 - Calorimeter system
 - Muon spectrometer
 - Good $e/\gamma/\mu/\tau/b$ -jets identification

ttH Analysis Outline

- ttH channels phenomenology
- bb decay (detailed analysis)
 - ATLAS: lepton + jets final state
 - 3 different approaches
 - CMS: All final states
 - All hadronic, lepton+jets and di-leptonic
 - Discussion of main issues for these analysis: b-tagging, Jet Energy Scale, combinatorial background and physical background extraction from data
- WW (ATLAS) and γγ (CMS) decay (briefly reported)

ttH Channels Phenomenology

- $ttH(\rightarrow bb)$: potential discovery channel for light Higgs boson
 - All hadronic final state
 - Higher branching ratio
 - 8 jets (4 b) in the final state
 - Lepton + jet final state
 - 1 lepton, 6 jets (4 b) and one neutrino in the final state
 - Di-leptonic final state
 - Low branching ratio, high trigger efficiency
 - 2 leptons, 4 b jets and 2 neutrinos in the final state
- Main backgrounds
 - tt+jets : reducible background using b-tagging
 - ttbb (EW/QCD) : irreducible background but slightly different kinematics than signal

ttH (\rightarrow WW) and ttH ($\rightarrow\gamma\gamma$) decay modes are interesting for respectively higher Higgs mass and high integrated luminosity

ttH channels give a unique access to top Yukawa coupling

Some ttbb(QCD) background Feynman's diagrams

tt(H \rightarrow bb) Analysis

- Strategy: Reconstruct the tt system to look at the rest
- 4 b-jets at the final state
 - b-tagging is one of the most important keys for this channel
- Jet pairing and JES are also very important
- ATLAS:
 - Efforts mainly for lepton + jets channel
 - All hadronic channel analysis started, only lepton + jets channel will be reported
 - ttH samples produced with Pythia, ttbb with AcerMC+Pythia and tt+jets using MC@NLO+Herwig with an additional filter on jets
 - Higgs boson mass produced at 120 GeV/c²
 - All sample produced with full simulation of ATLAS detector
 - All studies for 30 fb⁻¹
- CMS:
 - Combined analysis for dileptonic, lepton + jets and all-hadronic channel
 - Focus and optimization on lepton + jets channel
 - ttH & ttbb samples produced with CompHEP + Pythia, tt+jets with Alpgen + Pythia, QCD with Pythia (120-170 GeV/c, >170 GeV/c)
 - ttH with Higgs masses 115, 120, 130 GeV/ c^2
 - Full simulation of CMS detector
 - All studies for 60 fb⁻¹

Pre-selection (ATLAS)

- Isolated electron or muon trigger selection applied before the pre-selection
- One isolated lepton is required
 - Electron, muon: Acceptance, identification and isolation cuts
 - Tau is not considered in this analysis
- At least 6 jets: cone 0.4 jet algorithm, $p_T > 20$ GeV/c
- At least 4 jets tagged as b-jets using life time based taggers:
 - b-tag weight combines impact parameter based tagger with a secondary vertex based tagger
 - Tight: b-tagging efficiency = 65%, light jet rejection = 60
 - Loose: b-tagging efficiency = 85%, light jet rejection = 8.6
- Scaling of the b-tagging weight to simulate 30% worsening of light jet rejection
 - More realistic description of the b-tagging performance (impact of residual misalignments coming from actual alignment exercise)

LO cross section (only tt+jets NLO+NLL)					
cut	ttH	ttbb(EW)	ttbb(QCD)	tt+jets	
1 Lepton (fb)	56.9	141	1356	63710	
+ 6 jets (fb)	36.2	76.7	665	26214	
+ 4 b-jets loose (fb)	16.2	23.4	198	2589	
+ 4 b-jets tight (fb)	3.76	4.2	29.6	50.7	

Pre-selection (CMS)

Lepton+jets channel

- Trigger: isolated muon or isolated electron
- One isolated lepton (electron or muon)
 - likelihood including p_T, isolation and identification variables
- 6 or 7 jets: cone 0.5 algorithm
 - $p_T > 20 \text{ GeV/c}, |\eta| < 3$
 - Optimized for maximum significance ~
- b-jet identification
 - Combined secondary vertex algorithm
 - Likelihood ratio method using 4 jets with highest discriminator output
 - Optimized for "loose" (maximum significance) and "tight" (maximum purity) working points
- Signal efficiency (Higgs mass 120 GeV/c²)
 - 1.55% (loose), 0.52% (tight)

Cut-Based Reconstruction(ATLAS)

- Leptonic W reconstruction
 - Force $l\nu$ mass to the W mass
 - Solve 2nd degree equation to get neutrino p_z
 - − 28% no solution \rightarrow neglect imaginary part
- Hadronic W reconstruction
 - After requesting 4 b-tag jets, remaining jets are considered as light jets
 - W boson candidates are formed of all combinations of light jet pairs
- top quarks candidates are formed using one W boson candidate and one b quark
 - Combination with |m(jj) m(W)| > 25GeV/c² or $|m(t_{reco}) - m(t_{true})| > 25$ GeV/c² are removed
- Combination minimizing a χ², based on the top quark masses, is chosen

$$\chi^{2} = \left(\frac{\mathbf{m}_{\ell \mathbf{v} \mathbf{b}} - \mathbf{m}_{\mathbf{t} \mathbf{o} \mathbf{p}}}{19 GeV}\right)^{2} + \left(\frac{\mathbf{m}_{jjb} - \mathbf{m}_{\mathbf{t} \mathbf{o} \mathbf{p}}}{13 GeV}\right)^{2}$$

The two remaining b jets used to reconstruct the Higgs candidates

m(lvb) [GeV]

m(jjb) [GeV]

Multivariate Based Reconstruction (ATLAS)

- □ Pairing likelihood:
- Using tt system kinematic properties to build a pairing likelihood
 - 6 variables are used
 - b-jets and light jets are treated separately
 - Choose the combination that maximize the likelihood output
 - Cut: Likelihood > 0.9

 $\begin{array}{c} & \text{ATLAS} \\ & \text{mean: } 117.27 \pm 0.81 \text{ GeV} \\ \sigma & : 20.08 \pm 1.05 \text{ GeV} \\ \end{array}$

- Fit jet p_T and E_{Tmiss} to give the mass of the top quarks
- Pairing likelihood is formed using the χ^2 output of the constrained fit together with b-tagging and kinematic quantities
 - 14 variables are used
 - 3D likelihood is used to take into account the correlations
- Final selection likelihood is used to separate signal and physics background

$$\chi^{2} = \sum_{i=1}^{6} \left(\frac{f_{jet}^{i} - 1}{\sigma_{jet}^{i} / p_{jet}^{i,initial}} \right)^{2} + \frac{\left(m_{W}^{lep} - 80.425 \right)^{2}}{\left(2.1 \right)^{2}} + \frac{\left(m_{t}^{lep} - 175 \right)^{2}}{\left(1.5 \right)^{2}}$$

 f_{jet}^{i} : scale factor for jet momentum

$$\sigma_{P_{light}} / P_{light} = 0.988 / \sqrt{p_T} \oplus 0.035$$
$$\sigma_{P_b} / P_b = 0.888 / \sqrt{p_T} \oplus 0.125$$

Comparison of Reconstruction Algorithms (ATLAS)

- S/VB differences relatively small among the 3 analysis
- Multivariate techniques increase Higgs bb pair purity by ~5%
- All analyses suffer from low purity mainly coming from b exchange between top and Higgs
 - Wide distribution for reconstructed Higgs mass
 - No clear signal peak on top of background distribution
 - Combinatorial background dilutes differences between ttbb and ttH

Invariant mass of reconstructed Higgs boson using constrained fit for all samples

30 fb⁻¹, LO cross section (only tt NLO+NLL)

	Cut-based	Likelihood	Constrained fit
Signal efficiency (%)	2.04	2.32	2.49
bb purity (%)	29.4	34.0	32.0
bb mass peak resolution (GeV)	22.8	20.1	22.3
S/B (*)	0.110	0.103	0.123
S/√B (*)	1.82	1.95	2.18

Reconstruction (CMS)

Lepton+jets channel

- Reconstruction of leptonic W:
 - Solve for neutrino p_z with W mass constraint
 - Non-real solutions: $p_z^{\nu} = p_z^{\ell}$
- Several methods for jet-parton assignment (pairing):
 - Kinematic fits, likelihood methods, mass resonances, angular distributions
 - Comparable efficiencies ~30%
- Higgs mass peak influenced by
 - Detector resolution effects
 - Inefficiencies in jet-parton assignment
- Loose/Tight (m_H = 120 GeV/c², 60 fb⁻¹):
 - Signal efficiency: 1.55% / 0.52%
 - Significance : 2.5 / 1.9

All Hadronic Channel (CMS)

- Challenge:
 - Combinatorics in events with at least 8 jets

Significance vs Purity for different jet pt cuts

Di-leptonic Channel (CMS)

Event Selection:

- Loose
 - Two oppositely charged leptons passing likelihood cuts
 - MEt > 40 GeV
 - 4-7 jets with pt > 20 GeV/c, |eta| < 2.5
 - 3-4 jets b-tagged
- Tight (additional cuts)
 - 4-6 jets, 4 jets b-tagged

Significance vs. Higgs Mass

bb mass for correct combination Generated mass = 120 GeV/c²

* tt+jets: LO cross section but NLO kinematics effect included via the Alpgen matching procedure and additional hard radiation from Pythia

Systematic Errors

- For a counting experiment the background uncertainties need to be small
 - Side band analysis is difficult with the current combinatorial background and Higgs mass resolution
- Systematic errors need to be well controlled
- Main systematic errors come from the JES, jet resolution and b-tagging efficiency

ATLAS main systematic errors, background sample

	Cut-based	Likelihood	Constrained fit
JES	5%	14%	8%
Jet resolution	7%	5.5%	14%
b-tagging efficiency	20%	20%	20%
Light jet rejection	5%	3%	10%
All contribution	22%	25%	28%

	Signal	Background
JES	3-5%	6-30%
Jet resolution	1-4%	2-8%
bc-tagging	20-25%	20-40%
uds-tag	< 2.7%	< 2.7%
All contribution	21-25%	26-40%
	A	

CMS main systematic errors, lepton+jet channel

•

- Theoretical errors on background cross sections, especially top anti-top production, are sizable.
 - These cross sections need to be well measured in data (~5% error on top anti-top)

Significance + Systematic Errors

Main Issues for ttH(\rightarrow bb) Channel

- After analysis Higgs purity is ~30%
 - large tails and width in the bb invariant mass
 - No visible peak on top of physical background, side band extraction very difficult
- The main problem is the b-jets exchange between top quarks and the Higgs
 - b-jet from Higgs used for the hadronic top : \sim 36%
 - b-jet from Higgs used for the leptonic top : $\sim 30\%$
 - Higgs boson reconstructed with only one correct b-jet: ~55% (The other wrong jet is mainly coming from the top quarks)

- Big uncertainty for the tt+jets cross section
 - Extracting the background shape and normalization in data is crucial for this channel
 - Using loose and tight b-tagging cuts looks promising (ATLAS)
 - Background shape independent from b-tagging cuts

Main Issues for ttH(\rightarrow bb) Channel

- b-tagging is crucial due to 4 b-jets in final state ٠
- CMS, two improvements have been developed • for this analysis:
 - inclusion of tertiary vertices (further charm decay vertex)
 - inclusion of soft lepton tagging
- ATLAS, latest and more powerful tagger based • on reconstructing the $B \rightarrow D$ decay chain not used in this analysis

b-jet efficiency vs mis-tagging rate (CMS):

- Triangles are c-jets, crosses gluon jets, points light flavored jets
- This plot is for the ttij sample.
- The results are about the same for the ttH sample

- bb invariant mass resolution is important to extract the signal from background
- ATLAS, resolution around 13% (*)
- CMS, resolution around 19% (*) •
 - The resolution is comparable for different calibration method
 - Energy flow methods for jet calibration can improve the Higgs mass resolution
 - This is not included in the plot below

* Resolution is computed for true bb combinations

Summary of ttH(→bb) analyses

Summary table	Significance loose/tight	Luminosity
ATLAS (Lepton+jets)	2.2	30 fb ⁻¹
CMS (Lepton+jets)	2.5/1.9	60 fb ⁻¹
CMS(Combined)	3.9/3.3	60 fb ⁻¹

Significance < 1 for both experiment if:
Simple counting experiment
No special treatment to extract background from data
Systematic errors included

Input from theory side needed, e.g. NLO calculation for ttbb

4/23/2008

top2008 conference

WW(*) and $\gamma\gamma$ decay modes

WW^(*) Decay Mode (ATLAS)

- Both 2 sign-like lepton (2L) and 3 lepton (3L) decay configuration were considered
- Main backgrounds: tt, ttW, ttZ, tttt and ttbb (QCD is rather negligible)
- Event selection:
 - Trigger: isolated high p_T electron or muon
 - 2 sign-like/3 isolated electron or muon
 - Isolation combine track and calorimeter isolation
 - 4 jets (cone 0.4 algorithm)
 - Z-veto ($75 < m_{\ell} < 100 \text{ GeV/c}^2$)
 - For the 2L analysis the Higgs boson can be reconstructed using a constrained fit
 - 2 b-tagged jets are required to reduce the number of combinations

γγ Decay Mode (CMS)

Important channel for Higgs mass and Yukawa coupling measurements

- Analysis performed for 100 fb⁻¹
- Lepton+jets decay channel
- Cut-based analysis
 - Properties of photons
 - Isolated lepton
 - At least 4 jets with p_T of 60 GeV/c
 - One b-tagged jet
- S/B ratio of 4
- 11.2% selection efficiency (Higgs mass of 120 GeV/c²)
- Significance above 3 including systematics, using sideband fit

Signal observable (3 sigma confidence) at 100 fb⁻¹

Fit of background from sidebands

Conclusion

- ttH channel is an important channel for testing the electroweak sector of the Standard Model
- Several Higgs decay modes are considered:
 - bb decay as a discovery channel for a low mass Higgs boson
 - WW decay for medium Higgs mass around a resonant W boson pair
 - $-\gamma\gamma$ decay for high luminosity
- A detailed analysis with full simulation of ATLAS and CMS detector yields a comparable conclusion for the ttH ($H \rightarrow$ bb) channel
 - Without special treatment to extract background in data and improvements in btagging and jet pairing the signal is not observable
 - Promising work starting on this
 - Once the background shapes are understood, but maybe not the cross section/kfactor, one can stop using a counting experiment, and go for more advanced methods
- Analysis result should be update with the latest improvements, specially for b-tagging where tt($H \rightarrow$ bb) is very sensible, for both experiments
- WW and γγ decay modes are also important channels for Yukawa coupling measurement

Back-up

Systematic errors

• Systematic errors

	JES	Jet resolution	Btag efficiency	Light jet rejection
ATLAS	eta < 3.2, 7% eta > 3.2, 15%	eta < 3.2, σ=0.45*√E eta > 3.2, σ=0.63*√E	5%	10%
CMS	From 10% at 20 GeV to 3% for 50 GeV	10%	4%	10%

Jet pairing, No likelihood cut

Pairing likelihood templates

top2008 conference