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Abstract

Catalyzed by kinases, serine/threonine and tyrosine phosphorylation is a vital mechanism
of intracellular regulation and is involved in nearly every aspect of normal, as well as aberrant,
cell function. With more than 500 protein kinases present in the human genome, the need for
probes that can rapidly and selectively report the activity of a single kinase or a discreet subset of
related kinases is crucial, particularly as researchers move to increasingly complex, and more
relevant, systems to study the effects of dysregulated kinase behavior.

We previously developed sulfonamido-oxine (Sox)-based fluorescent peptides following
a P-turn focused (BTF) design. Upon phosphorylation of the Sox-containing peptide, the
chromophore binds Mg + and undergoes chelation-enhanced fluorescence (CHEF). However,
due to the BTF design limitation, only residues C- or N-terminal to the phosphorylated residue
were used to specify the target kinase. To address this drawback, the recognition-domain focused
(RDF) strategy, which also relies on CHEF, has been developed. In this approach, the Sox
sensing moiety is introduced on the cysteine side chain (C-Sox), thereby allowing inclusion of
extended kinase binding determinants, which are used to construct chemosensors for multiple
Ser/Thr and Tyr kinases with greatly enhanced selectivity. Moreover, a high throughput mass
spectrometry-based screening method that builds additional selectivity into RDF Sox-based
probes for Ser/Thr kinases was also developed. Using this approach, it should be possible to
construct short peptide probes with enhanced catalytic efficiency for virtually any kinase.

To expand the scope of CHEF-based sensors, beyond kinases that derive specificity from
the short consensus sequence, a highly selective ERK sensor was prepared via semisynthesis by
combining a recombinant kinase docking domain, PNT, with a synthetic sensing module that
included the Sox chromophore. This probe was used to exclusively monitor ERK1/2 activity in
unfractionated cell lysates in the absence of off-target kinase inhibitors. Furthermore, to improve
the photophysical properties of the probes for cellular studies, we developed several oxine-based
CHEF chromophores utilizing numerous approaches including the versatile click chemistry. The
most promising derivative, p-bromophenyltriazoyl-oxine (Clk), displays a significant
bathochromic shift in the excitation (15 nm) and emission (40 nm) maxima compared to Sox,
and efficiently reports kinase activity when incorporated into peptides as a C-Clk residue.

Together, the results presented in this thesis indicate the power that the CHEF-based
sensors have to selectively, rapidly and with great sensitivity deliver new insight into the role of
in vitro and endogenous kinases in various processes and under a variety of circumstances.

Thesis Supervisor: Barbara Imperiali
Title: Class of 1922 Professor of Chemistry and Professor of Biology
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half inhibitory concentration
insulin receptor kinase
c-Jun N-terminal kinase
catalytic constant
dissociation constant
inhibition constant
Michaelis constant
emission wavelength
excitation wavelength
matrix-assisted laser desorption ionization time-of-flight mass
spectrometry
acetonitrile
4-mercaptoethylpyridine
2-mercaptoethane sulfonate sodium
mitogen-activated protein kinase-activated protein kinase-2
4-methoxytrityl
N-bromosuccinimide
mouse fibroblast cells
Norleucine
nuclear magentic resonance
N-methylpyrrolidinone
nitroveratryloxycarbonyl
oxnie or 8-hydroxyquinoline
2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl
phosphate-buffered saline
protein data bank
photoninduced electron transfer
proviral integration site kinase-2
protein kinase A or cAMP-dependent protein kinase
protein kinase B (aka Akt)



PKC
PKD
PS
pSer
PTD
pThr
pTyr
PtK
PyAOP

PyBOP
Ras
Rcel
RDF
RP-HPLC
RT
SDS-PAGE
s.e.m.
Sox-Br

SPPS
Src
std. dev.
TAT
TBDMS
TBDPS
TEV
TFA
TIS
TLC
TMS
TNBS
tR

Tris
Trt
UV-Vis
Xaa
Vmax
vol%

protein kinase C
protein kinase D
phosphatidylserine
phosphoserine
protein transduction domain
phosphothreonine
phosphotyrosine
Potorus tridactylus kidney cells
(7-azabenzotriazol- 1 -yloxy)tripyrrolidinophosphonium
hexafluorophosphate
benzotriazol- 1 -yl-oxytripyrrolidinophosphonium hexafluorophosphate
rat sarcoma
ras-converting enzyme
recognition-domain focused
reverse-phase high performance liquid chromatography
room temperature
sodium dodecyl sulfate polyacrylamide gel electrophoresis
standard error of measurement
2-bromomethyl-8-t-butyldiphenylsilyloxy-5-(N,N-
dimethyl)sulfonamidoquinoline
solid-phase peptide synthesis
sarcoma kinase
standard deviation
transactivator of transcription

t-butyldimethylsilyl
t-butyldiphenylsilyl
tobacco etch virus
trifluoroacetic acid
triisopropylsilane
thin-layer chromatography
tetramethylsilane
2,4,6-trinitrobenzene sulfonic acid
retention time
2-amino-2-hydroxymethyl-propane-1,3-diol
trityl
ultraviolet-visible
used to denote any amino acid
maximum velocity
volume percent



Chapter 1. Introduction



Protein Phosphorylation

Normal cell function heavily depends on protein phosphorylation to accurately relay

multifarious cues from the extracellular environment to appropriate cellular compartments and

proteins.' By catalyzing the transfer of the y-phosphoryl of adenosine-5'-triphosphate (ATP)

onto Ser, Thr, and/or Tyr side chains of protein substrates, kinases have emerged as crucial

regulators of this ubiquitous posttranslational modification. 2' 3 Kinases are broadly classified into

two major groups: Ser/Thr and Tyr kinases, which are further divided into either nonreceptor or

receptor kinases. Regardless of the classification, divalent metal ions, most commonly Mg2+ , are

necessary for catalysis as they prime the nucleotide-triphosphate for nucleophilic attack by the

alcohol4 (Figure 1-1). Although the phosphate group is relatively small compared to the

remainder of the protein, the addition of a densely negatively charged phosphate moiety can

drastically alter protein conformation, biochemical function and/or binding to partner proteins.

These events, in turn, lead to further propagation of the signal until the target is reached. To

efficiently signal the ever-changing extracellular environment, phosphorylation needs to be

highly dynamic and temporally controlled; thus, cells also employ phosphatases to rapidly

remove the phosphate modification. Together with kinases, phosphatases tightly regulate this

ubiquitous and reversible post-translational modification in all eukaryotes. 5



OH OH

Figure 1-1. General scheme of kinase-catalyzed phosphoryl transfer. Hydrolysis occurs in the

presence of Mg2+, which is coordinated to the 3 and y phosphates of ATP. ADP and the

phosphoproduct are then released.

A recent study identified more than 500 different protein kinases encoded in the human

genome (Figure 1-2), constituting nearly 2% of all genes.6 Ser/Thr kinases are more abundant

(-400) than Tyr kinases, but not necessarily more important in cellular homeostasis. Both classes

of kinases modulate aspects of protein function in many ways. They are involved in the control

of subcellular localization, the degradation or stabilization of proteins, the assembly of

multimeric protein complexes, and the allosteric regulation of biochemical activity (e.g.,

activation or repression of an enzyme or transcription factor).7 Because of the ubiquitous

involvement of phosphoproteins in processes such as cell migration, proliferation, cell division,

cell death, immunity, and learning and memory, protein kinases are also instrumental to the

proper function of these listed proceses as enzymes that control the generation of

phosphoproteins. 6-8 In addition, since kinases often phosphorylate proteins involved in several

different biochemical pathways, their down- or up-regulation often has effects on the whole cell,

rather than just a single pathway. For example, illustrated in Figure 1-3 are some of the dynamic

interactions involved in cell migration that are mediated by kinases.9 Thus, due to the critical role
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that kinases play in many aspects of cell function, it is not surprising that the misregulation of

kinase activity is an underlying cause of many human diseases, from neurological disorders to

cancer.' 0
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Figure 1-2. To date, the human kinome encompases 518 Ser/Thr and Tyr kinases divided in 9

major classes. Ser/Thr kinases are the most abundant (-400), followed by Tyr kinases (-90),
while only -40 have the dual function. Dendrogram obtained from ref. 6 and

www.cellsignal.com.
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Recently, much effort has been put forth in the area of drug discovery to identify

molecules that can modulate kinase activity for the treatment of disease. This work is partly

fueled by the remarkable initial success of imitanib mesylate (also known as Gleevec and

STI571) used to treat chronic mylogenous leukemia (CML), gastrointestinal stromal cell tumors

(GIST) and metastatic dermatofibrosarcoma protuberans by direct inhibition of mutated Abl, c-

Kit and PDGFR Tyr kinases, respectively."' 12 Gleevec was the first small molecule to

successfully block the constitutively active Abl kinase and also cause a marked improvement in

individuals suffering from CML. Interestingly, the precursor of Gleevec was discovered by labor

intensive screening of a large library of compounds for in vitro inhibition of protein kinase C

(PKC), a Ser/Thr kinase. 13 Although poor inhibitors for PKC, the Gleevec precursor showed

good properties for Abl. Further elaboration lead to Gleevec and its use as an inhibitor of Tyr

kinases. Unfortunately, patients have started to show resistance to Gleevec, which has been

attributed to a single point-mutation in the BCR-ABL gene, 14' 15 and further drug screening and

the development of follow-up compounds has been necessary. 16

In light of the potential of kinases as therapeutic targets, selective, sensitive and high

throughput methods to detect kinase activity are not only critical in studying the mechanisms of

cellular processes, but are also necessary for the efficient search of potent inhibitors for disease

treatment. As illustrated with Gleevec, kinases are attractive medical targets, but as cancer is

highly adaptive, our search for a complete understanding of roles that kinases play and for more

effective therapeutics is never-ending.
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Figure 1-3. Scheme summarizing known interactions between constituents of cell-matrix
adhesions, illustrating the intricacy of kinase involvement with mutliple targets. Figure obtained
from ref. 9 and www.cellmigration.com.

Detection of Kinase Activity

Traditional assays for kinase activity use either phosphopeptide-specific antibodies or,

more commonly, [y-32 P]ATP, where transfer of the radioactive y-phosphoryl group to peptide or

protein substrate is quantified by liquid scintillation counting. Although general and sensitive,

[32 P]-based assays are not compatible with physiological concentrations of ATP, real-time

analysis or high-throughput kinetic determination. These assays require special handling,

generate radioactive waste, and lose much of the kinetic information due to their intrinsic end-

point nature. Furthermore, because [y-32P]ATP is generally required by all kinases, this method

cannot be applied in environments where multiple kinases are present.

. .......................................................



Conversely, continuous assays that rely on fluorescence changes upon sensor

phosphorylation are ideal for high throughput screening (HTS) and thus make discovery of new

inhibitors and substrates with enhanced specificity much more practical. Fluorescence-based

assays may also be compatible with cell lysates, living cells and physiological ATP

concentrations. Existing fluorescent protein- and peptide-based sensors exploit a variety of

detection methods, such as fluorescence polarization, fluorescence resonance energy transfer

(FRET), fluorescence quenching, metal ion-mediated fluorescence and solvatochromism, and

have been recently reviewed.7' 17-19 Herein we will review some of the more recent and practical

approaches for sensing protein phosphorylation (Figure 1-4).

The probes that employ FRET between two Aequorea victoria fluorescent proteins

(AFPs) are perhaps the most widely used for examining kinase activity because they can be

genetically encoded and expressed within cells. 20 Generally, AFP-based sensors contain a kinase

phosphorylation sequence, a linker region, a phosphopeptide-binding domain, and two AFP

analogs with appropriate photophysical properties, such as CFP and YFP, situated on the termini

of the probe (Figure 1-4a). In these sensors, phosphorylation leads to a conformational change in

the protein, a result of phosphopeptide binding to its cognate recognition region, thereby altering

the distance between the AFPs. Because the distance is related to the efficiency of FRET,

phosphorylation produces a fluorescence response (Figure 1-4a). Accordingly, the fluorescent

signal can either increase or decrease depending on the changes in distance between the AFPs

upon phosphorylation, producing turn-on or turn-off sensors, respectively. Turn-off probes are

less desirable since loss of signal can be mistaken for photobleaching and can affect the accuracy

of readings. Genetically encoded FRET-based reporters have been developed for many kinases

due to the relative ease of intracellular expression, including improved sensors for Src21 and



ERK.22 In addition, recent impressive optimization of the AFP-based PKA sensor now allows for

small molecule inhibitor screening in cells, thus expanding the utility of these types of probes.23

Although several AFP analogs containing complementary photophysical properties for FRET

have been developed, and in theory can be applied for dual-kinase sensing, the maximal change

in signal can be fairly low (- 50%), leading to reduced sensitivity and more challenging

fluorescent readouts. Additionally, the large size of the AFP-based sensors (at least 50 kDa for

the two AFPs in each sensor) can be quite disruptive when studying endogenous kinases that

may depend on interactions with other proteins for activity.

On the other hand, peptide-based probes offer distinct advantages over the protein

counterparts, such as relatively small size, ease of large-scale synthesis, and ability to introduce

unnatural elements to aid selectivity and/or sensitivity. 17, 24 Importantly, because they generally

do not depend on FRET, the maximal observed change in signal is often well above 100%. This

is a significant benefit, as larger fluorescence changes allow for improved sensitivity, which is

essential when studying endogenously expressed enzymes that are present in reduced amounts or

may be poor catalysts.
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Figure 1-4. Sensing strategies employed to detect kinase activity. a) AFP-based sensors depend
the change in FRET upon phosphorylation due phosphopeptide-domain binding. b)

Solvatochromic chromophores experience a change in solvent polarity after phosphorylation
leading to an increase in quantum yield that results in fluorescence enhancement. c) Quenching
of pyrene fluorescence by a nearby Tyr residue is disrupted by phosphorylation that enables an
enhancement of the fluorescent signal. d) In the "Deep Quench" method, a non-covalent
quencher alters the fluorescence of pyrene. After phosphorylation, phosphopeptide-specific
protein domain binds to the product and disrupts quenching, giving rise to fluorescence. e) These
sensors have low affinity for Ln3+, which significantly increases after the phosphate is present. A
nearby antenna (i.e., Trp) can sensitize the peptide-bound Ln3+, which produces a detectable,
long-lived luminescence. f) Similarly, sensors bearing CHEF chromophores are silent until

phosphorylation enables divalent metal binding, which causes an increase in fluorescence.

The Lawrence group has reported several types of kinase reporters, many of them

utilizing solvatochromic fluorophores that exhibit changes in their fluorescence properties, such
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as emission wavelength and quantum yield, due to the polarity of the immediate environment.

Introduction of a phosphoryl group near the chromophore alters the local environment polarity,

resulting in fluorescence change (Figure 1-4b). Notably, this strategy has been used to visualize

PKC activity within live HeLa cells. 25 In addition, sensors employing quenching strategies have

also been explored.26 For example, when a pyrene moiety is positioned in close proximity to a

Tyr reside, the overall fluorescence is quenched due to xc-7 stacking interactions, reducing

fluorescence quantum yields. The size and charge of the phosphate group disrupts the pyrene-

tyrosine interaction and results in a fluorescent phosphopeptide (Figure 1-4c). 27 However, the

method is not applicable to Ser/Thr kinases, as x-r- interactions do not directly contribute to

diminishing pyrene fluorescence. Instead, a modified quenching strategy, called "Deep Quench"

was developed by the Lawrence group for Ser/Thr kinases (Figure 1-4d). In the new system, the

fluorescence was modulated using an in-solution quencher molecule, such as Rose Bengal, that

bound to substrate-tethered pyrene. After phosphate installation, the peptide was sequestered by

a phospho-peptide binding domain (such as 14-3-3-) away from the non-covalent quencher,

thereby restoring fluorescence signal. Such strategy has furnished 21- to 64-fold

phosphorylation-induced fluorescence enhancements, the most dramatic change reported to

date.28 Despite these promising results, the method has not been extended beyond PKA

substrates. One reason for this may be that the probe indirectly senses phosphorylation and

requires several separate components, such as the quencher and the phospho-product binding

domain to be present. This may be problematic if the sensor is to be used in more complex

media, such as cells and cell lysates.

Several strategies that rely on metal ion-mediated luminescence or fluorescence to detect

phosphorylation have also been reported. In the unphosphorylated state, these peptides exhibit



low metal ion affinity and are predominantly non-fluorescent. However, modification with the

phosphate provides two essential ligands, resulting in a significant increase in the avidity for

binding to hard metal ions such as magnesium or the lanthanide ions, and a subsequent positive

signal. Peptides based on this general strategy have recently been designed to bind lanthanide

ions (Ln 3+) such as Tb3+ or Eu3+.29, 30 In these cases, the obligatory nearby antenna (Trp or

carbostyril) absorbs light and sensitizes Ln3+, which produces long-lived luminescence to signal

kinase activity (Figure 1-4e). The peptides produce significant changes (up to 10-fold) in signal

upon phosphorylation; however, the system requires require the presence of free Tb3+ or Eu3+,

which might be problematic if this approach is attempted in cells due to the need for delivering

the lanthanide ion into cells that may be toxic.

On the other hand, chelation-enhanced fluorescence (CHEF) sensing methods utilize

biologically available metal ions, such as Ca 2+ and Mg2+, to report phosphorylation (Figure 1-4f).

For example, a CHEF sensor for PKC has exploited elevated Ca2+ levels required for proper

PKC activation and previously reported Ca 2+ indicators. 31 However, this approach has not been

adapted for use with other ions or to monitor additional kinases.' 7 Alternatively, probes

developed in the Imperiali laboratory contain the sulfonamido-oxine (Sox) amino acid 32 that

displays good fluorescence increases (4- to 12-fold) upon phosphorylation and binding of

Mg2+.33 Aside from robust fluorescence changes, the use of physiological levels of Mg2+ (low

millimolar) 34 makes this approach generally useful not only for multiple kinases, but also in a

variety of conditions that are necessary for optimal kinase fuction. The method, termed the P-

turn focused (BTF) design, has been successfully applied in the development of chemosensors

that monitor kinases both in vitro35 and in unfractionated cell extracts. 36 However, although

versatile, the BTF design does not allow for exploitation of the full peptide recognition sequence



due to the limitations imposed by the requirement for a conformationally-constrained P-turn

motif.

Kinase Specificity

One of the major challenges in the field of kinase analysis is sensor specificity in the

presence of multiple kinases, particularly since most fluorescent sensors employ short peptide

sequences to specify their target. Similar challenges are also encountered inside cells among

kinases and their endogenous substrates. For instance, it has been estimated that 30% of all

cellular proteins are phosphorylated on at least one residue, which translates into nearly 700,000

potential phosphorylation sites for any given kinase. 37-39 Although many eukaryotic protein

kinases are structurally homologous, 4 0 they often exibit clear preferences for certain substrates

over others. Therefore, our hope is to exploit some methods that endogenous kinases employ to

select their substrates in the development of a new generation of highly targeted sensors.

In vivo substrate specificity is complex and is governed by a number of factors. The first

level of specificity is dictated by the kinase active site and the consensus sequence on the

substrate. Generally the catalytic clefts can either accommodate the Ser/Thr or Tyr side chain

(Figure 1-5a); kinases with dual functionality are less common (-40 out of 518). 39 Additionally,

a substantial contribution to substrate recognition comes from the residues that surround the

phsophorylation site (Figure 1-5b). It has been found that typically between 4 to 8 amino acids

are responsible for this substrate specificity, and several laboratories have explored the optimal

consensus sequences of a variety of kinases (Table 1-1).37, 41-43
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Table 1-1. Consensus Phosphorylation Sites of a Representative Sampling of Protein Kinasesa

Consensus sequence

Kinase Full name -5 -4 -3 -2 -1 0 +1 +2 +3 +4

PKA Protein kinase A R R X S/T cI

CDK Cyclin-dependent kinase S/T P X K/R

ERK2 Extracellular signal-regulated kinase-2 P X S/T P

CK1 Casein kinase-1 pS X X S/T

CK2 Casein kinase-2 S/T D/E X E/D

GSK3 Glycogen synthase kinase-3 S X X X pS

CaMK2 Calmodulin-dependent protein kinase-2 R X X S/T

AbI Abelson murine leukemia virus tyrosine
kinase I/V/L Y X X P/F

EGFR Epidermal growth factor receptor E E E Y F

Src Rous sarcoma virus tyrosine kinase E E I Y E/G X F

IRK Insulin receptor tyrosine kinase Y M M M

PKB/Akt Protein kinase B R X R X X S/T

PKD Protein kinase D L/I X R X X S/T

Piml-3 Proviral integration site kinases 1-3 R X R X X S/T

a Adapted from ref. 39. X = any amino acid, <D = hydrophobic amino acid, pS = phospho-
serine.

If the consensus sequence alone cannot provide a stringent level of selectivity, often the

next specificity determinant involves interactions between docking motifs on the substrate and

interaction domains on the kinase (Figure 1-5c). These interaction domains are commonly short

sequences of amino acid residues.44 Such a mechanism has been identified for both Ser/Thr

(JNKs, PHK, ERK, MEK, CDK2) and Tyr (TGFBR) kinases. Interestingly, Ser/Thr kinases

display docking sites on the catalytic domain, while in Tyr kinases the analogous sites are

generally found in modular domains that are separate from the kinase domains, such as Src-

homology-2 (SH2), SH3, integrin binding, focal adhesion binding, DNA binding, or Janus

tyrosine kinase (JAK) homology domains. 4 5 Because of the separation of docking and catalytic

domains in the case of Tyr, it has been proposed that Ser/Thr phosphorylation evolved before

Tyr kinases and came to rely on a simpler docking interaction strategy to discriminate among



interaction partners.46 Conversely, because Tyr kinases evolved later, they progressed toward

using multiple modular interaction domains to drive specificity (Figure 1-5c). Regardless, in both

instances the function of docking motifs is thought to primarily be a mechanical method to

increase the local concentration of the substrate around the kinase. For instance, within a 10 nm

radius from the kinase, substrate effective concentration is proposed to reach 3 mM, 47 which

would greatly accelerate the rate of phosphorylation of a scarce substrate.

Similarly, localization of the kinase to distinct cellular compartments or structures can

enhance the rate of phosphorylation or promote specificity by limiting the access to the number

of available substrates. 39' 46 Additionally, some substrates and kinases also depend on adaptor or

scaffold proteins, which act as dynamic organizing platforms for many molecules to bring them

together (Figure 1-5d).48 This is yet another mechanism of localization that serves to increase the

substrate concentration and results in an enhanced overall rate of reaction.

In conclusion, it is evident that in vivo kinases-substrate recognition is a multi-tiered

process that often utilizes multiple strategies in order to achieve a high level of specificity.

However, current fluorescent kinase sensors generally employ short consensus sequences as

selection guides. As the field moves toward cellular work, such probes may not be able to

provide the requisite selectivity, and additional recognition determinants used by native kinases

should be explored. For example, taking advantage of a docking domain on a kinase may turn a

mediocre sensor into a species that is highly specific because it may behave more like an

endogenous substrate. Moreover, a sensor for a specific kinase may be modified to localize it to a

particular cellular compartment or a scaffolding protein, and could, thus, be used to define and

distinguish the roles of that kinase in different processes. Thus, to effectively study these



enzymes in cellular environments, designs of kinase sensors will also need to take advantage of

the different strategies that endogenous kinases employ to recognize their substrates.

Dissertation Objectives

Highly modular sensors that can quickly be adapted to take advantage of various

recognition strategies that native kinases employ are of great importance in mapping kinase

networks. This is particularly the case as the use of kinase probes moves from relatively simple

assays with recombinant enzymes toward more complex environments. In order to introduce

fluorescent kinase sensors into cells and obtain relevant data, much work needs to be done to

resolve issues surrounding probe cross-reactivity and sensitivity.

The goal of the work presented in this dissertation is to create sensors with high

selectivity toward kinases and to utilize the CHEF reporting platform previously developed in

the laboratory.33' 35, 36 One way to develop sensors that are better able to discriminate between

multiple kinases, whether in vitro, in vivo or in cell lysates, is by improving the kinetic

parameters, for example, to lower the KM while keeping the Vmax high. This was accomplished by

extending the consensus sequence to include additional amino acids that were absent in the

original BTF probes, due to design requirements. The resulting recognition-domain focused

(RDF) sensors displayed marked improvements in catalytic efficiency (kcat/KM) for multiple

Ser/Thr and Tyr kinases (Chapter 2). Furthermore, to rapidly identify additional specificity

determinants in short peptides, a high-throughput method was also developed that allowed us to

screen individual positions in the consensus sequence with natural and unnatural elements. This

approach yielded an improved peptide sensor for Aurora A kinase (Chapter 3) and should be

generally applicable in substrate searches for any Ser/Thr or Tyr kinase of interest.



In addition, for some kinases, such as ERK1/2, short peptides, based on consensus

sequences do not impart much selectivity. In the development of a sensor for ERK1/2, we took

advantage of important docking interactions that MAPK kinases, such as ERKI/2, often utilize

to differentiate their substrates. A key native chemical ligation (NCL) was employed to build a

chimeric sensor that included the CHEF-sensing moiety and a docking domain specific for

ERK1/2 (Chapter 4). Moreover, the same strategy was applied in the semisynthesis of a

membrane-targeted sensor that will be used to specifically examine the role of ERK1/2 in

migration at the cell edge.

Lastly, in order to be able to monitor kinases in cellulo, we sought to develop new CHEF

derivatives based on the oxine chromophore with improved photophysical properties. Chapter 5

presents the synthesis and characterization of several derivatives that display the required

bathochromic shifts in excitation and emission wavelengths as well as useful quantum yields.

The variety of methods presented in this thesis were used to synthesize sensors for 13

kinases, from Ser/Thr as well as receptor and nonreceptor Tyr families (Figure 1-6). The high-

throughput approaches used here to extend sensor selectivity and sensitivity toward the cognate

kinase should prove to be useful and complementary tools in the quest for better understanding

of the complex roles that these enzymes play in normal and diseased states.



CMdGC ' ~

- K1

Am no
n o am;;

S CAMK m

Figure 1-6. CHEF-based chemosensors. Thirteen kinases have been targeted with RDF sensors
(red), while work is ongoing toward the synthesis and validation of several more reporters (blue).
Dendrogram obtained from ref. 6 and www.cellsignal.com.

lr~51~



References

1. Hunter, T. Signaling-2000 and beyond. Cell 2000, 100, 113-127.
2. Johnson, L. N.; Lewis, R. J. Structural basis for control by phosphorylation. Chem. Rev.

2001, 101, 2209-2242.
3. Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 2002, 4, E127-130.
4. Adams, J. A. Kinetic and Catalytic Mechanisms of Protein Kinases. Chem. Rev. 2001,

101, 2271-2290.
5. Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation

and signaling. Cell 1995, 80, 225-236.
6. Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase

Complement of the Human Genome. Science 2002, 298, 1912-1934.
7. Turk, B. E. Understanding and exploiting substrate recognition by protein kinases. Curr.

Opin. Chem. Biol. 2008, 12, 4-10.
8. Manning, G.; Plowman, G. D.; Hunter, T.; Sudarsanam, S. Evolution of protein kinase

signaling from yeast to man. Trends Biochem. Sci. 2002, 27, 514-520.
9. Zamir, E.; Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. J.

Cell Sci. 2001, 114, 3583-3590.
10. Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev.

Drug Discov. 2002, 1, 309-315.
11. Dancey, J.; Sausville, E. A. Issues and progress with protein kinase inhibitors for cancer

treatment. Nat. Rev. Drug Discov. 2003, 2, 296-313.
12. Sawyers, C. Targeted cancer therapy. Nature 2004, 432, 294-297.
13. Roskoski, R., Jr. STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochem.

Biophys. Res. Commun. 2003, 309, 709-717.
14. Shah, N. P.; Nicoll, J. M.; Nagar, B.; Gorre, M. E.; Paquette, R. L.; Kuriyan, J.; Sawyers,

C. L. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the
tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic
myeloid leukemia. Cancer Cell 2002, 2, 117-125.

15. Gorre, M. E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P. N.; Sawyers,
C. L. Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene
Mutation or Amplification. Science 2001, 293, 876-880.

16. Shah, N. P.; Tran, C.; Lee, F. Y.; Chen, P.; Norris, D.; Sawyers, C. L. Overriding
Imatinib Resistance with a Novel ABL Kinase Inhibitor. Science 2004, 305, 399-401.

17. Rothman, D. M.; Shults, M. D.; Imperiali, B. Chemical approaches for investigating
phosphorylation in signal transduction networks. Trends Cell Biol. 2005, 15, 502-510.

18. Shanna, V.; Wang, Q.; Lawrence, D. S. Peptide-based fluorescent sensors of protein
kinase activity: Design and applications. Biochim. Biophys. Acta, Proteins Proteomics
2008, 1784, 94-99.

19. Li, Y.; Xie, W.; Fang, G. Fluorescence detection techniques for protein kinase assay.
Anal. Bioanal. Chem. 2008, 390, 2049-2057.

20. Zhang, J.; Allen, M. D. FRET-based biosensors for protein kinases: illuminating the
kinome. Mol. Biosyst. 2007, 3, 759-765.

21. Wang, Y.; Botvinick, E. L.; Zhao, Y.; Berns, M. W.; Usami, S.; Tsien, R. Y.; Chien, S.
Visualizing the mechanical activation of Src. Nature 2005, 434, 1040-1045.



22. Harvey, C. D.; Ehrhardt, A. G.; Cellurale, C.; Zhong, H.; Yasuda, R.; Davis, R. J.;
Svoboda, K. A genetically encoded fluorescent sensor of ERK activity. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 19264-19269.

23. Zhang, J.; Ma, Y.; Taylor, S. S.; Tsien, R. Y. Genetically encoded reporters of protein
kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 14997-5002.

24. Lawrence, D. S.; Wang, Q. Seeing is believing: peptide-based fluorescent sensors of
protein tyrosine kinase activity. ChemBioChem 2007, 8, 373-378.

25. Yeh, R. H.; Yan, X. W.; Cammer, M.; Bresnick, A. R.; Lawrence, D. S. Real time
visualization of protein kinase activity in living cells. J. Biol. Chem. 2002, 277, 11527-
11532.

26. Sharma, V.; Wang, Q.; Lawrence, D. S. Peptide-based fluorescent sensors of protein
kinase activity: design and applications. Biochim. Biophys. Acta 2008, 1784, 94-99.

27. Wang, Q.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S. Self-reporting fluorescent
substrates of protein tyrosine kinases. J. Am. Chem. Soc. 2006, 128, 1808-1809.

28. Sharma, V.; Agnes, R. S.; Lawrence, D. S. Deep quench: An expanded dynamic range for
protein kinase sensors. J. Am. Chem. Soc. 2007, 129, 2742-2743.

29. Balakrishnan, S.; Zondlo, N. J. Design of a protein kinase-inducible domain. J Am.
Chem. Soc. 2006, 128, 5590-5591.

30. Tremblay, M. S.; Lee, M.; Sames, D. A luminescent sensor for tyrosine phosphorylation.
Org. Lett. 2008, 10, 5-8.

31. Chen, C. A.; Yeh, R. H.; Lawrence, D. S. Design and synthesis of a fluorescent reporter
of protein kinase activity. J. Am. Chem. Soc. 2002, 124, 3840-3841.

32. Shults, M. D.; Pearce, D. A.; Imperiali, B. Modular and Tunable Chemosensor Scaffold
for Divalent Zinc. J. Am. Chem. Soc. 2003, 125, 10591-10597.

33. Shults, M. D.; Carrico-Moniz, D.; Imperiali, B. Optimal Sox-based fluorescent
chemosensor design for serine/threonine protein kinases. Anal. Biochem. 2006, 352, 198-
207.

34. Haugland, R. P.; Spence, M. T. Z.; Johnson, I. D.; Basey, A. The handbook. a guide to
fluorescent probes and labeling technologies. 10th ed.; Molecular Probes: [Eugene, OR],
2005; p iv, 1126 p.

35. Shults, M. D.; Imperiali, B. Versatile Fluorescence Probes of Protein Kinase Activity. J.
Am. Chem. Soc. 2003, 125, 14248-14249.

36. Shults, M. D.; Janes, K. A.; Lauffenburger, D. A.; Imperiali, B. A multiplexed
homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat.
Methods 2005, 2, 277-283.

37. Pinna, L. A.; Ruzzene, M. How do protein kinases recognize their substrates? Biochim.
Biophys. Acta. 1996, 1314, 191-225.

38. Cohen, P. The regulation of protein function by multisite phosphorylation--a 25 year
update. Trends Biochem. Sci. 2000, 25, 596-601.

39. Ubersax, J. A.; Ferrell, J. E. Mechanisms of specificity in protein phosphorylation. Nat.
Rev. Mol. Cell Biol. 2007, 8, 530-541.

40. Hanks, S. K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily:
kinase (catalytic) domain structure and classification. FASEB J. 1995, 9, 576-596.



41. Songyang, Z.; Blechner, S.; Hoagland, N.; Hoekstra, M. F.; Piwnica-Worms, H.; Cantley,
L. C. Use of an oriented peptide library to determine the optimal substrates of protein
kinases. Curr. Biol. 1994, 4, 973-982.

42. Hutti, J. E.; Jarrell, E. T.; Chang, J. D.; Abbott, D. W.; Storz, P.; Toker, A.; Cantley, L.
C.; Turk, B. E. A rapid method for determining protein kinase phosphorylation
specificity. Nat. Methods 2004, 1, 27-29.

43. Olsen, J. V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M.
Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell
2006, 127, 635-648.

44. Biondi, R. M.; Nebreda, A. R. Signalling specificity of Ser/Thr protein kinases through
docking-site-mediated interactions. Biochem. J. 2003, 372, 1-13.

45. Hubbard, S. R.; Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev.
Biochem. 2000, 69, 373-398.

46. Remenyi, A.; Good, M. C.; Lim, W. A. Docking interactions in protein kinase and
phosphatase networks. Curr. Op. Struct. Biol. 2006, 16, 676-685.

47. Deshaies, R. J.; Ferrell, J. E., Jr. Multisite phosphorylation and the countdown to S phase.
Cell 2001, 107, 819-822.

48. Pawson, T.; Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins.
Science 1997, 278, 2075-2080.



Chapter 2. Improving the Kinetics of Peptide-Based Kinase Substrates through
Recognition-Domain Focused Design

A significant portion of the work described in this chapter has been published in:
Lukovid, E.; Gonzalez-Vera, J. A.; Imperiali, B. Recognition-Domain Focused Chemosensors:
Versatile and Efficient Reporters of Protein Kinase Activity. J. Am. Chem. Soc. 2008, 130,
12821-12827.



Introduction

With more than 500 different kinases encoded in the human genome,' closely related

enzymes will inevitably phosphorylate some of the same substrates. This is particularly true of

peptide-based probes, which lack several of the characteristics of protein substrates in living

systems, as discussed in Chapter 1. Briefly, in cells, kinases gain specificity through not only

proximal recognition sequences, but also through the spatial and temporal control that the cell

exercises over an enzyme and its protein substrate (i.e. by providing both in the same location at

the same time). Furthermore, protein substrates can be involved in docking or scaffolding

interactions that occur distal to the phosphorylation site and may derive specificity based

primarily on those protein-protein contacts, rather than the short sequence surrounding the

phosphorylatable residue. One way to develop more specific sensors is to improve the kinetic

parameters; this can be accomplished either by employing unnatural recognition elements2 or by

extending the kinase recognition domain.

Previously, our laboratory has reported guidelines for the design of chemosensors that

exhibit large fluorescence increases (4- to 12-fold) upon phosphorylation. 3 The approach, termed

the [3-turn focused (BTF) design, exploits the chelation-enhanced fluorescence (CHEF) of the

sulfonamido-oxine amino acid Sox. 4 When incorporated into a modular peptide chemosensor

design that also includes part of the kinase recognition motif (either C- or N-terminal to the

phosphorylation site) and a constrained p-turn motif, the affinity for Mg2 + is low in the absence

of the phosphoryl group. In contrast, upon phosphorylation, the Mg2+ affinity dramatically

increases due to an advantageous chelate effect (Figure 2-1). The BTF design has been

successfully applied for the development of chemosensors that monitor kinases both in vitro5 and

in unfractionated cell extracts.6 However, although versatile, the BTF design does not allow for



exploitation of the full peptide recognition sequence due to the limitations imposed by the

requirement for a conformationally-constrained p-turn motif.

DESIGN: p-turn focused DESIGN: Recognition domain
(BTF) focused (RDF)

SO2 NMe2
IOHO

HO "-
N O N SO2NMe 2

OH H 0O OH S
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Me 2NO 2 S,

1. Removal of C- or N-terminal OH OH Incorporation
OH recognition elements of C-Sox

N 2. Addition of p-turn NN-terminal S/TIY -terminal amino acid
3. Incorporation of Sox Me2NO2S

AcHN amino acid optimized
OH kinase S OH
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Me2N 2S ATP, Mg2+  ATP, Mg2+
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N- g2+ Me 2NO 2 S N----Mg2+

AcHN 'O "O
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Figure 2-1. Schematic representations of the BTF and RDF designs from optimized non-
fluorescent substrates. Highlighted is the fact that the recognition elements are fully conserved in
the RDF design and only partially so in the BTF design due to the required p-turn. Upon kinase-
catalyzed phosphorylation, the sensors become fluorescent (Xex = 360 nm, ke,, = 485 nm). The
Sox chromophore can be positioned N- or C-terminal to the Ser/Thr/Tyr residue in both designs.

To address the issue of probe specificity, this chapter presents a more versatile and

powerful chemosensor design that also exploits CHEF and is recognition-domain focused (RDF).

The advantages of the new strategy are exemplified by the development of probes with greatly

improved kinetic parameters for a variety of representative Ser/Thr and Tyr (non-receptor and

receptor) kinases: protein kinase C (PKC) isozymes (cc, PI and 8), 7 protein kinase A (PKA),8' 9

protein kinase B/Aktl,10,' mitogen-activated protein kinase-activated protein kinase-2 (MK2),12,

13 Pim2,14 Abelson kinase (Abl), 5i sarcoma kinase (Src),16-18 and insulin receptor kinase (IRK). 19,
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20 The RDF approach circumvents the constrained P-turn motif, which is required in the BTF

design for optimal binding of Mg 2+ by Sox and the phosphorylated residue; in RDF peptides

alkylation of a nearby cysteine residue with a Sox chromophore derivative affords an amino acid

termed C-Sox (Figure 2-2). The C-Sox containing peptides are flexible enough to effectively

coordinate Mg 2+ even without the pre-organizing p-turn. Thus, while the intrinsic nature of the

BTF design necessitates removal of recognition elements from one terminus of an optimal

peptide-based substrate, the RDF design allows for the inclusion of extended binding

determinants to maximize recognition by the cognate kinase (Figure 2-1).

" N

NS OH

H2N OH OH H2 N OH
O O

Sox C-Sox
(1) (2)

Figure 2-2. Structures of amino acids Sox (1) and C-Sox (2) that can be used to install the Sox
chromophore, which in turn senses phosphoryl transfer.

Results and Discussion

Synthesis of RDF Sensors

The RDF chemosensor peptides can be constructed in two ways. In the first approach, Fmoc-

based solid phase peptide synthesis (SPPS) is utilized to assemble the intact peptide that includes

an appropriately placed cysteine protected with a hyper acid-labile thiol protecting group

(Scheme 2-1). After selective on-resin sulfhydryl group deprotection, the free thiol is alkylated

with Sox-Br. 4 Standard TFA cleavage from the resin and concomitant removal of all side-chain

protecting groups reveals the desired chemosensor with excellent conversion to the alkylated
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product (>95%). The solid support-based alkylation is particularly valuable when utilizing

automated SPPS or SPOT2 1 synthesis to generate libraries of peptides in a rapid parallel

approach.

Alternatively, if larger amounts of a more limited range of chemosensor peptides are

needed, a building block approach may be more appropriate. In this case, the synthesis of the

building block, Fmoc-C(Sox[TBDPS])-OH (5), commences with the allylation of commercially

available amino acid 3, followed by removal of the p-methoxytrityl (Mmt) masking group to

afford 2 (Scheme 2-1). The sulfhydryl of 4 is then alkylated with Sox-Br 4 in excellent yield

(95%). Lastly, Pd(II)-assisted deallylation produces the desired amino acid 5 that was

subsequently used in standard Fmoc-based SPPS to produce RDF sensors in excellent yields.

Peptide identities and purities were confirmed via matrix-assisted laser desorption ionization

time-of-flight (MALDI TOF) or electrospray ionization (ESI) mass spectrometry together with

high performance liquid chromatography (HPLC) analysis. The synthesis of C-Sox, and

therefore of RDF peptides, is considerably more facile than BTF peptides, since the use of a

chiral starting material 3 allowed us to completely circumvent the key asymmetric alkylation

transformation required to install the stereogenic center in the Sox amino acid 4-a key

component of the BTF design.



Scheme 2-1. Synthesis of RDF Chemosensors a) on Solid Support and
Block Approacha
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a Reagents and conditions: (a) 1% TFA, 5% TIS, CH2C12, 5 x 20 min; (b) Sox-Br, TMG, DMF,
12 h (95%); (c) 95% TFA, 2.5% TIS, 2.5% H20, 3 h; (d) Allyl-Br, Cs 2CO3, MeOH/DMF; (e) 5%
TFA, 5% TIS, CH 2C12 (69% for two steps); (f) Sox-Br, i-Pr2NEt, CH2Cl2 (95%); (g) Pd(PPh3)4,
PhSiH3, CH 2C12 (77% crude).

Chromophore Positioning in the RDF Design

The first task with the RDF approach was to determine the optimal placement of the Sox

chromophore within the probes. Several substrate and corresponding phosphopeptide sensors

were synthesized in which C-Sox was positioned at various sites relative to the phosphorylatable

residue (Table 2-1). The probes were evaluated based on the observed fluorescence increases

because one of the main priorities was to obtain sensors with a robust signal for easy assay

readout. The difference in fluorescence was determined by comparison of the fluorescence

intensity at the maximum emission wavelength (4x = 485 nm) of synthetic phosphorylated and

unphosphorylated peptides in the presence of Mg2+. We also calculated Z' factor values for each



RDF chemosensor pair (see Experimental Methods). Z' is a statistical quality parameter used to

evaluate and validate performance of assays, particularly in high-throughput screening (HTS).22

Typically, in order for an HTS assay to be considered useful, Z' should be 0.5-1, as assays in this

range exhibit large dynamic ranges and separation bands.

Table 2-1. Peptide Sequences Used to Determine Optimal Positioning of the Sox Chromophore
in the RDF Design

Peptide Sequence"

Entry -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8

1 Ac R R R K C-Sox S F R R K A CONH 2

2 Ac R R R C-Sox G S F R R K A CONH 2

3 Ac R R R C-Sox A S F R R K A CONH 2

4 Ac V P L L T P C-Sox G R R G COOH

5 Ac V P L L T P G C-Sox R R G COOH

6 Ac V P C-Sox L T P G G R R G COOH

7 Ac E C-Sox I Y A A P F A K K K CONH 2

8 Ac C-Sox A I Y A A P F A K K K CONH 2

9 Ac C-Sox E A I Y A A P F A K K K CONH 2

10 Ac E A I Y A A C-Sox F A K K K CONH 2

a Phosphorylatable residue is bolded and set as the 0 position.

It is clear from high fluorescence enhancements that position +2 or -2 is favored over +1

or -1 in the case of sensors for Ser/Thr kinases (e.g. compare entry 1 with 2 and 3 in Table 2-2).

Since the Tyr residue is significantly larger than Ser/Thr, placement of the Sox chromophore in

position +3 or +4 or -3 or -4 was expected to yield the largest increase in fluorescence upon

phosphorylation (e.g. entries 8-10). However, the peptide with C-Sox in the -2 (or +2) position

(e.g. entry 7) is the preferred Tyr-containing probe in this series. In addition to having the largest

fluorescence increases, peptide pairs with C-Sox in the optimal +2 or -2 position also have the

highest Z' factor values (Table 2-2), making them particularly useful for high-throughput screens.



Table 2-2. Fluorescence Increase and Z' Factor Values for Ser/Thr and Tyr Kinase Substrates
Described in Table 2-1

C-Sox Fold Fluorescence
Entry Position" Increaseb ZC

1 -1 1.6 ± 0.1 0.82

2 -2 2.9 ± 0.3 0.55

3 -2 3.7 ± 0.2 0.84

4 +2 5.4 ± 0.1 0.84

5 +3 6.3 + 0.2 0.80

6 -2 6.9 ± 0.1 0.86

7 -2 4.6 ± 0.5 0.91

8 -3 3.2 ± 0.3 0.74

9 -4 2.1 ± 0.2 0.43

10 +3 2.2 ± 0.1 0.64

a With reference to the phosphorylatable residue in Table 2-1. b Measured in triplicate as a
quotient of fluorescence intensity at 485 nm of phosphopeptide and substrate in 20 mM HEPES
(pH 7.4), 10 mM MgC12, and 10 tM peptide. c Z' factors were calculated using standard
deviations and means (from triplicate measurements) of non-phosphorylated substrate
(background) and synthetic phosphopeptide (signal) in the same conditions as reported for
fluorescence increases.

Some kinases, such as ERK1/2, require Pro immediately next to the phosphorylatable

residue (i.e. in position +1) for substrate recognition. As expected, the largest fluorescence

enhancement is achieved when the chromophore is located on the side opposite of the Pro

residue (relative to the phosphorylatable residue), in position -2 (e.g. entry 6). However, if the

residues in that region are important in kinase recognition, C-Sox has to be placed on the same

side as Pro. In such a case, a higher fluorescence increase is achieved when the fluorophore is

placed in the +3 rather than the +2 position (e.g. compare entries 4 and 5). This flexibility is

unique to the RDF design as the P-turn of the BTF design generally dictates and restricts the

position of the fluorophore. Lastly, an additional improvement in fluorescence difference, and a

further increase in Mg 2+ affinity (see the section on the Origin of Fluorescence Increase, below),

can be achieved by selecting an o-substituted amino acid rather than glycine at the -1 position

between C-Sox and the Ser/Thr phosphorylation site (e.g. compare entries 2 and 3).



Fluorescence Properties of RDF Probes

After determination of the optimal chromophore position it was possible to examine a

more comprehensive set of RDF probes by comparing their fluorescence differences to those of

their BTF counterparts. Overall, the RDF reporters have robust fluorescence increases and high

Z' values (Table 2-3). A range of 2- to 10-fold enhancement is observed due to the differing

affinity for Mg 2+ among the phosphopeptides. The RDF peptides also normally exhibit larger

fluorescence increases than their BTF counterparts. More specifically, the RDF sensors for Src,

Abl, IRK, PKC3I and ERK1/2 kinases have higher fluorescence differences than the

corresponding BTF sensors. While this trend is reversed for PKCCt, PKC6, Aktl and MK2

kinases, the fluorescence increases are still large enough for these to be useful probes in kinetic

assays (vide infra). In the case of Pim2 and PKA, both designs afford probes with comparable

fluorescence properties. Furthermore, the C-Sox moiety is tolerant of acidic (entries 2, 4 and 6),

basic (entries 6, 8, 10, 16 and 18), aliphatic (entries 2, 4, 18, 20 and 22) and aromatic (entries 12

and 16) residues immediately flanking it. The chromophore can also be placed C- or N-terminal

to the phosphorylatable residue, which gives great flexibility in the initial design stage. These

results demonstrate that the RDF design is general enough to be applied to synthesis of sensors

for a variety of important Ser and Thr (ERK1/2, entry 22) kinases (e.g. PKC, PKA, Pim2, MK2)

as well as for non-receptor and receptor (IRK, entry 6) Tyr kinases (e.g. Src, Abl).



Table 2-3. Comparison of Substrate Sequences and Fluorescence Increases for BTF and RDF
Chemosensors

Fold

Target Location of the Fluorescence

Entry Kinase Design Chromophore" Substrate Sequenceb IncreaseC Zid

1 Src BTF N Ac-Sox-PEIY*GEFEAKKKK-CONH 2  1.6 ± 0.1

2 RDF N Ac-AEE-CSox-IY*GEFEAKKKK-CONH 2  2.0 ± 0.1 0.85

3 Abl BTF N Ac-Sox-PGIY*AAPFAKKK-CONH 2  3.6e

4 RDF N Ac-E-CSox-IY*AAPFAKKK-CONH 2  4.6 ± 0.5 0.91

5 IRK BTF N Ac-Sox-PGDY*-Nle-TMQIGKK-CONH2 2.0 ± 0.1

6 RDF N Ac-R-CSox-DY*-NIe-TMQIGKK-CONH2 4.2 ± 0.1 0.77

7 PKCG( BTF N Ac-Sox-PGS*FRRR-CONH 2  6.7 ± 0.6

8 RDF N Ac-RRR-CSox-AS*FRRR-CONH 2  3.7 ± 0.2 0.84

9 PKCPI BTF N Ac-Sox-PAS*FKKFA-CONH 2  4.7 + 0.2

10 RDF N Ac-LKR-CSox-AS*FKKFA-CONH 2  9.7 ± 0.5 0.87

11 PKC6 BTF C Ac-RKRKGS*F-DPro-Sox-G-CONH2 12.1 + 0.1

12 RDF C Ac-RKRKGS*F-CSox-YGG-CONH 2  7.3 + 0.1 0.94

13 Pim2 BTF C Ac-ARKRRRHPS*G-DPro-Sox-G-CONH2 3.0 ± 0.4

14 RDF C Ac-ARKRRRHPS*G-CSox-PTA-CONH 2  3. 2 + 0.1 0.89

15 Aktl BTF C Ac-ARKRERAYS*F-DPro-Sox-G-CONH2 7.6 ± 0.6

16 RDF C Ac-ARKRERAYS*F-CSox-HHA-CONH 2  3.9 ± 0.3 0.89

17 MK2 BTF C Ac-AHLQRLS*I-DPro-Sox-G-CONH2 7.7 + 0.9

18 RDF C Ac-AHLOQQLS*I-CSox-HH-CONH 2  4.4 ± 0.2 0.85

19 PKA BTF C Ac-LRRAS*L-DPro-Sox-G-CONH2 5.3 ± 0.1

20 RDF C Ac-ALRRAS*L-CSox-AA-CONH 2  5.0 ± 0.2 0.95

21 ERK1/2 BTF N Ac-Sox-PLT*PGGRRG-COOH 2.9 ± 0.1

22 RDF N Ac-VP-CSox-LT*PGGRRG-COOH 6.9 ± 0.1 0.86

a In reference to the phosphorylatable residue. b Asterisk (*) denotes the residue that is

phosphorylated. In cases where it has been determined, residues important in kinase recognition
are underlined. Norleucine is designated as Nle. c Measured in triplicate as a quotient of

fluorescence intensity at 485 nm of phosphopeptide and substrate in 20 mM HEPES (pH 7.4), 10

mM MgC12, and 10 p~M peptide (Xex = 360 nm, Xem = 485 nm). d Z' factors were only calculated
for RDF chemosensors using standard deviations and means (from triplicate measurements) of
non-phosphorylated substrate (background) and synthetic phosphopeptide (signal) in the same

conditions as reported for fluorescence increases. e Originally reported in ref. 23 as the mean of

triplicate experiments without s.e.m.



Fluorescence Intensity Dependence on [A TP] and [Mg2+ ]

While the RDF sensors exhibited strong fluorescence increases under standard assay

conditions, we also examined their properties in media that more closely resemble physiological

ATP and Mg2+ concentrations (0.8-1 mM24 and 0.5-5 mM,2 5 respectively). As was the case

without ATP (Table 2-3), the fluorescence enhancements in the presence of cellular

concentrations of ATP for 11 of 13 chemosensors are quite robust (Table 2-4). In the remaining

two samples, PKCo and Pim2 RDF sensors, at 1 mM ATP--the preferred concentration in our

assay conditions--the fluorescence difference was minimal. To determine the cause, ATP was

titrated into a solution containing PKCo RDF substrate (Figure 2-3). With higher concentrations

of ATP an increase in substrate fluorescence was observed while the phosphopeptide

fluorescence remained constant. Nevertheless, in the range of 100-250 pM ATP, the

fluorescence difference was optimal and similar to that without ATP. Because these kinases have

surprisingly low ATPKM values (ca. 5 tM 26 and 0.2 jM, respectively), enzymatic assays with

PKCa and Pim2 contained 100 jM ATP.



Table 2-4. Effects of ATP Concentration on Fold Fluorescence Increase of RDF Chemosensors

Target Fold Fluorescence Increase'

Entry Kinase 0 mM ATP 0.1 mM ATP 1.1 mM ATP

1 Src 2.0 ± 0.1 2.0 ± 0.1 2.3 ± 0.1

2 Abi 4.6 ± 0.5 4.8 ± 0.1 5.6 ± 0.3

3 IRK 4.2 ± 0.1 4.2 ± 0.1 4.2 ± 0.2

4 PKCac 3.7 ± 0.2 3.0 ± 0.4 1.0 ± 0.2

5 PKCII 9.7 ± 0.5 9.2 ± 0.9 4.7 ± 0.9

6 PKC6 7.3 ± 0.1 7.5 ± 0.5 4.8 ± 0.3

7 Pim2 3.2 ± 0.1 3.1 ± 0.1 1.8 ± 0.1

8 Aktl 3.9 ± 0.3 3.9 ± 0.1 3.2 ± 0.1

9 MK2 4.4 ± 0.2 4.4 ± 0.1 4.2 ± 0.2

10 PKA 5.0 ± 0.2 5.2 ± 0.1 4.8 ± 0.3

11 ERK1/2 5.4 ± 0.1 NDb 5.1 ± 0.2

12 ERK1/2 6.3 ± 0.2 NDb 6.2 ± 0.2

13 ERK1/2 6.9 ± 0.1 NDb 8.1 ± 0.4

a Measured in triplicate as a quotient of fluorescence intensity at 485 nm of phosphopeptide

and substrate in 20 mM HEPES (pH 7.4), 10 mM MgC12, and 10 tM peptide (Xex = 360 nm, ,em

= 485 nm). b ND: Not Determined.

E Ac-RRRC(Sox)ApSFRRKA-CONH 2
O Ac-RRRC(Sox)ASFRRKA-CONH 2
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Figure 2-3. Higher concentrations of ATP increase the substrate fluorescence (open bars), while

the phosphopeptide fluorescence remains constant (solid bars). However, in the rage of 100-250

tM ATP, the fluorescence increase is similar to that without ATP.



Additionally, fluorescence differences of RDF probes that contain acidic residues (such

as many substrates for Tyr kinases) near the Sox chromophore tend to improve with lower Mg 2+

concentrations. Acidic side chains may help to recruit Mg 2+ ions, increasing the background

fluorescence from the unphosphorylated substrate. As [Mg 2+] is lowered, however, the substrate

fluorescence becomes less intense while the phosphopeptide remains unchanged, resulting in an

effective increase in fluorescence differences. Under more extreme conditions, such as with low

[Mg 2+] and high [ATP], the fluorescence difference decreases somewhat, but even so, most of

the Tyr-containing sensors exhibit useful fluorescence enhancements (Table 2-5). These

promising results indicate that the RDF probes may also be translatable for use in cellular

environments.

Table 2-5. Effects of [Mg2+] and [ATP] on Fold Fluorescence Increase" of RDF Tyr Kinase
Chemosensors

Mg 2 +  Src Sensor + X mM ATP Abl Sensor + X mM ATP IRK Sensor + X mM ATP

(mM) X = 0 0.1 1.1 0 0.1 1.1 0 0.1 1.1

10 2.0 ± 0.1 2.0 ± 0.1 2.3 ± 0.1 4.6 ± 0.5 4.8 ± 0.1 5.6 ± 0.3 4.2 ± 0.1 4.2 ± 0.1 4.2 ± 0.2

5 2.5 ± 0.1 2.6 ± 0.1 2.9 ± 0.1 6.6 ± 0.2 6.7 ± 0.3 6.7 ± 0.2 5.0 ± 0.1 5.1 ± 0.2 4.4 ± 0.3

2 3.3 ± 0.1 3.7 ± 0.4 3.5 ± 0.2 7.3 ± 0.1 8.0 ± 0.1 4.5 ± 0.2 5.3 ± 0.3 5.4 ± 0.3 2.5 ± 0.3

1 3.9 ± 0.2 3.9 ± 0.3 2.1 ± 0.1 7.9 ± 0.2 7.4 ± 0.1 2.4 ± 0.1 4.3 ± 0.3 4.2 ± 0.3 1.2 ± 0.1

a Measured in triplicate as a quotient of fluorescence intensity at 485 nm of phosphopeptide
and substrate.

Origin of Fluorescence Increase

Previously, with the BTF design large fluorescence increases were attributed to tighter

binding of Mg 2+ by the phosphopeptide. 3' 5 Due to the differences between the BTF and RDF

designs it was necessary to examine the origin of the fluorescence increase in RDF peptides.

Specifically, a set of substrates and phosphopeptides pairs exhibiting a range of fluorescence

differences were chosen from the PKCa and ERK1/2 chemosensors. In the PKCa set



fluorescence changes increased from 2 to 4 fold as the KD of the corresponding phosphopeptides

for Mg2+ decreased from 100 to 24 mM (Table 2-6, entries 1-3). The same trend was observed

for ERK1/2 peptides (entries 4-6). Thus, we can conclude that greater fluorescence increases also

generally indicate tighter binding of Mg2+ (Figure 2-4), which is in accordance with the trend

described for the BTF chemosensors.3' 5

Table 2-6. Peptide Sequences, Fluorescence Differences and Dissociation Constants for Mg2+

Fold

Target Fluorescence Mg 2

Entry Kinase Peptide Sequence Increase a  KD (mM)b

1 PKCa Ac-RRRK-CSox-(p)S-FRRR-CONH 2  1.6 ± 0.1 98

2 Ac-RRR-CSox-G-(p)S-FRRR-CONH 2  2.9 ± 0.3 47

3 Ac-RRR-CSox-A-(p)S-FRRR-CONH 2  3.7 ± 0.2 24

4 ERK1/2 Ac-VPLL-(p)T-P-CSox-GRRG-COOH 5.4 ± 0.1 8.7

5 Ac-VPLL-(p)T-P-G-CSox-RRG-COOH 6.3 ± 0.2 6.3

6 Ac-VP-CSox-L-(p)T-PGGRRG-COOH 6.9 ± 0.1 3.2

a Measured in triplicate as a quotient of fluorescence intensity at 485 nm of phosphopeptide

and substrate in 20 mM HEPES (pH 7.4), 10 mM MgCl2, and 10 pM peptide. b Mg2+ titrations

were performed on phosphopeptides. The reported values are based on single measurements.

a) b)

* Ac-RRRK-CSox-pS-F RRKA-CONH 2

A Ac-RRR-CSox-G-pS-FRRKA-CONH 2

* Ac-RRR-CSox-A-oS-F RRKA-CONH2

0 100 200 300

[Mg 2l (mM)

Figure 2-4. Mg2+ titration curves for a)

4-6 in Table 2-6) sensors.

* Ac-VPLL-pT-P-CSox-GRRG-COOH
A Ac-VPLL-pT-PG-CSox-GRRG -COO H

400 0 20 40 60 80 100

[Mg24 (mM)

PKCa (entries 1-3 in Table 2-6) and b) ERK1/2 (entries



Fluorescence Difference under Biochemical Assay Conditions

Fluorescence increase under standard conditions (Table 2-3) is a necessary parameter to

ensure consistency and easy comparison among various generations of probes for the same

kinase, or among sensors for different kinases. However, optimal biochemical reaction

conditions (which may include detergents, lipids, reducing agents, et cetera) can vary among

kinases. Therefore, it is important to examine whether the fluorescence changes that were

observed with standard conditions (Table 2-3) could be replicated under a variety of assay

conditions.

Indeed, when fluorescence was measured under optimal assay conditions for each kinase,

the RDF sensors retained robust fluorescence changes (Table 2-7). Moreover, fold fluorescence

increases reported in Table 2-7 are similar in magnitude to the ones obtained under standard

conditions (Table 2-3).



Table 2-7. Fold Fluorescence Increases of RDF Chemosensors Obtained from Substrate (fs) and
Phosphopeptide (fp) Intensities under Appropriate Assay Conditions or Standard Conditions

Fold Fluorescence Increase
Target fs, avg (X 10

3
) fP, avg (X 10

3 ) Assay Standard

Entry Kinase (afu/ pM) b  (afu/M )b  Conditionsc Conditionsd

1 Src 0.8 ± 0.01 2.8 + 0.2 3.4 ± 0.3 2.0 + 0.1

2 Abl 0.8 ± 0.01 3.8 ± 0.9 4.9 ± 0.1 4.6 ± 0.5

3 IRK 0.6 + 0.01 2.9 + 0.1 5.2 ± 0.1 4.2 ± 0.1

4 PKCox 257 ± 42 1048 ± 71 4.1 ± 0.1 3.7 + 0.2

5 PKCPI 2.6 ± 0.3 13 ± 0.2 5.6 ± 1.2 9.7 ± 0.5

6 PKC6 133 ± 85e 735 ± 54e 5.3 ± 0.5 7.3 ± 0.1

7 Pim2 3.3 + 0.4 9 + 0.2 2.8 ± 0.3 3.2 ± 0.1

8 Aktl 13 + 0.4 43 ± 1.4 3.3 ± 0.2 3.9 ± 0.3

9 MK2 5.1 + 0.2 25 ± 1.2 4.9 ± 0.1 4.4 ± 0.2

10 PKA 2.2 ± 0.1 12 + 0.1 5.5 ± 0.3 5.0 + 0.2

a Residues that are phosphorylated are marked with an asterisk (*). b The values reported are
the mean ± s.e.m. of triplicate experiments as calculated from a line fit to data for substrate (fs)
and phosphopeptide (fp) in the absence of enzyme and under the appropriate assay conditions
(see Experimental Methods), unless otherwise noted. c The values reported are the mean ± s.e.m.
of triplicate experiments and are measured as fr/fs under the appropriate assay conditions. d

Obtained from Table 2-3 and measured in triplicate as a quotient of fluorescence intensity at 485
nm of phosphopeptide and substrate in 20 mM HEPES (pH 7.4), 10 mM MgC12, and 10 tpM
peptide (Xex = 360 nm, Xem = 485 nm). e Based on duplicate measurements.

Fluorescence Increase Corresponds to Product Formation

When BTF sensors were exposed to the cognate kinase, it was determined that the

observed increase in fluorescence intensity during the reaction time corresponded to product

formation. 5 Furthermore, the amount of product formed during the reaction could be calculated

from the fluorescence intensity at a specified time. Not surprisingly, the same equations and

principles hold true for RDF sensors as demonstrated in the reaction with PKA and its RDF

sensor (see Experimental Methods for details). Subjecting the reaction mixture to HPLC (Figure

2-5) separated the substrate and phospho-product, which were subsequently identified by mass

spectrometry. The equations detailed in the Experimental Methods (particularly eq. (4)) were



used to calculate product formation from the fluorescent signal (Table 2-8). Indeed, the

calculations confirmed that fluorescence increase during the course of the reaction is due to

product formation and that product turnover can be quantified using fluorescence intensity at a

specified time point.

0.10

S 0.08

7 0.06

. 0.04

"0.02

0.00

- Time (min) vs 228 nm
STime (min) vs 316 nm

5 10 15 20 25 3

Time (min)
Figure 2-5. HPLC chromatogram of the PKA reaction with its RDF sensor after

reaction time. Phospho-product (tR = 22.2 min) and remaining substrate (tR = 23.1
characterized by MALDI-TOF MS.

616 sec of
min) were

Table 2-8. HPLC and ESI-MS Verification and Quantification of Product Formation Observed

by Fluorescence

RDF Substrate RDF Product

Initial HPLCa m/z HPLCa m/z Concentration (M)

[S] Reaction tR Found Calcd tR Found Calcd Fluor HPLC
Kinase (9M) time (min) (min) escenceb

PKA 10 616 s 23.1 1336.69 1336.64 22.2 1416.62 1416.60 1.4 1.0

a HPLC gradient: 5% B (5 min) followed by linear gradient 5-95% B (30 min). b Calculated

using equation (4). c Calculated from the integrated area on the HPLC trace where total area

equals So. Nearly identical numbers were obtained from traces at both 228 and 316 nm.

Comparison of Kinetic Parameters for BTF and RDF Chemosensors

In order to validate the advantages of the new RDF chemosensors over the corresponding

BTF sensors in kinase assays, we compared their selectivities toward 11 different enzymes.

Accommodation of the p-turn motif in the BTF design required elimination of several N- or C-



terminal residues that are either known to be involved in kinase recognition (underlined residues

in Table 2-3) or that could be used to impart enzyme specificity through library screening. On

the other hand, the RDF probes should benefit from inclusion of the entire kinase recognition

motif.

In addition to demonstrating robust fluorescence increases under various enzyme reaction

conditions (Table 2-7), for 8 of 11 kinases there were improvements in both the KM and Vmax

parameters (Table 2-9). The results indicate that the RDF design is particularly useful in creating

peptidyl sensors for kinases that require multiple residues both N- and C-terminal to the site of

phosphorylation for adequate substrate recognition, as is the case for PKCa, PKCPI and PKCS.2 7

This is reflected in the catalytic efficiency (kcat/KM) of phosphoryl transfer by PKCca to its RDF

chemosensor that is 27 times greater than that of the BTF chemosensor (Table 2-9, compare

entries 7 to 8). A remarkable 66-fold improvement in the KM value of the RDF probe was

observed (entry 8), thereby underscoring the importance of the basic N-terminal sequence in the

PKCoa chemosensor selectivity. Even more strikingly, the BTF sensors for PKCPI and PKC6

(entries 9 and 11) show no appreciable turnover even under varying substrate concentrations or

enzyme amounts (Figure 2-6). In contrast, the corresponding RDF probes (entries 10 and 12) are

excellent substrates. Furthermore, they display kinetic parameters that are in close agreement

with published values for their non-sensing (parent) peptides, once again demonstrating that the

C-Sox sensing module does not negatively interfere with substrate-kinase binding.



Table 2-9. Comparison of Kinetic Parameters Obtained with BTF and RDF Substrate Sequences
Presented in Table 2-3

Target Vmax Catalytic Parent

Entry Kinase Design KM ( iM) a  (tmol mg - min 1 ) Efficiencyb KM (pM)c

1 Src BTF 30.7 ± 5.8 0.54 ± 0.04 1 3328

2 RDF 7.0 ± 1.0 3.4 + 0.2 28

3 Abl BTF 26 ± 5d  9.3 ± 0.5 d  1 428

4 RDF 10.5 + 1.5 19.1 ± 1.0 5

5 IRK BTF 25.7 ± 0.7 7.3 ± 2.2 1 2429

6 RDF 27.1 ± 3.9 6.3 ± 0.4 1

7 PKCa BTF 8.6 ± 2.9e  5.9 ± 1.9 e  1 3.827

8 RDF 0.13 + 0.02 2.4 ± 0.1 27

9 PKC3I BTF NS' NS' NA9  2.827

10 RDF 0.81 ± 0.18 0.76 ± 0.06 NAg

11 PKC6 BTF NS' NS' NAg  0.9827

12 RDF 0.48 ± 0.07 0.39 ± 0.02 NA9

13 Pim2 BTF 2.3 ± 0.2 h  0.52 ± 0.12 h  1 1.230

14 RDF 1.4 ± 0.1 0.67 + 0.02 2

15 Aktl BTF 3.8 ± 0.2 h  0.59 + 0.14 h  1 8.831

16 RDF 0.69 + 0.11 2.5 + 0.2 23

17 MK2 BTF 21 ± 2h  2.3 O. 2h  1 3132

18 RDF 1.2 ± 0.2 1.3 + 0.1 10

19 PKA BTF 2.7 ± 0.4 26.5 ± 1.1 1 1633

20 RDF 2.6 ± 0.3 17.9 ± 0.8 1

a Kinetic parameters (KM and Vmax) were obtained from initial slopes and corrected
appropriately for substrate and product fluorescence as described in the Experimental Methods.
The values reported are the mean + s.e.m. of triplicate experiments as calculated from a direct fit
of v vs. [S] plots using the Briggs-Haldane equation. b Catalytic efficiency of each substrate was
calculated as k 8at/KM (minl pM). The values for BTF and RDF probes within each kinase
subset were normalized to the number obtained with the BTF substrate. c The KM values of the
parent substrates from which the respective chemosensors were derived are obtained from the
indicated literature references. d Results originally reported in reference 23. e Results originally
reported in reference 6. fNS: Not a Substrate. g NA: Not Applicable. h Results originally reported
in reference 4.

Two of the three kinases for which there was no improvement in kinetic parameters, IRK

and PKA, showed no preference for either of the designs (Table 2-9, entries 5-6 and 19-20). This



result is not surprising since the consensus sequence for IRK is reported to be Y-Nle/M-X-M, 29

which is present in its entirety in both designs, and the PKA sensor is based on Kemptide33

where the C-terminal Ala residues do not impart much additional specificity. Finally, despite a

robust fluorescence increase of the peptidyl RDF sensor for ERKl/2,12' 34 it was not possible to

derive kinetic parameters as this kinase requires an entire protein docking domain in addition to

the short Thr-Pro consensus sequence for substrate recognition. 35

(a) (b)
180 - 150

a PKCbl RDF mPKCd RDF

140 - PKCbI BTF 100 - PKCd BTF

.E 100 50

0 60 E 0-
I, ,

2 -50
20 ng 40 ng 60 ng

-20 - -100
1 uM, 1 ng luM, 10ng 10uM,10ng

[S], amount of PKC, -150 - 3 p.M substrate, amount of PKCa

Figure 2-6. Assays of (a) PKCPI and (b) PKC6 enzymes with RDF (red bars) and BTF (blue
bars) chemosensors under a variety of indicated conditions.

For substrates that have not been subjected to extensive specificity studies, comparison of

the catalytic efficiencies of RDF and BTF sensors now allows easy identification of regions

and/or residues that play a role in enzyme recognition. For example, we can make the

generalization that the basic C-terminus is clearly important for Aktl and MK2 kinases since

their RDF chemosensors are 23- and 10-times, respectively, more efficient than the BTF probes

(compare entries 15 to 16 and 17 to 18). Similarly, the acidic N-terminal sequence provides up to

28- and 5-fold improvement in catalytic efficiency toward Src and Abl, respectively (compare

entries 1 to 2 and 323 to 4), which is in agreement with reported studies.28 Lastly, while the 3-

NOW



residue N-terminal extension of the RDF substrate for Pim2 only modestly increases efficiency

(compare entries 13 and 14), the RDF design now allows screens for further improvement in

selectivity of this probe.

Finally, a major practical advantage of the assays with RDF chemosensors is that they are

straightforward to apply. Kinetic assays were performed in either the fluorometer or fluorescence

plate reader (FPR) by simple mixing of appropriate reaction components. Although the

fluorometer is a much more sensitive instrument than FPR, most of the kinetic parameters for the

aforementioned kinases were determined using a 96-well plate in the FPR. This was only

possible because of the robust fluorescence enhancement that the sensors demonstrate upon

phosphorylation under a wide range of kinase reaction conditions. Recently, the assay has also

been further miniaturized to be viable in 384-well plates with a fraction of the volume required in

the 96-well plates. Moreover, the use of multi-well plates in the FPR indicates not only the

versatility of RDF chemosensors in obtaining kinetic parameters, but also the ease with which

they could be adapted to high-throughput screens in search of potent inhibitors.

Conclusions

We have developed a general method for synthesis of versatile yet specific kinase

chemosensors. The RDF design can incorporate both N- and C-terminal kinase recognition

elements of Ser/Thr- and Tyr-containing substrates. The resulting chemosensors exhibit high and

robust fluorescence enhancements under a variety of conditions. The RDF probes have also been

used in the 96-well plate format to obtain complete kinetic parameters and recently adapted to

the 384-well format, indicating that the assays can be easily tuned for use in high-throughput

screening. More importantly, this approach allowed us to substantially improve substrate

efficacy over the BTF-designed chemosensors and should be more easily amenable to screens for



additional specificity determinants. For example, the RDF approach now makes viable the

construction of protein-based sensors where the C-Sox reporter can be placed anywhere in the

protein (e.g., via native chemical ligation described in Chapter 4) in order to obtain probes that

fully exploit protein-protein interactions in enzyme selection. The BTF reporters, on the other

hand, can only be located at peptide (and protein) termini (due to the 3-turn) and, thus, have a

more restricted utility. Ongoing work is focused on modifying the Sox chromophore to increase

the excitation and emission wavelengths (Chapter 5). The RDF chemosensors, along with their

assaying ease, may provide a way to tackle a very important problem of enzyme specificity as

fluorescent probes start to make their way into the arena of monitoring kinase activities in vivo.

Acknowledgements

First, I am grateful to Dr. Juan Antonio Gonzalez Vera for performing the synthesis,

purification and characterization of some of the peptides presented here. I thank Dr. Anne

Reynolds, Dr. Matthieu Sainlos, Dr. Melissa Shults and Angelyn Larkin for helpful discussions

and Dr. Matthieu Sainlos for obtaining MALDI TOF MS. This research was supported by the

NIH Cell Migration Consortium (GM064346) and the Invitrogen Corporation. The Biophysical

Instrumentation Facility for the Study of Complex Macromolecular Systems (NSF-0070319) and

the Department of Chemistry Instrumentation Facility (NIH-1S10RR013886-01) are also

gratefully acknowledged.



Experimental Methods

General information

Unless otherwise noted, all solvents and reagents were obtained commercially and used without

further purification. Na-Fmoc-protected amino acids [Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH,

Fmoc-Cyc(Mmt)-OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH,

Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(PO(OBn)OH)-OH, Fmoc-Thr(tBu)-OH, Fmoc-

Thr(PO(OBn)OH)-OH, Fmoc-Val-OH] were purchased from Novabiochem. Whenever

anhydrous and/or degassed CH 2Cl2 was necessary, it was distilled from calcium hydride and

degassed by bubbling argon for at least 20 min. Analytical TLC was performed on silica gel 60

F254 precoated plates (EMD Chemicals Inc.) and visualized by UV. Flash column

chromatography was performed as previously described 36 using forced flow of the indicated

solvent on AdTech Flash Silica Gel (32-60 Cpm packing, 60 A pore diameter, Adedge

Technologies). Organic solutions were concentrated in vacuo by rotary evaporation at -10 Torr

(house vacuum) at 25-40 oC, then at -0.5 Torr (vacuum pump), unless otherwise indicated.

Peptides were purified via preparative reverse-phase HPLC employing a gradient of solvents A

(H20 with 0.1% v/v TFA) and B (CH 3CN with 0.1% v/v TFA). Compounds were characterized

by 1H and 13C NMR and mass spectroscopy. Peptide purity was determined by analytical

reverse-phase HPLC.

Instrumentation

NMR: 1H and 13C NMR spectra were recorded on a Bruker 400 MHz Avance spectrometer.

Chemical shifts (6) are reported in parts per million (ppm) and referenced to CDC13 (7.26 ppm



for 1H and 77.0 ppm for 13C). Coupling constants (J) are reported in Hertz (Hz) and multiplicities

are abbreviated as singlet (s), doublet (d), doublet of doublets (dd), triplet (t) and multiplet (m).

HPLC: HPLC was carried out on Waters Prep LC 4000 System or Waters Delta 600 System

equipped with Waters 2487 dual wavelength absorbance detectors. Columns used: C18 analytical

(flow rate = 1 mL/min), Beckman Ultrasphere ODS, 5 pm, 150 x 4.6 mm; C18 preparatory (flow

rate = 15 mL/min), YMC-Pack Pro, 5 pm, 250 x 20 mm.

ESI-MS: Applied Biosystems Mariner mass spectrometer.

MALDI-TOF MS: PerSeptive Biosystems Voyager MALDI-TOF instrument.

HRMS: The Department of Chemistry Instrumentation Facility (DCIF), MIT.

UV-Vis Spectrophotometer: Shimadzu UV-2401 PC.

Fluorometer: Fluoromax 3 from Jobin Yvon. Cuvette: Stama Cells (16.100F-Q-10) 100 ptL sub-

micro cuvette, 1 cm path length.

Fluorescence Plate Reader: HTS 7000 Bio Assay Reader from Perkin Elmer. Plate: Coming

(3992) assay plate, 96-well, half area, no lid, flat bottom, non-binding surface, non-sterile, white

polystyrene.



Fmoc-C(Sox[TBDPS])-OH synthesis

a. Fmoc-Cys-OAllyl (3)

OMe

S Cs2CO 3  SH

O MeOH/DMF

OOH OKN
H 2.5%TFA H

O 5% TIS O
CH 2C12

69% over
2 steps.

1. To an oven-dried, one-necked, 500 mL round-bottomed flask equipped with a stir bar and

under positive N2 pressure was added Fmoc-Cys(Mmt)-OH (1; 8.92 mmol, 5.49 g, 1 equiv.

dissolved in 50 mL CH 2C12) followed by MeOH (50 mL). The colorless solution was then

allowed to stir for 3 min at room temperature. To this solution was added Cs2 CO 3 (4.46 mmol,

1.45 g, 0.5 equiv.) and mixture was allowed to stir at room temperature under N2 for 45 min at

which time the solvent was removed in vacuo. The resulting white, fluffy solid was dissolved

in DMF (100 mL, anhydrous) and immediately following this, allyl bromide (26.75 mmol,

3.24 g, 3 equiv.) was added. The reaction mixture was stirred at room temperature under

positive N2 pressure for 5 hours. During this time, the reaction was monitored by TLC (Rf =

0.23, 20% EtOAc in hexanes). Upon completion, the reaction mixture was diluted with EtOAc

(1 L), washed with 2% NaHCO 3 (200 mL), H20 (250 mL x 3), brine (250 mL x 3), dried

(Na 2SO 4), and concentrated in vacuo.

2. The crude product from the previous step was dissolved in degassed, anhydrous CH 2C12 (90

mL). To the slightly yellow solution were added TIS (5 mL) and TFA (5 mL). The resulting

red solution was allowed to react at room temperature under N2 for 2.5 hrs and was monitored
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by TLC (Rf = 0.28, 20% EtOAc in hexanes). The reaction mixture turns a clear yellow color

upon completion. The reaction was the diluted in CH 2C12 (300 mL), washed with 5%

NaHCO 3 (250 mL x 2), H20 (250 mL), brine (300 mL), dried (Na 2SO 4) and concentrated in

vacuo. Flash column chromatography (SiO 2; diameter: 70 mm; length: 23 cm; packing: 20%

EtOAc in hexanes; load crude product in CH 2C12; eluent: 20% EtOAc in hexanes) was used to

purify the product, which was isolated as a fluffy white solid. Yield: 69% (2.36 g).

1H NMR (400 MHz, CDC13, 20 oC ) 6 ppm: 1.38 (t, J = 8.90 Hz, 1H), 3.10-2.94 (m, 2H), 4.24 (t,

J= 6.83 Hz, 1H), 4.49-4.38 (m, 2H), 4.78-4.62 (m, 3H), 5.29 (d, J= 10.38 Hz, 1H), 5.37 (d, J=

17.15 Hz, 1H), 5.72 (d, J= 6.97 Hz, 1H), 5.98-5.88 (m, 1H), 7.33 (t, J = 7.45 Hz, 2H), 7.41 (t, J

= 7.47 Hz, 2H), 7.61 (d, J= 7.25 Hz, 2H), 7.77 (d, J= 7.48 Hz, 2H).

13C NMR (100 MHz, CDC13, 20 oC)8 ppm: 27.1, 47.1, 55.2, 66.5, 67.1, 119.4, 120.0, 125.0,

127.1, 127.7, 131.2, 141.3, 143.7, 155.6, 169.6.

HRMS (ESI): calcd for C21H21NNaO4S [M + Na]+: 406.1089, found: 406.1098.



b. Fmoc-Cys(Sox[TBDPS])-OAllyl (6)

So 2 NMe 2  I

O N

SH N Br S OTBDPS

OTBDPS
0 N i-Pr2 NEt, CH 2CI 2  O N

O 95% O

To an oven-dried, one-necked, 500 mL round-bottomed flask equipped with a stir bar and under

positive N2 pressure was added Fmoc-Cys-OAllyl (4.98 mmol, 1.91 g, 1 equiv.) dissolved in

anhydrous CH2C12 (70 mL). To this colorless solution was added Sox-Br4 (4.98 mmol, 2.9 g, 1

equiv.) followed by freshly distilled DIEA (7.46 mmol, 1.3 mL, 1.5 equiv.). The reaction (pale

yellow in color) was stirred at room temperature under the positive N2 pressure overnight and

was monitored by TLC (Rf = 0.36, 1:2 EtOAc in hexanes) until completion. The crude reaction

was diluted with CH 2C12 (400 mL), washed with sat'd. NH4 Cl (2 x 100 mL), H 20 (100 mL),

brine (100 mL), dried (Na2SO4) and concentrated in vacuo. Flash column chromatography (SiO 2;

diameter: 70 mm; length: 26 cm; packing: 10% EtOAc in hexanes; load crude product in

CH 2C12 ; eluent: 10, 20, 30% EtOAc in hexanes) was used to isolate the product as a white solid.

Yield: 95% (3.43 g).

1H NMR (400 MHz, CDCl3, 20 'C) 6 ppm: 1.18 (s, 9H), 2.82-2.67 (m, 2H), 2.72 (s, 6H), 3.57 (s,

2H), 4.24 (t, J= 7.04 Hz, 1H), 4.45-4.34 (m, 2H), 4.68-4.48 (m, 3H), 5.22 (dd, J= 10.42, 1.09

Hz, 1H), 5.28 (dd, J= 17.19, 1.23 Hz, 1H), 5.51 (d, J= 8.13 Hz, 1H), 5.89-5.78 (m, 1H), 7.11 (d,

J= 8.32 Hz, 1H), 7.34-7.29 (m, 6H), 7.45-7.35 (m, 4H), 7.53 (d, J= 8.97 Hz, 1H), 7.61 (dd, J=

7.21, 2.86 Hz, 2H), 7.78-7.75 (m, 6H), 7.99 (d, J= 8.32 Hz, 1H), 8.95 (d, J= 8.96 Hz, 1H).



13C NMR (100 MHz, CDC13, 20 oC) 6 ppm: 20.0, 26.4, 34.1, 37.2, 38.2, 46.9, 53.3, 66.2, 67.1,

115.3, 118.9, 119.9, 122.3, 123.7, 125.0, 125.1, 127.0, 127.6, 127.6, 129.6, 131.1, 131.6, 133.3,

133.3, 134.2, 134.8, 140.3, 141.1, 143.6, 143.6, 155.5, 156.8, 157.1, 170.1.

HRMS (ESI): calcd for C49H5sN 3NaO7S2Si [M + Na] : 908.2835, found: 908.2827.



c. Fmoc-Cys(Sox[TBDPS])-OH (5)

SO 2 NMe 2  SO 2NMe 2

S OTBDPS S OTBDPS

H O
H N PhSiH 3, CH 2 2  H N

O 77% crude O

SO2 NMe 2

S OH HPLC
H20/CH3CN,

O JN OH 0.1% TFA
H

0

To an oven-dried, one-necked, 250 mL round-bottomed flask equipped with a stir bar and under

positive N 2 pressure was added Fmoc-Cys(Sox[TBPDS])-OAllyl (3.62 mmol, 3.21 g, 1 equiv.)

dissolved in anhydrous and degassed CH 2C12 (100 mL). To the pale red solution was added

PhSiH 3 (90.47 mmol, 11.2 mL, 25 equiv.) followed by Pd(PPh3)4 (0.145 mmol, 167.26 mg, 0.04

equiv.). After 10 min the reaction turned a deep red color. The resulting mixture was stirred at

room temperature under the positive N2 pressure for 3 hours and was monitored by TLC (Rf =

0.36, 10 % MeOH in CH 2C12). Upon completion of the reaction, the solvent was removed in

vacuo. The crude mixture was passed through a short flash column (SiO 2; diameter: 70 mm;

length: 7 cm; packing: CH 2C12 ; load crude product in CH 2C12 ; eluent: 1, 2, 3, 4, 5, 10, 15%

MeOH in CH 2C12) to obtain 77% recovery of product. Analytical HPLC revealed one peak (tR =

32.1 min; loading: dissolve 3 mg in DMSO; injection: 12 tL; method: 5% B (5 min) - 20% B

(1 min) - 95% B (30 min), Abs: 280 nm and 316 nm) that was determined by ESI-MS to be

Fmoc-C(Sox)-OH (calcd for C30H30N30 7 S2 [M + H]+: 608.15, found: 608.1) since the acidic

67



conditions of HPLC solvents remove the TBDPS protecting group. 1H NMR, prior to HPLC

analysis, shows that the TBDPS protecting group is still present in the crude material. The amino

acid was used in SPPS without further purification.

IH NMR (400 MHz, CDC13, 20 oC) 6 ppm 1.10 (s, 9H), 2.63 (s, 6H), 2.86-2.66 (m, 2H), 3.59-

3.43 (m, 2H), 4.51-4.06 (m, 4H), 5.65-5.49 (m, 1H), 7.02 (d, J = 7.94 Hz, 1H), 7.33-7.27 (m,

2H), 7.46-7.39 (m, 4H), 7.57-7.48 (m, 4H), 7.76-7.59 (m, 9H), 7.91 (d, J = 8.06 Hz, 1H), 8.83

(d, J = 8.77 Hz, 1H)

HRMS (ESI) of Fmoc-C(Sox[TBDPS])-OH: calcd for C4 6H47N3NaOyS 2 Si [M + Na]+: 868.2522,

found: 868.2540.

Peptide synthesis

Coupling chemistry and conditions

All peptides were synthesized using the standard Fmoc-based amino acid protection chemistry.

PKC peptides were synthesized on Fmoc-PAL-PEG-PS resin (Applied Biosystems, 0.19

mmol/g) using either the on-resin alkylation (vide infra) or the Fmoc-C(Sox[TBDPS])-OH

building block. ERK1/2 peptides were synthesized on Fmoc-Gly-NovaSyn TGT resin

(Novabiochem, 0.20 mmol/g) using the C-Sox building block. The resin was swelled in CH2C12

(5 min.) and then DMF (5 min) prior to synthesis. All the amino acids except for Fmoc-

C(Sox[TBDPS])-OH were coupled according to the following procedure: Fmoc deprotection

(20% 4-methylpiperidine in DMF, 3 x 5 min), rinsing step (DMF, 5 x), coupling step (amino

acid/PyBOP/HOBt/DIEA, 6:6:6:6, 0.15 M in DMF, 30-45 min), rinsing step (DMF, 5 x; CH 2C12,



5 x). Fmoc-C(Sox[TBDPS])-OH was coupled in the following manner: amino

acid/PyAOP/HOAt/DIEA, 2:2:2:5, 0.15 M in DMF, 2-12 hr. The coupling was repeated if

necessary (amino acid/PyAOP/HOAt/DIEA, 1:1:1:3, 0.15 M in DMF, 2-12 hr) as determined by

the TNBS test for free amines. It is important to wash the resin rigorously (DMF followed by

CH 2 C12) to remove excess amino acid before performing any tests for free amines. This is

particularly necessary after coupling of Fmoc-C(Sox[TBDPS])-OH due to its deep red color,

which does not affect its coupling efficiency. At the end of the synthesis, the Fmoc group was

removed with 20% 4-methylpiperidine in DMF (3 x 5 min.) and the resin was rinsed with DMF

(5 x). The resin-attached free amines were capped by exposure to Ac20 (20 equiv.) and pyridine

(20 equiv.) in DMF for 30 min. The resin was rinsed with DMF (5 x), CH 2Cl2 (5 x) and

subjected to 20% 4-methylpiperidine in DMF (3 x 5 min.) to remove any Sox aryl esters that

might have formed during acetylation. The resin was finally washed with DMF, CH2C12, MeOH

(5 x each) and dried under vacuum.

a. On-resin alkylation ofpeptides with Sox-Br

Resin-bound peptides (50 mg, 0.0095 mmol, 1 equiv.) incorporating Cys(Mmt) were swelled in

CH 2C12 , then DMF (5 min each). The Mmt protecting group was removed from the resin-bound

peptide by bubbling N2 through a solution of 1% TFA, 5% TIS in CH 2C12 (4 x 20 min or until

most of the yellow color due to the Mmt cation has disappeared). The resin was then subjected to

rigorous washing with CH 2C12 (5 x) and DMF (5 x). Anhydrous DMF (200 tL) was added to the

resin followed by freshly distilled tetramethylguanidine (5.96 tL, 0.0475 mmol, 5 equiv.). The

mixture was incubated for 2-3 min. Sox-Br (17 mg, 0.0285 mmol, 3 equiv.) was dissolved in

anhydrous DMF (150 1tL) and added to the resin. After ca. 12 hours of reaction time, the excess

reagents were drained and the resin washed with DMF, CH2C12, MeOH, CH 2C12 (5 x each).
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b. Side chain deprotection and cleavage from resin

The resin cleavage and protecting group removal was achieved by exposing the resin-bound

peptides to TFA/EDT/H 20/TIS (94:2.5:2.5:1% v/v) for sequences containing easily oxidized

residues (e.g. Cys, Met, Trp) or TFA/H20/TIS (95:2.5:2.5% v/v) for sequences without such

residues (C-Sox does not require EDT in the cleavage cocktail). The resulting solution was

concentrated under a stream of N2 and precipitated by addition of cold Et20. The pellet was

triturated with cold Et20 (3 x), redissolved in water, filtered and lyophilized. The peptides were

purified by preparative reverse-phase HPLC using UV detection at either 228 nm (amide bond

absorption) and 280 nm (Fmoc, Trp, and/or Tyr absorption) or 228 nm and 316 nm (Sox

absorption). Only fractions showing a single peak of correct mass by analytical HPLC were used

in further experiments.

c. Characterization data for peptides

Kinase Peptide Sequence

Src-2 Ac-Sox-PEIYGEFEAKKKK-CONH 2

Ac-Sox-PElpYGEFEAKKKK-CONH 2

Ac-AEE-CSox-lYGEFEAKKKK-CONH 2

Ac-AEE-CSox-lpYGEFEAKKKK-CONH 2

Abi Ac-E-CSox-IYAAPFAKKK-CONH 2

Ac-E-CSox-lpYAAPFAKKK-CONH 2
Ac-CSox-AIYAAPFAKKK-CONH 2

Ac-CSox-AlpYAAPFAKKK-CONH 2
Ac-CSox-EAIYAAPFAKKK-CONH 2

Ac-CSox-EAlpYAAPFAKKK-CONH 2

Ac-EAIYAA-CSox-FAKKK-CONH 2

Ac-EAIpYAA-CSox-FAKKK-CON H2

IRK Ac-Sox-PGDY-Nle-TMQIGKK-CONH 2

Ac-Sox-PGDpY-Nle-TMQIGKK-CONH 2

Ac-R-CSox-DY-Nle-TMQIGKK-CONH 2

Ac-R-CSox-DpY-Nle-TMQIGKK-CONH 2

PKCa Ac-RRRK-CSox-SFRRKA-NH 2

Ac- RRRK-CSox-pSFRRKA-NH 2

Mol. Formula

C89H133N210 25S
C89H134N210 28PS
C93 H 140 N 2 20 28S2

C93H141N220 31PS2

C78H116N180 19S2

C78H117N180 22PS2

C 7 6H 1 1 4 N 1 80 17S 2

C76H 115N 18020PS2
C8 1 H121 N19020S2

C81H 122N 19023PS2

C76H114N18019S2

C76H115N180 22PS2

C76H116 N18023S2

C7 6H 1 17N 18 0 26 PS 2

C76 H 12 1N 2 10 2153

C7 6H 1 22 N 210 24 PS 3

C74 H 12 5 N3 10 16 S2

C 74 H 126 N 31 0 19 PS 2

HPLC tR
(min)a
27.4
25.7
24.9
23.9
22.9
22.3
20.2
19.2
23.8
22.7
26.0
24.4
22.8
22.4
24.7
23.7
23.6
25.7

[M+xH]x+
Calcd.

1927.95
2007.92
2077.96
2157.93
1672.81
1752.78
1614.81
1694.77
1743.85
1823.81
1646.79
1726.76
1712.79
1792.76
1847.90
1927.90
1767.94
1847.90

[M+H]
foundb

1928.93
2008.20
2079.79
2159.48
1674.01
1753.30
1615.87
1695.67
1744.82
1824.84
1646.93
1727.09
1713.83
1793.00
1848.19
1927.91
1768.74
1849.88

~



Ac-RRR-CSox-GSFRRR-CON H2  C70 H116N 3 00 16 S2

Ac-RRR-CSox-GpSFRRKA-CON H2  C7 0H117 N 3 001 9 PS 2

Ac-RRR-CSox-ASFRRR-CONH 2  C7 1H118N 3 00 16 S2

Ac-RRR-Csox-ApSFRRKA-CON H2  C71H 119 N30 019PS2

PKC6 Ac-RKRKGSF-CSox-YGG-CON H2  C6 8 H 1 0 2N 22017S 2

Ac-RKRKGpSF-CSox-YGG-CON H2  C68H103N22 0 20PS2

Ac-RKRKGSF-DPro-Sox-G-CON H2  C61 H95N21015S
Ac-RKRKGpSF-DPro-Sox-G-CON H2  C6 1H96N2 10 18PS

PKC3I Ac-LKR-CSox-ASFKKFA-CON H2  C74H14N20016S2
Ac-LKR-CSox-ApSFKKFA-CONH 2  C74H115N200 19PS2

Ac-Sox-PASFKKFA-CONH 2  C6 1 H 8sN 30 14 5

Ac-Sox-PApSFKKFA-CON H2  C61H86N130 17PS
Pim2 Ac-ARKRRRH PSG-CSox-PTA-CONH 2  C78 H128 N 32 0 20S 2

Ac-ARKRRRHPpSG-CSox-PTA-CONH 2  C78H129N320 23PS2

Aktl Ac-ARKRERAYSF-CSox-H HA-CON H2  C88H129N310 22S2
Ac-ARKRERAYpSF-CSox-H HA-CONH 2  C88H130N31025 PS2

MK2 Ac-AHLQRQLSI-CSox-H H-CON H2  C76 H11 5N2 50 1 9S2

Ac-AHLQRQLpSI-CSox-H H-CON H2  C76H116N25 022PS2

PKA Ac-LRRASL-DPro-Sox-G-CONH 2  C56H91N19015S
Ac-LRRApSL-DPro-Sox-G-CON H2  C56H92N190 18PS
Ac-ALRRASL-CSox-AA-CON H2  C56 H92 N180 16 S2

Ac-ALRRApSL-CSox-AA-CONH 2  C56 H 93 N18019 PS2

ERK1/2 Ac-VPLLTP-CSox-GRRG-COOH C64H103N19017S2

Ac-VPLLpTP-CSox-GRRG-COOH C64 H104 N19 0 20 PS2

Ac-VPLLTP-G-CSox-RRG-COOH C64 H 1 03 N 19 01 752

Ac-VPLLpTP-G-CSox-RRG-COOH C64 H104 N19 0 2 0PS2

Ac-VP-CSox-LTPGGRRG-COOH C60H95N19017 S2

Ac-VP-CSox-LpTPGGRRG-COOH C60H96N190 20PS2

Ac-Sox-PLTPGGRRG-COOH C54H84N18016S
Ac-Sox-PLpTPGGRRG-COOH C54H85N180 19PS

a Reported retention times (tR) and HPLC conditions are from
min) followed by linear gradient 5-95% B (30 min) unless otherwise noted. b The data was
collected on MALDI TOF mass spectrometer unless otherwise indicated. C Method: 5% B (5
min) followed by an increase to 15% B (1 min) and a linear gradient 15-30% B (30 min). d

Method: 5% B (5 min) followed by linear gradient 5-50% B (30 min). e The data was collected
on ESI mass spectrometer.

Stock solutions

Due to the affinity of the phosphorylated peptides for selected transition metal ions (including

Zn+),5 only reagents of the highest purity and lowest metal content were used to avoid the need

to remove metal ion impurities after preparation.

1. Stock solutions of the peptides were prepared in doubly deionized water and concentrations

were determined by UV-Vis (based on the determined extinction coefficient of the

21.6c
22.1

d

21.3c
23.7c
20.9
20.5
21.8
19.6
24.9
23.4
22.8
22.2
19.7
20.6
20.5
22.5
21.6
23.6
24.8
23.1
25.8
24.6
26.8
25.7
26.4
25.5
25.7
24.4
22.9
23.1

analytical

425.2 (+4)
445.2 (+4)
428.7 (+4)
448.7 (+4)

1562.72
1642.69
1393.70
1473.67
1602.82
1682.78
1256.61
1335.57
1896.94
1976.91
2035.94
2115.90
1747.01
1826.79
1230.63
1310.60
1336.64
1416.60
1474.70
1554.70
1474.70
1554.70
1418.60
1498.60
1272.60
1352.57

runs. Method:

425.8e
445.0

e

429.3
e

449.4e

1563.26
1643.34
1394.77
1474.65

1603.58
1683.53
1257.62
1337.18
1898.19
1978.33
2036.60
2116.82
1748.25
1830.02
1232.75
1311.66
1336.70
1417.81
1475.43
1554.60
1474.81
1554.59
1418.56
1498.71
1273.47
1353.40

5% B (5
I



fluorophore unit, 5-(N,N-dimethylsulfonamido)-8-hydroxy-2-methylquinoline, 355 = 8247 M-

cm' at 355 nm in 0.1 M NaOH with 1 mM Na 2EDTA).3 An average of the values from three

separate solutions, each prepared using a different volume of the stock solution, was read on

UV-Vis spectrophotometer. Purified peptide stock solutions could be stored at 4 'C for at least

6 months or -20 OC for longer periods.

2. A magnesium chloride stock solution of 2.66 M and a calcium chloride stock solution of 354

mM were prepared using Puratronic grade salts from Alfa Aesar. Most commercially

available salts contain Zn2+ as significant impurities and should not be used due to the high

affinity of the phosphorylated peptides for Zn2+. The Mg2+ and Ca 2+ concentrations were

determined by titration with a standardized solution of EDTA (Aldrich) in the presence of an

Eriochrome Black T (Aldrich) as described previously.5

3. 500 mM HEPES (SigmaUltra) was prepared and adjusted to pH 7.4 with NaOH (99.998+%,

Aldrich) solution.

4. 10 mM DTT (Biotechnology grade, Mallinckrodt) was prepared in degassed ultrapure water

and stored in aliquots at -80 oC.

5. 20 mg/mL BSA (Heat Shock Fraction V, Roche) was prepared in ultrapure water, filtered

through a 0.45 micron syringe filter to remove particulates and stored at 4 OC.

6. 0.1% Brij-35 P (Fluka) solution was prepared by dissolving an appropriate amount in doubly

deionized water and was stored at room temperature.

7. 100 mM ATP (Disodium salt, Low Metals Grade, Calbiochem) was prepared in ultrapure

water. The solution was stored in aliquots at -80 oC.

8. 500 mM EGTA (SigmaUltra) was prepared in 2 M NaOH and stored at 4 OC.



9. 10 tg/mL phosphatidylserine and 2 ltg/mL diacylglycerol in 20 mM HEPES (pH 7.4) were

prepared by combination of appropriate volumes of chloroform solutions of 10 mg/mL

porcine brain phosphatidylserine (Avanti Polar Lipids, Inc.) and 2 mg/mL 1,2-dioleoyl-sn-

glycerol (Avanti Polar Lipids, Inc.). The chloroform was evaporated and an appropriate

amount of solution 3 was added. The solution was alternated between vortexing for 3 min

intervals and incubating in warm water bath for 1 min for a total time of 12 min. The solution

was stored in aliquots at -20 oC. Samples were sonicated for 10 min before use in enzyme

assays.

Fluorescence experiments

Spectral comparison ofphosphorylated and unphosphorylatedpeptides

The fluorescence spectra of 10 jM phosphorylated (black) and unphosphorylated (red) peptides

in 20 mM HEPES (pH 7.4) and 10 mM MgCl 2 were recorded in the fluorometer (slit widths: Em

= 5 nm, Ex = 5 nm; ex = 360 nm, kem = 380-650 nm) in a quartz microcuvette (120 tL). The

reported spectra are averages of three separate experiments.
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PKC Sensors
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Pim2. Aktl and MK2 Sensors
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a. Calculation of Z'factors

The Z' factors are statistical quality parameters used in high-throughput screens to evaluate

performance of such assays.22 Typically, assays are considered excellent if Z' is 0.5-1. The Z'

values were calculated from data obtained for fluorescence increases using equation (1)

Z'=I - (3 x aP ) + (3 x o s )
Z=1 (1)

where jpp and ps are the means of three measurements of fluorescence emission at 485 nm for

phosphopeptide and substrate, respectively, and up and os are the standard deviations of those

measurements for phosphopeptide and substrate, respectively.

b. Determination of Mg2+ dissociation constants (KD)

Mg2+ titrations were performed in a buffer containing 20 mM HEPES (pH 7.4), 150 mM NaC1, 1

tM of the appropriate phosphopeptide in a quartz cuvette for a total volume of 500 ptL. Aliquots

of MgCl 2 stock solutions were added (for the final MgCl 2 concentration in the cuvette to be in

the range of approximately 2-350 jM) and the data was recorded in the fluorometer (slit widths:

Em = 5 nm, Ex = 5 nm; lex = 360 nm, em = 380-650 nm). Data was fit with the program

Specfit/32. 37 The reported values are from single experiments. Both Table 2-6 and Figure 2-4

indicate that higher affinity for Mg 2+ generally results in larger fluorescence increase.

c. Fluorescence intensity dependence on [ATP] and [Mg2+]

1. In the titrations reported in Figure 2-3, the concentration of the substrate was held constant

while the concentration of ATP was varied. No enzyme was present. A solution of the

substrate (or phosphopeptide) was prepared (20 mM HEPES [pH 7.4], 10 mM MgCl 2, 0.3

mM CaC12, 0.1 mM EGTA, 1 mM DTT, 0.5 jtg/mL phosphatidylserine, 0.1 ptg/mL



diacylglycerol, 10 pM peptide) and fluorometer readings were obtained without any ATP

present. Then ATP (dilutions from stock solution 7) was added to final concentrations of 0.01,

0.05, 0.1, 0.25, 0.5, 0.8 or 1 mM. At each ATP concentration a fluorescence emission

spectrum was recorded (slit widths: Em = 5 nm, Ex = 5 nm; Xex = 360 nm, kem = 380-650 nm).

Each measurement was repeated 3 times and the average fluorescence intensity + s.e.m. at 485

nm was plotted in bar graphs below.

2. In the measurements reported in Table 2-4 the concentration of the substrate was held constant

while the concentration of ATP was varied. No enzyme was present. A solution of the

substrate (or phosphopeptide) was prepared (20 mM HEPES [pH 7.4], 10 mM MgC12, 10 pM

peptide) and fluorometer readings were obtained without any ATP present. ATP (dilutions

from stock solution 7) was then added to a final concentration of 0.1 or 1 mM. At each ATP

concentration a fluorescence emission spectrum was recorded (slit widths: Em = 5 nm, Ex = 5

nm; kex = 360 nm, )em = 380-650 nm). Fluorescence increase was obtained by dividing the

fluorescence of the phosphopeptide by the fluorescence of the substrate at 485 nm. The values

reported are averages of at least three separate measurements.

3. In the measurements reported in Table 2-5 the concentration of the substrate was held constant

while [ATP] and [Mg2+] were varied. No enzyme was present. A solution of the substrate (or

phosphopeptide) was prepared (20 mM HEPES [pH 7.4] and 10 pM peptide) and fluorometer

readings were obtained without any ATP present. Then ATP (dilutions from stock solution 7)

was added to a final concentration of 0.1 or 1 mM. At each ATP concentration, the

appropriate volume of Mg2+ (dilutions of solution 2) was added to obtain fluorescence

intensity at 1, 2, 5 or 10 mM. With every combination of [ATP] and [Mg 2+] the fluorescence

emission spectra were recorded (slit widths: Em = 5 nm, Ex = 5 nm; kex = 360 nm, ,,em = 380-



650 nm). Fluorescence increase was obtained by dividing the fluorescence of the

phosphopeptide by the fluorescence of the substrate at 485 nm. The values reported are

averages of at least three separate experiments

d. Recombinant enzyme assay protocols

Recombinant enzyme was added to initiate each reaction unless otherwise noted. Most of the

kinetic assays were performed in the FPR (Xex = 360 nm, kem = 485 nm). The noted few were

conducted in the fluorometer (same kex and em as in the FPR except for the BTF Src sensor: kex

= 410 nm). The reactions were carried out using either a fluorescence microcuvette (fluorometer)

or a 96-well plate (FPR) (120 p~L per reaction) containing varying chemosensor concentrations

(generally 0.2-5 KM) at 30 oC. Fluorescence slopes were determined by a least-squares fit using

Microsoft Excel. Slopes were then either converted to a rate (see section VI.e.) or compared

directly. The plots of v vs. [S] were fit using SigmaPlot 9.0138 in order to obtain KM and Vmax

values. Standard assay conditions were as follows:

Src: 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 1 mM ATP, 1 mM DTT, 0.1 mM EGTA, 0.001%

Brij-35 P, 60 ng Src with the BTF sensor and 4 ng Src with the RDF sensor (Upstate,

appropriately diluted with 20 mM HEPES [pH 7.4], 0.1 mM EGTA, 1 mM DTT, 0.01% Brij-35

P, 5% glycerol and 1 mg/mL BSA). The BTF sensor kinetics were measured in the fluorometer.

Abl: 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 1 mM ATP, 1 mM DTT, 0.01 % Brij-35P, 4 ng

Abl (New England Biolabs, appropriately diluted with 20 mM Tris pH 7.5, 10 mM MgCl 2, 0.1

mM EGTA, 0.01% Brij-35 P and 1.0 mg/mL BSA).



IRK: 25 mM Tris (pH 7.3), 10 mM MgC12, 1 mM ATP, 2.5 mM DTT, 0.5 mM EGTA, 5 mM 3-

glycerophosphate, 0.01% Triton X-100, 0.2 mg/mL BSA, 4.3 ng IRK with the RDF sensor and

8.6 ng IRK with BTF sensor (Invitrogen, appropriately diluted with 20 mM Tris (pH 7.3), 10%

Glycerol, 0.02% Triton X-100, 0.2 mg/mL BSA, and 2 mM DTT).

PKCa: 20 mM Hepes (pH 7.4), 10 mM MgCl 2, 0.3 mM CaCl2, 0.1 mM EGTA, 0.1 mM ATP, 1

mM DTT, 0.5 pg/mL phosphatidylserine, 0.1 tg/mL diacylglycerol, 1 ng of PKC, (Calbiochem,

appropriately diluted with 20 mM Hepes [pH 7.4], 10 mM MgCl 2, 0.3 mM CaCl2, 1 mM DTT,

10 mg/mL BSA and 0.01% Brij-35 P). Substrate peptide was added to begin the reaction. The

RDF sensor kinetics were measured in the fluorometer.

PKCPI: Same conditions as for PKCa using 10 ng of PKCPI with the RDF sensor and up to 100

ng PKC3I with the BTF sensor (Human, Recombinant, BioSource, same enzyme dilution

conditions as for PKCa).

PKC8: Same conditions as for PKCa using 10 ng of PKC6 with the RDF sensor and up to 60 ng

with the BTF sensor (Human, Recombinant, BioSource, appropriately diluted with 20 mM

HEPES [pH 7.4], 10 mM MgCl2, 0.3 mM CaC12, 1 mM DTT, 10 mg/ml BSA, 0.1 M NaC1, and

0.01% Brij-35P). Substrate peptide was added to begin the reaction. The RDF sensor kinetics

were measured in the fluorometer.



Pim2: 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 0.1 mM ATP, 10 mM DTT, 0.5 mg/mL BSA,

0.1 mM EGTA, 11 ng Pim2 (Upstate, appropriately diluted with 20 mM Hepes [pH 7.4], 10 mM

MgCl 2, 0.1 mM EGTA, 15 mM DTT, and 1 mg/mL BSA).

Aktl: 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 1 mM ATP, 1 mM DTT, 0.1 mM EGTA, 1 ng

Aktl (Upstate, appropriately diluted with 20 mM HEPES [pH 7.4], 1 mM DTT, 0.1% Brij-35,

and 1 mg/mL BSA).

MK2: 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 1 mM ATP, 1 mM DTT, 0.1 mM EGTA, 0.01%

Brij-35, 0.1 mg/mL BSA, 1 ng MK2 (Upstate, appropriately diluted with 20 mM HEPES [pH

7.4], 1 mM DTT, 0.1% Brij-35, and 1 mg/mL BSA).

PKA: 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 1 mM ATP, 1 mM DTT, 0.1 mM EGTA, 0.5 ng

PKA catalytic subunit (catalytic subunit, Calbiochem, appropriately diluted with 50 mM Tris

[pH 7.3], 10 mM MgCl 2, 1 mM DTT, and 0.15 mg/mL BSA).

e. Determination of kinetic constants from fluorescence data

To solve for KM and Vmax for this reaction, determination of the initial rate of product formation

from the increase in fluorescence intensity is necessary." With these sensors, a correction for the

decrease in fluorescence intensity due to the starting material being consumed is needed to

determine the rate of product formation from the initial slope. The fluorescence intensity at any

given point can be determined from the following equation:

I(t) = fsS(t) + fP(t) (2)



where I(t) is the fluorescence intensity, S(t) is the amount of substrate in pM, P(t) is the amount

of product in jM, fs is the fluorescence intensity per jM of substrate, and fp is fluorescence

intensity per jM of product. The amount of substrate and product at any given point are related

by:

S(t) + P(t) = So (3)

where So is the initial amount of substrate. Substitution of eq. (3) into eq. (2) followed by

rearrangement yields:

P(t) = I(t) - fsS (4)
fP - fS

The initial velocity of the reaction is the change in the amount of product over time, so taking the

derivative of eq. (4) with respect to time gives:

dl(t)

dP(t) dt (5)
dt f, - fs

The initial slope of the reaction, dI(t)/dt, was measured within the first 10% of substrate turnover.

The constants fp and fs were calculated from the slope of a line of fluorescence intensity versus

concentration of P and S, respectively. These values depend on the concentration of Mg 2+ and



the Mg 2+ dissociation constant of each peptide and are determined empirically under the desired

assay conditions. A direct, non-linear fit of v vs. [S] plots using the Briggs-Haldane equation (6)

was used to find KM and Vmax.

v = Vmax [S] (6)
KM + [S]

f vvs. [S] plots

Results of fluorescence increases reported in Table 2-7 were acquired by dividing the slope that

was obtained for different concentrations of phosphopeptide (fp) by the slope for the

corresponding substrate (fs) (Experimental Methods, section VI.f.). The fp and fs values were

measures under appropriate assay conditions without the presence of kinases.
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g. Assays with BTF probes for PKC/3land PKCS

Assays with BTF and RDF chemosensors for PKC3I and PKC6 were performed with varying

substrate and enzyme amounts (Figure 2-5) as described in Section VI.d. To ensure that the

enzymes are active, they were first tested with RDF chemosensors (red bars). When next tested

with the BTF substrates (blue bars), no detectable conversion to product is observed.

h. HPLC and MS data for kinase reactions

The PKA reaction with its RDF sensor (as detailed in Section VI.d.) was monitored by

fluorescence for 616 sec, quenched with 40 pL of a 0.1 M Na2EDTA stock solution, stored on

ice and lyophilized. The dry material was dissolved in Solvent A (50 tL) and injected onto the

analytical C18 HPLC column.
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Introduction

In recent years, much effort has been devoted to identification of substrates for kinases,

such as protein kinase C (PKC). Still, with hundreds of kinases in the human genome,' the

specificity of substrates of many enzymes, like AurA, which plays a central role in cell cycle

progression, remains poorly understood. Since the RDF method, described in Chapter 2, was

able to provide sensors with greatly improved kinetic parameters for a number of kinases, we

want to further extend the approach toward constructing probes that can distinguish closely

related kinases (i.e., PKCs) or by developing new screening techniques that can rapidly and

easily identify specific substrates for kinases where such information is scarce (i.e., AurA).

PKCs have a ubiquitous cellular presence, as they play important roles in phospholipid

hydrolysis 2 and are found to be disregulated in human cancers. 3 The mammalian family is

composed of 12 isozymes grouped into three classes: conventional PKCs (cPKCs) comprise ca, y,

and the alternatively spliced PI and PII, novel PKCs (nPKCs) include 6, F, 1r, and 0, and atypical

PKCs (aPKCs) contain and t. Lastly, PKCt and v are considered by some as a fourth class,

while others group them into a distinct family, protein kinase D (PKD). 4' 5 While all PKCs share

a conserved C-terminal kinase core, their activities are differentially stimulated due to variations

in the N-terminal regulatory region.6 Specifically, cPKCs require diacylglycerol (DAG), Ca 2+

and phosphatidylserine (PS) for function, nPKCs depend on DAG and PS, and aPKCs need only

PS.

Despite the similarities in structure, PKCs act on a broad range of in vivo substrates,

including growth factor receptors, ion channels, ion pumps, transcription factors, and translation

factors.7, 8 The kinases are also involved in signal transduction of a variety of extracellular

stimuli, such as hormones and growth factors.7 Therefore, much work has been devoted to



understanding specificity determinants, particularly among closely related PKCs. Based on the

sequences of documented in vivo substrates, a consensus phosphorylation motif for PKC was

determined to be Arg-Xaa-Xaa-Ser/Thr-Xaa-Arg-Xaa, where Xaa indicates any amino acid and

Arg in position -3 is necessary for activity. 8 Moreover, a long-time benchmark study conducted

in the late 1990s containing 2.5 billion peptides found that each PKC isozyme had a unique

optimal substrate sequence. 9 The study indicated that generally PKCs preferentially

phsophorylated peptides with hydrophobic amino acids at position +1 and basic residues at

position -3. All isozymes, except for PKCp, selected basic residues in positions -6, -4, and -2

and each had additional parameters that differed among classes of PKCs. Additionally, certain

peptides were shown to have a high affinity and selectivity for their cognate PKC isoform (Table

3-1).

Table 3-1. Substrate Preferences of 9 PKC Isozymesa

Positionb

PKC Isozyme -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

PKCa R R R R R K G S F R R K A

PKCII R K L K R K G S F K K F A

PKCII Y K L K R K G S F K K K A

PKCy R R R R R K G S F K R K A

PKC6 A A R K R K G S F F Y G G

PKCs Y Y X K R K M S F F E F D

PKCT A R L R R R R S F R R X R

PKC R R F K R Q G S F F Y F F

PKCp A A L V R Q M S V A F F F

a Adapted from ref. 9. b Residues in bold were fixed in the screen.

Unlike the case of PKCs, much less is known about recognition requirements for the

Aurora kinases. Aurora kinases (AurA, -B and -C) belong to the Ser/Thr protein kinase family

and are involved in various aspects of mitosis.' 0 Specifically, AurA functions in centrosome

maturation, mitotic spindle assembly, and plays a central role in cell cycle progression. l 1-13



Additionally, the gene coding for AurA maps to a region that is frequently amplified in tumors

and its overexpression has been detected in various cancers. 14 Even with the clear importance in

cell division, little is known about the substrate requirements of AurA. Only one study has been

conducted to determine the preferred residues in the recognition domain surrounding the

phosphorylation site.' 5 The resulting consensus sequence was proposed to be Arg-Arg-Xaa-Ser-

Zaa (where Zaa denotes any hydrophobic residue except for Pro and Xaa is a small hydrophobic

amino acid). This 5-residue motif was based on peptides derived from an extended version of the

Kemptide sequence (Ala-Leu-Arg-Arg-Ala-Ser-Leu-Gly-Ala-Ala). However, the best peptide

from this library exhibited a high KM (ca. 300 tM) that renders the substrate of low utility in

high-throughput screens (HTS) or studies where it would be readily phosphorylated a multitude

of kinases, such as inside cells or in crude lysates.

Due to the greatly enhanced catalytic efficiency of RDF probes with a variety of kinases

(including PKC) described in Chapter 2, we wanted to utilize the extended recognition region,

which is the key feature of the RDF design, toward building sensors that can discriminate among

closely related kinases (e.g. PKC isozymes) or that have more practical kinetic parameters (e.g.

AurA). In this section, we first present the results of the PKC RDF peptide screen that was

unable to reveal significant selectivity for one particular PKC isozyme, although highly

improved kinetic parameters were obtained for selected family members. We then sought to

apply the advantages of the RDF design toward expanding recognition elements for AurA

substrates. To that end, the synthesis of a rationally-designed library of AurA peptides is

described. Upon exposure to AurA, a sensor with a 3-fold improvement in catalytic efficiency

was identified. However, attempts to extend recognition parameters beyond the reported AurA

consensus sequence were unsuccessful. In order to take advantage of multiple additional binding



residues that can be present in the RDF design, we developed a new, moderate-throughput

method for identification of Sox-based probes with enhanced specificity for target Ser/Thr

kinases. This chapter culminates with the description of our work toward that goal. Specifically,

a combinatorial peptide library from split and pool resin-based synthesis was first exposed to the

desired kinase. Upon chemical modification of the phosphopeptides in the peptide mixture,

Matrix-Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry (MALDI TOF

MS) was employed to identify the products. When applied to AurA, a peptide sequence was

identified that exhibited an additional 4-fold improvement in catalytic efficiency (kcat/KM) over

the substrate obtained from the rationally-designed library and a total of 7-fold enhancement in

kcat/KM compared to the best literature substrate (Kemptide).

Results and Discussion

Sensors for Protein Kinase C Isozymes

Synthesis of RDF chemosensors for PKCa, PKC3I, PKC6, based on previously

published substrates,9 is detailed in Chapter 2. Because there are 12 PKC isoforms present in

human cells (a, PII, , 6, 8, , ir, 0, t, Ct and v), differentiation between them can be

challenging, particularly for probes comprised of relatively short peptide sequences. With the

highly improved kinetics parameters (i.e., kat/KM) of the RDF probes compared to the BTF

sensors (Table 3-2), we wanted to examine if the additional recognition residues would also

improve the selectivity of those probes for their cognate isozymes.



Table 3-2. Kinetic Parameters of PKC RDF Chemosensors and the Parent Peptides

Target Vmax Catalytic

Entry Kinase Peptide Sequencea KM (pM) b'  (pmol mg 1 min- )b Efficiencyc

1 PKCco BTF Ac-Sox-PGS*FRRR-CONH 2  8.6 - 2.9 d  5.9 + 1.9d  1

2 RDF Ac-RRR-CSox-AS*FRRR-CONH 2  0.13 ± 0.02 2.4 + 0.1 27

3 PKC3I BTF Ac-Sox-PAS*FKKFA-CONH 2  NSe NSe NA'

4 RDF Ac-LKR-CSox-AS*FKKFA-CONH 2  0.81 ± 0.18 0.76 ± 0.06 NA1

5 PKC6 BTF Ac-RKRKGS*F-DPro-Sox-G-CONH2 NSe  NSe  NA'

6 RDF Ac-RKRKGS*F-CSox-YGG-CONH 2  0.48 ± 0.07 0.39 ± 0.02 NA'

a Asterisk (*) denotes the residue that is phosphorylated. Residues important in kinase
recognition are underlined. b Kinetic parameters (KM and Vmax) were obtained from initial slopes
and corrected appropriately for substrate and product fluorescence as described in the
Experimental Methods in Chapter 2. The values reported are the mean ± s.e.m. of triplicate
experiments as calculated from a direct fit of v vs. [S] plots using the Briggs-Haldane equation. c
Catalytic efficiency of each substrate was calculated as kcat/KM (min- pMIM). The values for BTF
and RDF probes within each kinase subset were normalized to the number obtained with the
BTF substrate. d The results have been previously reported. 16 e NS: Not a Substrate.f NA: Not
Applicable.

After exposure of the RDF probes against a panel containing the 12 PKC isozymes, a

preference for a set of isoforms emerged. However, none were able to further discriminate

among the PKCs with high activity (conventional: a, PI, II, and y, and novel: 0) (Figure 3-1).

Surprisingly, specificity was also not observed for the PKC6 RDF sensor, which was modeled

after a peptide that was reported be specific for PKC--an enzyme that belongs to the novel

subfamily.9 Instead, the PKC6 RDF probe was also a superior sensor for the conventional PKCs

and PKCO over other novel (6, s, and r) or atypical ( , t, pt, and v) kinases (Figure 3-1c). Further

assays with peptide concentrations below the KM (as measured with their cognate kinases)

displayed the same trends that were observed at higher concentrations. For comparison, the BTF

sensor for PKCa was also exposed to the panel of PKCs. As expected, the BTF substrate showed

similar reactivity profile as the remaining RDF sensors (Figure 3-1d).
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Figure 3-1. Reaction rates (slopes) of a) PKCa RDF substrate (0.2 jM), b) PKCPI RDF

substrate (1 jM), c) PKC6 RDF substrate (1 jiM), and d) PKCa BTF substrate (8 M) with PKC
isozymes. Reactions were done in 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 0.3 mM CaC12, 0.1
mM EGTA, 100 jM ATP, 1 mM DTT, 0.5 jig/mL phosphatidylserine, 0.1 jIg/mL diacylglycerol
with a) 1 ng, b) 2 ng, c) 10 ng, and d) 1 ng PKC isozyme.

Upon further examination, it was not surprising that the PKCa RDF sensor was unable to

selectively monitor one kinase. The KM values with PKCPI and PKCO, enzymes that displayed

high reaction rates in the isozyme screen (Figure 3-1), were nearly identical to the value obtained

with PKCa (Table 3-3). Therefore, while we had successfully synthesized substrates with highly

improved kinetics for PKCs, we were unable to secure a significant amount of discrimination

among isozymes because the kinetic parameters were generally improved across the family.
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Similarly, this trend has also been observed with the peptides that served as our literature starting

points.9 For example, the KM values for a peptide designed to be a selective substrate for PKCa

indicate that the peptide is accepted almost equally by all isozymes except for PKCp (Table 3-4).

Our results underscore the difficulty in achieving specificity among these isozymes with simple

peptide substrates.

Table 3-3. The Kinetic Parameters for PKCa RDF Substrate with PKCa, PKCPI and PKCO
Isozymes

Vmax

Enzyme KM (M) a  (tmol min1 mg-1 )

PKCa 0.13 ± 0.02 2.4 ± 0.1

PKC3I 0.085 ± 0.007 3.7 ± 0.7

PKCO 0.14 2.4

a The reported values are the mean + s.e.m. of triplicate experiments, except for PKCO, as
calculated from Hanes Plots. The values for PKCO are from a single measurement.

Table 3-4. Kinetic Parameters of PKCa Substrate with PKCca, PKCPI and PKC8a

KM Vmax Vmaj/KM

Enzyme (tIM) b (nmol min 1 U )b  (min 1 U-) b c

PKCa 3.8 1.6 14

PKCP3 8.2 1.2 5

PKC6 3.9 2.5 21

a Table adapted from ref. 9. b Previously reported kinetic parameters were obtained with a
PKCa substrate (H2N-RRRRRKGSFRRKK-COOH). 9 c A unit (U) is defined as an amount of
enzyme required to transfer 1 nmol of phosphate to e-pseudosubstrate peptide per min.

In conclusion, we aimed to examine whether the extended recognition region in RDF

probes would be enough to render our sensors specific for PKCa, PKCPI, and PKC6. As shown,

the additional residues greatly improved kinetic parameters compared to the parent and BTF-

based probes. However, better kinetics did not intrinsically enhance selectivity toward one

recombinant enzyme over another. Inevitably, due to their homology, PKC isozymes share
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similar substrate recognition requirements and must rely on complex cellular regulation and

activation to drive specificity."7 While in cellulo these enzymes might have specific targets, in

biochemical assays the spatial and temporal control over both the enzyme and the substrate is

lost. The in vivo intrinsic function of PKCs seems to be regulated in part by interaction with

targeting proteins that position it near the corresponding regulators and substrates.4' 18

Furthermore, the expression, availability and activation state of these kinases are tightly

regulated in the cell. 19' 20 Therefore, although there is redundancy, not all 12 of the isozymes

would necessarily compete for the same substrates in living systems. Additionally, there may be

elements of protein-protein interactions between the enzyme and its substrate that aid in

recognition, which are difficult to explore with short peptides. When these factors are considered

together, it is not surprising that we have been unable to achieve selectivity with our sensors.

Thus, without a high-throughput screening method it would be difficult and time-consuming to

search for substrates that can discriminate among closely related kinases.

Sensors for Aurora A

a. Synthesis ofAurora A Substrates

While a high level of specificity was not achieved with PKCs, a marked improvement in

the kinetic parameters was obtained with the RDF probes compared to both the BTF sensors and

parent substrates. Since the studies of substrate specificity determinants for AurA are sparse, our

next focus was to design peptidyl sensors with enhanced specificity for AurA. The best peptide-

based substrate for AurA reported in the literature possessed a high KM (300 [M), especially

unusual for a Ser/Thr kinase.' 5 With the success of RDF sensors in gaining specificity through

the extended recognition area, development of a more selective substrate for AurA was
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attempted. Toward that goal, a rationally-designed library of RDF peptides was synthesized

(Table 3-5). The probes were based on Kemptide15 (AurA-S1, S2 and S6-23), PKItide (AurA-

S5), or various proteins that are in vivo substrates for AurA and AurB, such as Histone H3 15, 21

(AurA-S3-S4 and S24-S25), CPEB 2 1 (AurA-S26) and CENP-A 2 1 (AurA-S27-S28). Solid-Phase

Peptide Synthesis (SPPS) was employed to generate the probes following previously described

methods (Chapter 2, Scheme 2-1).
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Table 3-5. Sequences of RDF Chemosensors for AurA

Entry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
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Table 3-5. Sequences of RDF Chemosensors for AurA
Substrate

Kemptide

AurA-S1

AurA-S2

AurA-S3

AurA-S4

AurA-S5

AurA-S6

AurA-S7

AurA-S8

AurA-S9

AurA-S10

AurA-S11

AurA-S12

AurA-S13

AurA-S14

AurA-S15

AurA-S16

AurA-S17

AurA-S18

AurA-S19

AurA-S20

AurA-S21

AurA-S22

AurA-S23

AurA-S24

AurA-S25

AurA-S26

AurA-S27

AurA-S28

a Residue that is phosphorylated is set in the 0 position and the remaining residues are
numbered accordingly. Residues that are added to the Kemptide core are shown in bold.

H2N

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

Ac

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

-7 -6 -5

A

A

A

K Q

K Q

G R T

A

A

A

A

A

A

A

A

A

A A

A A

A A

A A

A

A

A

A

Sequencea

-1 0 +1 +2 +3

A S L G A

A S L C-Sox A

A S L C-Sox A

K S T C-Sox G

K S L C-Sox G

N S I C-Sox A

F S L C-Sox A

F S L C-Sox K

F S L C-Sox A

F S L C-Sox F

F S L C-Sox A

F S L C-Sox L

F S L C-Sox A

F S L C-Sox E

F S L C-Sox A

F S L C-Sox A

F S L C-Sox A

F S L C-Sox L

F S L C-Sox L

F S L C-Sox L

R S L C-Sox A

R S L C-Sox L

F S D C-Sox I

F S L C-Sox

F S L C-Sox G

F S L C-Sox G

D S R C-Sox I

R S R C-Sox P

F S R C-Sox P

Q T

Q T

S

P

P R

+4 +5 +6

A CONH 2

A CONH 2

A CONH 2

K CONH 2

K CONH 2

A CONH 2

A CONH 2

A CONH 2

K CONH 2

A CONH 2

F CONH 2

A CONH 2

L CONH 2

A CONH 2

E CONH 2

A R CONH 2

A G R CONH 2

F R CONH 2

F G R CONH 2

A CONH 2

A CONH 2

A CONH 2

L CONH 2

CONH 2

A P R CONH 2

A P E CONH 2

L P CONH 2

E CONH 2

E CONH 2



b. Fluorescence Increase

AurA-S1-S14

Fluorescence increases for peptides S1-S14 was robust (4-9 fold) (Table 3-6). It was

observed that the more acidic probes (AurA-S13 and S14) had slightly lower fluorescence

changes (4-5 fold). As observed previously with tyrosine kinase sensors, acidic residues in the

vicinity of the Sox chromophore tend to increase the fluorescence intensity of the substrate

presumably by sequestering Mg2+ ions that can coordinate with the choromophore and, thus

display an enhancement in fluorescence (Chapter 2, Table 2-5). High ATP concentration (1 mM)

did not appreciably affect the fluorescence difference in these cases.
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Table 3-6. Fold Fluorescence Increase for Selected AurA Chemosensors

Fold Fluorescence
Increasea

Entry Substrate 0 mM ATP 1 mM ATP

1 AurA-S1 5 5

2 AurA-S2 5 4.8

3 AurA-S3 6.6 4.2

4 AurA-S4 7 4.8

5 AurA-S5 5.8 4.8

6 AurA-S6 7.5 7.5

7 AurA-S7 7.7 6.2

8 AurA-S8 8.2 6.4

9 AurA-S9 7.8 8.6

10 AurA-S10 8.1 8.9

11 AurA-S11 6.6 7.2

12 AurA-S12 7.6 7.6

13 AurA-S13 4.4 4.9

14 AurA-S14 4.4 5.1

15 AurA-S15 6.9 4.1

16 AurA-S16 7 4.5

17 AurA-S17 7.2 2.9

18 AurA-S18 7.8 2.4

19 AurA-S19 7.1 7.4

20 AurA-S20 6.1 3.9

21 AurA-S21 6 4.1

a Measured in triplicate as a quotient of fluorescence intensity at 485 nm of phosphopeptide
and substrate in 20 mM HEPES (pH 7.4), 10 mM MgCl 2, and 10 tM peptide.

AurA-S]5-S28

On the other hand, the fluorescence increase for AurA-S 15-S21 exhibited more variation

(2-8 fold). In the absence of ATP, the fluorescence change was high (6-8 fold), while at 1 mM

ATP it decreased among the more hydrophobic peptides such as AurA-S17 and S18 (Table 3-5,

entries 17 and 18) and to a smaller degree among AurA-S20 and S21 (entries 20 and 21). Similar

to PKCc and Pim2 RDF sensors reported in Chapter 2, at 100 ptM ATP the fluorescence

differences were similar to the ones obtained without ATP (Figure 3-2).
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Figure 3-2. Fold fluorescence difference at 0 (green), 0.1 (purple) and 1.1 (blue) mM ATP for

AurA-S15-S21. The increase was compared to AurA-S6. The reported values are based on a

single measurement. Conditions: 20 mM HEPES (pH 7.5), 10 tM peptide, and 10 mM Mg2 +

The differences were obtained by as a ratio of the fluorescence of the phosphopeptide to that of

the substrate at 485 nm.

Fluorescence differences were not obtained with AurA-S22-S28 because these probes

were directly screened with AurA and the corresponding phosphopeptides were not synthesized.

In conclusion, the fluorescence increases obtained with AurA-S1-S21 agree with the

results presented with RDF probes in Chapter 2. Under variety of local chemical environments

(with acidic, basic, aromatic, aliphatic, or strained amino acids), the C-Sox residue still exhibits

quite robust fluorescence increases that are largely unaffected by ATP concentration.

c. Optimization ofAurA Activity

Recombinant Aurora A and B generally exhibit lower activity compared to many other

Ser/Thr kinases. Since the activity of AurA is instrumental in subsequent substrate screening, it

was necessary to gain access to the most active form of the enzyme. Phosphorylation of Thr288

in the activation segment of AurA is crucial for activity.14 Furthermore, the interaction of AurA
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with a partner protein, TPX2, leads to a strong activation of the kinase. 22 Recently, the structures

of both AurA and the AurA-TPX2(1-43) complex have been solved by X-ray chrystallography.23

Examination of the crystal structures illustrate that the binding of TPX2 to AurA causes a small,

but important, conformational change that shields the pThr288 from phosphatases and locks the

enzyme in the active conformation of the substrate binding site, transforming it into a better

platform for substrates to dock (Figure 3-3a). This behavior has been observed for other kinases

such as cyclin-dependent kinases (CDKs) that require not only phosphorylation of the equivalent

theronine (Thr 160), but also the binding by a partner protein, cyclin A, to be fully active.24 Due

to these reports, TPX(2-43) was chemically synthesized employing pseudo-proline residues

where appropriate (Figure 3-3b) to aid solubilization and to break up secondary structure

formation during peptide elongation.25 26 The first residue, methionine, was excluded due to

complications with the handling and storage of Met-containing peptides, which are susceptible to

facile oxidation.

a)

TPX2 288 
P '

b)
2 43

Ac-SQVKSSYSYDAPSDFINFSSLDDEGDTQNIDSWFEEKANLEN-CONH 2

Figure 3-3. Activation of AurA by TPX2. a) Schematic representation of the molecular
mechanism of TPX2-mediated activation of AurA. The activation segment moves with the help
of TPX2 (orange). b) The primary sequence of TPX2(2-43). Naturally occurring proline and sites
of pseudo-proline residue incorporation are underlined. Adapted from ref. 23.
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Assays with TPX(2-43) showed slight increase in activity compared to assays conducted

in the absence of TPX(2-43) (Figure 3-4). Albeit a modest increase in rate, the TPX(2-43) was

included in the assays that screened reaction rates of AurA peptides previously discussed.

100000

80000

60000

C)

0 40000

20000

0

10 ng AurA, 30 ng AurA, 30 ng AurA,
25 uM S6 100 uM S6 50 uM S6

Figure 3-4. The activity of AurA measured with AurA-S6 in the presence (black bars) or
absence (white bars) of TPX(2-43). Assay conditions: 20 mM HEPES (pH 7.4), 10 mM MgCl 2,
1 mM ATP, 0.1 mM EGTA, 0.1% BME, 0.01% Brij, 0.1 mg/mL BSA, 10 or 30 ng AurA, 25, 50
or 100 pM of sensor, 30 'C, Xex = 410 nm, ,,em = 485 nm, slit widths 5 nm, monitored in a
fluorometer over 10 min.

d. Rate Comparisons

The S1-S28 substrates were individually subjected to kinetic analysis with AurA to

qualitatively compare the efficiency of phosphoryl transfer (Figure 3-5). The best substrate from

the screen, AurA-S6, was used in all cases as an internal standard and all slopes were normalized

to the S6 rate.
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Figure 3-5. Qualitative comparison of reaction rates of chemosenors with AurA. All rates were
normalized to the rate obtained with AurA-S6. Standard assay conditions included 20 mM
HEPES (pH 7.4), 10 mM MgC12, 0.1 mM EGTA, 0.1% BME, 0.01% Brij, 0.1 mg/mL BSA, 4

M TPX(2-43), and 30 ng AurA at 30 oC. The following concentrations differed among sensors:
AurA-S1-S4 (50 M substrate, 1 mM ATP), AurA-S5 (100 [M substrate, 1 mM ATP), AurA-
S6-S14 (10 M substrate, I mM ATP), AurA-S15-S16 (10 M substrate, 1 mM ATP), AurA-
S17-S28 (10 LM substrate, 0.1 mM ATP). The reactions were monitored in a fluorometer over
10 min (kex = 410 nm, k,, = 485 nm, slit widths 5 nm).

AurA-Sl-S6

The initial set of sensors was built around known peptide or protein substrates of AurA

(Table 3-5, entries 2-5 and 7) or PKA (entry 6), a kinase that has similar substrate preferences.

When subjected to AurA, S2 and S5 showed some activity, which was not nearly as high as that

obtained with S6. It is noteworthy that the only sequence difference between S2 and S6 is the

residue in position -1. The other sensors, S3 and S4, were very poor substrates.
residue in position -1. The other sensors, S3 and S4, were very poor substrates.
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AurA-S7-S14

AurA-S7-S14 peptides were synthesized in order to explore the possibility of expanding

the C-terminal end to include additional recognition elements. This was achieved by substitution

of both of the C-terminal alanines, one at a time, with basic (Lys), aromatic (Phe), aliphatic

(Leu), or acidic (Glu) residues (Table 3-5, entries 8-15).

Basic and acidic substitution (S9-S10 and S13-S14, respectively) afforded sensors with

lower reaction rates when compared to S6 and in the instance of S14, containing Glu in position

+4, there was no detectable turnover. On the other hand, chemosensors with aromatic and

aliphatic substitution (S9-S12) had comparable reaction rates with S6, but much poorer

solubility.

AurA-S]5-S18

This series of peptides was synthesized with the free N-terminus and included a C-

terminal Arg in position +5 or +6. Residues +3 and +4 were either both Ala (Table 3-5, entries

16-17) or Leu and Phe, respectively (entries 18-19). These probes were screened with 0.1 mM

ATP to avoid the low fluorescence differences that were observed with S17 and S18 in the

presence of 1 mM ATP (Table 3-6). The rates for all four substrates were similar to one another

and showed no improvement over S6.

AurA-S19-S2]

Upon closer examination of the crystal structure of the active form of AurA27 (PDB

1MQ4) to which a short model substrate (H2N-RFSLC(Npl)A-CO 2H) was docked (Figure 3-6),

several more peptides were considered in order to test additional parameters. Peptide S19 was

identical to AurA-S11 with the exception of the free N-terminus, which may be able to take
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advantage of the acidic patch on the protein where the substrate is believed to bind (Figure 3-6a).

However, it did not display improved reaction rates compared to S 11.

Similarly, AurA-S20 and S21 were designed to examine whether replacement of Phe in

the -1 position by Arg would improve reaction rates by providing an additional basic residue to

form contact with the acidic patch in the substrate binding pocket (Figure 3-6b). Due to the

greatly reduced reaction rates that were observed with S20 and S21, Phe in position -1 seems to

form more favorable contacts than Arg.

c)

A-CO 2H

Figure 3-6. AurA (PDB 1MQ4) docking models with test peptide (H2N-RFSLC(Npl)A-CO 2H).
a) AurA with the test peptide docked in the orientation in which it is predicted to bind based on
the favorable interactions between the crucial Arg in the -2 and -3 positions with the acidic
patch on the protein (acidic = red, basic = blue). b) Closer look at the pocket into which Phe at
the -1 position could enter. The pocket contains acidic and basic residues. c) The docked
complex was rotated approximately 900 around the vertical axis to show the basic patch in the
lower right hand comer and an acidic area in the upper center of the picture.
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AurA-S22-S28

AurA-S22 was synthesized with Asp replacing Leu in the +1 position based on the

observation that it might form contact with basic residues that line the peptide binding groove as

predicted substrate-enzyme docking model (Figure 3-6). However, the reaction rate was

drastically diminished, indicating that acidic residues are highly disfavored in the +1 position.

When the substrate sequence was truncated to only include the core five residues from

Kemptide (AurA-S23) a somewhat reduced the reaction rate was detected compared to the full

Kemptide-based sensor AurA-S6. This observation demonstrated that Ala and Leu residues in

-5, -4, +3 and +4 contribute favorably to substrate turnover. AurA-S24 and 25 included charged

residues at the C-terminus and were designed to combine the Histone H3 and Kemptide

sequences. Peptide AurA-S26 was based on the sequence of CPEB protein, while S27 and S28

were modeled after the sequence from CENP-A, which is a substrate of AurB in vivo. All four

peptides showed greatly diminished reaction rates compared to AurA-S6, particularly the

proline-rich S27 and S28.

In conclusion, from the screen of 28 different probes, AurA-S6 emerged as the most

promising chemosensor for AurA. Nonetheless, attempts to extend the recognition domain

beyond the C- and N-termini of the parent peptide, Kemptide, were unsuccessful.

e. Cross-reactivity with Aurora B

Having screened 28 different substrates for improved activity with AurA, we also

examined the cross-reactivity of a subset of those sensors with a closely related kinase, AurB.

The six probes (AurA-S 1-S6) that we examined display a range of reaction rates with AurA, yet

none are phosphorylated by AurB (Table 3-7). While AurA and AurB have structural and
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sequence homology, the lack of cross-reactivity indicates that they have different substrate

requirements and that it may be possible to construct sensors that differentiate between them.

Table 3-7. Select Chemosensors

ax = no activity, L = low, M

were Tested for Reactivity with AurA and AurB

Turnover by:

Entry Substrate AurA AurB

1 AurA-S1 L x

2 AurA-S2 M x

3 AurA-S3 L x

4 AurA-S4 L x

5 AurA-S5 M x

6 AurA-S6 H x

= medium, H = high reaction rates when exposed to enzyme.

f Kinetic Parameters ofAurA-S2 and S6 with AurA

The AurA-S6 probe was further examined by quantifying the kinetic parameters with

AurA. For comparison purposes, kinetics of AurA-S2, the sensor that was entirely based on the

best literature peptide substrate, Kemptide, were also measured (Table 3-8). Indeed, the kinetic

parameters agreed with initial rate observations (Figure 3-5). Both kinetic parameters, the KM

and Vmax, were improved slightly for AurA-S6 leading to a 3-fold higher catalytic efficiency

compared to AurA-S2, although the only difference among the primary sequences of the probes

was the residue in the -1 position--Ala for AurA-S2 and Phe for AurA-S6. It is likely that the

differences in substrate kinetics are due to favorable interactions that may form between the

hydrophobic pocket in the substrate binding region of the enzyme and the Phe residue of AurA-

S6. However, at this point there are no co-crystal structures of this enzyme-peptide complex that

would unequivocally support this hypothesis.
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Table 3-8. Kinetic Parameters of Selected Chemosensors with AurA

Vmax

Entry Substrate KM ( tM)ab ( tmoI mg -1 min-1 )

1 Kemptide 263

2 AurA-S2 297.8 ± 3.9 1.7 + 0.3

3 AurA-S6 152.3 ± 2.7 2.6 + 0.21

a Kinetic parameters (KM and Vmax) were obtained from initial slopes and corrected
appropriately for substrate and product fluorescence as described in the Experimental Methods.
The values reported are the mean ± s.e.m. of triplicate experiments as calculated from Hanes
Plots. b The KM value for Kemptide has been previously reported.' 5 c Catalytic efficiency of each
substrate was calculated as kat/KM (min' tM ). The values were normalized to the number
obtained with AurA-S6.

In conclusion, through a series of rationally-designed sequences, a sensor with improved

kinetics emerged. This substrate, AurA-S6, can now be further expanded upon utilizing a higher

throughput method to develop a sensor with even better preference for AurA.

Development and Validation of the MS-based Screening Method

While a chemosensor with enhanced AurA kinetics was obtained through rational design,

the KM value was still too high to be of practical use in more complex assays where competing

kinases might be present. Due to time-consuming nature of individual peptide screens described

above, we sought to develop a higher-throughput method for identifying promising kinase

substrates. Ideally, this approach would allow a facile access to degenerate peptide libraries with

natural and unnatural chemical moieties that can be subjected to the kinase of interest and rapidly

decoded to identify substrates that exhibit preference for the enzyme. Traditional methods to

elucidate specificity of kinases include solid-phase phosphorylation screening of either phage

display libraries 28-30 or synthetic peptides 31-36 and the use of degenerate libraries of peptides

oriented around the residue to be phophorylated.8' 37 However, these techniques depend on

laborious substrate peptide decoding procedures. 30' 31 Furthermore, the detection of phosphate is
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based on the transfer of 32 P from [y- 32P]ATP to target peptides or proteins,38 a risk to human

health and the environment, or on antibodies directed against phosphorylated residues,39 which in

some cases is problematic due to their low specificity.

In this section we describe a new method for identification of Sox-based probes with

improved specificity for Ser/Thr kinases (Figure 3-7). First, a library containing amino acid

variations at the site of investigation was generated by Fmoc-based solid-phase peptide synthesis

(SPPS). 2-Naphthyl alanine (2-Nal) was incorporated in place of C-Sox (generally placed in the

+2 position) due to the tendency of the Sox chromophore to be partially eliminated under the

MALDI conditions. The peptides were then released from resin, and the equimolar mixture was

incubated with the desired kinase for varying times. The direct detection of the phosphopeptide

product by MALDI TOF is usually poor due to the inefficient ionization of the negatively

charged phosphate group and the propensity for the phosphate to eliminate under such

conditions. Thus, to enhance signal intensities in the MALDI analysis, a previously reported

method was employed. 40 Briefly, the kinase reaction products were subjected to base [Ba(OH) 2]

to promote -elimination of the serine phosphate moiety, followed by Michael addition of 4-

mercaptoethylpyridine (4-MEP). New peaks appearing in the MALDI spectrum (121 g/mol

greater than the parent peptide) were interpreted as evidence of phosphorylation. The change in

mass after the reaction was due to the loss of phosphate (98 g/mol) during the p-elimination and

addition of 4-MEP (139 g/mol). This strategy enabled us to follow the progress of the reaction

and to evaluate the kinase activity semiquantitatively by comparing intensities of derivatized

peaks with those of the parent peptides in the same spectrum (Figure 3-7). Once the best residue

was found for a particular position, it was fixed in that place and the method was applied to a

different position in an iterative fashion until the best substrate was obtained. Finally, the
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optimized sequence was synthesized with C-Sox 41 instead of 2-Nal, effectively turning the best

substrate into a selective kinase reporter and simultaneously enabling determination of the

kinetic parameters.

SPPS

R OH

ical Modification

Ba(OH) 2  R ) H

HON H 0

R S

ArN N

NT H

kinase
ATP

R OH

Selection of'
best peptide

-o-p-o

Substrates Products

JIi .I
the
s

mass (m/z)

ATP, Mg 2

Figure 3-7. MS-based screening method to design selective substrates for Ser/Thr kinases.
Chemical modification of phosphorylated peptides prior to MS analysis is also shown (inset).

In order to optimize and validate the screening method, we initially focused our efforts on

PKA and its well studied and selective substrate, Kemptide (Ac-LRRASLG-CONH 2).42 Two

peptide libraries based on Kemptide were used to assess the preference of PKA for residues at

the -1 and -3 positions (Table 3-9). In all screens, Ser, Thr, Cys and Met were excluded to avoid

side reactions, such as oxidations. Additionally, since there are three groups of amino acids with

similar masses (Asp, Leu, Ile, Asn = 131-133 g/mol; Lys, Glu, Gln = 146-147 g/mol; and Val,

Pro = 115-117 g/mol), only one from each group was chosen in order to simplify the MALDI
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analysis. However, if necessary, it is also possible to use all amino acids in the screen by

utilizing a peptide capping step during synthesis, effectively producing a nondegenerate mass

ladder for each peptide.43' 44 A mixture of the following amino acids was selected: Asp, Lys, Val,

Ala, Arg, Gly, His, Phe, Trp and Tyr. Libraries were synthesized on Fmoc-PAL-PEG-PS resin.

For positions that were varied, an isokinetic mixture of 10 amino acids was created by using a

ratio of amino acid equivalents based on their reported coupling rates. 45 The MALDI spectra of

the peptide libraries before and after incubation with PKA for varying time periods (10 min, 30

min, 1 h, 2 h and 24 h) followed by chemical derivatization with 4-MEP showed that there is a

preference for Arg at the -3 position (Figure 3-8) and for small hydrophobic residues at the -1

position (Table 3-9). This result is in full agreement with the consensus sequence described for

PKA.15, 42

Table 3-9. Peptide Libraries for PKA
a

Substrate Sequences
-4 -3 -2 -1 0 +1 +2 +3 +4

1 Ac L X R F S L 2-Nal A A CONH 2

2 Ac L R R X S L 2-Nal A A CONH 2

Result L R R G/A S L 2-Nal A A

a X = Asp, Lys, Val, Ala, Arg, Gly, His, Phe, Trp and Tyr.
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Figure 3-8. MALDI-TOF spectrum of the peptide library at the -3 position after its incubation

with PKA for 1 h and chemical derivatization with Ba(OH) 2/4-MEP.

Next, to demonstrate the generality and applicability of the method, substrates for AurA

were generated. We made six peptide libraries using equimolar mixtures of amino acids at the -

1, -3, -4, +1, +3 and +4 positions based on the sequence of Kemptide (Table 3-10). The results

of these libraries after incubation with AurA for varying time periods (10 min, 30 min, 1 h, 2 h

and 24 h) followed by chemical derivatization with 4-MEP showed that first, there was an

enhanced preference for an aromatic residue, Tyr or Phe, in the -1 position (Table 3-10, entry 3).

For the remaining libraries, Phe was fixed in this position. Second, there was a high preference

for Arg in the -3 position, which is in agreement with the consensus sequence described for

AurA 15 (entry 2). Third, in the +1 position, aromatic residues, such as Phe, were favored (entry

4). This result coincides with our earlier observations (Figure 3-5) and previous work done by

Pinna et al.15 that identified Phe, Leu, and Ile in the +1 position (Leu and Ile were excluded from

our screen). Fourth, small hydrophobic residues, mainly Gly, were selected for positions -4, +3

and +4 (entries 1, 5 and 6). Lastly, due to the preference for Gly at -4 and +3 positions, we made

two additional peptide libraries using D-amino acids (entries 1 and 5). As in the case of the L-
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peptide libraries, AurA selected Gly in both positions and, interestingly, DAla in +3 position.

Table 3-10. Peptide Libraries for AurA

Substrate Sequences°

Entry -4 -3 -2 -1 0 +1 +2 +3 +4
1 Ac X/Y R R F S L 2-Nal A A CONH 2
2 Ac L X R F S L 2-Nal A A CONH 2
3 Ac L R R X S L 2-Nal A A CONH 2
4 Ac L R R F S X 2-Nal A A CONH 2
5 Ac L R R F S L 2-Nal X/Y A CONH 2
6 Ac L R R F S L 2-Nal A X CONH 2

Result G/A R R F S F 2-Nal G/DA G

a X = Asp, Lys, Val, Ala, Arg, Gly, His, Phe, Trp and Tyr; Y = DAsp, DLys, DVal, DAla, DArg,
DGly, DHis, DPhe, DTrp and DTyr.

Several sequences selected by our screen were then individually synthesized with C-Sox

in place of 2-Nal and evaluated as probes for AurA. Table 3-11 summarizes the sequences and

the kinetics parameters of the best peptides. As seen previously with the rationally designed

probes, a 2-fold improved KM and a 3-fold improved catalytic efficiency were obtained by

incorporating a Phe residue at the -1 position (Table 3-8, entry 2). However, a 6-fold enhanced

KM and a 5- to 7-fold rise in catalytic efficiency compared to Kemptide was obtained with Gly

(entry 3) or DAla (entry 4) at position +3. These peptides are the best substrates described so far

for AurA and should be able to be used in studies to dissect the role that AurA plays in mitosis

and other cellular processes.
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Table 3-11. Sequences and Kinetics of Sox-substrates for AurA

Entry SubSequences a Vma x  Catalytic
Entry Substrate KM (CM)O ( -mol mg l m in - )° Efficiency b

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 (mol mg min Effic

1 AurA-S2 Ac A L R R A S L C-Sox A A CONH 2 297.8± 3.9 1.7 ± 0.3 1
2 AurA-S6 Ac A L R R F S L C-Sox A A CONH 2 152.3 ±2.7 2.6 ± 0.2 3
3 AurA-S29 Ac A L R R F S L C-Sox G A CONH 2 57.0 8.2 2.2 ± 0.1 7
4 AurA-S30 Ac A G R R Y S L C-Sox DA A CONH 2 65.0 ± 7.0 1.8 ± 0.1 5

a Kinetic parameters (KM and Vmax) were obtained from initial slopes and corrected
appropriately for substrate and product fluorescence as described in Experimental Methods. The
values reported are the mean ± s.e.m. of duplicate experiments as calculated from a direct fit of
Hanes ([S]/v vs. [S]) plots. c Catalytic efficiency of each substrate was calculated as kcat/KM
(min' tM 1') and normalized to the value obtained in entry 1.

Conclusions

Here we have presented screens for selective and improved probes for PKCs and Aurora

kinases. However, due to the low throughput of such processes, we also developed a new mass

spectrometry-based screening method. Although chemical methods to detect phosphorylated

products using mass spectrometry and fluorescence have been reported, none were able to obtain

substrates with improved selectivity for the desired kinase.46 Our screen allows identification of

substrates for serine/threonine kinases using a chemically modified combinatorial peptide library

and MALDI TOF MS. The strategy was first validated by obtaining Kemptide as the most

selective PKA peptide, which fully agrees with current literature. Moreover, the screen was

applied to AurA resulting in a substrate with a 6-fold enhancement in KM and a 7-fold rise in

catalytic efficiency with respect to the best sequence described so far in the literature. Compared

with the conventional approaches, this strategy is simple, easy to perform and it does not require

complex instrumentation, the use of radioisotopes, or antibodies. The iterative nature of the

method and its ability to incorporate unnatural elements (such as D-amino acids) should make

searches for substrates of virtually any kinase possible. The conversion of the most selective

peptides into fluorescent Sox-containing probes should give a specific reporter for any kinase of
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choice.

Future Directions

Recently a new substrate demonstrating selectivity for PKCa in cell lysates has been

reported (H2N-FKKQGSFAKKK-CONH 2).47 With our MS-based high throughput method there

is now an opportunity to revisit PKCs and build truly isozyme-specific sensors, giving

researchers a tool to differentiate cellular roles of individual isozymes in normal and diseased

states.
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Experimental Methods

General Information

Unless otherwise noted, all solvents and reagents were obtained commercially and used without

further purification. N'-Fmoc-protected amino acids were purchased from Novabiochem.

Whenever anhydrous and/or degassed CH 2C12 was necessary it was distilled from calcium

hydride and degassed by bubbling argon for at least 20 min. Peptides were purified via

preparative reverse-phase HPLC employing a gradient of solvents A (H20 with 0.1% v/v TFA)

and B (CH 3CN with 0.1% v/v TFA) and characterized using mass spectrometry. Peptide purity

was determined by analytical reverse-phase HPLC.

Instrumentation

HPLC: HPLC was carried out on Waters Prep LC 4000 System or Waters Delta 600 System

equipped with Waters 2487 dual wavelength absorbance detectors. Columns used: C18 analytical

(flow rate = 1 mL/min), Beckman Ultrasphere ODS, 5 jtm, 150 x 4.6 mm; C18 preparatory (flow

rate = 15 mL/min), YMC-Pack Pro, 5 jim, 250 x 20 mm.

MALDI-TOF MS: PerSeptive Biosystems Voyager MALDI-TOF instrument.

UV-Vis Spectrophotometer: Shimadzu UV-2401 PC.

Fluorometer: Fluoromax 3 from Jobin Yvon. Cuvette: Starna Cells (16.100F-Q-10) 100 jIL sub-

micro cuvette, 1 cm path length.
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Peptide Synthesis

a. Coupling chemistry and conditions

All peptides were synthesized using the standard Fmoc-based amino acid protection chemistry

on Fmoc-PAL-PEG-PS resin (Applied Biosystems, 0.19 mmol g-1) using either the on-resin

alkylation (vide infra) or the Fmoc-C(Sox[TBDPS])-OH building block. The resin was swelled

in CH 2C12 (5 min.) and then DMF (5 min) prior to synthesis. All the amino acids except for

Fmoc-C(Sox[TBDPS])-OH were coupled according to the following procedure: Fmoc

deprotection (20% 4-methylpiperidine in DMF, 3 x 5 min), rinsing step (DMF, 5 x), coupling

step (amino acid/PyBOP/HOBt/DIEA, 6:6:6:6, 0.15 M in DMF, 30-45 min), rinsing step (DMF,

5 x; CH 2CI 2 , 5 x). Fmoc-C(Sox[TBDPS])-OH was coupled in the following manner: amino

acid/PyAOP/HOAt/DIEA, 2:2:2:5, 0.15 M in DMF, 2-12 hr. The coupling was repeated if

necessary (amino acid/PyAOP/HOAt/DIEA, 1:1:1:3, 0.15 M in DMF, 2-12 hr) as determined by

the TNBS test for free amines. It is important to wash the resin rigorously (DMF followed by

CH 2C12) to remove excess amino acid before performing any tests for free amines. This is

particularly necessary after coupling of Fmoc-C(Sox[TBDPS])-OH due to its deep red color,

which does not affect its coupling efficiency. At the end of the synthesis, the Fmoc group was

removed with 20% 4-methylpiperidine in DMF (3 x 5 min.) and the resin was rinsed with DMF

(5 x). The resin-attached free amines were capped by exposure to Ac20 (20 equiv.) and pyridine

(20 equiv.) in DMF for 30 min. The resin was rinsed with DMF (5 x), CH 2C12 (5 x) and

subjected to 20% 4-methylpiperidine in DMF (3 x 5 min.) to remove any Sox aryl esters that

might have formed during acetylation. The resin was finally washed with DMF, CH 2C12, MeOH

(5 x each) and dried under vacuum.
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a. On-resin alkylation ofpeptides with Sox-Br

Resin-bound peptides (50 mg, 0.0095 mmol, 1 equiv.) incorporating Cys(Mmt) were swelled in

CH 2C12, then DMF (5 min each). The Mmt protecting group was removed from the resin-bound

peptide by bubbling N2 through a solution of 1% TFA, 5% TIS in CH 2 C12 (4 x 20 min or until

most of the yellow color due to the Mmt cation has disappeared). The resin was then subjected to

rigorous washing with CH2CI 2 (5 x) and DMF (5 x). Anhydrous DMF (200 pL) was added to the

resin followed by freshly distilled tetramethylguanidine (5.96 pL, 0.0475 mmol, 5 equiv.). The

mixture was incubated for 2-3 min. Sox-Br (17 mg, 0.0285 mmol, 3 equiv.) was dissolved in

anhydrous DMF (150 pL) and added to the resin. After ca. 12 hours of reaction time, the excess

reagents were drained and the resin washed with DMF, CH2C12, MeOH, CH 2C12 (5 x each).

b. Peptide library synthesis

Solid-phase peptide synthesis was performed manually by using Fmoc chemistry on Fmoc-PAL-

PEG-PS resin (0.19 mmol g-'). The resin was swelled in CH 2C12 (5 min) and then DMF (5 min)

prior to synthesis. Fixed positions were introduced by treating the amino acid (3 equiv./equiv.

resin) with PyBOP (3 equiv./equiv. resin) and DIEA (8 equiv./equiv. resin) in DMF for one hour

at room temperature. To install the randomized position, 10 equivalents of an isokinetic mixture

of Fmoc-amino acids (Fmoc-amino acid, mole%: Fmoc-Ala-OH, 7.1; Fmoc-Arg(Pbf)-OH, 13.6;

Fmoc-Asp(O-tBu)-OH, 7.3; Fmoc-Gly-OH, 6.1; Fmoc-His(Boc)-OH, 7.3; Fmoc-Lys(Boc)-OH,

13.0; Fmoc-Phe-OH, 5.2; Fmoc-Trp(Boc)-OH, 8.0; Fmoc-Tyr(O-tBu)-OH, 8.6; Fmoc-Val-OH,

23.7) were preactivated with DICI (10 equiv), and HOBt (10 equiv) in DMF (3 mL). The

coupling was repeated after introducing the randomized position. Standard deprotection

conditions were employed (20% 4-methylpiperidine in DMF for 10 min at RT). At the end of the

synthesis the Fmoc group was removed with 20% 4-methylpiperidine in DMF, the resin was
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rinsed with DMF and exposed to Ac2 0 (20 equiv) and pyridine (20 equiv) for 30 min. The resin

was finally washed with DMF, CH 2C12, MeOH (5 x each) and dried under vacuum.

c. Side chain deprotection and cleavage from resin

The resin cleavage and protecting group removal was achieved by exposing the resin-bound

peptides for 3 h to TFA/EDT/H 20/TIS (94:2.5:2.5:1% v/v) for sequences containing easily

oxidized residues (e.g. Cys, Met, Trp) or TFA/H 20/TIS (95:2.5:2.5% v/v) for sequences without

such residues (C-Sox does not require EDT in the cleavage cocktail). The resulting solution was

concentrated under a stream of N2 and precipitated by addition of cold Et20. The pellet was

triturated with cold Et20 (3 x), redissolved in water, filtered and lyophilized. The peptides were

purified by preparative reverse-phase HPLC using UV detection at either 228 nm (amide bond

absorption) and 280 nm (Fmoc, Trp, and/or Tyr absorption) or 228 nm and 316 nm (Sox

absorption). Only fractions showing a single peak of correct mass by analytical HPLC were used

in further experiments.
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d Characterization Data for AurA-S1-S30 Peptides

HPLC tR [M]
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Name

AurA-S1

AurA-P1

AurA-S2

AurA-P2

AurA-S3

AurA-P3

AurA-S4

AurA-P4

AurA-S5

AurA-P5

AurA-S6

AurA-P6

AurA-S7

AurA-P7

AurA-S8

AurA-P8

AurA-S9

AurA-P9

AurA-S10

AurA-P10

AurA-Sl1

AurA-P11

AurA-S12

AurA-P12

AurA-S13

AurA-P13

AurA-S14

AurA-P14

AurA-S15

AurA-P15

AurA-S16

AurA-P16

AurA-S17

AurA-P17

AurA-S18

AurA-P18

AurA-S19

Peptide Sequence

Ac-ALKRASL-CSox-AA-CONH 2

Ac-ALKRApSL-CSox-AA-CONH 2

Ac-ALRRASL-CSox-AA-CONH
2

Ac-ALRRApSL-CSox-AA-CONH 2

Ac-KQTARKST-CSox-GK-CONH 2

Ac-KQTARKpST-CSox-GK -CON H2

Ac-KQTARKSL-CSox-GK-CONH 2

Ac-KQTARKpSL-CSox-GK -CONH 2

Ac-GRTGRRNSI-CSox-AA-CONH 2

Ac-GRTGRRNpSI-CSox-AA-CONH 2

Ac-ALRRFSL-CSox-AA-CONH 2

Ac-ALRRFpSL-CSox-AA-CONH 2

Ac-ALRRFSL-CSox-KA-CONH 2

Ac-ALRRFpSL-CSox-KA-CONH 2

Ac-ALRRFSL-CSox-AK-CONH 2

Ac-ALRRFpSL-CSox-AK-CONH 2

Ac-ALRRFSL-CSox-FA-CONH 2

Ac-ALRRFpSL-CSox-FA-CONH 2

Ac-ALRRFSL-CSox-AF-CONH 2

Ac-ALRRFpSL-CSox-AF-CONH 2

Ac-ALRRFSL-CSox-LA-CONH 2

Ac-ALRRFpSL-CSox-LA-CONH 2

Ac-ALRRFSL-CSox-AL-CONH 2

Ac-ALRRFpSL-CSox-AL-CONH 2

Ac-ALRRFSL-CSox-EA-CONH 2

Ac-ALRRFpSL-CSox-EA-CONH 2

Ac-ALRRFSL-CSox-AE-CONH 2

Ac-ALRRFpSL-CSox-AE-CONH 2

H2N-AALRRFSL-CSox-AAR-CONH 2

H2N-AALRRFpSL-CSox-AAR-CONH 2

H2N-AALRRFSL-CSox-AAGR-CONH 2

H2N-AALRRFpSL-CSox-AAGR-CONH 2

H2N-AALRRFSL-CSox-LFR-CON H2

H2N-AALRRFpSL-CSox-LFR-CON H2

H2N-AALRRFSL-CSox-LFGR-CONH 2

H2N-AALRRFpSL-CSox-LFGR-CONH 2

H2N-ALRRFSL-CSox-LA-CON H2

[M+H]+
HPLC tR [M]Mol. Formula

C56 H 93 N1 7Ol5 S 2

C56 H 94 N 17 01 8 PS 2

C 56 H 9 3 N 1 9 0 1 5 S 2

C56H94N1901 8PS2

C62 H 10 5N 2 10 19S 2

C6 2H 10 6 N 210 22 PS 2

C 6 4 H 109 N 2 1 0 1 8 S 2

C64H 11 N 21 0 2 1PS 2

C 6 2 H 10 3 N2 50 1 9 S 2

C 62H 104 N 25 0 22 PS 2

C 6 2 H 9 7 N 9 0 1 5 S 2

C62H98N1901 8 PS2

C 65H 1 04 N 200 15 S 2

C65H 105N 200 18PS2

C6 5H 10 4 N 200 1 5S2

C65HI05N20018 PS2

C68Ho10 N190 15S2

C68 H102 N 19 0 18 PS 2

C 68H 1 1oN 19 0 1 5S2

C68H102N1901 8 PS2

C65H103N19015 S2

C65H104N1901 8PS2

C 65 H1 03 N1 9 0 15 S2

C65 H 104 N 19 0 18 PS 2

C 6 4 H 9 9 N 1 9 0 1 7 S 2

C 64 H 1ooN 1 9 0 2 0 PS 2

C64H99N19017S2

C64H 0ooN 190 20PS2

C 6 9 H 1 1 2 N 2 4 0 1 6 S 2

C 6 9 H 1 1 3 N 24 0 1 9 PS 2

C71Hs15N25017S2

C7 H 116N250 20PS2

C78H122N24016S2

C78H123N240 19PS2

C80H125N250 17PS 2

C80H126N250 20PS2

C63H101N19014S2

(min.)'

25.2c

24.2c

25.8c

24.6c

21.2c

20.9c

22.6c

21.9c

22.6c

21.6c

25.9c

25.0 c

20.6d

20.2 d

20.6d

20.2
d

22.9
d

22.3
d

23.0 d

22.4 d

22.7d

22.5
d

22.7
d

22.1 d

21.3
d

20.7 d

21.4 d

20.7 d

19.2

18.9

19.4

19.1

20.9

20.8

21.2

20.8

21.2

Calc.

1308.6

1388.5

1336.6

1416.6

1512.7

1592.7

1524.8

1604.8

1566.8

1646.7

1412.7

1492.7

1469.8

1549.7

1469.8

1549.7

1488.8

1568.7

1488.8

1568.7

1454.8

1534.7

1454.8

1534.7

1470.7

1550.7

1470.7

1550.7

1596.8

1676.8

1653.8

1733.8

1714.9

1794.8

1771.9

1851.9

1411.7

foundb

1307.3

1388.1

1336.5

1416.5

1513.5

1593.8

1524.9

1604.8

1567.1

1646.4

1412.7

1493.5

1470.8

1550.7

1470.8

1550.7

1489.8

1569.7

1489.8

1569.7

1455.8

1535.7

1455.8

1535.7

1471.7

1551.7

1471.7

1550.7

1596.6

1677.3

1654.2

1734.6

1715.5

1795.6

1771.4

1852.4

1412.5



AurA-P19 H2N-ALRRFpSL-CSox-LA-CONH 2

AurA-S20

AurA-P20

AurA-S21

AurA-P21

AurA-S22

AurA-S23

AurA-S24

AurA-S25

AurA-S26

AurA-S27

AurA-S28

AurA-S29

AurA-P29

AurA-S30

AurA-S30

a Peptides

H2N-AALRRRSL-CSox-AA-CON H2

H2N-AALRRRpSL-CSox-AA-CON H2

H2N-AALRRRSL-CSox-LA-CON H2

H2N-AALRRRpSL-CSox-LA-CON H2

H2N-ALRRFSD-CSox-AA-CON H2

H2N-RRFSLC-CSox-CONH 2

H2N-KQTRRFSL-CSox-GAPR-CON H2

H2N-KQTRRFSL-CSox-GAPE-CONH 2

H2N-SRLDSRC-CSox-I L-CONH 2

H2N-PRRRSRC-CSox-PE-CON H2

H2N-PRRRFSR-CSox-PE-CON H2

Ac-ALRRFSL-CSox-GA-CON H2

Ac-ALRRFpSL-CSox-GA-CON H2

Ac-AGRRYSL-CSox-DAA-CON H2

Ac-AGRRYpSL-CSox-DAA-CON H2

were purified using the following
gradient 5-95% B (over 30 min) unless otherwise specified All

C57 H98 N 22 0 1 4S2

C5 7 H9 9N 2 20 1 7 PS 2

C6 H104N22014S2

C60 HIosN 22 0 17PS 2

C58 H 89 N 19 01 6 S2

C45 H 69 N 5 01OS 2

C74H119N27020 S2

C73H114N24022S2

C5 5H 92 N 18 0 16 S2

C57H94N2401 S2

C66H102N25016 S2

C61H95N19015 S2

C61H96N19018 PS2

C58H89N190 16 S2

C58 H9 oNI90 1 9 PS 2

method: 5 %

18.6

18.0

19.4

18.9

18.6

19.9

19.9

18.9

20.1

21.2

17.6

24.4e

23.7 e

26.7

24.8e

B (5 min)
peptides, except

1378.7

1458.7

1420.7

1500.7

1371.6

1043.5

1769.9

1742.8

1324.6

1418.7

1565.7

1398.6

1478.6

1372.6

1452.5

followe

and S4, prior to purification were dissolved in 20% AcOH in H20. AurA-S , S3 and S4 were
dissolved in H20. b MS data was collected on a MALDI TOF mass spectrometer. c Retention
times are reported from runs on a reverse-phase analytical C18 column. Method: 5% B (5 min)
followed by a linear gradient 5-95% B (30 min). d Retention times are reported from run on a
reverse-phase preparatory C18 column. Method: 5% B (5 min) followed by a linear gradient 5-
95% B (30 min). e Reported HPLC retention times and conditions are from analytical runs.
Method: 5% B (5 min) then increased to 15% B (1 min) and followed by a linear gradient to 45%
B (30 min).

Phosphorylation ofpeptide libraries

AurA: 200 ptM of the corresponding peptide from the AurA library was added to a solution of

25 mM Tris, 10 mM MgC12, 5 mM [-glycerophosphate, 0.01 % TritonX-100, 1 mM ATP, 2.5

mM DTT, 0.5 mM EGTA and 200 ng AurA (Biosource, diluted with 20 mM Tris, 0.05 mM

TritonX-100, 2 mM DTT, 0.1 mg/mL BSA, 10% glycerol) in a total volume of 100 pL.

PKA: 200 pM of the corresponding peptide from the PKA library was added to a solution of 20

mM HEPES (pH 7.4), 10 mM MgCl 2, 1 mM ATP, 1 mM DTT, 0.1 mM EGTA and 100 ng PKA
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1379.6

1459.6

1421.7

1501.6

1373.8

1045.4

1773.0

1744.9

1326.5

1421.5

1568.8

1398.8

1478.9

1374.1

1453.2

d by a linear
AurA-S1, S3

20.7 1491.7 1492.5C63H102N19017PS2



catalytic subunit (catalytic subunit, Calbiochem, diluted with 50 mM Tris-HCI [pH 7.5], 10 mM

MgCl 2, 1 mM DTT, and 0.15 mg/mL BSA) in a total volume of 100 jiL.

Five incubation reactions for each peptide library were preformed and were stopped at five

different times (10 min, 30 min, 1 h, 2 h and 24 h), followed by the derivatization reaction.

Chemical derivatization ofphosphorylated peptide libraries

A 400 jiL aliquot of a saturated solution of Ba(OH) 2 and 20 gL of 4-MEP (Toronto Research)

were added to the corresponding phosphorylation reactions. The reaction was carried out for 2 h

at 37 'C and the solution was acidified with 20 tL of formic acid, desalted and concentrated

using Zip-Tipcl 8. The samples were dissolved in 100 ptL of 0.1% TFA in water and one aliquot

(5 gL) of each sample was taken to be desalted using a Zip-Tipcis and analyzed by MALDI.

Stock solutions

Due to the affinity of the phosphorylated peptides for Zn2+, by analogy with a previously

reported peptide, the reagents with the highest purity and lowest metal content were used to

avoid the necessity of removing metal ion impurities after preparations.

1. Stock solutions of the peptides were prepared in doubly deionized water and their

concentrations were determined by UV-VIS (based on the determined extinction coefficient

of the fluorophore unit, 5-(N,N-dimethylsulfonamido)-8-hydroxy-2-methylquinoline, 6355 =

8247 M' cm' at 355 nm in 0.1 M NaOH with 1 mM Na 2EDTA). An average of the values

from three separate solutions, each prepared using a different volume of the stock solution,

was read on a UV-Vis Spectrophotometer. Peptide stock solutions were stored at 4 'C.
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2. Magnesium chloride stock solution of 2.66 M was prepared from Alfa Aesar's Puratronic

grade salt. Most commercially available salts contain Zn 2+ as significant impurities and

should not be used due to the high affinity of the phosphorylated peptides for Zn2+. The Mg2+

concentration was determined by titration with a standardized solution of EDTA (Aldrich) in

the presence of an Eriochrome Black T (Aldrich).

3. 500 mM HEPES (SigmaUltra) was prepared and adjusted to pH 7.4 with sodium hydroxide

(99.998+%, Aldrich) solution.

4. 10 mM DTT (Biotechnology grade, Mallinckrodt) was prepared in degassed ultrapure water

and stored at -80 oC.

5. 1% BME (Aldrich) was prepared in degassed ultrapure water and stored at -80 oC.

6. 10 mg/mL BSA was prepared by dissolving bovine serum albumin (Heat Shock Fraction V,

Roche) in ultrapure water and then filtered through a 0.45 micron syringe filter to remove

particulates.

7. 0.1% Brij-35 P solution was prepared by dissolving an appropriate amount of Brij-35 P

(Fluka) in doubly deionized water. The solution was stored at room temperature.

8. 100 mM ATP solution was prepared by dissolving 1.1024 g of ATP in 20 ml of doubly

deionized water. The solution was then divided into 50 ptl aliquots and stored at -80 OC until

use.

9. 500 mM EGTA was prepared from ethylene glycol-bis(2-aminoehtylether)-N,N,N',N'-

tetraacetic acid (SigmaUltra) dissolved in 2 M NaOH and stored at 4 oC.

10. 10 jtg/mL phosphatidylserine and 2 gg/mL diacylglycerol in 20 mM HEPES (pH 7.4) were

prepared by combination of appropriate volumes of chloroform solutions of 10 mg/mL

porcine brain phosphatidylserine (Avanti Polar Lipids, Inc.) and 2 mg/mL 1,2-dioleoyl-sn-
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glycerol (Avanti Polar Lipids, Inc.). The chloroform was evaporated and an appropriate

amount of solution 3 was added. The solution was alternated between vortexing for 3 min

intervals and incubating in warm water bath for 1 min for a total time of 12 min. The solution

was stored in aliquots at -20 oC. Samples were sonicated for 10 min before use in enzyme

assays.

Fluorescence Experiments

The 5 nm emission and excitation slits were used for measurements of fluorescence increase in

the fluorometer. For fluorescence spectra an excitation wavelength of 360 nm was used with

emission 380-650 nm. Enzyme assays were performed by exciting at 410 nm and monitoring the

emission at 485 nm with slit widths of 5 nm for emission and 5 nm for excitation. Readings were

obtained every 3 second for 10 min with 1 sec integration time.

a. Fluorescence Intensity Dependence on [ATP]

ATP titrations were performed where concentration of the substrate was held constant and the

concentration of ATP was varied. No enzyme was present in these experiments. A solution of the

substrate (or phosphopeptide) was prepared in 20 mM HEPES (pH 7.4), 10 mM MgCl 2 , and 10

tM peptide.

b. Assay Protocols

Screening for Enhanced Reaction Rates

PKCs: Reactions were done in 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 0.3 mM CaCl 2, 0.1 mM

EGTA, 100 tM ATP, 1 mM DTT, 0.5 tg/mL phosphatidylserine, 0.1 tg/mL diacylglycerol at

30 'C with appropriate amounts of PKC isozyme (Biosource, diluted with 20 mM HEPES [pH
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7.4], 10 mM MgCl 2, 0.3 mM CaC12, 1 mM DTT, 10 mg/mL BSA and 0.01% Brij-35 P).

Substrate peptide was added to begin the reaction. The assays were performed in the fluorometer

(Xex = 360 nm, ,,em = 485 nm, slit widths = 5 nm).

AurA: Reactions were done in 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 0.1 mM EGTA, 0.1%

BME, 0.01% Brij, 0.1 mg/mL BSA, 4 pM TPX(2-43) at 30 oC. The reactions were started by

addition of 30 ng AurA (Biosource, diluted with 20 mM Tris, 0.05 mM TritonX-100, 2 mM

DTT, 0.1 mg/mL BSA, 10% glycerol). The assays were performed in the fluorometer ()ex = 360

nm, kem = 485 nm, slit widths = 5 nm).

Determination of Kinetic Constants from Fluorescence Data

The reactions were initiated by addition of recombinant enzyme (AurA) or substrate (PKCs). The

kinetic assays were performed in the fluorometer (PKCs: ,,ex = 360 nm, Xem = 485; AurA: Xex =

410 nm, ,,em = 485; slit widths = 5 nm). The reactions were carried in a fluorescence

microcuvette (120 pL per reaction) containing varying chemosensor concentrations (generally

0.2-5 x KM, unless otherwise noted) at 30 oC. Fluorescence slopes were determined by a least-

squares fit using Microsoft Excel. Slopes were then either converted to a rate (see Chapter 2,

Experimental Methods, section VI.e.). The kinetic parameters were obtained from Hanes plots

([S]/v vs. [S]). Standard assay conditions were as follows:

PKCs: Reactions were done in 20 mM HEPES (pH 7.4), 10 mM MgC12, 0.3 mM CaC12, 0.1 mM

EGTA, 100 pM ATP, 1 mM DTT, 0.5 pg/mL phosphatidylserine, 0.1 gpg/mL diacylglycerol at

30 'C with appropriate amounts of PKC isozyme (Biosource, diluted with 20 mM HEPES [pH
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7.4], 10 mM MgC12, 0.3 mM CaC12, 1 mM DTT, 10 mg/mL BSA and 0.01% Brij-35 P).

Substrate peptide was added to begin the reaction. The assays were performed in the fluorometer

(kex = 360 nm, ,em = 485 nm, slit widths = 5 nm).

AurA: Reactions were done in 25 mM Tris, 10 mM MgCl 2, 5 mM P-glycerophosphate, 0.01 %

TritonX-100, 1 mM ATP, 2.5 mM DTT, 0.5 mM EGTA at 30 oC. The reactions were started by

addition of 30 ng AurA (Biosource, diluted with 20 mM Tris, 0.05 mM TritonX-100, 2 mM

DTT, 0.1 mg/mL BSA, 10% glycerol). Kinetic parameters are normally determined using

concentrations of the substrate in the 0.2-5 x KM range. However, the KM values of AurA

substrates can be high, requiring very concentrated samples of substrate for the higher kinetic

points. At high sensor concentrations most of the excitation light is absorbed by the Sox

chromophore before it can reach all the molecules evenly along the cuvette's path length, giving

slightly false results. Therefore, the substrate concentration was never greater than 500 pM. The

assays were performed in the fluorometer ( ex = 360 nm, ,,em = 485 nm, slit widths = 5 nm).
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Hanes Plots
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Chapter 4. Highly Selective Chimeric Reporters for ERK1/2 in Cellular Media

A portion of the work described in this chapter has been published in:
Lukovi, E.; Vogel Taylor, E.; Imperiali, B. Monitoring Protein Kinases in Cellular Media with
Highly Selective Chimeric Reporters. Angew. Chem. Int. Ed. Engl. 2009, in press.
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Introduction

Mitogen-activated protein kinases (MAPKs) are important regulators of cellular function,

and the dynamics of their activities are critical indicators of the health or pathology of living

systems.1, 2 Since their discovery 20 years ago, abnormal regulation of MAPKs has been

implicated in multiple illnesses including many cancers, 3 obesity,4 diabetes, 4 polycystic kidney

diseases,5 cardiovascular problems, 6' 7 Alzheimer's 8 and pulmonary diseases.9-11 The MAPK

family comprises at least 4 members, including extracellular-signal-regulated kinase 1/2

(ERK1/2), c-Jun-N-terminal kinase (JNK), p38 and ERK5. These enzymes are all activated

through a similar mechanism. First, extracellular stimuli (e.g. growth factors, cytokines,

mitogens, hormones and oxidative or heat stress) activate receptor tyrosine kinases (RTKs) and

G protein-coupled receptors (GPCRs). Through a series of cascade reactions the receptors turn

on Raf, a MAPK kinase kinase (MAPKKK), which can then phosphorylate MEK, a MAPK

kinase (MAPKK) that finally phosphorylates MAPKs, such as ERK (Figure 4-1).

In particular, ERK1/2 plays a pivotal role in the MAPK signaling pathway responsible for

regulated cell survival and proliferation (Figure 4-1).12 Bis-phosphorylation of ERK1/2 in the

ThrGluTyr sequence by MEK1/2 results in the kinase translocation to the nucleus, where it acts

to activate various transcription factors, such as Elk- 1, Ets- 1, Fos and Sap- 1 a.13, 14 Although ERK

activation is normally associated with proliferation, evidence has emerged that, depending on the

stimuli and cell types involved, activation of ERK can mediate cell death as well."5 Some

proteins, including phosphoprotein enriched in astrocytes 15 (PEA-15) and death associated

protein kinase (DAPK), can sequester ERK from the nucleus to the cytoplasm, 16, 17 thereby

disrupting the activation of survival-promoting transcription factors. Moreover, ERK is an
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upstream activator of DAPK, which is crucial in mediating proapoptotic signals that eventually

lead to death.
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Figure 4-1. The mechanisms of ERK-mediated cell proliferation or apoptosis. Activation of
RTKs or GPCRs by growth factors leads to a cascade of reactions and ultimate activation of
ERK (black arrows). Phosphorylated ERK translocates to the nucleus where it activates multiple
transcription factors, leading to cell survival and proliferation (purple arrows). Conversely, the
cytoplasmic sequestration of ERK1/2 by PEA-15 or DAPK increases activation of DAPK, which
results in proapoptotic signaling and eventual cell death (red arrows).

The centrality of these enzymes in normal and diseased cell states underscores the need

for high throughput, selective, and sensitive methods that quantitatively and directly diagnose

kinase activities both in vitro and in cells. For cellular imaging, genetically-encoded sensors that

rely on phosphorylation-based changes in fluorescence resonance energy transfer (FRET)

between fluorescent protein pair s '8, 19 have been constructed for several kinases, including

ERKl/2.20 23 These sensors are powerful because they can be expressed in cells; however, they
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cannot be used for high throughput screening of recombinant enzymes and unfractionated cell

lysates due to the very limited fluorescence changes that accompany phosphorylation. In

addition, the GFP-based sensors are generally large and their size may disrupt the systems under

study. As a complementary approach, probes based on small, organic fluorophores with direct

readouts, 24 including the Sox-based probes, 6 can give sensitive and robust signals under

physiological conditions. These sensors are not only amenable to high throughput applications,

but can also be adapted to cellular work through microinjection or via the use of conjugated cell

penetrating peptides. Lastly, the synthesis of these sensors is generally modular so that additional

selectivity determinants can be quickly incorporated. This is particularly important because more

than 500 different kinases are encoded in the human genome, and sensor selectivity in complex

assay environments becomes paramount.19

While many protein kinases exploit linear recognition motifs comprising 4-8 residues that

are proximal to the phosphorylation site to drive specificity, a number of physiologically

important kinases, including ERK1/2 and other MAPKs, phosphorylate substrates with short and

ubiquitous consensus sequences. For these enzymes specificity is derived from extended

recognition elements that include protein-protein interactions distal to the phosphorylation site.2 5

For example, ERK1 and 2 phosphorylate the transcription factor Ets-1 at Thr38 within a short

ThrPro (TP) consensus motif.26 Since this short sequence alone would be the target of multiple

kinases, ERK recognition of Ets-1 depends on an adjoining N-terminal pointed (PNT) domain 27

to dock the substrate specifically to ERK1/2, which engages the phosphorylation machinery

(Figure 4-2).28 With this docking-domain strategy, PNT-based substrates demonstrate good

affinity for ERK1/2 (KM - 6-9 jM),2 7 in stark contrast to short peptide substrates derived only

from the TP sequence (KM > 200 IM).27, 29 Due to the size of the PNT domain (11 kDa) these
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docking-domain interactions cannot be exploited with the types of synthetic peptide-based

sensors that have been previously reported. However, in light of its importance in cellular

homeostasis and the prominence of ERK disregulation in cancer, we set out to construct a

chimeric sensor for ERK1/2 that combines the advantageous reporting properties of the Sox

fluorophore with the outstanding specificity provided by the native protein domain-based

recognition (Figure 4-2). Most importantly, to ensure unambiguous analysis of ERKl/2 activity

in high throughput assays and in cellulo applications, our ultimate requirement was that the

probe be highly selective in lysates and cells where it would be exposed to hundreds of other

active kinases.

ERK1/2 Ets-1

1. PNT docks i Semisynthesis

ERK1/2

SATP, Mg
2 +

SNative
- Chemical - - - - - - -

Ligation

2.Thrswings Hd HO\ J S" C S
into active site N O - -N

HO S-N -S-N

Figure 4-2. ERK utilizes the PNT domain of its substrate Ets-1 to drive specificity. The PNT
domain (dark blue, PDB IBQV) first docks to ERK (PDB 2ERK), followed by binding of the N-
terminal portion in the active site. Conserved active site base, Asp 47 (red), is also shown. The
Sox-based chemosensor, assembled through NCL, utilizes the PNT domain to gain specificity for
ERK1/2 and reports phosphorylation via CHEF (,ex = 360 nm, Xem = 485 nm) in cell lysates and
in cellulo.

In this chapter we describe the semisynthesis of a chimeric Sox-based ERKI/2 sensor

through a key native chemical ligation (NCL) reaction that efficiently conjugates the

recombinant PNT domain of Ets-1 to a synthetic ERK1/2 consensus sequence including the Sox
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sensing module (Figure 4-2). The extended PNT recognition element confers the ERK1/2 sensor

with excellent selectivity, as demonstrated by comparative quantitative analyses with a panel of

related recombinant enzymes and in unfractionated lysates from four different cell lines. The

biochemical assays have also been optimized for high-throughput applications in both 96- and

384-well plates.

Furthermore, due to its superb selectivity, we have also synthesized Sox-PNT derivatives

that may facilitate uptake, and spatial and temporal control of the sensor during ERK1/2 imaging

in live cells. Most importantly, the docking domain-based sensor design should be generally

applicable to the development of selective sensors for other medically important kinases.

Results and Discussion

Semisynthesis of the Sox-PNT Sensor

The new sensor was assembled as illustrated in Figure 4-3, using NCL 30 to ligate the

synthetic Sox-containing peptide thioester with the expressed PNT domain, comprising Ets-1

residues 46-138. An optimized phosphorylation motif based on the ERK2 phosphorylation

sequence within the myelin basic protein (MBP)29 (TPGGRR) was used in place of the

phosphorylated region of Ets-l (TPSSKE). When the Sox chromophore was incorporated into

these short peptides, preliminary studies indicated that the MBP-based sequence had better

fluorescent properties than the Ets-based sequence (Table 4-1). The distance between the TP

recognition sequon and the PNT domain in the wild type protein was preserved in the sensor

(Table 4-2). This design introduced residue replacements in the unstructured N-terminal region

of Ets-1, thereby minimizing perturbations to the overall secondary structure. Additionally, the

C-terminal residue, Met44, was changed to Gly to eliminate the possibility of epimerization

during thioesterification and to increase ligation efficiency. 31 The peptide thioester 9 was
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synthesized using Fmoc-based solid phase peptide synthesis (SPPS) on highly acid-labile TGT

resin, followed by an off-bead thioesterification of the protected peptide. 32 The Sox chromophore

was introduced as the amino acid C-Sox. 33 The C-terminal fragment of the sensor was expressed

as a GST-fusion protein, GST-PNT (7), to improve yields of protein expression. GST-PNT was

then proteolyzed by TEV protease to reveal Cys-PNT (8). After ligation of Cys-PNT to the

peptide thioester under non-denaturing conditions, the ERKI/2 probe, Sox-PNT (10), was

isolated in good yield (24%; the accurate mass of the isolated material was based on the Emax of

the Sox chromophore) (see the Experimental Methods). The corresponding phosphoprotein

(pThr38), pSox-PNT (11), was constructed using analogous methods.
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Synthetic module Expressed module
via peptide synthesis via molecular biology
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Figure 4-3. The semisynthesis of the Sox-PNT sensor via NCL. The thioester peptide containing
C-Sox was synthesized via SPPS. The Cys-PNT domain was obtained through standard
molecular biology methods. Inset: Commassie-stained gel of the ligation reactions indicated 80-
90% conversion of the Cys-PNT expressed segment to the products, Sox-PNT and pSox-PNT.
SP = Sox-Peptide thioester; pSP = pSox-Peptide thioester.
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Table 4-1. Fold Fluorescence Increase of BTF and RDF Chemosensors in the Presence and
Absence of ATP

Origin of Fold fluorescence increaseb

Entry Sequence Peptide Sequencea  0 mM ATP 1 mM ATP

1 Ets-1 H2N-DDK-Sox-PL-(p)T-PSSKEG-CO 2H 1.7 1.5

2 MBP H2N-DDK-Sox-PL-(p)T-PGGRRG-CO 2H 2.1 2.3

3 MBP Ac-VPLL-(p)T-P-CSox-GRRG- CO2H 5.4 5.1

4 MBP Ac-VPLL-(p)T-PG-CSox-RRG- CO2H 6.3 6.2

5 MBP Ac-VP-CSox-L-(p)T-PGGRRG- CO2H 6.9 8.1

a Underlined residues are part of the phosphorylation sequence. b Measured in triplicate as a
quotient of fluorescence intensity at 485 nm of phosphopeptide and substrate in 20 mM HEPES
(pH 7.4), 10 mM MgCl 2, and 10 tM peptide.

Table 4-2. Sequences Surrounding the TP Recognition Region (Red Residues) of the Wild Type
Ets-1, MBP and Sox-PNT

Substrate Sequencea

38 46 138

Ets-1(32-138) V P L L T P S S K E M M S ... K

MBPtide A P R T P G G R R

Sox-PNT V P C-Sox L T P G G R R G C S ... K

a The Met44-Met45 site in Ets-1 was changed to Gly44-Cys45 (underlined residues) in Sox-
PNT due to requirements for NCL.

Evaluation of the Sox-PNT Probe

Initial spectroscopic studies with Sox-PNT and pSox-PNT revealed a robust 3-fold

enhancement in fluorescence upon phosphorylation under standard biochemical assay conditions

(Figure 4-4b), which is somewhat lower than the changes observed with Sox-Peptide (Figure

4-4a). Furthermore, a similar change (3.7-fold) was obtained when Sox-PNT was enzymatically

phosphorylated by ERK2 to afford pSox-PNT (Figure 4-4c) (see the Experimental Methods).

Moreover, similar to Sox-based peptide sensors, 33 Sox-PNT was found to have an excellent Z'

factor value (0.81), which is a statistical quality parameter used to evaluate and validate

performance of assays, with useful ranges being 0.5-1. 34
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Figure 4-4. Fluorescence spectra of phosphorylated (black) and unphosphorylated (red) versions
of a) Sox-Peptide and b) Sox-PNT sensors. Conditions: 10 tM Sensor, 50 mM Tris (pH 7.5), 10
mM MgCl 2, 1 mM EGTA, 2 mM DTT and 0.01% Brij 35 P at 30 oC. d) Fluorescence intensity
of Sox-PNT at time 0 (red) and at 17 hours (black), after ERK2 completely turned over the
substrate to pSox-PNT. Conditions: 10 pM Sox-PNT, 50 mM Tris (pH 7.5 at 25 oC), 10 mM
MgCl2, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35 P, 1 mM ATP and 5 nM ERK at 30 oC.

Subsequent in vitro assays were used to establish that Sox-PNT is an efficient substrate

for ERK2 when compared with the corresponding Sox-peptide (Ac-VP-CSox-LTPGGRRG-OH)

(Figure 4-5a and Figure 4-16 in the Experimental Methods). Furthermore, Sox-PNT
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demonstrated a similar KM (14.9 ptM) value and a slightly lower catalytic efficiency (kcat/KM = 47

min -1 tM-1) compared to the wild type PNT (KM = 9 [tM, kcat/KM = 132 min -1 tM' )35 indicating

that use of the MBP-derived TP sequence had a minimally disruptive effect relative to the native

protein (Figure 4-5b). In contrast, the peptide MBPtide (APRTPGGRR), the basis of the Sox-

PNT phosphorylation sequence, was reported to have substantially poorer kinetic parameters (KM

= 2 mM, kcat/KM = 0.11 min- IM' )29 for ERK2, underscoring the importance of the PNT domain

recognition in substrate kinetics. Finally, Sox-PNT exhibited high selectivity for ERK1/2 when

compared to related kinases from the JNK, p38 and CDK families (Figure 4-5c).
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Figure 4-5. In vitro characterization of Sox-PNT. a) The efficiency of phsophorylation by
recombinant ERK2 (11 ng) of the Sox-PNT probe was compared to that of the Sox-peptide under
identical conditions. b) The kinetic parameters for Sox-PNT were obtained with ERK2 (10 ng)
from a direct fit of v vs. [S] plots using the Briggs-Haldane equation. Plotted values indicate the
mean ± s.e.m. for triplicate measurements. c) Promiscuity of Sox-PNT (5 jtM) was tested with a
panel of related kinases at 15 nM (black bars) and 150 nM (clear bars) of each enzyme. Inset: a
representative plot of the change in the fluorescent signal over time obtained with 15 nM enzyme
in the fluorescence plate reader. Plotted values for 15 nM of enzyme indicate the mean ±z s.e.m.
for triplicate measurements.

Studies with Crude Cell Lysates

In order to demonstrate that the preference of Sox-PNT for ERK1/2 can translate to

applications in complex media, the probe was exposed to a panel of unfractionated cell lysates

that contained varying levels of active ERK1/2. As described in the introduction, the activity of

cellular ERK1/2 is linked to its phosphorylation state, which can be modulated by the epidermal
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growth factor (EGF) signaling pathway (Figure 4-6). Briefly, EGF interacts with EGF receptors

(EGFRs), which leads to activation of MEK1/2 that in turn phosphorylates and activates

ERK1/2. This event can be regulated either by the upstream MEK1/2 inhibitor, U0126, or by a

direct ERK1/2 inhibitor, PEA-15.16

0 g = phosphate

F F F F
R R R R CybW

Signal
transduction

events

T T
NH2  NH2  U0126

b - NH2 CN NH2

Figure 4-6. The EGF signaling pathway results in stimulation of ERK1/2 activity. U0126, an

inhibitor of an upstream kinase, MEK1/2, and PEA-15, a direct inhibitor of ERK1/2 can regulate

the activity of ERK1/2.

Summarized in Figure 4-7a are the results of ERK1/2 activity analyses on the crude

lysates from four mammalian cell lines, which revealed the selectivity of the sensor in these

complex media. In all cases, untreated lysates showed relatively low basal activity, while

displaying slight variation among different cell lines, as expected. Upon EGF stimulation,

activity increased 4- to 10-fold, similar to previous reports.36 To demonstrate that Sox-PNT was

specifically monitoring ERK1/2 activity, cells were exposed to the upstream MEK inhibitor

U0126 and subsequently stimulated with EGF and lysed. Under these conditions, the ERKl/2

activity returned to nearly basal levels. Western blot analysis demonstrated that both stimulated
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and U0126 inhibitor-treated cells expressed ERK1/2 (Figure 4-7a); however, only EGF-

stimulated samples showed enhanced levels of activated ERK1/2 as evidenced by analysis with

the phospho-ERK1/2-specific antibody. As expected DMSO, the solvent for U0126, did not have

an effect on ERK activity (Figure 4-18). In contrast, the Sox-peptide, lacking the PNT docking

domain, showed highly promiscuous activity and signaled phosphorylation that could not be

correlated with ERK1/2 activity (Figure 4-7b).

EGF
U0126

a-pERKI/2

- + +

- -+

- + +

--- +1

- + +

- - +

-111 I
- + +
- - +
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o
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2 0.2

Control EGF

Figure 4-7. Specificity of the Sox-PNT sensor toward ERK1/2 in unfractionated cell lysates. a)
Sox-PNT (5 jM) was used to measure enzyme activity in 40 jtg of untreated lysates (red bars),
EGF-stimulated lysates (blue bars), or U0126-treated and then EGF-stimulated lysates (black
bars). Inset: Western blot for pERK1/2 (top) and ERKI/2 (bottom). b) The ability of Sox-PNT
(black bars, 5 jM) to report the different phosphorylation states of ERK1/2 in HeLa lysates (40
jig) was directly compared to the Sox-peptide (white bars, 5 [M). Plotted values indicate the
mean + s.e.m. for triplicate measurements.
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Direct Titrations of Inhibitor PEA-15 into EGF-stimulated Cell Lysates

Further evidence that Sox-PNT is selectively modified by ERK1/2 was obtained with

PEA-15, which is a direct protein inhibitor of ERK1/2. Titration of PEA-15 into EGF-stimulated

NIH-3T3 lysates created a dose-dependent response with a half inhibitory concentration of 40

nM and a Ki (30 nM) that reflected the reported Ki values (20 nM) (Figure 4-8 and the

Experimental Methods).16
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Figure 4-8. Half inhibitory concentration of PEA-15 with ERK1/2. To obtain the IC 50 value for
inhibition of ERKl/2 by PEA-15, EGF-stimulated NIH-3T3 lysates (40 pg) were treated with
various concentrations of PEA-15 and enzyme activity was measured with Sox-PNT (5 pM).
Plotted values indicate the mean ± s.e.m. for triplicate measurements.

Immunodepletion of ERK1/2 from EGF-stimulated Lysates

To directly correlate the observed fluorescent signal to the presence of ERK, we exposed

our probe to ERK1/2-depleted lysates. Indeed, immunodepletion of ERK1/2 from EGF-

stimulated HeLa lysate reduced activity by 7-fold compared to the input lysate or the sample that

had been depleted with na'ive rabbit IgG (Figure 4-9a). This indicates that the Sox-PNT signal
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was predominantly due to the ERK1/2-mediated phosphorylation. Slight residual activity in anti-

ERK1/2 lysate can be attributed to incomplete removal of the kinase, which is highly dependent

on the efficiency of antibody and kinase binding. Immunodepletion was confirmed by western

blot analysis with the immunodepleting antibody (Figure 4-9a, inset). Having validated the

selectivity of Sox-PNT for ERKl/2, we used the sensor to measure the amount of active ERK1/2

(13 ng) in EGF-stimulated lysate (40 itg) (Figure 4-9b). Thus, the probe will be an important tool

for quantifying ERK1/2 levels in tissue samples.

input a-ERK IgG 250

200-

150-

100.

50.

anti-
Input ERKI/2 naive

2 4
[ERK2] (nM)

Figure 4-9. ERK1/2 activity in immunodepleted and EGF-stimulated lysates. a) The

immunodepletion assays. Kinase activity was measured with Sox-PNT (5 pM) from an EGF-

stimulated HeLa lysate (40 pg) before (input) and after immunodepletion of this lysate with anti-
ERK1/2 or naYve rabbit IgG. Plotted values indicate the mean ± s.e.m. for triplicate
measurements. Inset: western blot for ERK1/2 in the measured samples. The top band in all
western blots is ERK1 (44 kDa) and the bottom band ERK2 (42 kDa). b) Determination of
[ERKl/2] in lysate. Standard curve with a range of ERK2 concentrations (red circles, 0.5-5 nM)
was first obtained. The standard curve was then used to measure the concentration (blue circle,
2.6 nM) and amount (13 ng) of ERKl/2 in 40 pg of EGF-stimulated NIH-3T3 lysates.
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Mircoinjection of Sox-PNT into PtK-1 Cells

Having demonstrated the utility of Sox-PNT in unfractionated cell lysates and the

selectivity for ERK1/2 in such complex environments, we wanted to examine if the sensor could

report kinase activity in live cells. With collaborators in the Danuzer laboratory at the Scripps

Research Institute, Sox-PNT was co-microinjected into live PtK-1 cells with a standard, Alexa

Fluor 568-labeled dextran. The labeled dextran was used as a marker of microinjection as well as

a control of dye diffusion within the cell.

The cells were serum starved overnight, microinjected and then stimulated with EGF

during imaging. Among several dozen cells that were imaged (Figure 4-10), one showed

promising preliminary results (Figure 4-10e). The raw overlaid image (Figure 4-11) displayed a

band of fluorescence in the Sox filter (ex = 387 nm, kem = 447 nm) that followed the perimeter

of the cell. Conversely, the fluorescence observed with the Alexa filter (ex = 560 nm, kem = 630

nm) indicated that the sensor and labeled dextran had evenly diffused throughout the cell and

that the fluorescence from the Sox filter was not an artifact. Rather, the signal was most likely

due to ERK1/2 activity at the cell edge. Since ERK1/2 is believed to be involved in lamellipodia

formation 3 7-39 our observation is in agreement with those reports. Studies with more appropriate

filters and localized sensors are ongoing.
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Figure 4-10. Overlaid, false-colored images of a panel of cells microinjected with Sox-PNT and
Alexa Fluor 568-labeled dextran (a-f). The images were created by overlaying the fluorescence
images obtained through the Sox filter (,ex = 387 nm, )em = 447 nm, false-colored green) and the
Alexa Fluor 568 filter (Xex = 560 nm, Xem = 630 nm, false-colored red).

Figure 4-11. Overlaid a) raw and b) false-colored images of a cell microinjected with Sox-PNT
and Alexa Fluor 568-labeled dextran. Fluorescence at the edge of the cell may be due to cellular
ERK 1/2 activity.

157

.. .. .... ....



While the results obtained with microinjection were quite promising, we wanted to

further explore two areas: 1. Alternative ways to deliver the substrate into cells because

microinjection can be time-consuming and low-throughput, and 2. Localization of the

fluorescent signal because the chemosensor can freely diffuse throughout the cell, therefore

impeding the detection of enzyme activity.

Membrane-Permeable Sox-PNT-TA T ERK1/2 Sensor

As a complementary approach to microinjection, we also explored cellular delivery of the

probe utilizing a protein transduction domain (PTD). Over the last two decades much work has

been devoted to the development of PTDs, also known as cell-penetrating peptides (CPPs).

These peptides have been used to successfully transport into cells various cargoes, from small

molecules to large systems, such as DNA, 40 polymers, 41 nanoparticles,42, 43 liposomes 44 and

many proteins. 45' 46 The initial discovery of PTDs in the late 1980s came from the observation

that the transactivator of transcription (TAT) from HIV-1 could be taken up from the

surrounding media by numerous cell types. 47' 48 Since then many additional natural and artificial

PTDs have been discovered. Although extensively studied,4 9 52 even today the mechanism and

efficiency of delivery are not well-parameterized and can vary, depending on the type of cargo

and cell target. Due to its long and relatively successful history, the TAT sequence

(YGKKRRQRRR) was chosen as the most appropriate PTD to transport Sox-PNT.

The same semisynthetic strategy that was described for the Sox-PNT assembly was

employed in the construction of Sox-PNT-TAT (Figure 4-12). A gene encoding the C-terminal

TAT sequence and the PNT domain was commercially synthesized. After standard molecular

cloning into suitable plasmids, the product was expressed with an N-terminal GB 1 tag. The GB 1

protein has been used, similarly to GST, to improve protein expression 53' 54 and was easily
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removed with TEV protease to reveal Cys-PNT-TAT (12). The Cys-PNT-TAT module was

ligated to the Sox-Peptide thioester (9) as previously described (vide supra), and the final product

13 was isolated in 5% yield.

Synthetic module Expressed module
via peptide synthesis via molecular biology

FmocHN. /O NT-TAT

OH

H S OH 0 0

N N SBn + H2N,

o H O HS
rPS46 38"

Sox-thioester (9) Cys-PNT-TAT (12)

O IMESNa
I ~N pH8

SH +4--GB1-PNT-TAT
,_ __._ _ _ _ , Sox-PNT-TAT

0 H 0  0  ..... ' Cys-PNT-TAT

Sox-PNT-TAT (13)

Figure 4-12. The semisynthesis of the Sox-PNT-TAT sensor via NCL. The thioester peptide
containing C-Sox was synthesized via SPPS. The Cys-PNT-TAT domain was obtained through
standard molecular biology methods. Inset: Commassie-stained gel of the ligation reaction
indicated 40-50% conversion of the Cys-PNT-TAT expressed segment to the product, Sox-PNT-
TAT.

The next goal will be to determine the efficacy of internalization by exposing cells to the

Sox-PNT-TAT derivative. Compared to microinjection, the cell-permeable reporter should easily

enter a larger number of cells, and, thus, should simplify the subsequent fluorescence imaging

and allow for studies of ERK activity upon stimulation or during specific cellular events.
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Membrane-Targeted Sox-PNT-CAAX ERK1/2 Sensor

The second modification that we explored would facilitate membrane localization of the

sensor to increase the fluorescence signal at the site of kinase activity. Diffusion of the

fluorescent signal is a challenge when working at wavelengths where cells naturally display high

background fluorescence. Thus, by anchoring the ERKl/2 sensor to the membrane through

prenylation, we hope to increase the local concentration of the chromophore and, by extension,

the fluorescence intensity. Prenylation is a post-translational modification involving covalent

addition of either famesyl (15-carbon) or geranylgeranyl (20-carbon) isoprenoids to Cys residues

near the C-terminus of proteins. 55  The proteins famesyltransferase (FTase) and

geranylgeranyltransferase (GGTase) are responsible for Cys alkylation with a polyisoprene

derivative within the CAAX box, where A denotes an aliphatic amino acid and X is an

unspecified C-terminal residue. 56 After covalent modification of the acceptor protein in the

cytoplasm, the AAX tripeptide is removed by proteases Ras and Ras-converting enzyme (Rcel),

and the remaining prenylcysteine residue is methyl esterified by isoprenylcysteine carboxyl

methyltransferase (ICMT). 57 For endogenous substrates of prenyltransferases, the attached lipid

is required for proper functioning by mediating membrane associations and specific protein-

protein interactions. 58 Furthermore, these endogenous prenylated proteins play crucial roles in

vital cellular processes including signal transduction and intracellular trafficking pathways.59

Because fully processed proteins exhibit high affinity for cellular membranes, the CAAX box

has been used to tether cytosolic proteins to membranes in several studies where localization was

of importance.60, 61 With such precedence, we sought to construct a membrane-targeted

derivative ERK1/2 probe, Sox-PNT-CAAX (Figure 4-13).
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A gene encoding a C-terminal CAAX sequence (KMSKDGKKKKKKSKTKCVIM) 6 0 , 61

and an N-terminal GST tag was commercially synthesized. After expression and purification of

the GST-PNT-CAAX construct, TEV protease was utilized to remove GST and reveal Cys-PNT-

CAAX. Following the aforementioned procedures, Cys-PNT-CAAX was ligated to the Sox-

thioester. Upon FPLC purification, the isolated product was obtained in 5% yield.

Synthetic module
via peptide synthesis

0
FmocHN o / \

O H

Sox-thioester (9)

Expressed module
via molecular biology

GST-PNT-CAAX
Plasmid

0
H2N,

+HS
HS/

Cys-PNT-CAAX (14)

OH 1 MESNa. pH 8

NH .OH SH

Sox-PNT-C

Sox-PNT-CAAX (15)

*-GST-PNT-CAAX

u Sox-PNT-AAX
-ys-PNT-AAX

Figure 4-13. The semisynthesis of the Sox-PNT-CAAX sensor via NCL. The thioester peptide
containing C-Sox was synthesized via SPPS. The Cys-PNT-CAAX domain was obtained
through standard molecular biology methods. Inset: Commassie-stained gel of the ligation
reaction indicated 30-40% conversion of the Cys-PNT-CAAX expressed segment to the product,
Sox-PNT-CAAX.
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The new membrane-targeted probe, Sox-PNT-CAAX, will be microinjected to study the

role of ERK in cell migration at the cytosolic membrane surface in collaboration with Prof.

Martin Schwartz's lab at the University of Virginia.

Caging the Thr Side Chain to Provide Temporal Control of Phosphorylation

Since the probe will be introduced into cells either via microinjection or PTDs there will

inevitably be some delay time between sensor delivery and imaging. During this period ERK1/2

may phosphorylate the probe, making the change in fluorescence more difficult to observe

during imaging. To control the timing of phosphorylation, we envisioned a sensor with a

protecting group that would temporarily mask the reactive functionality and that could be easily

removed. To that end, the caging, or photolabile protection, of phosphorylatable Thr would

enable the light-mediated release of the substrate. Caging of important biological small

molecules and macromolecules has been used extensively to enable controlled release of

activated species. 62' 63 The most widely utilized caging groups are o-nitrobenzyl derivatives that

can be photolyzed on a microsecond to millisecond time scale with long wavelength UV light (>

350 nm), causing minimal cellular damage in the process. 64 For example, the 2-nitrophenethyl

(NPE) group has been extensively used in our laboratory to study downstream effects of

phosphorylation.32, 65-69 In contrast, there are far fewer reports that study kinases by caging their

substrates. While syntheses of photoprotected Ser and Tyr side chains with 4,5-dimethoxy-2-

nitrobenzyl (DMNB) and their incorporation into kinase substrates have been reported, 70-73

syntheses of caged Thr have not been found in the literature. This may be ascribed to the steric

constraints that the 20 alcohol nucleophile experiences, as no product was obtained when we

attempted the reaction with DMNB-choloroformate (Scheme 4-1).
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Scheme 4-1. Synthesis of Caged Thr Amino Acid

0 2N _aOMe

0 r_ OMe
CI Jlo OMe OO

OH 0 2N OMe 0

FmocHN DMAP, CH2 C12  FmocHN O

16 17

Thus, two alternative caging strategies were further explored to generate a temporally-

controlled ERKl/2 sensor. First, following the protocol reported by Lawrence et al.,70 we

attempted to cage the amide backbone of the Thr phosphoacceptor with o-nitrobenzyl group. We

reasoned that the additional bulk of the caging moiety would disrupt enzyme-substrate contacts

and in the process prevent kinase-catalyzed phosphorylation, as was observed with caged

peptides for protein kinase A (PKA).70 However, the method was not fruitful in our hands due to

the instability of the TGT resin-bound peptide when exposed to conditions necessary for

reductive alkylation (Scheme 4-2).

Scheme 4-2. Synthesis of Backbone-Caged Sox-Peptidea

OH

NO 2  0

16 O S

H DMF:MeOH HN@ -- TO) _ HO .-

O 2. NaBHCN O
DMF:MeOH

18 N02  19 NO2  20

a All residues bear the standard side chain protecting groups as dictated by Fmoc-based SPPS

protocols.

The second approach took advantage of the well-characterized O to N intramolecular acyl

migration,74 which has recently been used in chemical biology to study protein splicing75 and

amyloid P aggregation.44, 76 Incorporation of an O-acyl isomer of a peptide bond at a Ser/Thr
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residue in a peptide sequence (O-acyl isopeptide) introduces a kink in the main chain, and also

masks the reactive side chain alcohol in our case. In the course of the synthesis, the Na-group of

the Ser/Thr residue is also transiently protected with the NVOC moiety. Finally, photolysis

triggers the spontaneous O to N acyl shift, restoring the native amide bond, and in the process

revealing the Ser/Thr alcohol. The strategy has only been reported with a building block NVOC-

Ser-OH amino acid that was then incorporated into NVOC-Ser-O-acyl isopeptides through

SPPS. The assembly of photocontrolled O-acyl Thr-containing peptides, to our knowledge, has

not been attempted.

We decided to synthesize our peptide of interest, Sox-Isopeptide, entirely on-resin

(Scheme 4-3). Employing standard Fmoc-based SPPS protocols, the peptide was assembled with

a Thr residue that contained a free a-amine and n-alcohol (21). The a-amine was capped with

the NVOC group first (22), followed by addition of the next amino acid onto the Thr side chain

as an activated symmetric anhydride. The remaining residues were attached using short Fmoc

deprotection times and base-free couplings to minimize diketopiperazine formation, as

previously reported.75 ' 77 Standard acidic conditions were employed for concomitant release from

the resin and protecting group removal. HPLC analysis coupled with mass spectrometry revealed

that the major product was the desired material (23).

Scheme 4-3. Synthesis of Sox-Isopeptidea

OH

(N OImocHN-nN,

NVOC-CI W , DMF, cat. DMAP 0 0...
- 2 NI DIEA, DMF HN 2. AA coupling with HN

O O- O short deprotection times OO OO

2MeO190 .N23. Acetylation MeOO
21 22 4. Acid Cleavage Sox-sopeptide (23)

MMeO NO2 M NO2

164

M



a Details of reagents and reaction conditions are provided in the Experimental Methods. All
residues bear the standard side chain protecting groups as dictated by Fmoc-based SPPS
protocols.

Next, two important parameters in the future utility of Sox-Isopeptide (23) were

characterized, namely, its uncaging properties and O-acyl bond stability over a range of relevant

conditions. When photolyzed (Xex = 365 nm) in a controlled environment (Scheme 4-4), a high

percentage of uncaging was obtained within the first 3 min (Figure 4-14). The rate of product

formation (Sox-Peptide (10)) was not determined because Sox-Isopeptide (23) and Sox-Peptide

(10) have widely different extinction coefficients that cannot be directly compared. Having

verified that NVOC photorelease and O to N rearrangement rates were suitable for cellular

studies, we examined the O-acyl bond stability in a highly reducing environment that the bond

will be exposed to during NCL and in the cell. Over 24 hours, however, Sox-Isopeptide remained

mostly intact with only a small side product arising due to oxidation.

Scheme 4-4. Uncaging of Sox-Isopeptide and Spontaneous O to N acyl shift to form Sox-Peptide

v H Shv 1 0

2SxIo )0 0-t

MeO , Sox-Isopeptide (23) 25 Sox-Peptide (10)
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Figure 4-14. Rate of uncaging for Sox-Isopeptide. Sox-Isopeptide was illuminated (hex = 360

nm) for 1, 3, 10 and 20 min and immediately subjected to HPLC. Isolated peaks were analyzed

by mass spectrometry. Percent of uncaging was calculated with reference to inosine. Conditons:

100 p~M Sox-Isopeptide, 10 mM HEPES (pH 7.4), 5 mM DTT, 1 mM inosine.

Our future goal is to convert Sox-Isopeptide into the corresponding thioester and perform

NCL with the PNT-CAAX domain. This would furnish a sensor derivative that is both

temporally and spatially controlled and will allow more detailed experiments to be carried out

that could elucidate the role of ERK1/2 in numerous cellular processes.

Conclusions

The MAPK signaling pathways integrate the actions of numerous kinases that are

exquisitely regulated by stress responses and extracellular signals. Deconvoluting the specific

functions of individual enzymes has been challenging, partly due to the difficulty of creating

probes that exclusively target a kinase of interest. Here we have presented a selective ERK1/2

activity chemosensor that comprises both a chemical sensing motif and recombinant enzyme

docking domain. Thereby, the Sox-based kinase-sensing strategy has been extended beyond the

realm of enzymes that recognize linear peptide substrates. Quantitative studies with the probe

indicate that the PNT domain confers exquisite selectivity toward ERK1/2, which was
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impossible to achieve with simple peptide probes. Moreover, the docking-domain approach now

allows us to target a wider set of kinases (such as other members of the MAPK family, JNK and

p38) that have thus far been elusive due to their complex substrate recognition mechanisms.

Recently, Dr. Cliff Stains in our lab has been able to build a selective sensor for p380 using an

adaptation of this technique and p38-specific recognition peptides.78

The Sox-PNT chimeric protein probe also offers distinct advantages for solution-based

analyses that can be carried out with simple equipment. The reliable semisynthesis of

multimilligram (6 mg) quantities of Sox-PNT allows at least 5000 assays to be performed in 384-

well plates. Furthermore, Sox-based sensors exhibit large dynamic ranges with excellent Z' factor

values. 33, 34 Currently, in light of the efficient semisynthesis, excellent selectivity and robustness

in high throughput analysis, the Sox-PNT sensor can be broadly applied for quantifying ERK1/2

activities in applications ranging from drug discovery to diagnostics.

Additionally, due to the excellent selectivity of the sensor, we successfully microinjected

Sox-PNT into live PtK-1 cells and observed ERK1/2 activity at the periphery. This prompted the

synthesis of two more derivatives that would aid cellular work, one conjugated to a membrane

permeabilization peptide (Sox-PNT-TAT) and another with membrane-tethering capabilities

(Sox-PNT-CAAX). Lastly, investigation was initiated into temporal control of phosphorylation

of the PNT-based reporters through caging strategies. While further work is necessary to deliver

the probe into cells and accurately detect ERK1/2 activity, the synthesis of the various

derivatives and the selectivity that our chimeric reporters display should significantly help us in

deconvoluting the complex and important role that ERK1/2 play in a multitude of pathways.
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Experimental Methods

General information

Unless otherwise noted, all solvents and reagents were obtained commercially and used without

further purification. N-Fmoc-protected amino acids [Fmoc-Arg(Pbf)-OH, Fmoc-Gly-OH,

Fmoc-Leu-OH, Fmoc-Pro-OH, Fmoc-Thr(tBu)-OH, Fmoc-Thr(PO(OBn)OH)-OH, Fmoc-Val-

OH] were purchased from Novabiochem. Fmoc-C(Sox[TBDPS])-OH was synthesized according

to published procedures. 33 Anhydrous CH 2C12 was distilled from calcium hydride. Doubly

deionized water was degassed by bubbling argon for 20 min at room temperature. Organic

solutions were concentrated in vacuo by rotary evaporation at -10 Torr (house vacuum) at 25-40

oC, then at -0.5 Torr (vacuum pump), unless otherwise indicated. Peptides were purified via

preparative reverse-phase HPLC employing a gradient of solvents A (H20 with 0.1% v/v TFA)

and B (CH 3CN with 0.1% v/v TFA). Peptide purity was determined by analytical reverse-phase

HPLC. FPLC protein purification was done in 20 mM Tris (pH 8.0 at 25 oC) and 200 mM NaC1.

Protein purity was confirmed by SDS-PAGE with Coomassie blue staining or by western blots

visualized using appropriate antibodies.

Instrumentation

HPLC: HPLC was carried out on Waters Prep LC 4000 System or Waters Delta 600 System

equipped with Waters 2487 dual wavelength absorbance detectors. Columns used: C18 analytical

(flow rate = 1 mL/min), Beckman Ultrasphere ODS, 5 jm, 150 x 4.6 mm; C18 preparatory (flow

rate = 15 mL/min), YMC-Pack Pro, 5 jtm, 250 x 20 mm.
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FPLC: FPLC was carried out on Pharmacia Biotech system equipped with Pharmacia Biotech

UV-MII absorbance detector and Pump P-500. Columns used: Pharmacia Biotech SuperdexTM

75 analytical; Pharmacia Biotech HiLoad TM 16/60 SuperdexTM 75 prep grade. Flow rate = 1

mL/min for both.

ESI-MS: Applied Biosystems Mariner mass spectrometer.

MALDI-TOF MS: PerSeptive Biosystems Voyager MALDI-TOF instrument.

UV-Vis Spectrophotometer: Shimadzu UV-2401 PC.

Fluorometer: Fluoromax 3 from Jobin Yvon. Cuvette: Stama Cells (16.100F-Q-10) 100 pL sub-

micro cuvette, 1 cm path length.

Fluorescence Plate Reader: HTS 7000 Bio Assay Reader from Perkin Elmer. Plate: Coming

(3992) assay plate, 96-well, half area, no lid, flat bottom, non-binding surface, non-sterile, white

polystyrene (120 pL reaction volume) or MatriCal (MP101-1-PP) 384-well MatriPlate, 50 pL,

black polystyrene (20 ptL reaction volume).

Chemiluminescence Reader: Bio-Rad with Quantity One 1-D Analysis Software.
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Stock solutions

Due to the affinity of the phosphorylated probes for Mg2+,33, 79 the reagents with the highest

purity and lowest metal content were used where indicated to avoid the necessity of removing

metal ion impurities after preparations.

1. Stock solutions of the Sox-containing peptides and proteins were prepared in doubly

deionized water (Sox-peptides) or TBS (solution 7 for Sox-PNT), and concentrations were

determined by UV-Vis (based on the determined extinction coefficient of the fluorophore

unit, 5-(N,N-dimethylsulfonamido)-8-hydroxy-2-methylquinoline, 8355 = 8247 M 1 cm-1 at

355 nm in 0.1 M NaOH with 1 mM Na2EDTA). An average of the UV absorbance values

from three separate solutions, each prepared using a different volume of the stock solution,

was taken. Purified peptide stock solutions can be stored at 4 OC for at least 6 months or -20

oC for longer periods. Protein stock solutions were flash-frozen and stored at -80 oC.

2. Magnesium chloride stock solution was prepared from Alfa Aesar's Puratronic grade salt and

stored at room temperature. Most commercially available salts contain Zn2+ as significant

impurities and should not be used due to the high affinity of the phosphorylated peptides for

Zn2+.The Mg2+ concentration was determined by titration with a standardized solution of

EDTA (Aldrich) in the presence of an Eriochrome Black T (Aldrich) as described

previously. 79

3. 500 mM HEPES (SigmaUltra) was prepared and adjusted to pH 7.4 with NaOH (99.998+%,

Aldrich) solution and stored at 4 oC.

4. 1 M Tris (Calbiochem, ULTROL grade) was prepared and adjusted to pH 7.5 with NaOH

(99.998+%, Aldrich) solution and stored at 4 oC.
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5. 2 M NaCl (SigmaUltra) was prepared in doubly deionized water and stored at room

temperature.

6. 500 mM and 10 mM dithiothreitol (DTT, Biotechnology grade, Mallinckrodt) solutions were

prepared in degassed doubly deionized water and stored at -80 oC.

7. 10x TBS Buffer (200 mM Tris-HCI [pH 8 at 4 oC], 2 M NaC1) was prepared from Tris-HCI

(Calbiochem, ULTROL grade, 15.76 g for 1 L solution) and NaCl (SigmaUltra, 58.453 g for

1 L solution) and adjusted to pH 8 at 4 oC with NaOH (99.998+%, Aldrich) solution.

8. 20 mg/mL BSA (Heat Shock Fraction V, Roche) was prepared in ultrapure water, filtered

through a 0.45 micron syringe filter to remove particulates and stored at 4 oC.

9. 0.1% Brij-35 P (Fluka) was prepared in doubly deionized water and stored at room

temperature.

10. 20% Triton X-100 (SigmaUltra) was prepared in doubly deionized water and stored at 4 OC.

11. 100 mM ATP (Disodium salt, Low Metals Grade, Calbiochem) was prepared in ultrapure

water and stored in aliquots at -80 oC.

12. 500 mM EGTA was prepared from ethylene glycol-bis(2-aminoehtylether)-N,N,N',N'-

tetraacetic acid (SigmaUltra) dissolved in 2 M NaOH and stored at 4 oC.

13. 1Ox Assay Buffer I: 500 mM Tris-HCl (pH 7.5 at 25 OC), 100 mM MgCl 2, 10 mM EGTA, 20

mM DTT and 0.1% Triton X-100.

14. 10Ox Assay Buffer II: 500 mM Tris-HCI (pH 7.5 at 25 oC), 100 mM MgCl 2, 10 mM EGTA,

20 mM DTT and 0.1% Brij 35 P.

15. Lysis Buffer I: PBS, 1 mg/mL lysozyme, 1 mM DTT, 1% NP-40 Alternative and protease

inhibitor cocktail III (Calbiochem: 100 M AEBSF, 80 nM aprotinin, 5 [tM bestatin, 1.5 [tM

E-64, 2 tM leupeptin, 1 tM pepstatin A).
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16. Lysis Buffer II: 50 mM Tris (pH 7.5 at 25 C), 150 mM NaC1, 50 mM P-glycerophosphate

(pH 7.3), 10 mM sodium pyrophosphate, 30 mM NaF, 1% Triton X-100, 1 mM benzamidine,

2 mM EGTA, 100 M Na3VO 4 , 1 mM DTT, protease inhibitor cocktail III (10 tL/mL,

Calbiochem: 10 mM AEBSF, 8 tM aprotinin, 0.5 mM bestatin, 0.15 mM E-64, 0.2 mM

leupeptin, 0.1 mM pepstatin A), and phosphatase inhibitor cocktail 1 (10 jtL/mL, Sigma,

P2825). The buffer can be stored at -20 oC for up to 3 months; without protease and

phosphatase inhibitors, it can be stored at -20 oC indefinitely.

17. HeLa Medium: DMEM (Gibco, 11995) supplemented with 10% (v/v) heat-deactivated FBS

(fetal bovine serum, warmed to 56 oC for 30 min, inverted several times every 10 min), 100

U/mL penicillin (Gibco, 15140) and 100 jtg/mL streptomycin (Gibco, 15140). Serum-free

medium: DMEM, 2 mM L-Gln (Gibco, 25030), 100 U/mL penicillin and 100 [tg/mL

streptomycin. All cell media were filtered through a 1 L filter flask (0.22 um PES sterilizing

low protein binding membrane, non-pyrogenic, polystyrene, Coming 431098).

18. NIH-3T3 Medium: DMEM (Gibco, 11995) supplemented with 10% (v/v) FBS, 100 U/mL

penicillin and 100 jIg/mL streptomycin. Serum-free medium: DMEM, 2 mM L-Gln, 100

U/mL penicillin and 100 ptg/mL streptomycin.

19. HT-29 Medium: McCoy's 5A Medium (Gibco, 1660) supplemented with 10% (v/v) FBS, 2

mM L-Gln, 100 U/mL penicillin and 100 tg/mL streptomycin. Serum-free medium:

McCoy's 5A Media, 4 mM L-Gln, 100 U/mL penicillin and 100 jtg/mL streptomycin.

20. PtK-1 Medium: Ham's F-12 Medium (Sigma, N8641) supplemented with 10% (v/v) FBS, 2

mM L-Gln, 1 mM sodium pyruvate (Gibco, 11360), 100 U/mL penicillin and 100 jig/mL

streptomycin. Serum-free medium: Ham's F12 Medium, 4 mM L-Gln, 1 mM sodium

pyruvate, 100 U/mL penicillin and 100 jtg/mL streptomycin.
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Semisynthesis of (p)Sox-PNT Derivatives

a. Peptide synthesis

Peptides were synthesized using standard Fmoc amino acid protection chemistry on Fmoc-Gly-

Novasyn-TGT resin (Novabiochem, 0.2 mmol/g). The resin was swelled in CH 2C12 (5 min.) and

then DMF (5 min.) prior to synthesis. All the amino acids except for Fmoc-C(Sox[TBDPS])-OH

were attached according to the following procedure: Fmoc deprotection (20% 4-methylpiperidine

in DMF, 3 x 5 min.), rinsing step (DMF, 5 x), coupling step (amino acid/PyBOP/HOBt/DIEA,

6:6:6:6, 0.15 M in DMF, 30-45 min.), rinsing step (DMF, 5 x; DCM, 5 x). Fmoc-

C(Sox[TBDPS])-OH was coupled in the following manner: amino acid/PyAOP/HOAt/2,4,6-

collidine, 2:2:2:5, 0.15 M in DMF, 2-12 hr. The coupling was repeated if necessary (amino

acid/PyAOP/HOAt/2,4,6-collidine, 1:1:1:3, 0.15 M in DMF, 2-12 hr) as determined by the

TNBS test for free amines. It is important to wash the resin rigorously (DMF followed by

CH 2C12) to remove excess amino acid before performing any tests for free amines. This is

particularly necessary after coupling of Fmoc-C(Sox[TBDPS])-OH due to its deep red color,

which does not affect its coupling efficiency. At the end of the synthesis, the Fmoc group was

removed with 20% 4-methylpiperidine in DMF (3 x 5 min.) and the resin was rinsed with DMF

(5 x). The resin-attached free amines were capped by exposure to Ac20 (20 equiv.) and pyridine

(20 equiv.) in DMF for 30 min. The resin was rinsed with DMF (5 x), CH 2C12 (5 x) and

subjected to 20% 4-methylpiperidine in DMF (3 x 5 min.) to remove any C-Sox aryl esters that

might have formed during acetylation. The resin was finally washed with DMF, CH2C12, MeOH

(5 x each) and dried under vacuum.
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b. Thioesterification ofSox-containing peptides

Following SPPS the peptide (10 ptmol from 50 mg of resin) was cleaved from the resin with side-

chain protection intact by agitating with 0.5% TFA in CH 2C12 for 1.5 h. The resin was removed

by filtration and rinsed with CH 2C12. The solvent was mostly evaporated under a stream of

nitrogen, and the peptide was triturated with cold hexanes. The hexanes were removed in vacuo,

and the resulting white powder was dissolved in 16 mL of anhydrous CH2C12 and treated with

HATU (30 mg, 80 imol) and HOAt (10.8 mg, 80 jimol) dissolved in 0.5 mL dry DMF, followed

by addition of 2,4,6-collidine (21 pL, 160 pmol) and benzylmercaptan (19 pL, 160 pmol). The

reaction was stirred under N2 overnight. The solvent was removed in vacuo, and the peptide was

deprotected with TFA/H20/TIS (95:2.5:2.5% v/v) for 3 h. The resulting solution was

concentrated under a stream of N2 and precipitated by addition of cold Et20. The pellet was

triturated with cold Et 20 (3 x), redissolved in water, filtered and lyophilized. The peptides were

purified by preparative reverse-phase HPLC using UV detection at 228 nm (amide bond

absorption) and 316 nm (C-Sox absorption). Only fractions showing a single peak by analytical

HPLC and with a correct mass were used in further experiments.

c. Characterization data for peptides

HPLC tR [M] [M+H] +

Name Peptide Sequence Mol. Formula (min.)' Calcd. foundb

Sox-Peptide Ac-VP-CSox-LTPGGRRG-CO 2H C67H101 N19016 S3  25.7 1418.6 1419.3

Sox-Thioester Ac-VP-CSox-LTPGGRRG-COSBn C64H96N 170 16 PS 27.2 1523.7 1524.8

pSox-Peptide Ac-VP-CSox-LpTPGGRRG-CO 2H C60H96N190 20 PS2  24.4 1498.6 1499.2

pSox-Thioester Ac-VP-C-Sox-LpTPGGRRG-COSBn C44H 82N1 7015 PS 27.2 1603.7 1604.9

a Peptides were purified according to the following method: 5% B (5 min) followed by a
linear gradient 5-95% B (30 min.). b The data was collected on a MALDI-TOF mass
spectrometer. c Data was collected on an ESI mass spectrometer.
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d. Plasmid construction for GST-ENLYFQC-PNT(46-138)-His6 (GST-PNT)

The gene fragment encoding residues 46-138 of Ets-1 (including the PNT domain) was amplified

from an Ets-1 plasmid using primers to insert 5' EcoR1 and 3' Notl restriction sites for

incorporation into a pGEX-4T-2 vector. The primers also encoded an amino-terminal TEV

protease cleavage site (ENLYFQXC) and a carboxy-terminal hexahistidine tag. For this

amplification the following PCR primers were used:

5'- GCC GGA ATT CGT GAA AAC CTG TAT TTT CAG TGC TCC CAA GCC TTG AAA

GCT -3'

3'- GCC CCC TTT TGC GGC CGC CTA GTG ATG GTG ATG GTG ATG ACC TTT CAC

ATC CTC TTT CTG -5'

The PCR-amplified fragments were digested with NotI and EcoRI and ligated to NotI/EcoRI-

digested and CIP-treated pGEX-4T-2 (Figure 4-15). The ligation mixture was transformed into

DH5u cells and grown on carbenicillin-resistant plates. Plasmid DNA was isolated from selected

colonies and confirmed by sequencing.
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PNT(S46-K138)

GST EcoRI

b)
MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYI
DGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLK
VDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKL
VCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDENLYFQC SQALKATF

SGFTKEQQRLGIPKDPRQWTETHVRDWVMWAVNEFSLKGVDFQKFCMSGAALCALGK
ECFLELAPDFVGDILWEHLEILQKEDVKHHHHHH

Figure 4-15. The GST-PNT-His 6 product. a) Map of the pGEX plasmid containing GST-PNT-

His6. b) Primary sequence of the gene product.

e. Expression of GST-PNT

The PNT domain plasmid was transformed into BL21(DE3) competent cells (Stratagene) and

grown at 37 "C to midlog phase in 1 L of LB media with carbenicillin (50 mg/L). The culture

was cooled to 30 oC, and the cells were induced with 0.2 mM IPTG and grown for an additional

4.5 h. Cells were harvested by centrifugation and frozen at -80 oC. For cell lysis, the pellet from

a 1 L expression was thawed and resuspended in 40 mL of freshly prepared lysis buffer I and

incubated for 20 min at 4 OC. The cells were then sonicated and subjected to centrifugation at

12,429 x g for 25 min, followed by filtration through a 0.2 micron filter.

177

she



f Isolation of GST-PNT and on-resin TEVproteolysis to yield Cys-PNT(46-138)-His6 (Cys-

PNT)

The filtered supernatant was incubated with 5 mL of Glutathione Sepharose 4 Fast Flow resin

(Amersham Biosciences) for 1.5 hours at 4 OC, following the manufacturer's protocol. After

extensive washes with PBS (20 column volumes) the resin-bound GST-PNT was proteolyzed

overnight with TEV (prepared in house) in 5 mL of PBS, 5 mM EDTA and 5 mM BME at 25 OC

with slight agitation. Upon completion of the reaction (ca. 12 hours), the soluble fraction was

filtered and the resin was washed with PBS (4 x 2 mL). The filtrate and PBS washes were

combined and concentrated in a swinging bucket centrifuge using 3.5 kDa MWCO Amicon

Ultra-15 centrifugal filters (Millipore) to give 24 mg of Cys-PNT (MW = 11,672.34 g/mol) as

determined by Bio-Rad's Protein Assay. The protein was analyzed by SDS-PAGE and visualized

with Coomassie blue dye and by western blot with a mouse anti-hexahistidine primary antibody.

Purified protein was stored at 4 oC.

g. Native Chemical Ligation to obtain Sox-PNT

To a 2 mL centrifuge tube was added Cys-PNT (21.7 mg, 1.86 pmol, 1 equiv.), followed by

MESNa and Tris (pH 8.0 at 25 OC) so that the final concentrations were: 1.4 mM Cys-PNT, 150

mM MESNa and 50 mM Tris in 1.3 mL total reaction volume. Lastly, Sox-thioester (4.2 mg,

2.79 tmol, 1.5 equiv.) dissolved in 40 lL of water was added and the reaction was gently mixed

for 24-48 h at 25 OC. The progress of the reaction was analyzed by SDS-PAGE, and visualized

with Coomassie blue dye (Figure 4-2, inset).
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h. Purification ofSox-PNT

The crude mixture was immediately purified on the FPLC using the Superdex 75 prep column in

20 mM Tris (pH 8 at 25 OC) and 200 mM NaC1. The protein was analyzed by SDS-PAGE, and

visualized with Coomassie blue dye. The fractions with the desired product were combined and

concentrated in a swinging bucket centrifuge using 3.5 kDa MWCO Amicon Ultra-15 centrifugal

filters. The final concentration of Sox-PNT was determined using the Sox chromophore

absorbance in the UV-Vis. The overall yield of isolated product from NCL to final purification

of Sox-PNT (6.2 mg, MW = 13,016.73 g/mol) was 24%. The protein was aliquoted, flash-frozen

and stored at -80 oC where it is stable for at least 1 year.

In vitro evaluations of Sox-based probes

a. Ets-1- and MBP-derivedpeptide probes for ERK1/2

Early peptide probes were based on the P-Turn Focused (BTF) design developed in our lab using

the Sox amino acid as the sensing moiety.79 Two peptides, one derived from the Ets-1

phsophorylation sequence (entry 1 in Table 4-1) and one from the MBP phosphorylation

sequence (entry 2), were synthesized and their fluorescence difference measured. The main

differences lie in the underlined region in Table 4-1.

In fluorescence increase measurements the concentration of the substrate was held constant while

the concentration of ATP was varied. No enzyme was present. A solution of the substrate (or

phosphopeptide) was prepared (20 mM HEPES [pH 7.4], 10 mM MgCl 2, 10 tM peptide at 30

oC), and fluorometer readings were obtained without any ATP present. ATP (stock solution 11)

was then added to a final concentration of 1 mM. At each ATP concentration a fluorescence
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emission spectrum was recorded (slit widths: Em = 5 nm, Ex = 5 nm; kex = 360 nm, ,,em = 380-

650 nm). Fluorescence increase was obtained by dividing the fluorescence of the phosphopeptide

by the fluorescence of the substrate at 485 nm. The values reported are averages of at least three

separate measurements.

a. Fluoresence increases of Sox-peptide and Sox-PNT chemosensors

The fluorescence increases of the Sox-peptide (Figure 4-S2a) and Sox-PNT (Figure 4-S2b) were

measured in the fluorometer (slit widths: Em = 5 nm, Ex = 5 nm; kex = 360 nm, kem = 380-650

nm) in a quartz microcuvette (total volume of 120 [tL) under the following conditions: 10 iM

unphosphorylated (red) or phosphorylated (black) sample, 50 mM Tris (pH 7.5), 10 mM MgC12,

1 mM EGTA, 2 mM DTT and 0.01% Brij 35 P at 30 oC.

Nearly the same (3.7-fold) fluorescence increase was observed when Sox-PNT was

enzymatically converted to its phosphorylated version, pSox-PNT, by ERK2 (Figure 4-S3). This

ensured that the changes in fluorescence that were measured with synthetic Sox-PNT and pSox-

PNT (3-fold, Figure S2) were also relevant under biochemical conditions. The assays were

performed in the FPR (ex = 360 nm, kem = 485 nm) in a 96-well plate (120 tL per reaction)

containing 10 pM Sox-PNT at 30 oC. Substrate (Sox-PNT) fluorescence at 485 nm was recorded

over 17 min and then 5 nM ERK2 was added. After 17 hours at 30 oC, during which time the

wells were sealed to prevent evaporation, the reaction was finished and fluorescence of the

phosphorylated product (pSox-PNT) was recorded for 17 min. The final assay conditions were as

follows: 10 pM Sox-PNT, 50 mM Tris (pH 7.5 at 25 oC), 10 mM MgCl 2, 1 mM EGTA, 2 mM

DTT, 0.01% Brij 35 P, 1 mM ATP and 5 nM ERK at 30 oC.
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b. Calculation of Z'factors

The Z' factors are statistical quality parameters used in high-throughput screens to evaluate

performance of such assays. 34 Typically, assays are considered excellent if Z' is 0.5-1. The Z'

values were calculated from data obtained for fluorescence increases under assay conditions with

ERK2 as described above (V.b.) and using equation (1)

Z,= _ (3 x c,) + (3 x  ) (1)

1Up - Is

where p~p and jts are the means of three measurements of fluorescence emission at 485 nm for

phosphoproduct and starting substrate, respectively, and op and as are the standard deviations of

those measurements for phosphoproduct and substrate, respectively.

c. Affinity of ERK2 for Sox-PNT and Sox-peptide

The activity of recombinant ERK2 (NEB) was measured over time with Sox-PNT and Sox-

peptide in the fluorometer (slit widths: Em = 5 nm, Ex = 5 nm; kex = 360 nm, kem = 485 nm) in a

quartz microcuvette (total volume of 120 jtL) under the following conditions: 50 mM Tris (pH

7.5 at 25 OC), 10 mM MgC12, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35 P, 10 p~M Sox-PNT or

10-250 tM Sox-peptide and 11 ng ERK2 at 30 oC. The fluorescence slopes (m) of the reactions

(Figure 4-16) were determined by a least-squares fit using Microsoft Excel, then normalized to

the highest slope (obtained with 10 1tM Sox-PNT) and plotted in the bar graph form (Figure 4-5a

in the Results and Discussion) for clearer visualization.
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10 pM Sox-PNTm = 14719units/min
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Figure 4-16. Comparison of Sox-PNT and Sox-peptide as substrates for ERK2. Reaction curves

of 10 p.M Sox-PNT (red) and 10-250 ptM Sox-peptide (shades of blue) with 11 ng ERK2 showed

that nearly 300 ptM of Sox-peptide is required to reach the same slope that was obtained with 10

ptM Sox-PNT.

d. Determination of kinetic constants for ERK2 with Sox-PNT

Recombinant ERK2 (Invitrogen, 5 nM, 42 ng, MW = 69,700 g/mol) was added to initiate each

reaction. The kinetic assays were performed in the FPR (Xex = 360 nm, Xem = 485 nm) in a 96-

well plate (120 pL per reaction) containing varying chemosensor concentrations (0.2-5 KM) at 30

oC. Fluorescence slopes were determined by a least-squares fit using Microsoft Excel. Slopes

were then converted to a rate using published procedures.33 The plots of v vs. [S] were fit using

SigmaPlot 9.0180 in order to obtain KM and Vmax values. The assay conditions were as follows: 50

mM Tris (pH 7.5 at 25 OC), 10 mM MgCl 2, 1 mM EGTA, 2 mM DTT, 0.01% Triton X-100, 1

mM ATP at 30 oC. Alternatively, 384-well plates can be used (20 ptL reaction volume) with,

otherwise, the same conditions.
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e. Selectivity of Sox-PNT in a panel of MAPKs

The assays were performed in the FPR (Xex = 360 nm, Xem = 485 nm) in a 96-well plate (120 [tL

per reaction) containing 5 jtM chemosensor at 30 oC. Recombinant ERK1 and 2, JNK1, 2, and 3,

p38c0, P, y and 6 and CDK1/Cyclin B and CDK2/Cyclin A (all enzymes were obtained from

Invitrogen) were appropriately diluted with 50 mM Tris (pH 7.5 at 25 oC), 10 mM MgCl 2, 1 mM

ATP, 1 mM EGTA, 2 mM DTT, 0.01% Triton X-100. Addition of 15 or 150 nM of enzyme

initiated reactions. Fluorescence slopes were determined by a least-squares fit using Microsoft

Excel. The slopes obtained with 15 and 150 nM of enzyme were normalized to the slope with

ERK1 and plotted on the same graph for easy visualization (Fig. 2c in the main text). Due to the

high 150 nM concentration of enzymes, these experiments could only be performed once. The

assays with 15 nM enzyme are reported with s.e.m. for triplicate measurements. The final assay

conditions were as follows: 5 tM Sox-PNT, 50 mM Tris (pH 7.5 at 25 OC), 10 mM MgCl 2, 1

mM EGTA, 2 mM DTT, 0.01% Triton X-100, 1 mM ATP and 15 or 150 nM enzyme at 30 oC.

Experiments in crude cell lysates with Sox-PNT

a. Crude cell lysate preparation

Cell cultures were maintained according to manufacturer's recommendations using the

appropriate media (FBS-containing solutions 17-20) that were stored at 4 oC in the dark and

warmed to 37 oC for 30 min before use. Prior to lysis, cells were serum-starved on 150 mm tissue

culture dishes for 15-18 h in serum-free media supplemented with an additional 2 mM L-Gln

(Serum-free media solutions 17-20). Cells were either 1. untreated, 2. stimulated with EGF (100

ng/mL) for 5 min at 37 oC, 3. preincubated with U0126 (5 1tM delivered in 2.5 tL DMSO) for 1

h and then stimulated with EGF (100 ng/mL) for 5 min at 37 oC, or 4. treated with DMSO (2.5
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ptL) for 1 h followed by stimulation with EGF (100 ng/mL) for 5 min at 37 oC. The media was

aspirated and cells washed with cold PBS (2 x 20 mL). The cells were kept on ice and lysed by

addition of Lysis Buffer II (- 100 ptL/dish) directly on the plate followed by scraping and passing

the mixture through a 22-gauge needle attached to a 1 mL syringe. The lysed solution was

clarified at 14,000 x g for 10 min at 4 oC. The supernatant was collected and stored in aliquots at

-80 oC. Total protein concentration was determined using Bio-Rad's Protein Assay.

b. Western blot visualization ofERK1/2 by chemiluminescence

ERK1/2 expression was analyzed by western blots that were probed with anti-ERK1/2 antibody

(Upstate) or anti-pERK1/2 antibody (Cell Signaling Tech.) according to the manufacturer's

protocols. Incubation with secondary antibody (goat anti-rabbit antibody conjugated to HRP

from Pierce) was followed by exposure of the blot to SuperSignal West Dura Extended Duration

Substrate (Pierce) and visualized by enhanced sensitivity chemiluminescence (Bio-Rad, Quantity

One 1-D Analysis Software).

c. Assays with crude cell lysates and Sox-PNT

The assays were performed either in the fluorometer (slit widths: Em = 5 nm, Ex = 5 nm; kex -

360 nm, ,,em = 485 nm) in a quartz microcuvette (120 pL per reaction) or in the FPR (kex = 360

nm, Xem = 485 nm) in a 96-well plate (120 jtL per reaction) containing 5 pM Sox-PNT at 30 oC.

Untreated, EGF-stimulated, U0126-treated then EGF-stimulated or DMSO-treated then EGF-

stimulated (Figure 4-18) lysates from NIH-3T3, HT-29, HeLa or PtK-1 cells were added to start

the reactions. The reactions were monitored for 15 min. Fluorescence slopes were determined by

a least-squares fit using Microsoft Excel then normalized to the highest slope and plotted in the

bar graph form (Figure 4-7a in the Results and Discussion and Figure 4-17) for clearer
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visualization. The final assay conditions were as follows: 5 tM Sox-PNT, 50 mM Tris (pH 7.5 at

25 oC), 10 mM MgCl 2, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35 P, 1 mM ATP and 40 pg lysate
at 30 oC.
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Figure 4-17. Detection of ERK1/2 activity by Sox-PNT (5 1.M) in lysates (40 ptg) from four celllines. In all cases there is low basal ERK1/2 activity (red) compared to activity that is observedwith lysates that have been stimulated with EGF (blue). However, treatment of cells with aMEKl/2 inhibitor, U0126, followed by EGF stimulation returned activity to basal levels (black).Lastly, cells were pre-treated with DMSO, the carrier solvent for U0126, and then EGF-stimulated to show that DMSO does not have an effect on observed activity (purple). Eachexperiment was performed in triplicate, but for clarity only one, representative reaction curve isshown per condition.
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Figure 4-18. Effects of DMSO on ERK1/2 activation. DMSO-treated and then EGF-stimulated

lysates were assayed with Sox-PNT to show that DMSO does not have an effect on ERKI/2

activity. Plotted values indicate the mean ± s.e.m. for triplicate measurements. This was also

confirmed by western blots (inset) probed with anti-pERK1/2 (top) and anti-ERK1/2 (bottom)

antibodies.

To show that Sox-PNT can successfully report the different activity states of ERK1/2 it was

compared directly to Sox-peptide (Figure 4-19 and Figure 4-7b). Each substrate was exposed to

either untreated, EGF-stimulated or U0126 pre-treated and then EGF-stimulated HeLa lysates.

The reactions were monitored in the fluorometer (slit widths: Em = 5 nm, Ex = 5 nm; Xex = 360

nm, kem = 485 nm) in a quartz microcuvette (120 gL per reaction) containing 5 gM substrate at

30 oC. Fluorescence slopes were determined by a least-squares fit using Microsoft Excel then

normalized to the highest slope and plotted in the bar graph form (Figure 4-5b in the Results and

Discussion) for clearer visualization. The final assay conditions were as follows: 5 ptM substrate,

50 mM Tris (pH 7.5 at 25 oC), 10 mM MgCl 2, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35 P, 1

mM ATP and 40 gg lysate at 30 oC.
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Figure 4-19. Specificity of substrates. Sox-PNT (5 gtM) easily reported high ERKI/2 activity in
EGF-stimulated lysates (blue) and low activity in untreated (red) and U0126 and EGF-stimulated
(black) lysates, while Sox-peptide (5 pM) failed to do so and was phosphorylated regardless of
presence or absence of active ERK1/2. Each experiment was performed in triplicate, but for
clarity only one, representative reaction plot is shown per condition.

d. Determination of lCso and Ki with PEA-15 in EGF-stimulated NIH-3T3 lysates

The assays were performed in the FPR (Xex = 360 nm, Xem = 485 nm) in a 96-well plate (120 tL

per reaction). Sox-PNT (5 ptM) was preincubated for 5 min with PEA-15 (7 concentrations in the

0.0005-50 ptM range) at 30 oC. The reactions were started by addition of EGF-stimulated NIH-

3T3 lysate and monitored for 15 min. Fluorescence slopes were determined by a least-squares fit

using Microsoft Excel and converted to rates (v in pM/min) using published procedures. 33 The

plots of v vs. log [PEA-15] were fit using SigmaPlot 9.0180 in order to obtain the IC5 0 value

(Figure 3d in the main text). The final assay conditions were as follows: 5 p.M Sox-PNT, 50 mM

Tris (pH 7.5 at 25 oC), 10 mM MgCl 2, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35 P, 1 mM ATP

and 40 pg lysate at 30 OC.
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The Ki value was derived from the above-determined IC5o using the following equation, 81

IC50 + = Ks ) K (2)

where S is the concentration of Sox-PNT in the assays. Upon rearranging, eq. (2) can be solved

for Ki.

e. Immunodepletions ofERK1/2 from EGF-stimulated HeLa lysate

EGF-stimulated HeLa lysate (900 itg) was precleared first by incubation with Protein A

sepharose beads (50 jtL, Amersham) for 1 hr on a rotating shaker at 4 OC. The precleared EGF-

stimulated HeLa lysate (300 jtg) was incubated with anti-ERK1/2 antibody (5 itg, Upstate) or

naive rabbit IgG (5 jg, Santa Cruz) for 1 hr on a rotating shaker at 4 OC. The immune complexes

were precipitated with 50 gL Protein A sepharose beads for 1 hr with mixing at 4 oC. In total,

three rounds of immunodepletions were carried out to ensure removal of all ERK1/2. The

immunodepletions were analyzed by western blots (probed with anti-ERK1/2 antibody from

Upstate) that were visualized using chemiluminescence, as described above.

The immunodepleted lysates were then analyzed for ERK1/2 activity with Sox-PNT (Figure 4-20

and Figure 4-9a in the Results and Discussion) according to described protocols (vide supra) in

the 96-well plate format in the FPR.
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Figure 4-20. Immunodepletion of ERKl/2. Removal of ERK1/2 (blue) led to low turnover of
Sox-PNT (5 .M), while the input lysate (red) and lysate treated with a generic Rabbit IgG
(naYve, black) retained active ERK1/2.

f Estimation of active ERK1/2 in EGF-stimulated HeLa lysates

The assays were performed in the FPR (,ex = 360 nm, ,,m = 485 nm) in a 96-well plate (120 itL

per reaction) containing 5 ptM Sox-PNT at 30 oC. The standard curve was obtained by incubating

Sox-PNT with 0.5, 2.5 or 5 nM recombinant ERK2 and then plotting the average slope of each

reaction as a function of ERK2 concentration (Figure 4-9b). Using a least-squares fit in

Microsoft Excel the following equation was obtained,

y = 45.07x + 7.47 (2)

where y is the fluorescence intensity at a given concentration of ERK2 (x) in the 0.5-2.5 nM

range. At the same time, Sox-PNT was incubated with EGF-stimulated NIH lysates and the

reaction slope was determined (124 min') by a least-squares fit using Microsoft Excel. When

substituted in eq. (2) and solved for x, the concentration of ERK2 in EGF-stimulated NIH lysates

is obtained (2.6 nM in 40 pg of lysate) that can also be converted to amount of enzyme (13 ng)
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because of the known reaction volume (120 tL) and ERK2 molecular weight (42,000 g/mol).

However, since lysates contain both ERK1 and 2, the concentration (and amount) is

representative of both enzymes. The final assay conditions were as follows: 5 tM Sox-PNT, 50

mM Tris (pH 7.5 at 25 oC), 10 mM MgCl 2, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35 P, 1 mM

ATP and 40 tg lysate, 0.5, 2.5 or 5 nM recombinant ERK2 at 30 oC.

Microinjection and Microscopy

PtK-1 cells were plated on acid-washed glass coverslips for 20-24 h before experiments and

were serum-starved overnight (ca. 12 h) at 37 oC and 5% CO2. To reduce the effects of

photobleaching, Oxyrase (1.0 U, Oxyrase.) was added to 1 mL of culture medium. Cells were co-

microinjected with Sox-PNT (149 tM), Alexa Fluor 568-conjugated dextran (0.5 mg mL-') and

MgCl2 (0.75 M) using an Eppendorf transjector 5246 (Eppendorf) into the cell cytoplasm at 0.5

mg mL-', as described previously.82 The microinjected cells were incubated at 37 OC and 5%

CO 2 for 5 min and then stimulated with EGF (100 ng mL- ).

Time-lapse image sequences were acquired by spinning disc confocal microscopy using a

x 100/1.4 NA Plan Apo phase objective lens (Nikon). Images were acquired with illumination at

387 nm (Sox) and 560 nm (Alexa Fluor 568) provided by a 2.5W KrAr laser (Coherent). Images

were captured using a CoolSNAP-HQ2 camera from Photometrics at 447 nm (Sox) and 630 nm

(Alexa Fluor 568). Raw images were viewed and false-colored using ImageJ software, which is

freely available from the National Institutes of Health.
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Semisynthesis of Sox-PNT-TAT

The gene incorporating GB1, the PNT(46-138) domain, the TEV cleavage site (ENLYFQXC),

the TAT sequence (YGKKRRQRRR), the formylglycine tag (FGT) (LCTPSR) and the His6 tag

was commercially synthesized by BioBasic Inc in the pUC-57 plasmid. The gene fragment

encoding for GBl -PNT-TAT-FGT-His 6 was amplified from pUC-57 and digested with NdeI and

BamHI followed by ligation to NdeI/BamHI-digested and CIP-treated p24a (+) (Figure 4-21).

The ligation mixture was transformed into DH5a cells and grown on kanamycin-resistant plates.

Plasmid DNA was isolated from selected colonies and confirmed by sequencing.

a)
ENLYFQC PNT(S46-K138)

Not
Ncol

GB1 TAT

Ndel pET24a (+) FGT

HisG
EcoRi

BamlI

Kan

b)
MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTEG
GRENLYFQCSQALKATFSGFTKEQQRLGIPKDPRQWTETHVRDWVMWAVNEFSLKGV
DFQKFCMSGAALCALGKECFLELAPDFVGDILWEHLEILQKEDVKPWYGKKRRQRRRL
CTPSRHHHHHH

Figure 4-21. The GB1-PNT-TAT-FGT-His 6 product. a) Map of the p24a (+) plasmid containing
GB I-PNT-TAT-FGT-His 6. b) Primary sequence of the gene product.
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The GB 1-PNT-TAT protein (MW = 21,212.1 g/mol) was expressed following the same protocol

as described for GST-PNT-H 6 (vide supra), except that kanamycin (30 mg/mL) was used as the

antibiotic instead of carbenicillin.

TEV removal of GB1 to give Cys-PNT-TAT (MW = 13,942.1 g/mol), NCL, purification and

quantification of Sox-PNT-TAT (MW = 15,343.5 g/mol) were preformed according to the

protocols used for Sox-PNT (vide supra).

Semisynthesis of Sox-PNT-CAAX

The gene incorporating GST, the PNT(46-138) domain, the TEV cleavage site (ENLYFQY(C),

the formylglycine tag (FGT) (LCTPSR), the His 6 tag, and the CAAX sequence

(KMSKDGKKKKKKSKTKCVIM), the formylglycine tag (LCTPSR) and the His 6 tag was

commercially synthesized by BioBasic Inc in the pUC-57 plasmid. The gene fragment encoding

for GST-PNT-FGT-His 6-CAAX was amplified from pUC-57 and digested with NdeI and BamHI

followed by ligation to NdeI/BamHI-digested and CIP-treated p24a (+) (Figure 4-22). The

ligation mixture was transformed into DH5a cells and grown on kanamycin-resistant plates.

Plasmid DNA was isolated from selected colonies and confirmed by sequencing.
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PNT(S46-K138)

MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYI
DGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRIAYSKDFETLK
VDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKL
VCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPKSDLVPRENLYFQCSQAL
KATFSGFTKEQQRLGIPKDPRQWTETHVRDWVMWAVNEFSLKGVDFQKFCMSGAALC
ALGKECFLELAPDFVGDILWEHLEILQKEDVKGLCTPSRHHHHHHKMSKDGKKKKKKS
KTKCVIM

Figure 4-22. The GST-PNT-FGT-His 6-CAAX product. a) Map of the p24a (+) plasmid

containing GST-PNT-FGT-His 6-CAAX. b) Primary sequence of the gene product.

The GST-PNT-CAAX protein (MW = 41,580.5 g/mol) was expressed following the same

protocol as described for GST-PNT-H6 (vide supra), except that kanamycin (30 mg/mL) was

used as the antibiotic instead of carbenicillin.

TEV removal of GST to give Cys-PNT-CAAX (MW = 14,637.1 g/mol), NCL, purification and

quantification of Sox-PNT-CAAX (MW = 16,038.5 g/mol) were performed according to the

protocols used for Sox-PNT (vide supra).
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Synthesis and Characterization of Sox-Isopeptide

a. Synthesis

The first 6 residues (TPGGRR), including Fmoc-Thr-OH with the free side chain alcohol, were

attached to Gly-preloaded TGT resin (0.0215 mmol, 1 equiv) following described protocols (vide

supra). Upon Fmoc removal with 20% 4-methylpiperidine/DMF, the resin was washed (5 x

DMF, 5 x CH 2C12) followed by addition DMF (500 [L) DIEA (37.5 [tL, 0.215 mmol, 10 equiv)

and NVOC-Cl (35.6 mg, 0.129 mmol, 6 equiv) dissolved in DMF (100 pL). The reaction vessel

was wrapped in aluminum foil; care was taken from this point onward to protect the peptide from

light. After 2 h of shaking at RT the contents of the reaction were drained and the beads washed

(10 x DMF). Next, Fmoc-Leu-OH was coupled using the symmetric anhydride method with DIC

(18 pL, 0.107 mmol, 5 equiv) and cat. DMAP (0.1 equiv) (2 x 2 h). Fmoc-C(Sox[TBDPS])-OH

(2 equiv) was coupled using PyAOP/HOAt/2,4,6-collidine (2:2:5, 0.15 M in DMF) for 12 h. The

last two amino acids (VP) were coupled using 6 equiv of amino acid and DIC:HOBt (5:5 equiv)

(1 x 1 h) and deprotections were carried out with 20% 4-methylpiperidine/DMF (2 x 4 min, 1 x

2 min). After acetylation (20 equiv of Ac20 and 20 equiv of pyridine, 45 min) the peptides were

subjected to 20% 4-methylpiperidine/DMF (2 x 4 min, 1 x 2 min) to remove C-Sox aryl esters

that might have formed during acetylation. The resin was finally washed with DMF, CH 2C12,

MeOH (5 x each) and dried under vacuum.

The Sox-Isopeptide was cleaved and fully deprotected with TFA/H20/TIS (95:2.5:2.5% v/v) for

3 h. The resulting solution was concentrated under a stream of N2 and precipitated by addition of

cold Et20. The pellet was triturated with cold Et20 (3 x), redissolved in water, filtered and

lyophilized. The peptides were purified by preparative reverse-phase HPLC using UV detection
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at 228 nm (amide bond absorption) and 316 nm (C-Sox absorption) or 350 nm (NVOC

absorption). Only fractions showing a single peak by analytical HPLC and with a correct mass

were used in further experiments.

HPLC tR [M+xH]x+ [M+xH] x+
Name Peptide Sequence Mol. Formula (min.)a Calcd. foundb

Sox-Isopeptide Ac-VP-CSox-L-(No-NVOC)T-PGGRRG-CO2H C70 H1 04 N20 023S2  28.4 829.3 (+3) 829.0 (+3)c

a Purified according to the following method: 5% B (5 min) followed by a linear gradient 5-
95% B (30 min). b Data was collected on an ESI mass spectrometer.

A stock solution of Sox-Isopeptide was prepared in doubly deionized water and its concentration

was determined by UV-Vis (based on the determined extinction coefficient of the fluorophore

unit, 5-(N,N-dimethylsulfonamido)-8-hydroxy-2-methylquinoline, E355 = 8247 M l cm -' at 355

nm in 0.1 M NaOH with 1 mM Na2EDTA and NVOC, E350 = 6336 M -1 cm-1 at 350 nm83). An

average of the values from three separate solutions, each prepared using a different volume of the

stock solution, was read on UV-Vis spectrophotometer. Purified peptide stock solutions can be

stored at 4 'C for at least 6 months or -20 oC for longer periods.

b. Rate of Uncaging

To determine the rate of uncaging, a solution of Sox-Isopeptide (100 pM) in 10 mM HEPES (pH

7.4) with 5 mM DTT and 1 mM inosine was prepared and exposed to light on the

transilluminator (~ex = 365 nm) for 1, 3, 10 or 20 min. Immediately after the allotted time, the

mixture was injected and separated on the RP-HPLC (C18 analytical column, method: 5%B (5

min) followed by a linear gradient to 95%B (30 min)). Isolated peaks were subjected to ESI MS

to confirm their identity.
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The percentage of uncaging (disappearance of Sox-Isopeptide peak) was calculated with inosine

as an internal standard. At a first glance, formation of Sox-Peptide does not seem to correlate to

Sox-Isopeptide uncaging, but the extinction coefficient for Sox-Peptide is substantially lower

than that of Sox-Isopeptide. Thus, the two cannot be directly compared.

Peak Area
Time Sox- Sox- Normalized to 0 % Sox- %

(min)o Inosine Isopeptide Isopeptide:lnosine min Isopeptide Uncaging

0 46.33 53.67 1.16 1 100 0

1 63.99 36.01 0.56 0.49 48.58 51.42

3 78.67 21.33 0.27 0.23 23.41 76.59

10 92.3 7.70 0.08 0.07 7.20 92.80

20 94.71 4.29 0.05 0.04 3.91 96.09

a HPLC method: 5% B (5 min) followed by a linear gradient 5-95% B (30 min).

c. Stability in Reducing Conditions

To determine if the ester bond would survive future handling, Sox-Isopeptide (100 pM) was also

exposed to harshly reducing conditions (10 mM HEPES (pH 7.4), 150 mM DTT, 150 mM

MESNa, 150 mM BME and 1 mM inosine) and was monitored periodically (0, 1, 24 and 48 h)

via RT-HPLC (C18 analytical column, method: 5%B (5 min) followed by a linear gradient to

95%B (30 min)). Sox-Isopeptide is quite robust over a period of 24 hours. Over 48 hours,

however, a side product starts to grow more prominent. The mass of the side product

corresponds to an oxidation product; no sign of ester hydrolysis is detected.
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Chapter 5. Toward 8-Hydroxyquinoline Derivatives with Improved Photophysical
Properties as Reporter Moieties for Phosphorylation

Prof. Dora Carrico-Moniz and Dr. Juan Antonio Gonzalez Vera made significant intellectual

contributions to this work. Dora prepared many of the tricyclic compounds, while Juan Antonio

synthesized most of the bicyclic derivatives.

A portion of the work described in this chapter has been submitted for publication:

Gonzilez-Vera, J. A.; Lukovid, E.; Imperiali, B. Synthesis of Red-Shifted 8-Hydroxyquinoline
Derivatives Using Click Chemistry and Their Incorporation into Phosphorylation Chemosensors.
2009, in press.
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Introduction

The use of the 8-hydroxyquinoline (Oxn) derivative, 8-hydroxy-5-(N,N-

dimethylsulfonamido)-2-methylquinoline (Sox), as a chelation-sensitive fluorophore to detect

kinase activity has been quite fruitful in our laboratory. By exploiting the properties of the Sox

chromophore, we have developed both sensitive and selective sensors that can report Ser/Thr and

Tyr phosphorylation both in vitro1 3 and in unfractionated cell lysates.4' 5 In addition, efforts

toward introducing Sox-PNT, the sensor for ERK1/2 presented in Chapter 4, into cells have

shown much promise. However, while the Sox chromophore has many advantageous properties

for in vitro and cell lysate work, cellular imaging would benefit from improvement in brightness

and a shift of wavelengths of excitation and emission to lower energy. Flurophore brightness is a

product of the extinction coefficient (c), which measures the probability of the electronic

transition, and the quantum yield (D), which is a measure of the efficiency with which absorbed

photons are emitted. Enhanced fluorophore brightness would improve the sensitivity toward

visualization of kinase activity, while red-shifted excitation and emission wavelengths would

reduce photodamage to living cells and decrease background signal due to cellular

autofluorescence.

In addition to phosphorylation sensing, Oxn (25) has also been used to signal metal ion

binding6, 7 due to its small size and low susceptibility to photobleaching. Oxn is minimally

fluorescent in aqueous solutions, but the presence of certain metal ions strongly increases its

fluorescence (Scheme 5-1). Hence, this process is also known as chelation-enhanced

fluorescence (CHEF). Currently, two theories explain the origin of the fluorescence change. In

the first theory, the lowest electronic excited state of unbound Oxn (n to n* transition) is non-

fluorescent due to rapid intersystem crossing. Divalent metal binding alters the lowest energy
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excited state to the 7t to 7t* transition, which does not undergo intersystem crossing and is,

therefore, flurorescent.7 However, intersystem crossing in unbound Oxn has been difficult to

verify. The alternate theory proposes that photo-induced proton transfer from the phenolic

hydroxyl to the quinoline nitrogen in the excited state of unbound Oxn results in fluorescence

quenching.8, 9 Metal binding aids deprotonation of the phenolic hydroxyl (due to a significantly

lowered pKa), disrupting the quenching mechanism. 10

Scheme 5-1. A General Representation of CHEF upon Divalent Metal Binding

5 4

6 3 M2
+

OH O- i-M2+

25 26

Much work has been devoted in our laboratory to optimizing the fluorescent properties of

Oxn and its derivatives. Initially, Oxn and 5-phenyl-substituted Oxn (5-PhOxn) amino acids

were prepared and introduced into peptides as sensors for divalent zinc. 11 12 However, because of

the poor photophysics of 2-methyl-8-hydroxyquinoline (2-MeOxn; smax = 2290 M-1 cm-1 and ( =

0.004) several other electron-withdrawing substitutions at C5 and C7 were explored.

Specifically, the photophysical properties of the Oxn core were dramatically altered by the

addition of sulfonamide group in the 5 position giving rise to the Sox chromophore. 13 The Sox-

Zn2+ complex is 150 times brighter than that of the parent fluorophore, 2-MeOxn. Due to its

useful photophysical properties in kinase sensing, the Sox chromophore was also transformed

into a building block for Fmoc-based SPPS either as the Sox 14 or C-Sox3 amino acid (Figure

5-1).
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Figure 5-1. Derivatives of 8-hydroxyquioline-based amino acids used to report kinase activity.

Additionally, the Anzenbacker laboratory has prepared numerous derivatives of Oxn with

a range of excitation/emission wavelengths and quantum yields.'15 16 In particular, they have

explored substitution in the C5 position with electron-donating or electron-withdrawing

arylethynyl and aryl groups. These studies demonstrate that electron-withdrawing groups

(EWGs) result in an overall hypsochromic shift and increased quantum yield. Conversely,

electron-donating groups (EDGs) sometimes display large bathochromic shifts, which are always

accompanied with reduced quantum yield. When complexed with A13+ (Alq 3, q = Oxn

derivative), the largest red-shift is observed with dimethylanalinyl-substituted Oxn (ex = 422

nm, ,em = 612 nm) compared to Oxn (ex = 388 nm, kem = 526 nm). 17 However, a drastic

decrease in quantum yield (D = 0.008 and 0.171 for dimethylamino-Oxn and Oxn, respectively)

is also observed. Derivatives with acetylene spacers follow the same trends.'17 18

To expand the scope of these sensors toward visualizing kinase activities in living cells,

the photophysical properties of the chemosensor should ideally be manipulated to shift the

excitation and the emission wavelengths of the quinoline reporter to longer, lower energy

wavelengths, while retaining high quantum yield. The irradiation of such fluorophores would

cause less photodamage to biological systems, and the use of longer wavelengths would mitigate

problems with high background signals that commonly complicate in cellulo studies. Finally, the
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addition of another distinctly colored chromophore could potentially allow simultaneous

visualization of activities among multiple kinases.

Toward that goal, herein we describe studies on the chemical modification of the 8-

hydroxyquinoline (Oxn) moiety in order to develop it as a building block for the assembly of

new phosphorylation sensors that employ CHEF. In the extended aromatic systems the rt-n* gap

would be reduced, 19 thereby resulting in longer excitation and emission wavelength maxima. We

present a systematic modification of the quinoline moiety by expanding conjugation with

additional aromatic rings or moieties with multiple bonds. Unfortunately, the majority of

derivatives did not show improved wavelengths or quantum yields compared to Sox. On the

other hand, incorporation of p-bromophenyl-substituted triazole into the 5 position of Oxn (Clk),

via click chemistry, 20 resulted in a significant red shift in the excitation (15 nm) and emission (40

nm) maxima while retaining a useful quantum yield (0.111). When the Clk fluorophore was

attached onto peptidyl kinase substrates through alkylation of the cysteine residue side chain (C-

Clk (27)) (Figure 5-2), it was shown to be an efficient reporter of MK2 activity when compared

to the existing C-Sox-based MK2 probe. Together, these results extend the utility range of kinase

sensors that employ chelation-enhanced fluorescence (CHEF) and provide new chemical

approaches for expanding the scope of these important reagents.
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Figure 5-2. The novel C-Clk amino acid based on the Oxn core.

Results and Discussion

More than 20 compounds were synthesized (Scheme 5-2) and evaluated. They can be

grouped into two general classes based on the quinoline core: 1. Fused tricyclic chromophores,

and 2. 2-, 5- or 7-substitued bicyclics. The synthesis of these was largely performed by Drs. Dora

Carrico-Moniz and Juan Antonio Gonzalez Vera, thus their synthetic characterization will not be

provided in this document, as they are reported elsewhere. However, the general photophysical

properties will be shown.

207



Scheme 5-2. Synthesis and Chemical Structures of Oxn Derivativesa

I-(dba)3 N
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N
OH
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P20
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a The chromophores are colored-coded: Sox (green), tricycles~
7-substituted (blue) bicycles.
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Fused Tricyclic Derivatives of Oxn

Most compounds were prepared using 1- or 2-step transformations from Oxn or one of its

derivatives (Scheme 5-2). A notable exception is the tricyclic 10-hydroxy-2-

methylbenzoquinoline (BOxn; 36) (Scheme 5-3). Initial efforts toward the construction of this

system using the well known Skraup/Dobner-von Miller reaction 21, 22 were unsuccessful, even

though the reaction afforded a related compound 52 (Scheme 5-3a) in modest yield. Thus, three

other routes were considered. First, the Narasaka group published several reports of quinoline

synthesis through oxime intermediates (60).23-26 Following this approach, the synthesis was

mapped out to contain at least 11 linear steps that included a problematic alkylation of acetone

(Scheme 5-3b). The Combes synthesis21' 27 was also considered, but it would have yielded a

product with the undesirable C4 substitution (62) (Scheme 5-3c). Finally, BOxn (36) was

successfully accessed through the fourth option, the Friedlander method of quinoline synthesis, 28,

29 that required a 6-step sequence by Dr. Carrico-Moniz (Scheme 5-3d).
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Scheme 5-3. Synthesis of BOxn using a) the Skraup Reaction, b) Oxime Chemistry, c) the
Combes Synthesis or d) the Friedlander Method
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d) Friedlander
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Et2 0 @ - H SnCI2, ZnCI2  .f~ BBr3

2. DMF NHBoc EtOH N 98% N
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When compared to the parent compound 28 (Oxn: ,,em = 360 nm, Xex = 530 nm), BOxn

(36) displayed greatly shifted excitation and emission wavelengths (460 nm and 590 nm,

respectively). However, the fluorescence intensity was 10-fold lower. Since sulfonamide-

substitution had substantially increased fluorescence intensity of the parent Oxn (36) molecule in

our previous studies, 13 sulfonamidation was also attempted on the tricyclic system.

Unfortunately, while this moiety can be installed in the 5 position of the methyl-protected

alcohol BOxn derivative 70, upon deprotection the sulfonamide efficiently eliminated and the

benzoquinoline oxidized to the corresponding quinone 71 (Scheme 5-4).

Scheme 5-4. Installation of Dimethylsulfonamide and Oxidation to Quinone upon Methoxy

Deprotection

I SO2NMe 2

2. HNMe 2  BBr 3

OMe OMe O

69 70 71

We also prepared several 9-hydroxy-acridine derivatives bearing the sulfonamide

substitution in either the 6 or the 6 and 8 positions, compounds 35 and 34, respectively in

Scheme 5-2. Similarly to BOxn, acridine-based derivatives displayed red-shifted wavelengths,

but greatly reduced fluorescence intensities when compared to Sox (Figure 5-3).
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Bicyclic Derivatives of Oxn

Our attention was next directed toward the synthesis and photophysical evaluation of

modified bicyclic derivatives. Most of the new compounds followed the trend observed with the

tricyclic system: extension of wavelengths resulted in compromised brightness of the

fluorophore (Figure 5-3). Photophysical properties of several of the more notable chromophores

are summarized in Table 5-1. Indeed, only the aldehyde-substituted chromophore 39 showed an

improved quantum yield, measured by standard methods. 17 Nonetheless, this derivative was not

appropriate for further studies since it exhibited shorter ,em, and the easily oxidized aldehyde

group was predicted to limit its use in biological systems.
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Oxn derivatives (1.66 pM) when complexed with Mg2+ (242 mM).

213

............................

I
t Io-

6-.0x

z xr



Table 5-1. Relevant Spectroscopic Data for Selected Oxn Derivatives that Form Fluorescent
Complexes with Mg 2+

RR 2

OH

Compound R R2  (nm) (nm) 
a b

45C SO 2N(CH 3)2 CH3  360 485 0.342

39 CHO CH3  373 460 0.597

42 CN CH3  362 485 0.276

43 COCH 3  CH3  370 465 0.168

72 COCH 2CI CH3  373 460 0.034

38 C02H CH3  362 505 0.004

73 CO-Ph H 375 485 0.002

a Spectra were acquired in 150 mM NaC1, 50 mM HEPES (pH 7.4), 25 'C with 10 tM 1-7 and

10 mM MgCl 2. b Excitation of all species is provided at ,max (355-425 nm). Quantum yields were

calculated with reference to a quinine sulphate standard (in 0.05 M H2SO 4). c Extinction

coefficient: C355 = 8,247 cm 1 M'1.

Synthesis and Screening of Triazole-substituted Oxn Derivatives

In light of these findings, we decided to focus on 8-hydroxyquinoline derivatives with

triazole substitution at position 5. The triazole ring is a versatile and readily installed linkage that

has been used to extend the conjugation of diverse aromatic systems.30, 31 Therefore, we

envisioned that azide substitution at position 5 of the hydroxyquinoline would provide a non-

fluorescent intermediate that could be readily subject to 1,3-dipolar cycloaddition with a variety

of terminal alkynes using the Cu(I)-catalyzed Huisgen reaction.20' 32

For this purpose azide 75 was prepared using previously reported methods (Scheme

5-5). 33 As expected, 75 showed no fluorescence due to the quenching effect from the electron-

rich azido group.30 In the presence of catalytic Cu(I) and ascorbic acid 75 reacts readily at room

temperature with 1-ethynylcyclohexene (76a) in DMF/4-methylpiperidine (8:2) to afford the

cycloaddition product 77a in excellent yield. Quinoline 77a has a kex of 371 nm and a "em of 522

nm due to the elimination of azide quenching after formation of the triazole ring. Despite the
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poor quantum yield (cD = 0.033), this initial result encouraged us to screen for improved

fluorescence properties of the triazole substituted quinolines by investigating the properties of

products from the 1,3-dipolar cycloaddition reaction of 75 with 21 additional alkynes (76b-v).

Scheme 5-5. 1,3-Dipolar Cycloaddition Reactions of 75 with 76a-v
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The cycloaddition reactions were generally complete in 12 h at room temperature and

were monitored by TLC and mass spectrometry. The formation of the fluorescent triazole

derivatives could be easily established upon exposure to a hand-held UV lamp (7ex = 365 nm).

The fluorophores were then qualitatively compared in a 96-well plate format (transilluminator;

kex = 365 nm) to identify promising compounds (Figure 5-4) and were further subjected to
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quantitative analysis in a fluorescence plate reader (see the Experimental Methods). The

excitation and emission wavelengths of the triazole products (77b-v, ex = 360-375 nm, kem =

510-530 nm) were improved compared to those for Sox (45, ex = 360 nm, em = 485 nm, -=

0.342, E355 = 8,247 cm 1 M'). Based on the preliminary screening, selected targets were then

synthesized in larger quantities and the quantum yields of the corresponding hydroxyquinoline

derivatives were determined. Compared to 77a (1 = 0.033) a 3.5-fold improvement in quantum

yield was obtained in the case of the bromide 77u (ex = 375 nm, kem = 525 inm, (I = 0.111, E355

= 7,905 cm -1 M-1). In view of the fluorescent properties of this derivative, we chose to use it as a

chelation-sensitive fluorophore to prepare probes for mitogen-activated protein kinase-activated

protein kinase-2 (MK2),34 and sarcoma kinase (Src),35 37 used as models of Ser/Thr and Tyr

kinases, respectively. For the purposes of comparison, the analogous fluorescent peptides

containing the original Sox chromophore were also prepared as previously described.3

Figure 5-4. Qualitative comparison of emission wavelengths of 77a-v. The colors shown here do

not represent the true fluorescent wavelengths (shown in the Supporting Information). The

fluorophores (10 tM dissolved in DMSO) were illuminated (ex = 365 nm) in 50 mM HEPES

(pH 7.4), 150 mM NaC1, 10 mM MgC12 at 25 oC.
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Synthesis and Biophysical Evaluation of Clk-based Peptidyl Kinase Substrates

The synthesis of the probes, outlined in Scheme 5-6, was performed using a strategy

similar to that used for the preparation of the Sox-based recognition-domain focused (RDF)

chemosensors.3  Diazotization of 5-amino-2-methylquinolin-8-ol (52, prepared from 8-

hydroxyquinaldine using literature methods) 38 followed by treatment of the diazonium salt with

NaN3 gave the corresponding azide 53 (66% yield). Protection of the phenolic hydroxyl group as

a tert-butyldiphenylsilyl ether produced 54 (98%), which was then brominated under free radical

conditions to afford the bromide 55 (30%). To avoid dibromination, the reaction was stopped

after 20 min, thereby providing a mixture of the desired product (55) and the starting material

(54), which could not be separated using standard chromatographic methods and was used in the

next step without purification. Fmoc-based solid phase peptide synthesis (SPPS) was utilized to

assemble the intact peptide that included an appropriately placed cysteine residue protected with

monomethoxytrityl (Mmt), which is a hyper acid-labile protecting group (Scheme 5-6). After

selective on-resin sulfhydryl deprotection, the free thiol was alkylated with 55. Then a 1,3-

dipolar cycloaddition reaction with 1-bromo-4-ethynylbenzene in the presence of catalytic Cu(I)

gave the corresponding triazole-substituted peptide. Standard TFA cleavage from the resin and

concomitant removal of all side-chain protecting groups revealed the desired chemosensor with

excellent conversion to the final product (> 95%).
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Scheme 5-6. Synthesis of the Clk RDF Chemosensors

NH2  N3  N3  N3
1. NaNO2  aO NaN2TBDPSCI N
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OH OH OH OTBDPS OTBDPS

28 78 (72 %) 79 (66 %) 80 (98 %) 81 (30 %) R

OMe
N3  N
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FmocHN :SPPS Ac Ac +2 or -2 H2 2  +2 or Ac +2 or -2 CONH22. 81, TMG 2. TFA:TIS:H 20
PG PG DMF PG PG (95:2.5:2.5%) R= 4-bromophenyl

Table 5-2 shows the substrate sequences of the Sox- and click (Clk)-based RDF probes

for MK2 and Src kinases, as well as the fluorescence increases that were observed with the

corresponding phosphopeptides. The difference in fluorescence was determined by comparison

of the fluorescence intensity at the maximum emission wavelength (485 nm for Sox and 525 nm

for Clk) of phosphorylated and unphosphorylated peptides in the presence of Mg2+. The

fluorescence increases of the click peptides are between 2- and 2.5-fold, which are still

significant changes that are useful in enzymatic assays (vide infra). More specifically, the click-

based RDF peptides exhibited larger fluorescence increases than the Sox-based RDF peptides in

the case of Src (entries 3 and 4) while this trend is reversed in the case of MK2 (entries 1 and 2).
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Table 5-2. Substrate Sequences of the RDF Chemosensors and Their Fluorescence Increases

Fold
Target Location of the Fluorescence

Entry Name kinase chromophore' Peptide Sequenceb Increasec

1 P1 MK2 C Ac-AHLQRQLS*/-C(Sox)-HH-CONH 2  4.4 ± 0.2
2 P2 MK2 C Ac-AHLQRQLS*/-C(Clk)-HH-CONH 2  2.1 + 0.3
3 P3 Src N Ac-AEE-C(Sox)-IY*GEFEAKKKK-CONH 2  2.0 ± 0.1
4 P4 Src N Ac-AEE-C(Clk)-IY*GEFEAKKKK-CONH 2  2.4 ± 0.2

a Location determined in reference to the chromophore. C denotes C-terminus and N stands for
N-terminus. b Asterisk (*) denotes the residue that is phosphorylated. In cases where it has been
determined, residues important in kinase recognition are underlined. c Measured in triplicate as a
quotient of fluorescence intensity at 485 nm (for Sox peptides) or 525 nm (for Clk peptides) of
phosphopeptide and substrate in 20 mM HEPES (pH 7.4), 10 mM MgC12, and 10 IM peptide
(for Sox peptides ,ex = 360 nm; for Clk peptides kex = 375 nm).

As an example, Figure 5-5a shows a comparison between the fluorescence spectrum of

the synthetically-obtained phosphopeptide MK2(Sox) [P1] and that of the analogous MK2(Clk)

[P2]. The results were essentially the same for the Src sensors (see the Experimental Methods).

Neither species was fluorescent at pH 7.0 (50 mM HEPES, 150 mM NaC1) in the absence of the

metal ion. Upon addition of Mg 2+ the fluorescence spectra of Mg2+-bound P1 and Mg 2+-bound

P2 exhibited emission maxima of 485 and 525 nm, respectively, indicating a red-shift of 40 nm.

On the other hand, in the corresponding excitation spectra the Mg2+-bound P1 reached a

maximum at 360 nm and Mg2+-bound P2 emission peaked at375 nm, representing a

bathochromic shift of 15 nm.
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Figure 5-5. Spectral characterization and enzymatic evaluation of Clk-based substrates. (a)
Fluorescence excitation and emission spectra of P1 (--) and P2 (-) with Mg 2+. Samples were
prepared in 50 mM HEPES (pH 7.4) and 150 mM NaCl. Spectra were acquired at 25 oC and
were baseline-corrected using a sample of the buffer solution. (b) Percentage of turnover of the
Clk-based (n, entry 2) or Sox-based (o, entry 1) substrate with MK2 after 10 min. Assays were
performed in 20 mM HEPES (pH 7.4), 10 mM MgCl 2, 0.1 mM EGTA, 0.01% Brij 35, 0.1
mg/mL BSA, 1 mM DTT, 1 mM ATP, 5 iM substrate and 10 ng MK2 at 30 oC. Plotted values
indicate the mean ± s.e.m. for triplicate measurements.

Evaluation of Clk-based Substrates in Enzymatic Assays

Having validated the utility of the new fluorophore alone and in peptides through

photophysical characterization, we also evaluated its efficacy in reporting kinase activity in

biochemical assays. Following established protocols,3 Sox- and Clk-based substrates (entries 1

and 2, respectively, in Table 5-2) were subjected to MK2 kinase assays under identical

conditions and then the overall turnover of each substrate was compared. As shown in Figure

5-5b, MK2 phosphorylated the Clk-substrate just as efficiently as the Sox-substrate indicating

that the size of Clk chromophore does not adversely influence reaction kinetics. Based on

previous work, which has shown that Sox-based substrates had at least comparable, if not better

kinetics than parent peptides, we believe that the Clk-based reporters will also follow the same
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trend for Src and other kinases. However, kinase substrate kinetics are highly empirical and,

thus, new substrates will have to be experimentally evaluated. If unsuitable for the kinase of

interest, the sensors can be also improved using our high-throughput, mass spectrometry-based

method (Chapter 3).39

Conclusions

In conclusion, several tricyclic and bicyclic derivatives of 8-hydoxyquinoline were

prepared and screened for favorable photophysical properties (e.g., extended excitation and

emission wavelengths and increased quantum yield and extinction coefficient). While we were

able to induce a significant bathochoromic shift (e.g., with 9-hydroxy-2-methylbenzoquinoline

(36)), in all cases this shift was accompanied by a decrease in the brightness of the chromophore.

On the other hand, the extension of conjugation via triazoyl substitution of Oxn at C5 yielded

encouraging fluorescent properties. We explored this avenue by synthesizing a library of 1,3-

triazole-substituted 8-hydroxyquinolines (76a-v). Specifically, when Oxn was modified with the

p-bromophenyl-substituted triazole (Clk, 77u) it exhibited significant red-shifts in excitation (15

nm) and emission maxima (40 nm) when complexed to Mg2+ compared to Sox. The Clk

chromophore was then incorporated into peptide phosphorylation chemosensors for MK2 and

Src kinases. When evaluated with MK2, the chromophore does not inhibit the ability of the

enzyme to recognize and phosphorylate the Clk probe, and effectively reports kinase activity.

Together, these results effectively expand the potential capabilities of the hydroxyquinoline-

based kinase sensing strategy.
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Future Directions and Perspectives

Following the successful screening of the triazolyl-substituted Oxn library for improved

chromophores, an additional platform yielding efficient access to multiple derivatives should be

explored. For example, installation of a third ring, a cyclic anhydride fused in the 4 and 5

positions of Oxn, would allow us to couple a host of amines to the anhydride core (85), giving a

library of Oxn-imide derivatives (86) (Scheme 5-7). Synthesis efforts toward the final product 86

have been initiated. Multiple conditions were attempted in the Skraup reaction, but only in the

presence of polyphosphoric acid was the pyridine ring assembled to give 83 (Scheme 5-7).

Subsequently, we were able to fully oxidize the benzylic methyl groups, but the resulting diacid

84 remains to be closed either as the anhydride 59 or by direct amine coupling to yield imide-

Oxn (86). Access to this core would provide an opportunity to quickly construct a library of new

Oxn-based derivatives that are quite different from oxines reported so far. The resulting

compounds would be screened for bathochormic shifts in wavelengths and enhancement in

brightness.

Scheme 5-7. Synthesis of an Alternative Tricyclic Core

R

O HO 2 C CO 2 H 0 N 0

I \ KMnO 4  R-H 2
PPA, 110 OC H20 , 115 OC - N-

NH 2  N N N N

OH OH OH OH OH

82 83 84 85 86

Since the Azenbacker group reported extended excitation and emission wavelengths

through the Suzuki-Miyaura coupling of EWG or EDG to the Oxn core, 17 we synthesized two of

those derivatives (90a and 90b) (Scheme 5-8). The syntheses were done following reported

protocols and the fluorescence properties of the purified products should now be tested in the
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presence of Mg2+ . If these compounds display useful properties, fine-tuning can be achieved with

numerous arylboronic acids.

Scheme 5-8. Synthesis of 5-ArylOxn Derivatives

R R = CI for a R
CN for b

Br
Arylboronic acid Bu 4NF

S TBDMS-OTf Br 2  1'Z SPhos \ THF

imidazole CH2C12  Pd(OAc) 2H CH2CI2 K3P40H2 0
OH OTBDMS OTBDMS 3P 4  OTBDMS OH

PhCH3 , 100 OC
28 87 88 89 90a,b

Furthermore, if arylation at C5 turns out to be a fruitful approach to improving the

quantum yield for bicyclic derivatives, it should also be applied to the BOxn fluorophores. The

derivatization of the 5 position of these linear tricyclic compounds was attempted with

dimethylsulfonamide, but without much success due to oxidation of the middle ring to the

corresponding quinone upon methoxy deprotection (Scheme 5-4). However, bromination of 69 is

quite facile, thus giving a ready handle for installation of an aryl substituent through the Suzuki-

Miyaura reaction (Scheme 5-9). The C-C bond at C5 should prevent quinone formation during

the subsequent alcohol deprotection of 92 and may increase the quantum yield and the extinction

coefficient of the target product 93.

Scheme 5-9. Preparation of C5 Aryl-substituted BOxn

Br Ar Ar

NBS ArB(OH) 2  BBr 3

N 00CC14 C N N N

OMe OMe OMe OH

69 91 92 93

Lastly, some of the more hydrophobic Oxn derivatives should be incorporated into

peptides through the previously developed on-resin cysteine alkylation (Scheme 5-10). This

facile transformation will resolve the solubility problems that were encountered with a number of

fluorophores and will also facilitate more accurate measurement of photophysical properties.
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Scheme 5-10. Peptide Incorporation of Oxn Derivatives

N" Br

OH
+ --
HS OH

TMDMF s,

Together, these derivatives should expand our arsenal of CHEF-based chromophores that

could be useful in cells or in multiplexed and multi-colored kinase assays.
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Experimental Methods

General Information

All solvents and reagents were obtained commercially and used without further

purification, unless otherwise noted. N'-Fmoc-protected amino acids [Fmoc-Ala-OH, Fmoc-

Arg(Pbf)-OH, Fmoc-Cyc(Mmt)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-His(Trt)-

OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH, Fmoc-Ser(tBu)-OH,

Fmoc-Ser(PO(OBn)OH)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Tyr(PO(OBn)OH)-OH] were

purchased from Novabiochem. Whenever anhydrous and/or degassed CH2C12 was necessary it

was distilled from calcium hydride under an argon atmosphere. Analytical TLC was performed

on silica gel 60 F254 precoated plates (EMD Chemicals Inc.) and visualized by UV. Flash column

chromatography was performed as previously described 40 using forced flow of the indicated

solvent on AdTech Flash Silica Gel (32-60 Lm packing, 60 A pore diameter, Adedge

Technologies). Organic solutions were concentrated in vacuo by rotary evaporation at -10 Torr

(house vacuum) at 25-40 oC, then at -0.5 Torr (vacuum pump), unless otherwise indicated.

Peptides were purified via preparative reverse-phase C18 HPLC employing a gradient of

solvents A (H20 with 0.1% v/v TFA) and B (CH 3CN with 0.1% v/v TFA). Compounds were

characterized by 'H, 13C NMR and mass spectrometry. Peptide purity was determined by

analytical reverse-phase HPLC.

Instrumentation and Materials

NMR: 'H and 13C NMR spectra were recorded on a Bruker 400 MHz Avance spectrometer.

Chemical shifts (6) are reported in parts per million (ppm) and referenced to CDC13 (7.26 ppm
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for 1H and 77.0 ppm for 13C). Coupling constants (J) are reported in Hertz (Hz) and multiplicities

are abbreviated as singlet (s), doublet (d), doublet of doublets (dd), triplet (t) and multiplet (m).

HPLC: HPLC was carried out on Waters Prep LC 4000 System or Waters Delta 600 System

equipped with Waters 2487 dual wavelength absorbance detectors. Columns used: C18 analytical

(flow rate = 1 mL/min), Beckman Ultrasphere ODS, 5 jtm, 150 x 4.6 mm; C18 preparatory (flow

rate = 15 mL/min), YMC-Pack Pro, 5 tm, 250 x 20 mm.

ESI-MS: Applied Biosystems Mariner mass spectrometer.

MALDI-TOF MS: PerSeptive Biosystems Voyager MALDI-TOF instrument.

HRMS: Provided by the Department of Chemistry Instrumentation Facility (DCIF), MIT.

UV-Vis Spectrophotometer: Shimadzu UV-2401 PC.

Fluorometer: Fluoromax 3 from Jobin Yvon. Cuvette: Starna Cells (16.100F-Q-10) 100 jiL sub-

micro cuvette, 1 cm path length.

Fluorescence Plate Reader: HTS 7000 Bio Assay Reader from Perkin Elmer or SpectraMax

GeminiXS Dual Scanning Microplate Spectrofluorometer from Molecular Devices. Plate:

Coming assay plate, 96-well, half area, no lid, flat bottom, non-binding surface, non-sterile,

white polystyrene.
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Synthesis and Characterization of Oxine derivatives

Compounds 4513, 3941, 4241, 4342, 3843 and 7344 were prepared by previously described methods.

Characterization of each compound was consistent with literature.

5-Carbaldehyde-8-Hydroxy-2-methylquinoline (39)41

Yield: 64 %, 'H NMR (500 MHz, CDC13) 6 ppm: 2.75 (s, 3H), 7.24 (d, J = 8 Hz, 1H), 7.51 (d, J

= 8 Hz, 1H), 7.90 (d, J = 8 Hz, 1H), 9.51 (d, J = 8 Hz, 1H), 10.01 (s, 1H). 13C NMR (125 MHz,

C13CD) 8 ppm: 24.6, 108.8, 123.6, 124.6, 125.4, 134.6, 137.4, 139.0, 157.4, 158.0, 191.6. HRMS

(ESI): calcd for Cj1H 9N0 2 [M + H]+: 188.0706, found: 188.0711.

5-Carbonitrile-8-Hydroxy-2-methylquinoline (42) 41

Yield: 79 %, 1H NMR (500 MHz, CDCl3) 8 ppm: 2.77 (s, 3H), 7.15 (d, J = 8.5 Hz, 1H), 7.52 (d,

J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 8.37 (d, J = 8.5 Hz, 1H). 13 C NMR (125 MHz,

C13CD) 8 ppm: 23.7, 27.6, 106.3, 121.1, 124.5, 125.2, 134.0, 137.6, 157.0, 158.9. HRMS (ESI):

calcd for C11H 8N20 [M + H]+: 185.0709, found: 185.0704.

]-(8-Hydroxy-2-methylquinolin-5-yl)ethanone (43)42

Yield: 66 %, 1H NMR (500 MHz, CDC13) 86 ppm: 2.70 (s, 3H), 2.75 (s, 3H), 7.13 (d, J = 8 Hz,

1H), 7.46 (d, J= 9 Hz, 1H), 8.10 (d, J = 8 Hz, 1H), 9.45 (d, J= 9 Hz, 1H). 13C NMR (125 MHz,

C13CD) 8 ppm: 24.5, 28.6, 108.3, 124.5, 125.0, 125.2, 133.0, 136.5, 156.0, 157.2, 199.1. HRMS

(ESI): calcd for C12HIlN0 2 [M + H]+: 202.0863, found: 202.0856.
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2-Chloro-l-(8-hydroxy-2-methylquinolin-5-yl)ethanone (72)

Compound 72 was prepared with 2-chloroacetyl chloride following the same procedure used to

obtain 43. Yield: 71 %, 'H NMR (500 MHz, CDC13) 6 ppm: 2.76 (s, 3H), 4.78 (s, 2H), 7.15 (d, J

= 8 Hz, 1H), 7.51 (d, J = 9 Hz, 1H), 8.06 (d, J = 8 Hz, 1H), 9.39 (d, J = 9 Hz, 1H). 13C NMR

(125 MHz, C13CD) 6 ppm: 24.6, 46.9, 108.3, 121.3, 125.4, 125.5, 132.7, 135.9, 157.0, 157.7,

191.4. HRMS (ESI): calcd for C12H10C1N0 2 [M + H]+: 236.0473, found: 236.0479.

General Synthesis of the Triazolyl Derivatives 77a-v

5-Azido-8-hydroxyquinoline (75, 50 mg, 0.26 mmol) and the corresponding alkyne (76a-v) (0.26

mmol) were suspended in a 8:2 mixture of DMF/4-methylpiperidine (2 mL). Ascorbic acid (7.1

mg, 0.04 mmol) and copper iodide (2.5 mg, 0.01 mmol) were added suspended in a 8:2 mixture

of dimethylformamide/4-methylpiperidine (1 mL) and the heterogeneous mixture was stirred

vigorously overnight in the dark at room temperature. TLC analysis indicated complete

consumption of the reactants in 12 h. The mixture was dissolved in ethyl acetate (40 mL), was

washed with H20 (5 mL), brine (5 mL), dried over Na2 SO4, and evaporated to yield the

corresponding triazolyl derivatives 10a-v.

8-Hydroxy-5-(4-cyclohexenyl-]H-1,2,3-triazol-1-yl)quinoline (77a)

1-Ethynyl-1-cyclohexene (76a) was used as the starting material. 1H NMR (500 MHz,

CD 30D) 8 ppm: 1.71-1.79 (m, 2H), 1.82-1.86 (m, 2H), 2.26-2.28 (m, 2H), 2.48-2.49 (m, 2H),

6.62 (m, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.79 (d, J= 8.5 Hz, 1H), 7.83 (dd, J= 4 and 8.5 Hz, 1H),

8.22 (s, 1H), 8.39 (d, J = 8.5 Hz, 1H), 9.02 (d, J = 4 Hz, 1H). 13C NMR (125 MHz, CD3OD) 8

ppm: 23.4, 23.7, 26.4, 27.5, 113.1, 123.7, 124.7, 126.0, 126.6, 127.0, 127.7, 128.3, 136.0, 137.4,

148.6, 150.9, 154.4. HRMS (ESI): calcd for C17H16N40 [M + H]+: 293.1397, found: 293.1394.
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8-Hydroxy-5-(4-phenyl-]H-1, 2, 3-triazol-1-yl)quinoline (77b)

Ethynylbenzene (76b) was used as the starting material. 'H NMR (500 MHz, CD 30D) 8 ppm:

7.30 (d, J = 8.5 Hz, 1H), 7.41 (dd, J = 1.5 and 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.70 (dd, J

= 4.5 and 9.5 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.96 (dd, J = 1.5 and 8.5 Hz, 2H), 8.21 (d, J =

8.5 Hz, 1H), 8.74 (s, 1H), 8.97 (dd, J = 1.5 and 4.5 Hz, 2H). 13C NMR (125 MHz, CD30D) 8

ppm: 111.7, 127.0, 127.1, 129.8, 130.2, 131.5, 134.3, 138.4, 149.2, 149.9, 155.9. HRMS (ESI):

calcd for Cy7HI2N 40 [M + H]+: 289.1084, found: 289.1076.

8-Hydroxy-5-(4-(3, 5-bis(trifluoromethyl)phenyl)-]H-1, 2, 3-triazol-1-yl)quinoline (77c)

1-Ethynyl-3,5-bis(trifluoromethyl)benzene (76c) was used as the starting material. 'H NMR (500

MHz, CD 30D) 8 ppm: 7.38 (d, J = 8.5 Hz, 1H), 7.84 (dd, J = 4.5 and 8.5 Hz, 1H), 7.87 (d, J -

8.5 Hz, 1H), 7.99 (s, 1H), 8.52 (dd, J = 1.5 and 8.5 Hz, 1H), 8.57 (s, 1H), 9.03 (dd, J = 1.5 and

4.5 Hz, 1H), 9.07 (s, 1H). 13C NMR (125 MHz, CD 30D ) 6 ppm: 113.2, 122.8, 123.8, 124.6,

124.8, 125.7, 125.9 126.6, 127.0, 127.9, 133.6, 134.4, 146.4, 148.6, 154.5 . HRMS (ESI): calcd

for C19H10F 6N40 [M + H]+: 425.0832, found: 425.0836.

8-Hydroxy-5-(4-(3-chlorophenyl)-H-1,2,3-triazol-1-yl)quinoline (77d)

1-Chloro-3-ethynylbenzene (76d) was used as the starting material. 'H NMR (500 MHz,

CD30D) 8 ppm: 7.34 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 8 Hz, 1H), 7.48 (t, J = 8 Hz, 1H), 7.77

(dd, J = 4.5 and 8.5 Hz, 1H), 7.81 (dd, J = 8 Hz, 1H), 7.90 (d, J = 8 Hz, 1H), 8.01 (s, 1H), 8.32

(dd, J = 1.5 and 8.5 Hz, 1H), 8.82 (s, 1H), 9.01 (dd, J = 1.5 and 4.5 Hz, 1H). 13 C NMR (125

MHz, CD30D )6 ppm: 112.3, 124.7, 125.2, 125.6, 125.7, 126.4, 126.8, 127.4, 129.6, 131.8,
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133.6, 135.6, 136.2, 137.4, 147.9, 149.4, 155.4. HRMS (ESI): calcd for C17HlC1IN 40 [M + H]+:

323.0621, found: 323.0625.

8-Hydroxy-5-(4-p-tolyl-]H-1, 2, 3-triazol-1-yl)quinoline (77i)

1-Ethynyl-4-methylbenzene (76i) was used as the starting material. 'H NMR (500 MHz,

CD 30D) 8 ppm: 2.40 (s, 3H), 7.31 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.83-7.88 (m,

2H), 7.84 (d, J = 8 Hz, 1H), 7.88 (d, J = 8 Hz, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.72 (s, 1H), 9.04

(dd, J = 1.5 and 4.5 Hz, 1H). 13C NMR (125 MHz, CD 30D ) 8 ppm: 21.4, 113.4, 124.6, 124.7,

126.0, 126.7, 126.9, 128.0, 128.6, 130.8, 138.0, 140.0, 148.4, 149.5, 154.2. HRMS (ESI): calcd

for C17HllCIN40 [M + H]+: 323.0694, found: 323.0702.

8-Hydroxy-5-(4-(4-bromophenyl)-H-1, 2, 3-triazol-1-yl)quinoline (77u)

1-Bromo-4-ethynylbenzene (76u) was used as the starting material. 'H NMR (500 MHz,

C13CD) 8 ppm: 7.28 (d, J = 8 Hz, 1H), 7.56 (dd, J = 4 and 8.5 Hz, 1H), 7.60-7.64 (m, 2H), 7.61

(d, J= 8 Hz, 1H), 7.81-7.83 (m, 1H), 7.82 (d, J= 8.5 Hz, 1H), 8.11 (s, 1H), 8.16 (d, J= 8.5 Hz,

1H), 8.90 (d, J = 3.5 Hz, 1H). 13C NMR (125 MHz, C13CD ) 6 ppm: 108.9, 122.2, 122.5, 123.5,

124.2, 124.3, 125.1, 127.4, 129.0, 132.1, 132.2, 137.7, 146.9, 148.9, 153.9. HRMS (ESI): calcd

for C17HIlBrN40 [M + H]+: 367.0189, found: 367.0187.

5-Azido-8-hydroxy-2-methylquinoline (79)

5-Amino-8-hydroxy-2-methylquinoline (78; 723 mg, 4.2 mmol) was dissolved in a solution of

concentrated hydrochloric acid (0.4 mL) and water (5 mL), cooled to -3 oC in a salt-ice bath,

stirred for 10 min, then treated dropwise with a cold solution of sodium nitrite (0.50 g, 7.2 mmol)
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in water (5 mL). The mixture was stirred for 20 min, then treated dropwise with sodium azide

(0.60 g, 9.2 mmol) in water (40 mL), stirred at 0 oC for a further 1.5 h, then allowed to warm to

room temperature over 24 h in the dark. Isolation by extraction with diethyl ether gave a dark

brown solid, which was recrystallized from light petroleum to yield 13 as light brown crystals

(554 mg, 66%). 1H NMR (500 MHz, CD 30D) 6 ppm: 3.31 (s, 3H), 7.06 (d, J = 8.5 Hz, 1H),

7.15 (d, J = 8.5 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H). 13C NMR (125 MHz,

CD 30D) 8 ppm: 24.9, 111.8, 115.6, 121.6, 123.7, 127.9, 132.6, 139.6, 151.1, 159.7. HRMS

(ESI): calcd for C1oH8N40 [M + H]+: 201.0771, found: 201.0773.

5-Azido-8-tert-butyldiphenylsilyloxy-2-methylquinoline (80)

A 100-mL flask was successively loaded with dry DMF (10 mL), 79 (200 mg, 1 mmol),

imidazole (68.08 mg, 1 mmol), and tert-butyldiphenylsilyl chloride (302 mg, 1.1 mmol). The

solution was stirred at room temperature for 10 h, diluted with ethyl acetate (500 mL), washed

with aqueous HCI (0.1 M, 50 mL), brine (100 mL), water (100 mL), dried over Na 2 SO 4 and

evaporated under reduced pressure to afford 8.41 g (96%) of protected product as a colorless oil

(428 mg, 98%). 'H NMR (500 MHz, CDC13) 6 ppm: 1.19 (s, 9H), 2.33 (s, 3H), 6.98 (d, J = 8.5

Hz, 1H), 7.06 (d, J = 8.5 Hz, 1H), 7.10 (d, J = 8.5 Hz, 1H), 7.38-7.26 (m, 6H), 7.81-7.79 (m, 4H),

8.11 (d, J = 8.5 Hz, 1H). 13C NMR (125 MHz, CDC13) 6 ppm: 20.1, 24.3, 26.8, 113.5, 116.7,

120.6, 121.8, 127.3, 128.4, 129.2, 130.6, 134.3, 135.1, 140.9, 148.9, 157.9. HRMS (ESI): calcd

for C26H2 6N4 OSi [M + H]+: 438.1876, found: 438.1879.
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5-Azido-2-bromomethyl-8-tert-butyldiphenylsilyloxyquinoline (81)

NBS (165.5 mg, 0.93 mmol) and AIBN (152.7 mg, 0.93 mmol) were added to a solution of 80

(371 mg, 0.85 mmol) in Cl4C (4.5 mL), and the mixture was refluxed 20 min and evaporated to

dryness. The residue was dissolved in CH 2C12 (20 mL), the solution was washed with H20 (5

mL) and brine (5 mL), dried over Na 2SO 4, and evaporated. The residue was purified by flash

chromatography, using 20-50% gradient of EtOAc in hexane as eluent, to yield the unresolved

(3:1) mixture of 80 and 81 (131.6 mg, 30%). 1H NMR (500 MHz, CDC13) 6 ppm: 1.16 (s, 9H),

4.24 (s, 2H), 6.97 (d, J = 8.5 Hz, 1H), 7.03 (d, J = 8.5 Hz, 1H), 7.09 (d, J = 8.5 Hz, 1H), 7.26-

7.43 (m, 6H), 7.76-7.78 (m, 4H), 8.24 (d, J = 8.5 Hz, 1H). HRMS (ESI): calcd for

C26H25BrN 4OSi [M + H]+: 517.1054, found: 517.1050.

Peptide Synthesis

a. General Protocol

All peptides were synthesized using the standard Fmoc-based amino acid protection chemistry.

Peptides were synthesized on Fmoc-PAL-PEG-PS resin (Applied Biosystems, 0.19 mmol/g)

using on-resin alkylation. The resin was swelled in CH2C12 (5 min.) and then DMF (5 min) prior

to synthesis. All the amino acids were coupled according to the following procedure: Fmoc

deprotection (20% 4-methylpiperidine in DMF, 3 x 5 min), rinsing step (DMF, 5 x), coupling

step (amino acid/PyBOP/HOBt/DIEA, 6:6:6:6, 0.15 M in DMF, 30-45 min), rinsing step (DMF,

5 x; CH 2C12 , 5 x). The coupling was repeated if necessary as determined by the TNBS test. At

the end of the synthesis, the Fmoc group was removed with 20% 4-methylpiperidine in DMF (3

x 5 min.) and the resin was rinsed with DMF (5 x). The resin-attached free amines were capped

by exposure to Ac2 0 (20 equiv.) and pyridine (20 equiv.) in DMF for 30 min. The resin was
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rinsed with DMF (5 x), CH 2C 2 (5 x) and subjected to 20% 4-methylpiperidine in DMF (3 x 5

min.). The resin was finally washed with DMF, CH2C12, MeOH (5 x each) and dried under

vacuum.

b. On-resin Alkylation ofPeptides with 15

Resin-attached peptides (50 mg, 0.0095 mmol, 1 equiv.) incorporating Cys(Mmt) were swelled

in CH 2C12, then DMF. The Mmt protecting group was removed from the resin-bound peptide by

bubbling N2 through a solution of 1% TFA, 5% TIS in CH 2C12 (4 x 20 min). The resin was

washed with CH 2C12 (5 x) and DMF (5 x). Anhydrous DMF (200 tL) was added to the resin

followed by freshly distilled tetramethylguanidine (5.96 jiL, 0.0475 mmol, 5 equiv.). The

mixture was incubated for 2-3 min. Compound 15 (17 mg, 0.0285 mmol, 3 equiv.) was dissolved

in anhydrous DMF (150 tL) and added to the resin. After ca. 12 hours of reaction time, the

excess reagents were drained and the resin washed with DMF, CH 2C12, MeOH, CH 2C12 (5 x).

c. On-resin Click Chemistry ofAzido-Oxn Peptides with 76u

Resin-attached peptides (50 mg, 0.0095 mmol, 1 equiv.) incorporating 5-Azido-8-

Hydroxyquinoline were swelled in CH 2C12, then DMF (5 min). A mixture of 1-bromo-4-

ethynylbenzene (76u; 34.4 mg, 0.19 mmol), ascorbic acid (0.75 mg, 0.0043 mmol) and copper

iodide (0.27 mg, 0.0014 mmol) was added to the resin suspended in a 8:2 mixture of DMF/4-

methylpiperidine (1.5 mL). After ca. 12 hours of reaction time, the excess reagents were drained

and the resin washed with DMF, CH2C12, MeOH, CH 2C12 (5x). The resin cleavage and protecting

group removal was achieved by exposing the resin-bound peptides to TFA/H20/TIS

(95:2.5:2.5% v/v). The resulting solution was concentrated under a stream of N2 and precipitated

by addition of cold Et20. The pellet was triturated with cold Et20, redissolved in water, filtered
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and lyophilized. The peptides were purified by preparative reverse-phase HPLC using UV

detection at 228 nm (amide bond absorption) and 316 nm (8-hydroxyquinoline absorption). Only

fractions showing a single peak of correct mass by analytical HPLC were used in further

experiments.

d. Characterization data for peptides

HPLC tR [M] [M+H]

Kinase Peptide Peptide Sequence Mol. Formula (min)b Calcd. foundc

MK2 P10  Ac-AHLQRQLSI-CSox-HH-CONH 2

Ac-AH LQRQLpSI-CSox-H H-CONH 2

P2 Ac-AHLQRQLSI-CCIk-HH-CONH 2  C8 1HI1 3BrN 280 17S 21.32 1862.91 1863.38

Ac-AH LQRQLpSI-CCIk-H H-CONH 2  C81 H114BrN 28020PS 23.45 1942.89 1943.22

Src P3a  Ac-AEE-CSox-IYGEFEAKKKK-CONH 2

Ac-AEE-CSox-lpYGEFEAKKKK-CONH 2

P4 Ac-AEE-CCIk-IYGEFEAKKKK-CONH 2  C99 H1 3 9BrN 24 0 26 S 22.00 2193.28 2194.45

Ac-AEE-CCIk-lpYGEFEAKKKK-CONH 2  C99H140BrN 24 0 29 PS 21.86 2273.26 2274.96

a The synthesis and characterization of peptides P1 and P3 has been described.3 b Reported
retention times (tR) and HPLC conditions are from analytical runs. Method: 5 % B (5 min)
followed by an increase to 15 % B (1 min) and a linear gradient to 15-45 % B (30 min). c The
data was collected on a MALDI-TOF mass spectrometer.

Stock solutions

Due to the affinity of the phosphorylated peptides for selected transition metal ions,'1, 3 only

reagents of the highest purity and lowest metal content were used to avoid the need to remove

metal ion impurities after preparation.

1. Stock solutions of the peptides were prepared in doubly deionized water and concentrations

were determined by UV-Vis (based on the determined extinction coefficient of the

fluorophore moiety, either 28 (Sox), 6355 = 8247 M-1 cm-i or 77u (Clk), C360 = 7905 M I cml

in 0.1 M NaOH with 1 mM Na2EDTA). An average of the values from three separate

solutions, each prepared using a different volume of the stock solution, was read on UV-Vis
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spectrophotometer. Purified peptide stock solutions could be stored at 4 'C for at least 6

months or -20 oC for longer periods.

2. 500 mM HEPES (SigmaUltra) was prepared and adjusted to pH 7.4 with NaOH (99.998+%,

Aldrich) solution.

3. 10 mM DTT (Biotechnology grade, Mallinckrodt) was prepared in degassed ultrapure water

and stored in aliquots at -80 oC.

4. 500 mM EGTA (SigmaUltra) was prepared in 2 M NaOH and stored at 4 oC.

5. A magnesium chloride stock solution of 2.66 M was prepared using Alfa Aesar Puratronic

grade salts. Most commercially available salts contain Zn 2+ as significant impurities and

should not be used due to the high affinity of the phosphorylated peptides for Zn2+. The Mg2+

concentration was determined by titration with a standardized solution of EDTA (Aldrich) in

the presence of an Eriochrome Black T (Aldrich) as described previously. 1

6. 500 mM HEPES (SigmaUltra) was prepared and adjusted to pH 7.4 with NaOH (99.998+%,

Aldrich) solution.

7. 20 mg/mL BSA (Heat Shock Fraction V, Roche) was prepared in ultrapure water, filtered

through a 0.45 micron syringe filter to remove particulates and stored at 4 OC.

8. 100 mM ATP (Disodium salt, Low Metals Grade, Calbiochem) was prepared in ultrapure

water. The solution was stored in aliquots at -80 oC.

Fluorescence experiments

a. Fluorescence analysis of8-hydroxyquinoline click products

A 96-well plate was used in the experiments for preliminary examination of fluorescence

properties. The overall volume in each well was 200 ptL. Individual reactions contained the crude
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product from the click chemistry reaction (10 jtM dissolved in DMSO), MgCl 2 (10 mM), NaCl

(150 mM) and HEPES (50 mM) at 25 'C (pH 7.4). The fluorescence spectra were recorded with

fixed excitation at 370 nm and emission at 525 nm. The excitation and emission wavelengths for

each fluorophore are summarized in the table below. Based on the preliminary screening,

selected products were then synthesized in larger quantities and the quantum yields of the

corresponding hydroxyquinoline derivatives were determined.

Compound Xex (nm) Xem (nm) DaG

77a 371 522 0.033

77b 370 525 0.041

77c 367 523 0.043

77d 365 525 0.071

77e 365 520

77f 365 525

77g 365 525

77h 365 510

77i 375 525 0.067

77j 365 525

77k 365 525

771 360 520

77m 360 525

77n 365 515

77o 360 510

77p 360 520

77q 365 515

77r 360 520

77s 360 530

77t 360 525

77 ub 375 525 0.111

77v 365 520

a Quantum yields of selected fluorophores were calculated with reference to quinine sulphate
(in 0.05 M H2S0 4) as a standard (vide infra). b Extinction coefficient: c355 = 7905 cm- M 1 (vide
infra).
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b. Extinction coefficient determination

Extinction coefficients of 28 and 77u were measured in 50 mM HEPES (pH 7.0), 150 mM NaC1.

The m,, values were determined by plotting absorbance at 360 nm versus concentration for four

chromophore solutions with concentrations between 20 and 60 jiM and including 1 mM MgCl 2.

c. Quantum yield determination

The quantum yield (0) was determined in 20 mM HEPES (pH 7.4). Quinine sulphate dihydrate

(QS, Fluka, puriss. for fluorescence) in 0.1 M H2S0 4 was used as a standard (D = 0.55). A 4 jiM

solution of the corresponding oxine derivative with 50 mM MgCl 2 was compared to a 4 gM

solution of quinine sulfate to assure that the absorbance (A360) is less than 0.05 at identical

excitation wavelengths. The following equation was used to calculate the quantum yield:

IAQs PQS

AlQs

where A = A360 and I = integrated fluorescence intensity (Xex = 360 nm). The calculated D

assumes that the refractive index of 0.1 M H2 S0 4 is identical to that of 20 mM HEPES (pH 7.4).

The error associated with the (D of quinine sulfate is at least 10%, the error in CD is no less than

10%.

d. Spectral comparison ofphosphorylated and unphosphorylatedpeptides

The fluorescence spectra of 10 gM phosphorylated (black line) and unphosphorylated (red line)

peptides in 20 mM HEPES (pH 7.4) and 10 mM MgCl2 were recorded in the fluorometer (slit

widths: Em = 5 nm, Ex = 5 nm; kex = 360 nm, ,,em = 380-650 nm) in a quartz microcuvette (120
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P2 P4

Ac-AHLQRQLp(S)-CCI k-HH-CONH2 Ac-AEE-CCI k-I(p)YGEFEAKKKK-CONH 20,4 0,4

0,35 -- 0,35
.t,

X 0,3 x 0,3

I 0,25 "r 0,25

0,2 E 0,2

0,15 0,15

S0,05 ,L 0,05

0 0

380 430 480 530 580 630 380 430 480 530 580 630
Wavelength (nm) Wavelength (nm)

e. Enzyme Experiments with MK2 and C-Sox- or C-Clk-based Substrates

Recombinant MK2 (Upstate, appropriately diluted with 20 mM HEPES [pH 7.4], 1 mM DTT,

0.1% Brij-35, and 1 mg/mL BSA) was added to initiate each reaction. The assays were

performed in the fluorometer (slit widths: Em = 5 nm, Ex = 5 nm; lex = 360 nm, kem = 485 nm)

using a quartz microcuvette (120 tL) at 30 oC for 10 min. Standard assay conditions were as

follows: 20 mM HEPES (pH 7.4), 10 mM MgC12, 1 mM ATP, 1 mM DTT, 0.1 mM EGTA,

0.01% Brij-35, 0.1 mg/mL BSA, 1 ng MK2. The percent turnover (% TO) for C-Sox- and C-Clk-

based peptides was then calculated from fluorescence intensity after 10 min of reaction time and

using previously described protocols."1 3
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