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Abstract

The purpose of this project is to incorporate a Poisson disease model into the

Spatiotemporal Epidemiological Modeler (STEM) and visualize the disease spread on

Google Earth. It is done through developing a Poisson disease model plug-in using the

Eclipse Modeling Framework (EMF), a modeling framework and code generation facility

for building tools and other applications based on a structured data model. The project

consists of two stages. First, it develops a disease model plug-in of a Poisson disease model

of a homogenous population, which is built as an extension of the implemented SI disease

model in the STEM. Next, it proposes an algorithm to port a Poisson disease model of a

heterogeneous population into the STEM. The development of the two new diseases plug-

ins explores the maximum compatibility of the STEM and sets model for potential users to

flexibly construct their own disease model for simulation.
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Chapter 1

Introduction

Scientists and researchers have been doing epidemic disease modeling and simulation for

years. In the majority of the research works, they have to develop various software and

computer programs for the specific modeling and simulation tasks. Many of these software

and computer programs are not suitable for reuse in other tasks. Moreover, many of these

simulations incorporate only the disease information on a fixed population size, and they

fail to reflect the geographic information of world population [1].

In the last few years, the idea to improve the state-of-the-art disease modeling techniques

and use visualization to better understand disease models led to the development of

Spatiotemporal Epidemiological Modeler (STEM). STEM is an epidemic disease modeling

software program developed by IBM [1] [19]. With data sets for countries defined using

the ISO-3166 standard [18], it provides a platform to visualize the progression of an

epidemic disease on an electronic map, as depicted in Figure 9 later. It also has a gateway

to Google Earth [20], which imposes the disease status and population information onto the

map images from Google Earth. Another innovative feature of STEM is its flexibility and

extensibility. Researchers can design different modeling scenarios through combining

various disease parameters or implement their own disease models and plug them into

STEM systems. All these models can be reused in other modeling scenarios or serve as

basic models to be enhanced.



STEM is designed to support most types of disease models and has implemented several

textbook disease models such as SI, SIR and SEIR [2]. Generally, these standard textbook

disease models satisfy the needs for modeling and conducting simulations of various types

of diseases. Researchers have to change the only input parameters such as transmission rate

and mortality rate according to the purpose of simulation. However, some researchers have

developed their own disease models built on the basic features of the standard models. For

example, a Poisson disease model has been built which associates the transmission rate

with the level of social contacts of individuals within a population [3]. To conduct both

deterministic and stochastic simulations for this kind of user defined disease model in

STEM, the modeler needs to go through the process of building a disease plug-in through

Eclipse Modeling Framework (EMF).

EMF is the platform on which STEM is built. It is a Java modeling framework and code

generation facility which helps developers to build tools and applications on a structured

model [4]. The functions of STEM are built in the Eclipse before they are embedded into

the application as plug-ins. To define new disease models, all modelers go through the

same process. First, the modeler needs to understand the structure and design of STEM and

work out algorithms to fit their model into this system. Second, the modeler has to code its

algorithms in Java and put the code into the predefined location of the system. Third, after

the modeler defines all the paths and locations of the edit code and editor code, EMF can

help to generate the rest of the code into the correct position in a structured way. Finally,

the user needs to plug in the disease model before running STEM on Eclipse platform.

This project report is structured in the following way. First, we review the background of

epidemic disease modeling and related literatures. After that, we explore the functions of



creating scenarios using implemented disease models in STEM. We then introduce ways of

developing a disease plug-in for the Poisson disease model on a homogenous population.

Finally, we propose an algorithm for developing the same disease model on a

heterogeneous population. Due to time limitation and lack of documentation, the

implementation of these two models is not completed. Some evaluations and suggested

improvements of the software will be discussed at the end.
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Chapter 2

Literature Review

2.1The background of influenza epidemics

Influenza is an infectious disease which spreads among birds and mammals. Some of the

most common symptoms are fever, cough and muscle pain. Although the symptoms are

similar to common cold, it is more dangerous than the common old due to the following

reasons.

First, due to its infectious nature, it may cause large epidemics among animal or human

populations. These epidemics not only take sometimes millions of lives, but also cause

anxieties and fears which will lead to indirect or intangible costs in our normal lives. For

example, 2009 H1N flu was first named as swine flu, which triggered anxiety among

people that pork might be poisonous. Some countries like China and Russia banned pork

imports from certain states in the US [5]. These cause a decline of pork sales in the U.S and

greatly harmed the pork industry.

Second, vaccines are usually not available at the initial stage of pandemic progression.

Influenza is caused by various types of virus. For seasonal influenza, vaccines are at stock

and ready to be distributed in each flu season. However, there is usually a lag between the

vaccine development and the outbreak of the influenza caused by any new virus. The

disease becomes uncontrollable using a pharmaceutical approach at the initial stage. Even

after the development of the vaccine, the virus might mutate during the phase of



transmission and the vaccine becomes ineffective for the mutated virus, which requires a

new round of effort to develop the new vaccine. Developing vaccine is costly both in terms

of time and money.

Third, influenza is more deadly than common cold. While the symptoms of common cold

are most of the times just sneeze and headaches, influenza will cause fever almost every

time. According to historical figures, the 1918 Spanish flu killed 50-100 million people

world wide, which is an extreme example of how deadly flu is. Even the seasonal flu kills

36,000 people in the U.S. annually [17]. Common cold rarely kills people, unless it causes

some complications which might be deadly.

There were several large influenza pandemics in the history. Each of these enlightened us

on the prevention and control of flu pandemics.

In the 1918 Spanish flu, the virus appeared to be mild when the flu first started to spread.

However, it mutated into a more fatal virus, caused two more waves of flu pandemic

worldwide and killed millions of people [6]. The Spanish flu has a high transmission rate

(estimated to be 3.75 for the second wave) and a high mortality rate (estimated to be 10%

to 20%). Besides the fatal nature of the virus itself, lack of medication or global

cooperation were some of the reasons that caused the human catastrophe. The flu occurred

during World War I. Soldiers played a major role as disease carriers and there was no space

for cooperation at that certain time.

The 2005 Avian flu has the characteristics of a high mortality rate (up to 60%) but a low

transmission rate [7]. Most of the infection cases are from poultry to human beings. Some



evidence shows that the human to human transmission is limited, but endemics among

poultry population are hardly evitable in certain areas. Its low transmission rate among

human population might be the major reason that a serious global pandemic has not been

aroused.

Last but not least, 2009 H1N1 flu tests our preparedness on potential global epidemics. The

flu virus so far shows a high transmission rate but a relatively low death rate. Some non-

pharmaceutical methods have been taken by authorities and publics such as school closing,

frequent hand washing and masks wearing. All these methods proved a certain level of

effectiveness.

Influenza epidemic is one of the major issues concerned by scientists and public health

authorities. The modelling of influenza progression is helpful for them to understand and

control this disease. Scientists have been developing mathematical progression models and

conducting simulation for them. Some of the control methods can also be represented

mathematically and incorporated into the disease model. The application of these models

can help disease modellers and health authorities better understand the disease and evaluate

the effectiveness of various control methods.



2.2 Mathematical epidemic models

The progression of epidemic disease, including influenza, can be modelled mathematically

using epidemic models. Some of the most extensively used textbook models are

implemented into STEM. These models are modified to cater to the spatial nature of STEM

modelling.

SI(S) Model [8]

The most basic model is SI(S) model, where S stands for Susceptible and I stands for

Infectious. The population is assumed to be homogenous, well-mixed and divided into

these two groups. This disease model assumes the population immediately becomes

infectious once is infected. Moreover, for SIS model, it assumes people who have been

infected before do not have immunity of this disease, and can be infected again in the

future. One example of SIS model is the common cold. The transition diagram of this

model is as follows. The meanings of the symbols are as follows.

13 refers to the transmission rate, the rate that an infectious person would affect and

susceptible person. y is the rate of losing infectiousness, and is 0 in a pure SI model. t is

the immigration rate and emigration rate. They are assumed to be equal such that the total

population remains the same. The relations of these variables are as follows.

As = -psi + i- - (1)

Ai = psi- yi- pi (2)

Figure 1 SI(S) Disease Model



Considering the mortality rate due to the disease, p,, the equations become:

As= I-fsi+yi-,us (3)

Ai = Pfsi - yi-( +1A1) i (4)

This disease model undergoes a spatial adaption in STEM, since the populations at

different areas are different. A new variable PI is introduced, which stands for the total

population in the area, and Pt = S + I. Moreover, it is assumed the transmission is more

likely in a densely populated area, thus, the variability in 8 is added into the disease model.

We use /, instead of 8, and let , = fd, / APD. d, is the population density of the area

and APD is the average population density. Multiplying both sides of (3) and (4) using P1,

the equations becomes:

AS = uP -flSi + I -iPS (5)

AI = A Si - Il -( U +, ) I (6)

Let / = A / Pi = f(d, /( APD* PI)), they become

AS = UlP - f*SI + yI - uS (7)

Al = -SI - ( U + ,) I (8)

SIR(S) Model [9]

SIR(S) model is usually used to model disease such that infected population can acquire

immunity for a period before they become susceptible again. For pure SIR model, the



immunity can last for a life long time, which means once infected and recovered from the

disease, the person won't be infected anymore. S and I carry the same meaning as SI(S)

model, R refers to Recovered. The transition diagram for SIR(S) models is as follows.

y is the rate that an infectious person recovers from the disease and becomes immune. The

immunity is lost at the rate of o, for SIR model, this rate is 0.

S I R

Figure 2 SIR(S) disease model

For normalized population, the relations of these variables are as follows.

As = , - #si + ai - ,s (9)

Ai = psi - yi- Ii (10)

A'= ?/- o7-/i? (11)

After spatial adaption and change of variables, let f' = =, / JP = f (d, / (APD * P)), the

equations become:

AS = IuP -f*SI + oR-pS (12)

AI = P*SI- *II-(U +,) (13)

AR = yl -oR- uR (14)

SEIR Model [10]

In this model, S, I and R hold the same meanings as previously. E refers to exposed. For

some disease, even if a person is exposed to a disease, it is not guaranteed that person will

be infected. The rate that an exposed person becomes infectious is c. The transition



diagram is as follows.

Figure 3 SEIR(S) Model

The relations formulas are

As = U -3si + oy-US (15)

Ae = 8si -CEe-pue (16)

Ai = Psi- yi-( +A) i (17)

Ay= yi- oy-puy (18)

After spatial adaption, they become

AS = uPI - f*SI + aR -S (19)

AE = f*SI- -EE-pE (20)

Al= E- yI-( + ,Li)l (21)

AR = yl -eR-fpR (22)

Poisson disease model

A Poisson disease model has been proposed by Larson [3] which assumes the face to face

contact is a Poisson process and associates the transmission rate with the parameter of this

process. The model assumes a heterogeneous population and divides the whole population

into several levels, according to their number of social contacts. The mathematics of the

disease progression on a two-level population is defined as follows.

Define



n H = the initial population of high-activity persons.

nL = the initial population of low-activity persons.

AH = Poisson rate of social contacts per day of a high-activity person.

, = Poisson rate of social contacts per day of a low-activity person.

n H+ n L = total population.

n', (t) = the number of infected high-activity person on day t.

n n(t) = the number of infected low-activity person on day t.

n (t) = the number of susceptible high-activity person on day t.

ns (t)= the number of susceptible low-activity person on day t.

p = the probability that a susceptible person becomes infectious, given contact with an

infectious person.

/8 = the next interaction of a person is with an infectious person.

pH (t) = the probability that a random susceptible high-activity person becomes affected on

day t.

ps (t) = the probability that a random susceptible low-activity person becomes affected on

day t.

We have

/ = (n' (t) l+n (t)2,)/(nH +n L ). (23)

PHS (t)=l-e-App. (24)

PL (t) =I - e- A p. (25)

pHS (t) =l - e - fP. (26)



n' (t + 1) = n s (t)p (t) (27)

nj(t+1) = n (t)pLS (t). (28)

ns (t+1)= ns (t)-n, (t +1) . (29)

n(t +1) = ns (t)- n'(t +1). (30)

These equations can be applied iteratively on the population to get the updated number of

infected and susceptible population. This model is in nature in line with the SI disease

model introduced earlier on, except that it takes account into the heterogeneous nature of

the population and the Poisson nature of human contacts.

The number of levels of social contacts can vary according to the characteristic of the

population. A three level model has been used to measure the impacts of government posed

and voluntary non-pharmaceutical interventions in [11]. In this paper, it indicates some

important results that these forms interventions are effective in terms of mitigating the

possible global outbreak.



2.3 Current epidemic modelling

After the disease model is designed, simulation is followed to test the characteristics of the

disease and evaluate the effects of the control methods. Researchers usually design their

own experiment procedures and apply their disease model into the experiments.

Since epidemic disease models are usually in the form of mathematical models, Monte

Carlo method is often used in the simulations. First, the initial population and the

parameters are determined. After initialization, the inputs go through repeated calculations

according to the mathematical equations and reach a final result. Matlab@ is usually used

to conduct these simulations. It is vigorous in numerical computation and numerical results

can depict the characteristics of disease progression.

Graphs and animations are useful aids to describe the progression of epidemic disease. For

example, Jave applet for disease model simulation is developed by Shodor [12]. The user

can input initial population, number of doctors, number of travel openings and the disease

parameters, etc before starting the simulation. The user can also choose whether to have

control methods in the simulation, such as the use of vaccinations and medications. Setting

up a scenario with one person sick in the community initially, the progression of the

disease is as follows. The susceptible, infectious, recovered and dead people are

respectively green, red, blue and black. The number of holes on the walls of the separated

regions is the number of travel openings.

The progression reaches a steady state in the last phase where all the people are either

immune or susceptible.
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Figure 4 Shodor disease model Java applet



In 2004, Models of Infectious Disease Agent Study (MIDAS) was established by the

National Institute of General Medical Sciences for research in novel computational

infectious disease models [16]. They have developed various epidemic models for different

modelling purposes. One example is a global epidemic model of H5N1 Influenza. The Java

applet is as shown as follows. It has features of computing the disease model dynamics, RO

and choices of interventions to apply to the modelling. The information of infectious cases

exporting through airlines is included in the model.

F T ......

Parameter Values

Number of Cities: 15 Trayl Revn*on Leye wa
Sinulaion Langth 365 d TravdlRegshtion Ttood; 1,000c-,
Initially Exposed Cyi H.n y xm T rav Rentrktion Typt : n-n

Iniai Nunber Exposed: 20 poso. Oneqtro va0 ation m LeO .1 ci
Infxtious Contact Rateo e.4l5 p & Ay Vacination Lvaz 1 

RTI
DAY: 39

DATE. August 08

RO: 1.70

WORLD TOTALS
Susceptible: 652.212,559
Exposed: , 12

Infectious: 18, 691
Recovered: 23, 9S
Vaccinated: a

Total 620,2523266

CURRENTLY ILL: 26,183

STOCHASTIITY:

eaacunc

ITEMTRVITIONS TO APPLY:

T M -M,c*1mm

O u 43U s

KIM.c

Figure 5 Global Epidemic Model by MIDAS

These simulation programs are helpful for the designers to proof their theoretical

hypothesis. However, to be used as simulation tools which relates to the real world

scenarios, they have some limitations.

First, they are usually based on a simple hypothesis of one or several community and a

small population. The actual population information located on different areas of the world

Global Epidemic Model: H5 Ni Influenza

Map Legend
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is not incorporated in the simulation.

Second, the interactions of different communities are also simplified. For example, the

interactions in the previous software are models as the number of holes opened on the walls.

In real life cases, neighbour communities are connected through various transportation

methods such as railways, highways and flights.

Lastly, these programs are usually predefined with their progression mathematics, namely

the mathematical models, and there is not any flexibility of fitting other models into them.

To do this, a separate version of the program has to be developed to solve the new problem.

In the last few years, the idea to improve the state-of-the-art disease modelling techniques

and use visualization to better understand disease models led to the development of

Spatiotemporal Epidemiological Modeller (STEM). STEM is an epidemic disease

modelling software program developed by IBM .With data sets for countries defined using

the ISO-3166 standard; it provides a platform to visualize the progression of an epidemic

disease on an electronic map. It also has a gateway to Google Earth, which imposes the

disease status and population information onto the map images from Google Earth. Another

innovative feature of STEM is its flexibility and extensibility. Researchers can design

different modelling scenarios through combining various disease parameters or implement

their own disease models and plug them into STEM systems. All these models can be

reused in other modelling scenarios or serve as basic models to be enhanced.



2.4 Design specifications of STEM [13]

Canonical Graph

The Canonical Graph is the basic element of STEM, which represents the information of

geographic regions, the disease information at these locations and the relations between

different regions. Similar to any other types of graphs, it is composed of edges, nodes and

labels. Nodes usually represent geographic regions and edges usually represent the

relationships of these geographic regions. The labels on nodes and edges contain

information. The labels on nodes store the information of the title, the physical area, the

size of population and the status of the disease in that region. If an edge represents the

sharing of common borders between two regions, the label will contain information of the

length of the common border. If an edge represents a road that connects two regions, the

label on it might contain information of the type of road and how much the traffic is. In

some other cases, the label might contain information of flight routes.

The information stored in the canonical graphs follows the ISO-3166 standard.[18] The

countries and territories are denoted by the standard short alphabetic codes. There are three

levels in the naming convention. The first level (Level 0) is country/territory; the second

level (Level 1) is the province/state of a country; the last level (Level 2) is the

counties/cities of the province/state, which are represented using Federal Information

Processing Standard (FIPS) code in the US. An example for Santa Clara County in

California is US-CA-06085. For those countries that the Level 2 codes are unknown,

the system will generate a special code for that location till the correct code is determined.

STEM Components



Figure 6 Components of a Scenario

There are all together eight building blocks of any simulation: Scenario, Sequencer,

Decorator, Model, Graph, Modifier, Trigger and Predicates. Any STEM simulation is built

from a Scenario. Scenario logically collects three components, namely Model, Decorator

and Sequencer.

A Model is the component responsible for representing the contents of the canonical graph

and for creating an instance of it when a Simulation is started from a Scenario. It combines

the contents of Graphs and forms a tree. The tree is a hierarchical organization of the

different contributions to the canonical graph.

A "Decorator" is the computational component in the STEM framework [13]. It initializes

the canonical graph through setting the initial values of labels on the graphs and adding

new labels. During any simulation, a decorator is responsible for computing the next graph

status according to the disease model mathematics and the current simulation time. In



epidemiological simulation, a disease model is usually implemented as an decorator.

A "Sequencer" is a component that determines the sequence of time values which are used

to compute the next stage of the canonical graph. It contains the information of the time

interval, and duration of the simulation. In STEM, the time unit used is STEM time, which

is equivalent to one or two days in real time.

A Graph contains the actual components, Nodes, Edges and Labels, which are eventually

used to form canonical graph. Graphs are only fragments which may contain unresolved

edges. The resulting canonical graph is the true mathematical graph.

A Modifier is a specification of how to change the values of one or more features of a

Scenario. There are two types of modifiers, Range Modifier and Sequence Modifier. The

former modifies values through assigning from a specified range of values. The latter does

this through assigning them from a pre-specified ordered collection.

A Predicate is a Boolean expression that returns false or true depending on the results of

any testable conditions. A Trigger is a special type of decorator which combines the results

of a Predicate and a Decorator. It first evaluates the situation using a Predicate and then

decides on whether to continue with the execution with the Decorator's description

Simulation

A Simulation is usually started from Scenario. First, a canonical graph is created through

recursively descending the tree rooted by the Model. After the edges and nodes are created,

other information are added through Decorators. Then, the simulation checks if it has



completed the sequence of cycles through the value of Sequencer. If it has not, the

canonical graph will move to next stage, all the value of the labels are calculated according

to the previous stage and the information stored in the Decorator. The simulation continues

in this way until the end of the time specified by the Sequencer.



2.5 Eclipse Modelling Framework (EMF)

To generate Scenarios that are based on the textbook disease models introduced previously,

SI(S), SIR(S) or SIER(S), the user can define their building blocks directly and construct

them accordingly from STEM interface. However, if any new models or any modifications

of the existing models are to be done, users have to design their own disease model plug-

ins through the Eclipse Modelling Framework (EMF) and plug them into the application

before constructing any Scenarios.

Eclipse Modelling Framework (EMF) [4] is a Java framework and code generation facility

which builds tools and applications based on a structured model. Although EMF uses XML

as its canonical form of a model definition, there are several ways to get your model into

that form. You can choose to create the XML document directly or export it from a

modelling tool. You can also generate it from annotate Java interfaces with model

properties. STEM is bases on a Java application. Developers can utilize EMF modelling for

code generation in pure Java development environment.

EMF modelling can increase the productivity of developer. After you specify an EMF

model, the generator will create a structured series of Java classes correspondingly. You

can modify these classes through implementing new methods and adding new variables.

You can also regenerate the model after your modification. The changes you made to the

code will preserve after the regenerating process. Moreover, the EMF generated model can

easily be interpolated into other EMF generated applications. For example, the design

framework of STEM is done through EMF, thus after a disease model is generated through

EMF, it can be inserted into the application as a plug-in and it will be reflected in the new

version of STEM run from this framework.



There are two fundamental frameworks in EMF. One is core framework and the other is

EMF.edit. The first one is responsible for creating Java implementations of a model

including both code generation and runtime support. The second one is responsible for

generating supporting classes which enable viewing and editing of the model.

EMF generates the Java classes in core framework in the following way. First, the classes

of the new model are created. This can be done through drawing a model using UML,

writing the model in XML, or coding the model in annotated Java. After this is done, EMF

will generate a Java interface and an implementation class for each class in the model. The

interface will contain the get and set methods for each attribute. The details of these

methods are described in the implementation classes. The get method returns an instance

variable representing the attribute. The set method is an efficient way to set the value of the

instance variable. Moreover, EMF also generates two more interfaces, a factory and a

package. The factory is used to create instance of your model classes. The package contains

all the static constants used by the methods in the model. You can also generate a class

from a super class, which is inheritance. The generated interface can extend the super

interface. Last but not least, you can add additional methods and not to worry about using

these changes when you later want to regenerate the model.

After you implement the core framework, you can use EMF.edit to add user interface to

your model. EMF.edit will generate a series of interfaces, such as the

ItemProviderAdapterFactory classes, the ItemProvider classes, Editor, Plugin, plugin.xml

and Icons. In the STEM case, the plugin.xml will link the disease model you created to the

main body of STEM and include it when you run STEM in Eclipse modelling framework.



Most of the time, the generated classes and xml documents are subject to modifications

before they can work properly together to create a plug-in.

EMF helps to create a Java implementation efficiently. It is also the tool to create user

defined disease models in STEM. A detailed description on the creation of a disease plug-

in will be included the latter chapters.



Chapter 3

Creating a Scenario and running simulations

3.1 Constructing a Scenario in STEM

As mentioned in Chapter 2, any simulation has to be started from a Scenario. Thus,

creating a Scenario is the basic step before conducting any simulation.

From a disease modeler's point of view, a Scenario needs to contain the following elements:

the disease model, the spatial restriction, the time periods of the disease progression and the

initial triggering number and location of patient zeros. All these elements are reflected in

the design of STEM.

The disease model, which is the mathematical model, can be created from the new disease

icon. There are a few choices of disease models: SI, SIR and SEIR. Each of these disease

models are of two types: deterministic and stochastic. User can input the parameters of the

disease model that is to be used in this Scenario. These parameters include transmission

rate, recovery rate, mortality rate and etc. There are also some other parameters to be

inputted by the user, such as population type, population density etc. All these inputted

parameters are editable later on even after the Scenario is created. There are two solver

programs: Finite Difference and Runge Kutta Adaptive Step Size. Finite Difference is a

faster program and can be used for a quick check to see if the simulation is as expected.

However, when an accurate analysis on real data is required, the latter is recommended to

be used.



The geographical data are reflected in the Graph element. The geographical data for around

270 countries and regions have been stored in STEM as graphs. There are choices of

graphs depending on the accuracy of the simulation. You can choose from a 2-level graph

which will reflect all the counties and cities in a country or just a 1-level graph which will

divide the country into states/provinces only. To run the simulation in a region which might

include several countries, you need to not only include the graphs of each of these countries,

but also to include the data of the common borders of these countries. These information

together define the region whether the disease progression is to be examined.

The time period of the simulation is defined by Sequencer. After clicking on the New

Sequencer icon, a window in the form of a calendar will pop out. You can specify the start

time and end time of the simulation. Alternatively, you can specify the start time and cycle

period. The simulated Scenario will run through the specified period.

The last element is the triggering infectious population. This is described by Infector. You

can input the information of the infector such as the number of people infected and the

location of these people. These people are like seeds which started the epidemic disease

progression process.

A newly developed feature is inoculators, which the user can define the proportion of the

inoculated population in a specified region. These inoculated people have immunity of this

disease and will not become infectious.

After all these elements are specified, they are accordingly organized in the following

structure to create a Scenario.



Figure 7 Structure of a created Scenario

After the Scenario is created, the user can modify the values of the elements through

opening the element in the resource set in the upper right window, open it in the property

editing window. The parameters are stored in the Dublin Core of the particular element.

After making changes to the parameters in the window, you have to save these changes for

them to be reflected in the model.

... ..... ...... .... ... .... ....



3.2 Running simulation

After a Scenario is created, the simulation can be started through right clicking on the

Scenario icon and choose 'run'. A control panel will pop out as follows. The green arrow

and yellow sign refer to run and pause the simulation respectively. The black button in the

central refers to start over the simulation from beginning and the red square refers to stop

and end the simulation. The map will keep updating itself until any pause button is pressed.

Sometimes, a time discrete version of the graphs is needed by the user. The foot print

button refers to 'step', which means the simulating is run in a step by step manner

controlled by the user.

Figure 8 Control panel view

After a short initialization period, a map of the destination region will pop out. For example,

a Spanish Flu case spreading all over Asia will show the full map of all the countries in

Asia, their common borders and the edges of the counties in each of these countries. The

map can be zoomed in to look at the details of the particular area. When you move the

cursor to a particular point, it shows the information of that particular location, including

the name, the area, the population and longitude and latitude.
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Figure 9 Initial Map view

The Infected regions are colored by red. The intensity of the color is proportional to the

percentage of population that is infected. Thus, in the bright red region, the proportion of

infected people is larger than the dark red area. After the simulation is running for

sometime, most parts in Japan become green. There are no more red regions, which

indicate that the disease dies out in the region and all the people are recovered from the

disease. The map stabilizes at that point.

A time series analysis can be done at any point in the map. The proportions of infected,

susceptible, recovered and exposed population are plotted on the graph with the x axis

being the number of days. A generated time series graph is displayed in Figure 10. Time

series analysis is extremely useful when the epidemic disease progression at a particular

region is to be traced and examined. A phase space diagram can also be generated with any

two of the parameters as x axis and y axis respectively. It is usually used to analyze the

stability of the system.
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Figure 10 Infected region and recovered region
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Figure 11 Time series analysis (with green being Recovered, blue being Susceptible ,Red being Infected,

Yellow being exposed



3.3 Google Earth Interface

STEM also has a gateway to Google Earth@ provided the software is installed. The current

STEM builds haven't included this feature. The user has to plug-in the GE package in the

software and run it from Eclipse to generate a new version of STEM.

In the newly generated version, you can choose from the menu, window -> GE view. After

clicking it, Google Earth will be started automatically. However, unlike the embedded

maps on which the disease progression is updated continuously with time, the views on

Google Earth can only be generated discretely. In the middle of the simulation of a

Scenario, you can click the GE icon on the left bottom. A control panel will pop up as

follows.

Select Aspect to be displayed:E

Figure 12 Google Earth Control Panel

After selecting the parameters you want to view on Google Earth@, and clicking display, a

view on GE will be generated as follows. You can zoom in to view the details of the

regions. Since GE maps provide more powerful functions than the implemented maps in

STEM, this GE view helps the disease modeler and decision makers to conduct a detailed

analysis of the disease progression in a certain region and some of the impacts of controls

such as the number of hospitals near by, the amount of transportation everyday at the

borders and between communities.
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3.4 An example of employing an SI model into STEM

A hypothesis scenario is created and is simulated using STEM 4.0. Assuming an Influenza

epidemic breaks out at Barnstable County, Massachusetts, USA, and 10 people are the first

triggering patients. The epidemic progression follows an SI disease model with

transmission rate of 2.0 and recovery rate of 1.0.

A Scenario called 'USInfluenza_casel' was created. The disease model 'USInfluenza' is

created from a Deterministic SI Disease Model. A three-level graph is used for simulation.

The location and number of people infected are included in the information of an infector

called 'US_MA_infector'. These elements are organized in the project explorer window as

follows.

After running the Scenario in the simulation view, the map keeps updating itself. It starts

with a dark red area in the northeast corner of the US map. The red area keeps spreading

quickly around that area. Since the transmission rate is 2.0, the epidemic disease progresses

faster as time elapses. After one month, the adjacent states are infected and the disease

keeps spreading to the left. Within 6 months, the influenza spreads all over the US.

As a testing case, the conditions used in this Scenario are simple and not realistic. However,

this case still indicates that the disease cases increases in an exponential manner. Thus,

controlling measures at initial stage of the breakout should be the most efficient.
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Chapter 4

Employing a Poisson disease model of

homogenous population

4.1 A Poisson disease model on a homogenous population

It is assumed in Larson's paper that the number of interactions in a day of a random person

follows Poisson distribution with mean X. In a homogenous population which assumes

everyone has the same distribution for number of interactions every day, this characteristic

defines the disease progression manner in the following way.

First, define the following input variables.

X = Poisson number of contacts per day of a random person.

p = The probability of being infected given contact with an infectious person.

p = Probability that the next interaction is with an infected person.

We got to know that the probability that the next interaction is with an infected person P is

the total number of contacts with an infected person divided by the total number of contacts

with the entire population. Since the population is assumed to have the same contacts rate

per day, P in this case is the same as the proportion of the infected population over the

entire population.

Thus the probability that a random susceptible person becomes infected Ps can be derived

accordingly. As a result, by the end of day k, the number of newly infected people on that

day is the number of susceptible people times Ps. The total infected population is thus the



number of infected people before day k plus the newly infected people. The total

susceptible population is the total population subtracted by the infected population.

Mathematically, they are represented as follows.

P = 1 - e- P

n, (k) = number of infected people on day k = Infected population (I) * P,.

k

I = total number of infected people = n, (i).
i=1

S = total number of susceptible people = Total population - I.

From the equations above, we can notice a similarity between the Poisson model and the SI

disease model mentioned earlier on. Thus, the idea of building the Poisson model on the

basis of the SI disease model will be employed to realize the Poisson model.



4.2 The design hierarchy of disease models

To implement the new disease model, the developer has to download the source code of

STEM and run it from Eclipse platform. The new models can be built on existing models.

The hierarchy of the interfaces is displayed as follows.

Figure 16 Hierarchy of disease model interfaces

Eobjects is the root of all modeled objects in the modeling framework. The disease model

interface implements methods which read in parameters and construct the disease model.

These parameters are user inputs such as disease name, time period, step size, frequency

dependencies, etc. The standard disease model adds on some methods to get the total area,

population and population density. The SI disease model has methods to read in



computation related data such as transmission rate and mortality rate, etc. The SIR and

SEIR continue to build functions from SI disease model. Some of the interfaces inherit

from two or more interfaces, such as the stochastic SI model, which inherits the features of

both SI disease model and stochastic disease model.

It is crucial not only to understand the hierarchy, but also understand the functions of the

parent interface, i.e. the methods already implemented. In this case, the Poisson disease

model can be derived from SI disease model. Some changes have to be made to the disease

dynamics and some extra parameters are to be added.



4.3 Creating the disease plug-in using EMF

To create the Poisson disease model using EMF, the first step is to run STEM as an

application from Eclipse environment. The source code can be downloaded from Eclipse

CVS repository [14]. The imported packages will show up in the Package Explorer window

on the left hand side in Eclipse.

After that, the procedures of creating a disease model plug-in [15] are followed as follows.

Table 1 Procedures for creating a disease plug-in

Step Procedure

1 Create a new EMF project

2 Create four packages

3 Define new disease model interface

4 Add Dependencies to MANIFEST.MF

5 Generate the EMF Model

6 Generate Model Code from EMF Model

7 Writing the Implementation Class

8 Edit autogenerated genmodel file

9 Generate the rest of the required code

10 Configuration of plugin.xml

In step 1, after making sure STEM can be started properly from the Eclipse environment,

an EMF project called 'org.eclipse.ohf.stem.diseasemodels.poissondiseasemodel' is created.

Right clicking on the project, four packages are created and named as follows:

org.eclipse.ohf.stem.diseasemodels.poissondiseasemodel;



org.eclipse.ohf.stem.diseasemodels.poissondiseasemodel.impl;

org.eclipse.ohf.stem.diseasemodels.poissondiseasemodel.provider;

org.eclipse.ohf.stem.diseasemodels.poissondiseasemodel.util;

In step 2, a new interface of poissondiseasemodel was declared as follows. It is important

to include the declaration that the interface is an EMF Model, since it is responsible for

code generation.

package org.eclipse.ohf.stem.diseasemodels.poissondiseasemodel;

import

org.eclipse.ohf.stem.diseasemodels.standard.DeterministicSIDiseaseModel;

x This iner face is an EMF Model

x @model

public interface PoissonDiseaseModel extends DeterministicSIDiseaseModel

f{}

However, the classes extended will not be resolved. Thus the next step is to add

dependencies to the MANIFEST.MF file. Clicking that file in the explorer, add the four

dependencies as follows.

org.eclipse.core.runtime

org.eclipse.ohf.stem.core

org.eclipse.ohf.stem.definitions

org.eclipse.ohf.stem.diseasemodels.



Steps 5 and 6 generate the EMF Model and the model code to the structured position. Step

7 is the most important step, in which the classes and methods are written or modified to

implement the functions of the new disease model. In Step 8, the paths of the edit code and

editor code are modified in the genmodel file, which determines where these codes are to

be placed. Step 9 generates the edit and editor codes. In the last step, plugin.xml is

configured. This file is the connection of your disease model to the whole software design.

After this, the disease model can be plug-in and the new version of STEM can run from

Eclipse.

In PoissonDiseasemodellmpl, two new variables are introduced: the Poisson rate of

contacts per day and the probability of infection, namely a person get infected given

contact with an infectious person. The method in SI diseasemodel - computeDiseaseDeltas

is modified to reflect the new mathematical logics on updating the infected and susceptible

population at a certain location.



4.4 Showing your model in new disease model menu

Another package is required for showing your model in the new disease model selection,

the org.eclipse.ohf.stem.ui.diseasemodels.poissondiseasemodel package.

Guidance on how to create a ui package in the project explorer is provided by James H.

Kaufman from IBM Almaden Research Center and it listed in the Appendix.

Following the procedures, the two packages in the project explorer have the following

structures.

A : orgecEipse.ohf.stem.dseasemodels.posscndiseasemodel

a src

S org.ecripseochf.stem.diseasemedelt.ptissondseasemode

f Jj Pom-sonDeaseModeljava

,J PoissondiseasernodelFactoryjaa

Ljj PoissondiseasemodelPackagejava

.d org.eipse ohf.stem.diseasemodek.poissondtseasemodeimp

Lh PoisondiseasemodeFactorylmp.java

S PoissonDiseaseModellmpljava

, Potssondiasemoase delPackagelmplva

.oJS org.ecipse.ohf.stem.diseasemedels.pcissondiseasemodelprovder

jh PomssondiseasemodelEdtPlugmijava

,Ci PoissonDiseaseMadeltemProvider.java

I PoissondiseasemodeltemProv derAdapterFactory.java

a t org.eclipse.ohf.stem.diseasemcdels poissondiseasemodel.tests

SJ PorssondiseasemodelAlITestsjava

, L PoisondiseasemaelExample.java

P) PoissonDrseaseModelTest.ja,,a

-j PoissondiseasemodelTests ava
i org.eclpse.ohf.stem.diseaemcdes.possondieasemode.uti

j PoissondiseasemodelAdapterFactory Java
: fi PotssondseasemodelSwrtchjava

a&RE System Library a" ' -1

N Plug-in Dependencies

, icons

L META-INF

model
, build.properties

plugin.properties

pluginxml

org.eclipse.of.stem.u.dseasemodelspotssondiseasemode
9 src

a org.ecipse.ohf.stem.disseemode pfosondiseasemode.presentaton

[ PoissondseasemodelActionBarContnbutor ava

1 PossondiseasemcdelEditcr ja a
ka org.eclipse chf stem ui diseasemodels.porssondiseasemode presentation

I PoissendiseasemodelDseaseModelAdapterjava

I PoissondseasemodelDIseaseModelPropertyEdrtorava

, Li PaossondiseasemodelDseaseModelPropertyEditorAdapterFactoryava

L, PotssondiseasemodelDseaseW:ardMessagejava

i: PkssendiseasemodelEdterPlugmn.jsa

S PoissondteasemodelPropertyStrngProiderAdapterFactoryava

poissondiseasemessages.prcpertie
JRE System Library , . -

S% Plug-in Dependencies

Figure 17 Poisson Disease Model Packages



Clicking run configuration, selecting both packages from the plug-ins and click run, a new

version of STEM with the user defined will be started. Running the new disease wizard, the

newly created Poisson Disease model shows up in the disease model menu. The user can

create Scenarios as described in Chapter 3 and conduct simulations accordingly.

Disease

Define a new disease in a project.

Pr IUojeC_.f.t:,. L :

Name: UISlnfluenza

Disease Model
StochasticSEIRDisea

Solver algorithm StochasticSIRDiseasi

StochasticSIDisease
Disease NMo

Time Period (TP)

Background Mortality Rate (p)

Relative Tolerance

Frequency Dependent

Reference Pop Density

TransmissionRate (P)

Non-Linearity Coefficient

Infectious Recovery Rate (y)
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Figure 18 Poisson Disease Model show up in the menu
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Chapter 5

Employing a heterogeneous disease model

5.1 A heterogeneous Poisson disease model

In Larson's paper, the Poisson disease model is constructed on a heterogeneous population

which assumes that there are several different levels of activities of the total population.

The number of daily contacts of a high activity person is a lot more than a low activity

person. Introducing heterogeneity into the disease model reflects a more realistic scenario

for epidemic disease progression. A three level disease model is used in [8] for analysis and

some significance results on the application of NPIs are obtained.

The mathematics of the heterogeneous disease model are basically the same as the

homogenous disease model, except that the probability that the next interaction is with an

infected person 03 is more complex.

Assume the total population is divided into N levels according to their average number of

daily contacts.

Define

A' = Poisson number of contacts per day of a random person in level i, 1 i < N.

n' = The number of total population in level i, 1 i N.

ni = The number of infectious population in level i, 1 i N.

ns = The number of susceptible population in level i, 1 5 i < N.



p = The probability of being infected given contact with an infectious person.

3 = Probability that the next interaction is with an infected person.

We have

N N

1 1

' = 1 -e-'PP

N

n, (k) = number of infected people on day k = Ln p

k

I = total number of infected people = n, (i).
i=1

S = total number of susceptible people = Total population - I.

All the disease models implemented in STEM are based on a homogenous population,

which assumes each individual in the population shares the same characteristics.



5.2 An algorithm to construct a heterogeneous population model

As mentioned earlier on, the information of the disease and population are stored on the

labels in each node on the canonical graph. To reflect the heterogeneity of the population, a

new disease label can be created which divides the total population into several levels.

The Label hierarchy is designed in the following way.

Figure 19 Hierarchy of disease label

In Disease Model Label, there is a method getPopulation, which returns an object

PopulationLabel. From org.eclipse.ohf.stem.definitions.labels, it creates a population label

and defines the type, name and populated Area. Thus, an algorithm can be proposed as

following to include the feature of the heterogeneity.



First, a HeterPopLabel can be created as an extension class of the Population Label, which

defines extra characteristics of the population, such as the level of activities, the

proportions of each level in the population.

Next, a new disease label can be created as an extension class of the Dynamic node label.

We can name it HeterDiseaseLabel, which implements the features of getting the detailed

population information through HeterPopLabel.

After that, the steps from Chapter 4 can be followed to create two packages for the new

disease model plug-in. In the new disease implementation, the method

computeDiseaseDeltas will include the mathematics that applies to the heterogeneous

population.

However, the proposed algorithm will change the basics of STEM design. Thus, the

implementation of this algorithm would be tedious and involves a great effort in coding and

debugging.



Chapter 6

Discussion

6.1 Evaluation of current build of STEM

The current released version STEM 0.5.0 is ready for download on STEM website. It is a

stable build which has all the features of building a scenario from one of the implemented

disease model. IBM's target is to release the 0.6.0 version in August 2009, which will

include the functions of analysis perspective such as the time series analysis and phase

space analysis. So far, the implementations of these functions are not stable.

The idea and realization of composing scenarios through several elements is bright and this

function will help researchers in various ways. For researchers who are working on

modeling using standard disease models, it undoubtedly saves effort in building the

epidemic modeling simulation tools from scratch.

However, the flexibility of employing user defined disease models is so far still limited. On

one hand, the documentations and guidance on creating user defined disease model are

incomplete. On the other hand, the realization of extending the disease model is tedious and

requires high demand of programming proficiency. For modelers who are not familiar with

EMF modeling, the task is challenging.



6.2 Areas of application

STEM can be used by researchers and scientists when the effect of epidemic disease

progression in a realistic geographic and populated region is to be evaluated and

demonstrated. It can also be used to model large epidemics which have a global effect.

Healthy care authorities may also find it useful, since the disease progression depicted by

the dynamic maps introduced in STEM would help them to determine the severity of the

epidemic disease and to evaluate the effectiveness of various control methods.

Although as an extensible platform, STEM still needs further improvements. Modeling

using EMF saves a lot of effort for developers from direct building each modules of the

software. Disease modelers may find it easier than to build their own simulation tools using

their own disease model.



Chapter 7

Future work

7.1 Implementation of the algorithm

The current implementation of the homogenous model is partial. Due to lack of

documentation, some issues over the creation of new parameter variables still need to be

solved. Moreover, only the algorithm to implement the heterogeneous population model is

proposed. The algorithm needs to be implemented into the software and verified. Future

wok can be done according to the steps listed in Table 2 and Table 3. There might be some

unexpected errors that occur in the process of EMF model generation and the descriptions

might not include them. It is expected the programmer has a high proficiency in Java and

has some experience in working with Eclipse and EMF.



Table 3. The steps for implementing a heterogeneous model.

Step Description

1 Follow the algorithm in 5.2 and create a HeterPopLable as an extension class of

the Population Label.

2 Create a HeterDiseaseLabel which implements the features of getting detailed

population information through HeterPopLabel.

3 Create the Poisson disease model package according to Table 1 and [15].

4 In Step 7, rewirte the method computeDiseaseDeltas to include the mathematics

of the Poisson Disease model, let the return type be the HeterDiseaseLabel.

5 Follow the Steps to create a ui package in Appendix A.

6 Declare the parameters in PoissonDiseaseModel.java in the following format.

/**

* @return the default probability of infection.
* @model default="0.1"
*/

double getProbabilityOfInfection ();

Write the parameters in PoissonDiseaseMessages.property in the ui package.

7 Correct any errors caused after the model generation process.

8 Run STEM and test the newly created disease model.

7.2 Potential improvements

First, as mentioned earlier, better documentations and guidelines need to be prepared for

users to help the understanding and utilizing the functions.

Moreover, some new functions need to be built for users to create practical scenarios. For

example, in 2009 HINI flu spread, most of the new cases are created through air

transportation. However, this important feature is not included in STEM. The disease

progression in STEM is mostly assumed to be proceeded across borders through roads.



Table 3. The steps for implementing a heterogeneous model.

Step Description

1 Follow the algorithm in 5.2 and create a HeterPopLable as an extension class of

the Population Label.

2 Create a HeterDiseaseLabel which implements the features of getting detailed

population information through HeterPopLabel.

3 Create the Poisson disease model package according to Table 1 and [15].

4 In Step 7, rewirte the method computeDiseaseDeltas to include the mathematics

of the Poisson Disease model, let the return type be the HeterDiseaseLabel.

5 Follow the Steps to create a ui package in Appendix A.

6 Declare the parameters in PoissonDiseaseModel.java in the following format.

/**

* @return the default probability of infeczion.
* @model default="0.1"
*/

double getProbabilityOfInfection ();

Write the parameters in PoissonDiseaseMessages.property in the ui package.

7 Correct any errors caused after the model generation process.

8 Run STEM and test the newly created disease model.

7.2 Potential improvements

First, as mentioned earlier, better documentations and guidelines need to be prepared for

users to help the understanding and utilizing the functions.

Moreover, some new functions need to be built for users to create practical scenarios. For

example, in 2009 HI N1 flu spread, most of the new cases are created through air

transportation. However, this important feature is not included in STEM. The disease

progression in STEM is mostly assumed to be proceeded across borders through roads.



To conclude, STEM has innovative new features which could make it an extensible

modeling and simulation tool. However, it is hard to cater for special modeling needs

which would still rely on specifically designed simulation tools.
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Appendix
Al How to create a ui package

1) Make sure the constructor in the class "Yourdiseasemodellmpl()" is

PUBLIC. By default this is constructed as protected so you need to change

it.

Add the javadoc

* <!-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated NOT

*/

above the constructor so it does not get changed back if/when you

regenerate.

2) Open yourdisease.genmodel with an xml editor

3) Expand the root node

4) Change the editor directory to

/org.eclipse.ohf.stem.ui.diseasemodels.yourdisease/src

5) Click on the root genmodel:GenModel node, right click, and

add attribute

editorPluginC]ass="org.eclipse.ohf.stem.ui.diseasemodels.yourdisease.presentation.Yourdi



seaseEditorPlugin"

6) Click on the root genmodel:GenModel node, right click, and

add attribute

editPluginlD="org.eclipse.ohf.stem.diseasemodels.yourdisease"

7) Click on the root genmodel:GenModel node, right click, and

add attribute

editorPluginlD="org.eclipse.ohf.stem.ui.diseasemodels. yourdisease.editor"

click on the top node, right click, and one at a time rengenerate

everything.

Please recheck Make sure the constructor in the class

"Yourdiseasemodellmpl()" is PUBLIC. By default this is constructed as

protected so you need to change it.

8) Delete

org.eclipse.ohf.stem.ui.diseasemodels.yourdiseasemodel.presentation.YourdiseaseWizard.j

ava

9) In the package

org.eclipse.ohf. stem.ui. diseasemodels. yourpoissondiseasemodel.presentation.presentation.

YourdiseaseEditorPluging

will have been created.

You need to create 5 classes in



org.eclipse.ohf.stem.ui.diseasemodels.yourpoissondiseasemodel.presentation

YourdiseaseDiseaseModelAdapter.java

YourdiseaseDiseaseModelPropertyEditor.java

YourdiseaseDiseaseModelPropertyEditorAdapterFactory.java

YourdiseaseDiseaseWizardMessages.java

YourdiseasePropertyStringProviderAdapterFactory.java

The easiest way to do this is to copy those files from the "Example"

disease model and rename

Note that you must to a CASE SENSITIVE replacement.

'example' -> "yourdieasename"

'Example' -> "Yourdieasename"

'EXAMPLE' -> "YOURDISEASENAME"

10) You must also create a file

yourdiseasediseasemessages.properties do define constant strings for

display in the property editor.

Please see the one in the example project.

11) Make changes to plugin.xml

open the plugin.xml file for

org.eclipse.ohf.stem.ui.diseasemodels.yourpoissondiseasemodel.presentation

and go to dependencies. You need these four only.

org.eclipse.ohf.stem.diseasemodels.yourdisease



org.eclipse.emf.ecore.edit

org.eclipse.ohf.stem.ui

org.eclipse.ohf.stem.ui.diseasemodels (ADD THIS ONE)

go to the Extensions tab and add

org.eclipse.ui.startup

under Extension Element Details for startup add the class

org.eclipse.ohf.stem.ui.diseasemodels.yourdisease.presentation.YourdiseasePropertyString

ProviderAdapterFactory

go to the Overview Tab. Change the activator class to:

org.eclipse.ohf.stem.ui.diseasemodels. yourdisease.presentation.YourdiseaseEditorPlugin$I

mplementation

Change the ID: to

org.eclipse.ohf.stem.ui.diseasemodels.yourdisease

Make sure your execution envitronment required javal.5

this should also be true for your disaease model plugin.xml file

12) In the class

org.eclipse.ohf.stem.ui.diseasemodels.yourpoissondiseasemodel.presentation.YourPoissond

iseasemodelPropertyEditor

in the METHOD

populate()

you must custom code the properties you wish to show up in the creation

wizard and diseasemodel property editor.



13) Finally,

open run configurations in the eclipse environment and make sure both your

new disease model plugin AND

org.eclipse.ohf.stem.ui.diseasemodels.yourdisease are both checked. Then

click "add required"


