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Abstract

Sketching is a common means of conveying, representing, and preserving information,
and it has become a subject of research as a method for human-computer interaction,
specifically in the area of computer-aided design. Digitally collected sketches contain
both spatial and temporal information; additionally, they may contain a conceptual
structure of shapes and subshapes. These multiple aspects suggest several ways of
representing sketches, each with advantages and disadvantages for recognition. Most
existing sketch recognitions systems are based on a single representation and do not
use all available information. We propose combining several representations and sys-
tems as a way to improve recognition accuracy. This thesis presents two methods
for combining recognition systems. The first improves recognition by improving seg-
mentation, while the second seeks to predict how well systems will recognize a given
domain or symbol and combine their outputs accordingly. We show that combin-
ing several recognition systems based on different representations can improve the
accuracy of existing recognition methods.
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Chapter 1

Introduction

Sketching is a critical first step in many design problems. Architects and engineers,

for example, commonly make many rough sketches on the way to a design. Designers

often make these initial sketches on paper and must later transfer their work to a

computer for further development. Computer recognition of sketches could streamline

this common process, but for many applications users require an error rate near

zero before adopting a new technology. Until then they prefer to use predictable, if

cumbersome methods. While there exists a diverse and advancing body of work on

sketch recognition, none of the current systems have both the flexibility and accuracy

required in a realistic design setting. The general goal of this work is to improve

recognition accuracy and thereby advance sketch recognition applications.

The sketches that this work examines are created with a digital pen, which records

both position and timing information, so the sketches have both spatial and temporal

aspects. As sketches are also frequently conceived as compositional, i.e. made up

of a hierarchical structure of shapes and subshapes (as, for example, a square is

made up of lines), they also have a conceptual structure. This multi-faceted quality,

i.e., the spatial, temporal, and conceptual aspects, allow a sketch to be thought of

and represented in several ways. Later in this chapter we describe three types of

representations corresponding to the spatial, temporal and conceptual views of a

sketch. Most existing sketch recognition systems are based primarily on one of these

representations and do not fully use all of the information contained in a sketch.



This thesis is based on the idea that these different representations may have

different strengths and that the choice of representation can affect what recognition

is feasible or easy. We show how to combine multiple representations as a way to

improve recognition accuracy. We demonstrate improved recognition accuracy by

combining existing recognition systems based on different representations and suggest

a combined approach for the development of future recognition systems.

1.1 Why Recognize Sketches?

Consider a collaborative meeting of engineers, designers, scientists, or artists. Now

take away the whiteboard, pens, and paper. Likely, you will be left with a roomful

of unhappy and unproductive people making frantic and indecipherable gestures.

Natural communication occurs in different forms, with sketches communicating some

information most effectively, as for example, a complex diagram or map. This is

true both in collaborative processes [64], and in the design process of an individual,

because it extends the designer's memory and cognitive ability [46, 63, 32].

As computers become more powerful and more pervasive, we would like both to

communicate with them in the same efficient ways that we communicate with people

and to use them to facilitate design and collaboration. This desire for more natural

human-computer interaction and for a more effective role for computers in the design

process is one compelling motivation for the development of pen based input for

computers. Recent work by Adler and Davis [1] and by Zamora and Eyjolfsdottir

[70] demonstrates how a computer might aide in the design of mechanical devices

and digital logic circuits; however, much remains to be done before a computer can

recognize and understand unrestricted sketching.

Tablet computers are currently used commercially for taking notes and recognizing

handwriting, but ultimate goals for sketch based interfaces presented by Davis [11]

and Forbus et al. [16] include human-like understanding, reasoning, and participation.

While these are distant goals, a clear intermediate step is recognizing what has been

drawn, i.e. parsing and associating meaningful labels to a collection of pen strokes.
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1.2 Nature of Sketches Considered in This Work

There are many different kinds of sketches. Those considered in this work are sym-

bolic, in the sense that they are made up of symbols that have a mental association

with a type of object or relationship in the world, but they need not resemble that

which they represent [44]. Additionally, the symbols are standardized (we can define

a lexicon) and are used to compose sketches by combining them according to rules

(we can form a full or partial grammar). Figure 1-1(a) contains an example of a sym-

bolic sketch. Element, compound, and bond symbols in this chemical diagram have

defined meanings and relationships with each other. This work does not consider

more artistic sketches, such as that in Figure 1-1(b), which do not have a defined

lexicon or composition rules.

N

Icm.O
M~s

0

(a) Symbolic sketch. (b) Nonsymbolic sketch.

Figure 1-1: Examples of symbolic and nonsymbolic sketches.



This work considers sketches drawn with a digital pen (in particular, all of the

sketch data described below was captured using digitizing LCD tablets), rather than

those drawn on paper then scanned and digitized. This distinction means that the

data considered here contains time information: each point has spatial coordinates as

well as an associated time stamp. This allows for the use of temporal properties of a

sketch including stroke order, drawing speed, and the length of time between strokes,

in addition to properties based on spatial distribution of ink.

The sketches are also minimally constrained, or unconstrained. In creating these

sketches the user is allowed to draw freely, rather than required to draw symbols with

a fixed number of strokes, or to signal the system after each symbol is completed.

This means that the same symbol may be drawn with one or many strokes; a stroke

may also belong entirely to one symbol or may be split'among two or more. Figures 1-

2 and 1-3 illustrate these two scenarios. Furthermore, the sketches are frequently

messy or imprecise. For example, the sides of the rectangle in Figure 1-2(a) are

curved rather than straight lines, while the corners of the resistor in Figure 1-3(b)

are rounded rather than sharp.

(a) Rectangle drawn with one (b) Rectangle drawn with
stroke. four strokes.

Figure 1-2: Parts (a) and (b) show the same symbol drawn with one and four strokes.



pvli7\_
(a) Resistor and two wires drawn with three (b) Resistor and two wires drawn with one
stokes. stroke.

Figure 1-3: Parts (a) and (b) show the same set of symbols drawn with three strokes
and with one stroke, which must be divided among the symbols.

1.3 Meaning of Recognition

While other applications for digital pen input devices have been conceived and devel-

oped, this thesis is specifically concerned with sketch recognition. We define recogni-

tion in terms of its two necessary components: segmentation and classification. We

define these processes separately for clarity; however, they may be performed either

sequentially or simultaneously by a recognition system.

Figure 1-4: A sketch of a circuit diagram.

I u



Segmentation of a sketch refers to the grouping of strokes, subparts of strokes,

or pixels according to the domain symbols they comprise. Figure 1-5 illustrates the

correct segmentation of the circuit diagram sketch in Figure 1-4 into groups corre-

sponding to symbols for wires, resistors, grounds, capacitors, batteries, AC sources,

and JFETs.

Figure 1-5: A correct segmentation of the sketch in 1-4. Symbols are spatially sepa-
rated to indicate groupings of stroke segments.



We define classification as assigning labels to the resulting groupings. Figure 1-6

illustrates the assignment of labels to the segmented sketch in Figure 1-5.

wire

wire wire
resistor

jfet

resistor
wire

capacitor

resistor wire

V --

battery
wire

Swire

ground

Figure 1-6: An example of classification of a segmented sketch. Symbols are spatially

separated to indicate groupings of stroke segments.

1.4 Sketch Representations

We identify three primary aspects of sketches: the spatial, the temporal, and the

conceptual. Each aspect provides a way of thinking about a sketch and a means to

represent it, and each has advantages and drawbacks for recognition. Throughout

this work we consider three representations of sketches corresponding to the three

aspects of sketches.

wire

wire
resistor

AVM



1.4.1 Spatial

By the spatial aspect of a sketch, we mean literally what the sketch looks like: the

areas of ink and absence of ink that we see when looking at the sketch on a screen or

piece of paper. Obvious spatial representations are simply an array of pixels or a list

of coordinates. This type of representation is appealing both because of its simplicity

and because of the large existing body of work in the field of computer vision that

uses similar representations.

1.4.2 Temporal

The temporal aspect of a sketch is based on the way the sketch was drawn, including

drawing order, pauses, etc. We create the most basic temporal representation with a

sequence of time-stamped pen positions. From that higher level abstractions may be

created such as time-stamped Boolean observations corresponding to whether or not

a drawing action occurred, velocity vectors, or other relevant features. The temporal

aspect of sketching is an appealing basis for representation because it is a unique

quality of online pen-based interaction; without the timing information, we have only

a static image, as might be obtained by drawing on paper and scanning the result.

1.4.3 Conceptual

We define the conceptual view of a sketch as its geometric or symbolic contents and

the configuration of the contents within the sketch. A conceptual representation

indicates the sketch's geometric primitives, for example line segments and curves,

and their spatial relationships, for example locations or whether or not two segments

meet. We might alternatively list more complex geometric or symbolic objects as

the sketch's contents, such as triangles or resistors. A conceptual representation is

attractive because it reflects how the sketch may have been conceived by its author

and facilitates high level inferences about what has been drawn.
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1.4.4 Relationship to Existing Recognition Systems

It is unclear how to evaluate a representation directly, independent of an implemented

system. Furthermore, a representation is interesting only in so far as it facilitates

recognition (or other task). Therefore, we evaluate, compare, and combine recognition

systems, rather than representations.

Given that we want to discuss systems rather than representations, it is useful

to note that the three sketch representations that we have presented can be used

to categorize sketch recognition systems as well, according to which representations

are used. While most systems do not take purely one approach, many do strongly

focus on one of the representations that we have described. Our work builds directly

on three existing recognition systems, which are described below. We discuss other

related systems in Chapter 5.

Spatial

The recognition method developed by Oltmans [40] performs recognition based on

visual parts, also referred to as image patches. Shapes are classified by comparing

the parts of a candidate symbol to a standard set of parts, resulting in a vector of

measurements that represent the degree to which each standard part appears in the

candidate symbol. Classifying this vector then results in a classification of a shape.

Segmentation is performed by locating many candidate symbols and keeping only

those with a high classification score.

Temporal

Sezgin and Davis [55] developed a recognition method that represents a sketch as a

sequence of observations (strokes or substrokes). A Hidden Markov Model is trained

for each symbol in a domain. A sketch may then be recognized by using dynamic

programming to find a sequence of symbols that accounts for all of the strokes in a

sketch and that maximizes the overall probability of the observations.



Conceptual

The SketchREAD recognition system developed by Alvarado [5] uses the shape de-

scription language LADDER [23] to describe shapes in a domain in terms of compo-

nents and constraints between those components. Figure 1-7 illustrates an example

of a LADDER description for a rectangle. A sketch is recognized by parsing strokes

into possible interpretations. The system generates likely interpretations for groups

of strokes, then corrects mistakes in the low level interpretations of components and

constraints based on high level domain knowledge.

(define shape Rectangle
(components
(Line linel)
(Line line2)
(Line line3)
(Line line4)

(constraints
(touching linelline2)
(touching line2 line3)
(touching line3 line4)
(touching line4 linel)
(perpendicular linel line2)
(parallel line2 line4)
(equal linel line3)

Figure 1-7: A LADDER shape description for a rectangle.

1.5 Why Use Multiple Representations?

In this section we provide some motivation for the use of multiple representations

for sketch recognition. Figure 1-8 presents several simple shapes, the recognition of

which is made easier or harder depending on the representation selected.



S23
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(a) (b)

34

(c) (d)

Figure 1-8: Simple shapes whose recognition may be helped or hindered by the choice
of representations

Figure 1-8(a) contains two squares. These squares might be easily recognized with

computer vision pattern matching techniques; however, recognizing these shapes with

a conceptual representation could pose a problem. If the entire figure is drawn with

one stroke, that stroke must be broken and divided between the two squares. Testing

all such possible divisions may not be feasible (the time complexity of segmenting and

grouping strokes grows exponentially with the number of strokes in a sketch), and it

is difficult to define heuristics that are sufficiently thorough and accurate.



Figure 1-8(b) demonstrates the opposite case; here a spatial representation may

make recognition difficult while a conceptual approach is clear. We identify both

shapes 1 and 2 as arrows, though they are related by a non-affine transformation.

However, another non-affine change made to shape 1 produces shape 3, which is

something that we do not identify as an arrow. Specifying all possible transforms

to shape 1 that will result in an arrow would be cumbersome with a purely spatial

representation. However, recognizing shapes 1 and 2 as arrows without including

shape 3 may be done simply with a conceptual definition that specifies an arrow as a

line forming the shaft and two lines of roughly equal length forming the head.

The arrows in Figure 1-8(c) present another case where a spatial representation

might be cumbersome. In a sketch these groups of strokes are likely to have the same

interpretation, though they appear different, again as a consequence of a non-affine

transformation. A temporal representation, however could be useful in determining

this similarity, as the arrows would likely be drawn with the same temporal pattern.

For example, one might consistently draw an arrow's shaft before drawing its head.

In Figure 1-8(d) the numbers correspond to drawing order, so the two circles were

drawn first, followed by the two lines. This interspersing of the parts of different

symbols can be problematic for a temporal approach since parts that are relevant to

each other are not adjacent temporally. Thus segmenting the sketch on purely tem-

poral grounds would be unsuccessful. However, this interspersing poses no problem

visually because the parts that are relevant to each other are adjacent spatially.

These simple scenarios are representative of common phenomena in hand-drawn

sketches. Employing an appropriate representation can greatly simplify the problem

and improve the accuracy of recognition. However, the wide variety of phenomenon

in hand-drawn sketches means that a domain or a sketch is unlikely to contain only

elements that are ideally recognized with a single approach.



1.6 Method Overview

In this chapter we have introduced three ways of representing sketches and a recog-

nition system based on each of them. The remainder of this thesis explores ways of

combing these representations and recognition systems in order to improve recognition

accuracy. Two combination methods are discussed.

The first method improves recognition by improving segmentation. While exist-

ing systems classify isolated symbols with a high degree of accuracy [43], localizing

symbols within a sketch remains a difficult problem. Improving segmentation is a

critical step towards improving recognition of whole sketches.

We present three methods for approximately segmenting sketches, one corre-

sponding to each of the three representations described above. That is, we develop

segmenters based on spatial, temporal, and conceptual representations. These seg-

menters are based on characteristics of human behavior and perception as they pertain

to each representation, rather than domain knowledge. As a consequence they do not

rely on knowing what symbols may be drawn. As one example, a long pause between

two strokes is a good indication that the two strokes are part of different symbols.

We demonstrate that the resulting segmentations can be used improve recognition

by processing sketches with our approximate segmentation methods, then recognizing

the segmented pieces of the sketches with systems based on different representations

than those used for the presegmentation. This two stage process enforces break points

that are very likely to be symbol boundaries, thus preventing recognition errors made

in one part of a sketch from propagating.

Our second combination method seeks to determine which representation/system

is most likely to be correct for a given domain or symbol, and combine outputs

accordingly. The method does not require running an actual recognition system and

may be applied prospectively to decide what type of system or what approach to take

for a new recognition problem.

We first propose simple complexity measures for each representation that predict

recognizer performance on a domain. We then expand the idea of complexity to



the symbol level by defining symbol complexity in terms of confusability with other

symbols in a domain. This symbol complexity, which may be computed without

empirical data, is used to judge the credibility of each recognition system for each

symbol it recognizes in a sketch. The three recognition systems may then be combined

by comparing the likelihoods of their outputs or by training the systems only for those

symbols for which they are judged to be highly credible.

1.7 Contributions

This thesis makes four primary contributions, listed here in the order of presentation.

* First, the thesis presents segmentation methods corresponding to each of the

representations. We demonstrate that combining the segmentation methods of

multiple representations yields a good approximate sketch segmentation without

a need for domain knowledge.

* Second, we demonstrate that the segmentations described above can be used

to improve recognition accuracy, by performing approximate segmentation as a

preprocessing step.

* Third, this thesis proposes symbol confusability as a means of judging the cred-

ibility of a system. We demonstrate that combining recognition systems based

on how likely they are to confuse symbols can improve recognition accuracy.

* Finally, we present representation specific measures to approximate confusabil-

ity without the need to collect empirical data or build systems. We demonstrate

that these measures can be used to effectively combine recognition systems.

1.8 Outline

This thesis is organized as follows. Chapter 2 describes the sketch data considered

by this thesis, including the particular domains and data sets used in later chapters.
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Chapter 3 presents methods for segmenting sketches corresponding to each of the

three representations described in Section 1.4. We then describe how these segmenta-

tions may be combined and how the combination may be used to improve recognition.

Chapter 4 proposes simple domain complexity measures, and then expands the idea

of complexity to the symbol level by defining symbol confusability metrics. We then

use these metrics to combine recognition systems in parallel. We end with chap-

ters discussing related and future work (Chapters 5 and 6) and our contributions

(Chapter 7).





Chapter 2

Sketch Data

This chapter describes the sketch data considered by this thesis: the particular do-

mains and data sets for which results are presented in later chapters.

2.1 Domains

We consider three domains: family trees, flow charts, and circuit diagrams. Lexicons

for each are given in Figure 2-1. The family tree domain contains five symbols: male,

female, marriage or partnership link, divorce link, and parent-child link. The parent-

child link is defined as linking one male or female to another male or female, thus

each child is linked by an arrow to each parent (rather than joining the marriage

or partnership to the child with a single arrow). The flow chart domain, with five

symbols, and circuit domain, with eleven symbols, are each made up of a subset of

standard symbols for such diagrams.



Female

Marriage or
Partnership

Divorce

Parent/Child

(a) Family tree symbols.

BJT

MET

Resistor

Diode

Current Source

Start or End

Action or Step
in a Process

Decision <

Connector O

Flow Line

(b) Flow chart symbols.

Wire

Ground

Capacitor

Battery

Voltage Source -O

AC Source Q

(c) Circuit diagram symbols

Figure 2-1: Lexicons for each domain.

Male



2.2 Data Sets

Unlike some areas of research, like speech recognition or handwriting recognition, the

field of sketch recognition does not yet have large standardized data sets. Though

work towards such data sets has begun, including work by Oltmans et al. [41], avail-

able data sets remain relatively small, on the order of tens or hundreds of sketches,

rather than the thousands of handwritten addresses or phone interactions used in

many recognition applications [28], [20].

Number of sketches Number of sketch Average number of
authors symbols per sketch

Family Tree 36 18 42.3
Flow Chart 36 18 23.6

Circuit 110 10 27.6

Table 2.1: Statistics for the data sets used throughout this work.

Table 2.1 gives statistics for the three data sets used in this research: family trees,

flow charts, and circuit diagrams. Family tree and flow chart data was collected from

the same set of subjects [9]. After a warm-up period to become familiar with the

drawing environment, sketch authors were asked to draw their own family trees and

then were given a textual description of an extended family and asked to draw the

corresponding tree. The same subjects were also asked to draw flow charts represent-

ing their morning routines and were given a textual description of a common process

and asked to draw the corresponding flow chart. Figure 2-2 contains examples of

family tree and flow chart sketches.

Circuit diagram data collection was conducted by Alvarado [4]. Sketch authors

familiar with circuit design were asked to draw several circuits, each with a specified

numbers and types of components, but no constraints on function or layout. Figure 2-

3 contains examples of circuit diagram sketches.



(a) Family tree sketches.
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(b) Flow chart sketches.

Figure 2-2: Family tree and flow chart sketches.
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Figure 2-3: Circuit diagram sketches.

2.3 Single Representation Recognition Results

Table 2.2 contains recognition results for the three recognition systems described in

Section 1.4.4 on each of the three data sets described above. Numbers in the table are

the percentage of symbols rbcognized correctly, meaning the percentage of symbols

across the entire domain that were both correctly localized and correctly classified.

Family Tree Flow Chart
Spatial 21.3 37.3

Temporal 36.7 25.8
Conceptual 47.3 25.1

Table 2.2: Recognition results (% correct symbols) for
conceptual recognition systems.

Circuit
49.9

6.0
13.9

the spatial, temporal, and

The goal of this thesis is to examine the improvement that combining representa-

tions can offer. Throughout this work, we use the results in Table 2.2 as a baseline

for comparison. We seek to improve upon the single system recognition rates in Ta-



ble 2.2 and to produce a combined approach that outperforms the best single approach

(highlighted in bold) across all three domains.



Chapter 3

Segmentation of Sketch Data

This chapter discusses sketch segmentation, one subproblem of recognition. Section

3.2 details a segmentation strategy corresponding to each of the three representations

discussed in Section 1.4: spatial, temporal, and conceptual. The methods described

in this chapter are based on human behavior and perception rather than domain

knowledge, meaning that they do not rely on knowing what symbols may be drawn.

We show that these segmentation methods may be combined to produce a good

approximate segmentation. Section 3.3 demonstrates the resulting segmentations

improve recognition by combining knowledge from different representations.

3.1 Basis for Segmentation without Domain Knowl-

edge

Many methods of in-context recognition perform segmentation jointly with classifi-

cation (the assigning of labels to stroke or pixel groups). Examples of this approach

include [59], [42], and [69]. In these cases, segmentation relies on domain knowledge,

which can be highly useful in the segmentation of a messy sketch with overlapping

symbols. Consider the family tree sketch in Figure 3-1. In this sketch, knowledge of

the concept of an arrow can be very useful for grouping strokes, because arrowheads

tend to be closer to each other or closer to the shapes they point to than to the



corresponding arrow shaft strokes.

While in many cases a perfect segmentation requires this type of domain knowl-

edge in order to group strokes or pixels, in this chapter we describe methods for

approximate segmentation that do not rely on knowledge of what is being drawn.

These methods are based on how humans tend to express ideas and perceive the

world. Later in this chapter we show that these approaches provide useful segmenta-

tion information that complements domain specific approaches to recognition.

Figure 3-1: A family tree sketch. Knowledge of the concept of an arrow is useful for
segmenting this sketch.

3.1.1 Human Behavior

Timing is one characteristic of human behavior that may implicitly convey meaning.

In particular, pause placement and duration can aide in sketch segmentation. Authors

are more likely to pause between drawing two symbols than in the middle of drawing

one symbol. Across the data sets described in Chapter 2, the average length of time

between temporally adjacent strokes within a symbol and between adjacent strokes

in different symbols is significantly different, which suggests that useful segmentation

clues are contained in this time stamp information. Mean pause lengths in millisec-

onds and statistics for t-tests for differences in the means are shown in Table 3.1.



The average length of time between temporally adjacent strokes within a symbol and

between adjacent strokes in different symbols are significantly different for each of

the three domains. Pause behavior has also been used for analyzing organization of

spoken discourse. Grosz and Hirshberg [21] note the usefulness of pauses for locating

topic boundaries.

Within Symbol Across Symbol T-statistic
Mean Pause in ms Mean Pause in ms

Family Tree 692 2683 9.09 (p<.05)
Flow Chart 1155 5707 13.14(p<.05)

Circuit 982 1929 8.59(p<.05)

Table 3.1: The average length of time between temporally adjacent strokes within a
symbol and between adjacent strokes in different symbols are significantly different.

Continuity in expressing ideas is a second characteristic of human behavior that is

useful for analyzing sketches. Sketch authors are likely to finish drawing one symbol

before beginning the next. Therefore, temporal adjacency is also one indicator of

symbol groupings, i.e., nonconsecutive strokes are less likely to belong to the same

group than are consecutive strokes. It is not a perfect indicator, however, since

interspersing of symbols does occur. For example, in Figure 3-2 the arrow bodies were

all drawn before the arrow heads. In the sketches examined in this work between 3%

and 22% of symbols are drawn with interspersed strokes.

Like temporal continuity, spatial continuity is useful as an indicator of segmenta-

tion: similar areas of ink that are near each other are more likely to be related than

those that are not or those that are separated by blank areas of the page. However,

this indicator is also imperfect when taken by itself, as Figure 3-1 illustrates.

These basic properties of human behavior underlie the spatial and temporal seg-

mentation methods described in Section 3.2.
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Figure 3-2: The arrow bodies were all drawn before the arrow heads. Numbers
indicate drawing order.

3.1.2 Human Perception

We also base segmentation on ideas about human perception, in particular that some

relationships among shapes are more important than others. In tests of human per-

ception, Goldmeier [19] noted that subjects preferentially notice some qualities of

shapes, referred to as singularities. Salient singularities such as parallelism or verti-

cality are special cases of geometry and are distinct because small variations away

from the singularity affect perception of a symbol. Figure 3-3 illustrates a visual

singularity. The small variation away from the parallelism of lines a and b affects the

interpretation of the shape in 3-3(a) more than the equal variation in lines c and d

in 3-3(b).

Such observations about human perception form the basis for the recognition

model for learning from a single example proposed by Veselova [66]. In the segmen-

tation model described in Section 3.2.3, we consider a subset of the geometric prop-

erties proposed by Veselova, including parallelism, perpendicularity, and equality of

size (Table 3.2 contains the full list of properties). In the next section we describe

how grouping these important shape properties can yield a sketch segmentation.



a b a

Figure 3-3: Parallelism as a singularity. The same change in the angle of line a and
line c affects the perception of the shapes differently.

3.2 Representation Based Segmentation Methods

Each of the three sketch representations described in Section 1.4 attends to different

aspects of a sketch and highlights different information contained within it. This

section describes how to use these differing sets of information to produce different

segmentations, which may then be combined, yielding a better approximate segmen-

tation. These approximate segmentations are then used in Section 3.3 to improve on

previous recognition results.

3.2.1 Spatial

A spatial representation is concerned with the distribution of ink on a page or colored

pixels on a screen. In any drawing, the distribution of ink varies, with areas of higher

ink density separated by areas of lower ink density. A spatial segmentation may be

constructed by dividing relatively dense areas from areas that are relatively empty.

a b



To produce a spatial segmentation, first the ink density is calculated for many

overlapping windows. Figure 3-4(a) illustrates these windows. Ink density is defined

as the number of drawn points divided by the area of the window. Next, windows

are grouped with bottom-up clustering. Each window begins as its own group and

overlapping groups with similar ink densities are merged. Figures 3-4(b) contains

six windows that have been grouped in three clusters, indicated by different colors.

Windows of the same color are overlapping and have similar ink density. Finally

strokes are segmented at corners according to the method described by Sezgin et.

al [57] and stroke segments are assigned to only one group, meaning strokes may not

be divided between two groups at arbitrary points. This is a simplifying assumption

that departs somewhat from a purely spatial method.

(a) (b)

Figure 3-4: To produce a spatial segmentation, the sketch is first scanned and ink
density is found for many overlapping windows. Overlapping windows with similar
density are then clustered.

3.2.2 Temporal

A temporal representation views the sketch as a sequence of events. For the purpose

of this segmentation method, we consider only two types of events: sketching and

pausing. Sketching refers to any uninterrupted time period during which the pen is

in contact with the screen (or page). Pausing refers to any block of time when no ink is



being laid on the screen (or page). Figure 3-5(b) illustrates the timeline corresponding

to the sequence of events in the creation of the sketch shown in Figure 3-5(a).

C
t -

Sketching

Pausing

(b)

Figure 3-5: An excerpt of a larger family tree sketch and the timeline illustrating how
it was drawn.

We segment a sketch temporally by using a bottom-up clustering approach, similar

to the spatial segmentation method described in the last section. Each stroke segment

begins as its own group, and groups are continually merged as long as two groups

are close temporally. Temporal distance between two stroke groups is defined as the

ratio of the length of the pause between stroke groups to length of sketching time of

the adjacent groups. Thus the temporal distance is relative: short strokes separated

by a long pause would not be grouped, but longer strokes separated by the same

/
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pause length could be. This results in groups of temporally adjacent strokes that

were drawn in relatively quick succession, with groups separated by longer pauses.

Figure 3-6 demonstrates this successive grouping of strokes for the sketch in Figure 3-

5(a). The bottom row of strokes contains each stroke as its own group, and each

higher row shows two stroke groups being merged.

t-
I Sketching

Pausing

Figure 3-6: Temporal clustering resulting in the segmentation of the sketch in Fig-
ure 3-5(a).

3.2.3 Conceptual

We produce a conceptual segmentation of a sketch, by representing the conceptual

elements as a graph. Segmenting the graph yields a corresponding segmentation of the

sketch. We define two types of conceptual elements: components and the constraints

between components. This representation is based on the LADDER shape description

language [23].



Components Constraints
Line Intersect Parallel

Ellipse Perpendicular Contains
Arc Coincident Touching

Equal

Table 3.2: Geometric components and constraints used in sketch descriptions.

First, a low level processor identifies components, including lines, arcs, and ellipses

[57]. Single strokes may be broken at corners to produce more than one component.

Next, pairs of components are tested exhaustively for the binary constraints listed in

Table 3.2. These two steps result in a list of components and constraints. Figure 3-

7(b) contains an excerpt of the description of the conceptual representation, formatted

as a LADDER shape description, corresponding to the same sketch in Figure 3-5(a)

reproduced in Figure 3-7(a).

(define shape sketch
(components

(Line linel)
(Line line2)
(Line line3)
(Line line4)
(Line line5)
(Line line6)
(Line line7)
(Ellipse ellipsel)

(constraints
(touching linel line2)
(touching line2 line3)
(touching line3 line4)
(touching line4 linel)
(perpendicular linel line2)
(perpendicular line3 line4)
(parallel line2 line4)
(parallel linel line3)
(equal linel line3)
(touching line6 line2)
(touching line7 line2)
(equal line6 line7)

Figure 3-7: An excerpt from a larger family tree sketch and a partial description of
its components and constraints.
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Next a graph is constructed that represents components as nodes and constraints

between components as edges. Figure 3-8 contains the graph corresponding to the

partial text description in Figures 3-7.

Ie lnparallel,

coii e line6 equaellipsel

Figure 3-8:
Figure 3-7.

The constraint graph corresponding to the sketch and description in

The constraint graph is divided by computing the minimum cut, defined as a

partition of the graph into two disjoint sets such that the number of edges with end

points in different sets is minimized. The graph is further divided by computing the

single minimum cut among the two resulting subgraphs. This process continues while

the minimum cut is less than an empirically set threshold. Figure 3-9 illustrates the

minimum cuts of the graph in Figure 3-8 and the resulting segmentation. By dividing

the graph through areas of minimal connectivity thus preserving densely connected

groups of nodes, groupings of constraints and their components in the sketch are

grouped as well.

- - -----------
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(b)

Figure 3-9: The minimum cuts of the graph in 3-8 and the resulting segmentation.

3.2.4 Segmentation Results

Figure 3-10 contains a sketch from the flow chart data set, and Figure 3-11 contains a

segmentation of that sketch with each of the three methods described in this section:

spatial(3-11(a)), temporal(3-11(b)), and conceptual(3-11(c)). The three resulting seg-

mentations are all different. They all also undersegment, meaning that many groups

contain more than one symbol. The segmentation methods described in this section

are not intended to be used alone, since by using single representations they each

attend to valuable but incomplete information. Rather they are to be taken together,



Figure 3-10: A sketch of a flow chart.

with each contributing some segmentation indicators. Thresholds that determine how

finely each single representation method segments a sketch are set empirically.

Figure 3-12 shows a combined segmentation, produced by considering all of the

break points found by the spatial, temporal, and conceptual segmentations: if a break

point is found in any of the three representation based segmentations it is included

in the combined segmentation.

The segmentation in Figure 3-12 contains only one mistake, highlighted in Fig-

ure 3-13: the arrow and rectangle should not be grouped together. While this sketch

appears quite neatly drawn, this near perfect segmentation was produced with no

knowledge of the domain, that is no knowledge of what an arrow, rectangle, or

diamond is, and allows for symbols consisting of any number of strokes or stroke

segments.

Table 3.3 contains the segmentation accuracy for the combined segmentation for

each of the data sets described in Chapter 2. Accuracy is defined as the percentage

of symbols, across all sketches in the domain, that were correctly isolated.

% correct segmentation
Family Tree 48.3
Flow Chart 59.5

Circuit 29.7

Table 3.3: Segmentation accuracy.
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(a) Spatial segmentation. (b) Temporal segmentation.

(c) Conceptual segmentation.

Figure 3-11: Segmentations of a flow chart sketch.
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Figure 3-12: Segmentation resulting
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Figure 3-13: Segmentation error in Figure 3-12 indicated by the circle.
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3.3 Segmentation as a Pre-processing Stage of Recog-

nition

The method described above for approximate segmentation may have applications on

its own, for example, neatening a messy sketch or applications such as those described

by [29] and [53] where recognition is not required or desirable. However, segmentation

as a pre-processing step can also boost performance of existing recognition systems,

which themselves also perform segmentation.

I/O 8'0
(a) Excerpt from a family tree
sketch.

i Q

(b) Incorrect segmentation.

jI
L /

(c) Correct segmentation.

Figure 3-14: Incorrect segmentation of one symbol can result in other segmentation
and classification mistakes.
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Recognition systems that perform both segmentation and classification, such as

those described in Section 1.4.4, may be subject to error propagation, particularly

if stroke segments may not be assigned to more than one symbol. A segmentation

mistake (or classification mistake, if context is being used to aide recognition as in [5])

in one part of a sketch may cause segmentation mistakes elsewhere in the sketch.

Those segmentation mistakes are then likely to cause classification errors.

Consider the example in Figure 3-14. The red square in Figure 3-14(b) is formed

from strokes that belong in four different symbols. This error precludes the correct

segmentation of the four symbols (two arrows and two rectangles), shown in Figure 3-

14(c). This section describes how small, cross-representational segmentation clues can

prevent this sort of error propagation.

3.3.1 Method

In order to boost the performance of an existing recognition system based on a single

representation, sketch data is first pre-processed with complementary representations.

Sketches are roughly segmented according to the methods described in Section 3.2,

taking strong indicators of symbols boundaries and erring on the side of underseg-

mentation. Segmentation is based on complementary representations than that of the

recognition step. The resulting segments are then recognized independently from one

another, meaning that a symbol may not span both sides of a segmentation boundary.

3.3.2 Recognition Results

Figure 3-15(a) shows the correctly labeled flow chart sketch from Figure 3-10. Col-

ors indicate symbol labels: diamonds(decision symbols), for example, are blue and

ovals(start/end symbols) are green.

Figure 3-15(b) shows results of processing the sketch using the conceptual repre-

sentation based system described in Section 1.4.4. If, however, we first presegment

the sketch according to strong temporal and spatial clues, then process it with the

same conceptual representation based system, we get the results in Figure 3-15(c).



Recognition is improved significantly by considering strong break points in other rep-

resentations to be enforced symbol boundaries.

Start or End E Process Step Decision

Flow Line Connector

(a) Correctly labeled flow chart sketch.

(b) Conceptual recognition
the sketch in part (a).

results of (c) Conceptual recognition results after
presegmenting.

Figure 3-15: Presegmenting with spatial and temporal methods improves later con-

ceptual recognition.

_ _ _



Table 3.4 contains quantitative results for this method of presegmenting, then

recognizing sketches. In all cases sketches are presegmented with strong break points

from two representations and then recognized with the remaining representation,

noted in the table.

The results in Table 3.4 indicate that by applying the segmentation methods

described in this chapter, the single system recognition described in Chapter 2 (results

repeated in Table 3.5) is improved in all cases, and significantly so in some cases.

This suggests that domain independent indicators of segmentation can compliment

segmentation and recognition methods that rely on domain knowledge.

Presegmented

Family Tree Flow Chart Circuit
Spatial 62.3 51.3 63.1

Temporal 37.5 45.6 13.4
Conceptual 60.1 54.9 25.7

Table 3.4: Recognition
representational information.

accuracy for sketches presegmented with cross-

Single Representation

Family Tree Flow Chart Circuit
Spatial 21.3 37.3 49.9

Temporal 36.7 25.8 6.0
Conceptual 47.3 25.1 13.9

Table 3.5: Recognition results (% correct
ral, and conceptual recognition systems.

symbols) for the individual spatial, tempo-



Chapter 4

Judging Recognition Credibility

with Representation Specific

Complexity Measures

This chapter explores the idea that different representations are good at different

things, and specifically that one representation may be better or worse at recognizing

symbols in a particular domain than another representation. When combining repre-

sentations we would like to take advantage of these variations. This chapter suggests

ways of predicting such differences in performance prospectively, i.e., without having

to build recognition systems. In Section 4.1 we propose ways of predicting perfor-

mance for a domain, which can be used to select the best recognition system for that

domain. Section 4.2.2 extends this idea to the symbol level and introduces symbol

confusability metrics, which judge how well a system can be expected to recognize a

particular symbol within a domain. Section 4.3 applies the metrics of Section 4.2.2

to combine recognition methods.

4.1 Domain Level Complexity

The results in Table 2.2, repeated in Table 4.1, show that the accuracies of the

recognition systems described in Section 1.4.4 vary, in both absolute value and relative



to one another. For example the spatial system has the best performance on the circuit

domain, but it has the worst performance on the family tree domain. There is not a

single best method for recognition across all domains.

Family Tree Flow Chart Circuit
Spatial 21.3 37.3 49.9

Temporal 36.7 25.8 6.0
Conceptual 47.3 25.1 13.9

Table 4.1: Recognition results (% correct symbols) for the spatial, temporal, and
conceptual recognition systems.

Table 4.1 suggests that the difficulty of the recognition problems for each sys-

tem can vary. One could determine how difficult a recognition problem is for the

three systems by simply running each on available data. However, we would like to

prospectively decide what type of system, or what approach to take for a new recog-

nition problem. This leads to the questions: what makes a problem hard for a spatial

representation, for a temporal representation, and for a conceptual representation?

As partial answers to those questions, we propose the domain complexity measures

listed in the left column of Table 4.2. A high degree of spatial overlap among symbols

complicates recognition for a system based on a spatial representation, which may not

be able to distinguish ink from one symbol if it is drawn on top of another symbol.

Similarly, a high degree of temporal overlap, or the interspersing of symbol strokes

while drawing, complicates recognition for a system that distinguishes symbols based

on their temporal patterns. For a conceptually based system, the structural complex-

ity of a domain's symbols, as measured here by the length of the LADDER shape

descriptions for the symbols [23], increases the difficulty of recognition for a domain.

A symbol with a longer description has a greater number of subcomponents that may

be incorrectly located or classified.
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Family Tree Flow Chart Circuit

Mean Symbol Overlap in Pixels 565.2 297.9 43.8
(a spatial metric)

Percentage Interspersed Symbols 3.8 5.5 22.0
(a temporal metric)

Mean Symbol Description Length 3.8 7.2 7.9
(a conceptual metric)

Table 4.2: Domain complexity measures.

Table 4.2 contains values for each of the properties described above for each do-

main. Rows in Table 4.2 correspond to the rows of Table 4.1, i.e., mean symbol

overlap is a spatial complexity measure. Low numbers in Table 4.2 indicate less com-

plex recognition problems (for example, the description length value of 3.8 in the third

row is the smallest in that row, suggesting that the family tree domain is the simplest

domain when viewed conceptually). Those cells with lowest values in Table 4.2 (the

least complex recognition problems) correspond to the highest recognition rates in

Table 4.1. This relationship is shown graphically in Figures 4-1, 4-2 and 4-3. These

figures illustrate that recognition is more accurate in less complex domains. This

mirrors our intuition that performance on an easy problem is likely to be better than

performance on a harder problem.

15 25 35 45 55

Increasing recognition rate -

Figure 4-1: The relationship between our spatial domain complexity measure and

recognition rates.
recognition rates.
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Increasing recognition rate

Figure 4-2: The relationship between our temporal domain complexity measure and
recognition rates.
recognition rates.
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Figure 4-3: The relationship between our conceptual domain complexity measure and
recognition rates.

4.2 Symbol Level Complexity

The domain level guidance for selecting the best representation for recognition can

be useful: as shown above, a domain may not be equally hard for all recognition

systems or methods. However, domains themselves are often not uniform either; even

within a domain one representation may be better for recognizing a particular symbol

than another. Extending the idea of complexity as a predictor of performance to the

symbol level can further improve recognition.
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4.2.1 Confusion Matrices as Indicators of Complexity

The difficulty of recognizing a symbol depends on what other symbols are in its

domain (i.e., what else it might be confused with). Consider the shapes in Figure 4-4.

Distinguishing between a line and an ellipse is generally not difficult, so recognition

in a domain with only those two symbols would likely not pose a problem for any

representation or recognition system. However our task is rarely so easy. More

commonly a domain will contain symbols that are easily confused. The circuit domain

contains symbols (c), (d), and (e) in Figure 4-4. Distinguishing these three symbols

is much harder. A slight variation in relative lengths of the two parallel lines in the

battery and capacitor can change their interpretations, and a small third line, which

could be missed entirely, distinguishes the battery from the ground.

(a) Line (b) Ellipse

(c) Battery (d) Capacitor (e) Ground

Figure 4-4: Symbols a and b are from the flow chart domain. Symbols c, d, and e are
from the circuit domain. The ellipse is more likely to be confused with the circle than
the battery, and likewise the battery is more likely to be confused with the capacitor
or ground than with symbols from the flow chart domain.

As the above example illustrates, complexity should take into account a symbol's

confusability with other symbols. A confusion matrix can provide this information

empirically. Figure 4-5 contains an example of a confusion matrix generated by testing

the conceptual recognition system on a subset of family tree data. Rows correspond to

correct symbol labels, and columns correspond to the labels assigned by a recognition

system: the value 45 in cell (1,2) is a count of the number of times the recognition



system found a female symbol where there was actually a male symbol. High off-

diagonal numbers indicate that two symbols are easily confused by a given system,

while low off-diagonal number indicate they are not often confused.

-0

Male 175 45 3 18 0

Female 7 213 0 0 0

Parent/child 0 48 82 75 0

Marriage 0 0 12 37 0

Divorce 1 0 4 32 0

Figure 4-5: Confusion matrix for the conceptual recognition system on a subset of
family tree data.

4.2.2 Approximating Confusion Matrices with Representa-

tion Specific Distance Metrics

A confusion matrix can provide the desired measure of symbol confusability. However,

generating a confusion matrix in this way requires building recognition systems first,

and one of the goals of this work is to provide guidance for building future sketch

systems. So, as in the previous section, we would like to be able to obtain this guidance

without having to build and test a system, and possibly even before empirical data

has been collected for a new domain.

Our approach to this problem is based on a very simple but powerful observations:

a system confuses two symbols because they are similar according to some represen-

tation. In response we approximate a confusion matrix by defining and measuring

the representation specific similarity of pairs of symbols in a domain. This offers two

important advantages. First, while the similarity measures are representation spe-

cific, they are domain independent and can easily be applied to the symbols in a new



domain. Second this gives us our desired prospective metric, allowing us to compute

a confusion matrix without building and running a system. The remainder of this

section defines a distance metric for each of the three representations.

Spatial

To calculate a spatial distance between two symbols, each symbol is represented as an

edge direction histogram. Symbols are first rescaled to eliminate differences due only

to size, then resampled to yield points at a constant spatial frequency (rather than the

constant temporal frequency of points of the sketches collected with a digital pen).

These preprocessing steps are common for spatially based recognition methods [41],

[26]. Figures 4-6(a) and 4-6(b) illustrate resampling. In part(a) points are distributed

evenly in time; there are more points around the corner because the pen was moving

more slowly there. In part (b) points have been redistributed evenly along the length

of the stroke.

Next, edge directions are calculated as the angles of the lines connecting neigh-

boring points, and these directions are binned, forming histograms. Figures 4-6(c)

and 4-6(d) illustrate these steps. The angles between the points in the stroke in part

(c) fall mostly into the near horizontal bins (around zero radians) and near vertical

bins (around 7r/2 radians), shown in part (d) of the figure.

The distance between the two histograms is then calculated as the Euclidean dis-

tance between the vectors (the sum of the squared difference in bin counts). This dis-

tance is expressed mathematically in Equation 4.1, where S1 and S2 are two symbols

to be compared and H(S1 ) and H(S 2) are corresponding n-dimensional histograms.

d(S 1 , S 2 )= l (Hi(S1 ) - H(S 2 )) 2 (4.1)



(a) Originally points are dis-
tributed with a constant temporal
frequency.

(b) Points are resampled to
have constant spatial frequency.

(c) Edge directions are com-
puted as the angle between ad-
jacent points.

0 n/2 E

(d) Angles are binned to form histograms.

Figure 4-6: Steps in the generation of an edge direction histogram.

Temporal

We represent symbols temporally as a sequence of different kinds of strokes, for ex-

ample differently sloped lines. Temporal similarity is measured with a string edit

distance, which is a weighted sum of the number of insertion, deletion, and substi-

tution operations required to transform one string into another. Figure 4-7 contains

two symbols, along with their temporal representations. The symbols Po and N refer

to positively and negatively sloped lines. For example, the resistor in Figure 4-7(a)

was drawn with a positively sloped line, followed by a negatively sloped line, followed

by another positively sloped line, and so forth. An efficient sequence of operations

I

I - NOON



that transforms the resistor into the arrow is Po N Po N Po -- Po Po Po N Po -

Po Po Po N, which requires one substitution and one deletion.

Po N Po N Po PoPoPoN

(a) Resistor (b) Arrow

Figure 4-7: Temporal representation of a resistor and an arrow.

Equation 4.2 contains the mathematical representation of the temporal distance,

where S1 and S2 are two strings to be compared and w is the set of weights and c is

the set of counts for insertions, deletions, and substitutions.

d(Si, S 2 ) = w c (4.2)

w = [wi, Wd, ws]

c= [ci, cd, Cs

Conceptual

The conceptual distance is an edit distance as well, though it is the distance between

constraint graphs (described in Section 3.2.3), rather than strings. The graph edit

distance is a weighted sum of the number of insertions, deletions and substitutions

required to transform one graph into another, but operations are counted for both

nodes and edges, yielding six transforming operations rather than three, as is the case

for the temporal string edit distance.

Figure 4-8 contains two simple symbols along with their constraint graphs. The

graph in part (a) may be transformed into the graph in part (b) through the sequence

of one edge deletion, one node insertion, and two edge insertions shown in Figure 4-9.



linel

line2

(a)

equal
linel touching line3

( C

(b)

Figure 4-8: Conceptual graph representations of two simple symbols.

Equation 4.3 contains the mathematical representation of the conceptual distance,

where G1 and G2 are two constraint graphs to be compared, c is a vector of counts

of node insertions, node deletions, node substitutions, edge insertions, edge deletions,

and edge substitutions, and w is a corresponding vector of weights.

d(G 1, G2) = min (w -c) (4.3)
V(Gl)-V(G2 )

W [Wni Wnd, Ws, Wei, Wed, Wes ]

C = [Cni, Cnd, Cns, Cei, Ced, Ces]
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eltouch 

linel 
line3

CD " -

Figure 4-9: Sequence of edits required to convert one graph into another.

a Ideal
a symbol's definition includes more than one valid way of drawing it. Figure 4-

L LU

equal equal

el) touching nine3: el Iine3

C8

line2 Iine2

Figure 4-9: Sequence of edits required to convert one graph into another.

4.2.3 Symbol Versions for Computing Distances

The distances above may be applied to symbols in two ways. They may be used

to measure the distance between ideal instances of symbols or between empirical

instances of symbols (i.e., symbols as drawn by users). In both cases, the similarity

of two symbols in a domain is computed from the average pair-wise distance across

all pairs of instances of the symbols being considered.

Ideal

Ideal instances of symbols are constructed from their definitions in the domain, which

may come from LADDER shape descriptions (as in Figure 1-7), text-book symbol

definitions (as in Figure 2-1), or canonical ways of drawing a symbol. The result

is generally a single instance of a symbol, but several ideal versions are possible if

a symbol's definition includes more than one valid way of drawing it. Figure 4-



10 illustrates ideal spatial versions of a resistor symbol and a ground symbol. The

advantage of this method is that it may be computed before data is collected; however,

it may not take into account many possible variations or the imprecision and messiness

in hand drawn sketches.

I

(a) (b)

Figure 4-10: Ideal versions of a resistor and ground symbol.

Empirical

Alternatively, if empirical data is available, symbol instances may be gathered from

actual sketches, by hand segmenting and labeling. Figures 4-11 and 4-12 contains sev-

eral instances of resistors and grounds gathered from sketches. Confusability between

these two symbols is calculated from the average distance between a resistor from

set (a) and a ground from set(b). Although this method does require user generated

data, it may still be applied without building a system. Results in Section 4.3 rely

on this method of distance calculation.

Figure 4-11: Several sketched versions of resistor symbols.



Figure 4-12: Several sketched versions of ground symbols.

4.3 Combining Recognition Systems Based on Sym-

bol Level Complexity

This section presents two methods for applying symbol complexity to improve recogni-

tion. The first combines recognition systems in parallel and uses symbol confusability

to determine how to combine their outputs. The second combines recognition systems

serially by selectively training systems according to their strengths.

4.3.1 Weighting Recognition Results Based on Credibility

Method

To create a combined recognition result, each recognition system is run on a sketch,

generating a collection of symbol labels and their locations within the sketch. In many

cases the systems do not agree, requiring that we have some way of determining how

to combine their opinions. We do this by estimating the likelihood of a symbol being

present given the recognition results of each system and combining those likelihoods

to generate an overall likelihood.

We can generate conditional probabilities for each label (e.g. the probability that

a symbol is a capacitor given that a temporal system has labeled it a ground) from a

confusion matrix. In the confusion matrix in equation 4.4, nij, (i # j) is a count of



the number of times the kth recognition system misclassified a symbol as having the

jth label when it actually belonged to the class i.

no0,0  ...

CMk = (4.4)
ni,j

The chance that a symbol x should belong to the ith class, given that the kth recog-

nition system labeled it as belonging to the jth class is:

P(x GE cSk(x) C) = ni (4.5)

Confusion matrices for this calculation may either be generated with held out

training data or approximated with the distance metrics described in Section 4.2.2.

When actual data is used, additional rows may be added to a confusion matrix to

account for missed symbols and over-recognized symbols, and those conditional prob-

abilities included as well.

For simplicity we assume that the recognition results are independent. Empir-

ically we have found that prior probabilities for each type of symbol may also be

assumed to be equal. Given recognition results and estimated conditional probabil-

ities, the likelihood of each label at a given location is estimated by the product of

the probability in equation 4.5 for each system:

K

J P(x e c lSk(x)) (4.6)
k=1

The most likely label is that with the highest likelihood, found by maximizing Equa-

tion 4.6 over i.



Results

Table 4.3 contains recognition results for the method described above using both

actual confusion matrices and approximated confusion matrices based on distance

metrics. These results are compared with the baseline results, presented in Section 2.3.

Family Tree Flow Chart Circuit
Combination with Confusion Matrices 56.0 52.3 55.4

Combination with Distance Metrics 54.7 51.0 52.9
Baseline 47.3 37.3 49.9

Table 4.3: Recognition results (% correct symbols) for the combination of recognition
systems.

In both cases the combined recognition performance exceeds our base line, (defined

in Chapter 2 as selecting the single best system for each domain). These results

indicate that symbol confusability, as defined by a confusion matrix, can be used to

arbitrate between recognition systems at the symbol level and is a useful measure of

recognition difficulty for a given recognition system. Furthermore, distance metrics

proposed in this chapter, which do not require running an actual recognition system,

may be used to approximate confusion matrices and also provide a useful measure of

recognition difficulty.

By first applying the segmentation methods from Chapter 3, then using the com-

bined recognition approach above, we find some improvement over the results pre-

sented Chapter 3. It is worth noting however, that presegmentation followed by spa-

tial recognition performs almost as well as presegmentation followed by the combined

recognition method above. This comparison is shown in Table 4.4. Spatial methods,

including the one used in this work by Oltmans, have previously been shown to be

highly reliable for classifying isolated symbols [40, 43, 26]. Our results suggest that

while conceptual and temporal methods do correctly classify some symbols that the

spatial system cannot, their greatest value may come from improved segmentation

and shape localization.



Family Tree Flow Chart Circuit
Presegmenation + Combined Recognition 63.0 55.4 62.7
Presegmentation + Spatial Recognition 62.3 51.3 63.1

Baseline 47.3 37.3 49.9

Table 4.4: Recognition results (% correct symbols) for presegmentation followed by
spatial recognition and presegmentation followed by the combined recognition.

4.3.2 Training Recognition Systems Based on Predicted Cred-

ibility

Method

Rather than run each system on a full sketch and combine the results as above,

this method of combination narrows the focus of each component recognition system

and considers each system to be an expert on its new, narrowed focus. Confusion

matrices, either actual or estimated with distance metrics, determine which symbols

each system should concentrate on.

First each symbol is assigned to a representation and corresponding recognition

system based its confusability with other symbols in the domain. This assignment is

done in a greedy way, with the least confusable symbol among all of the representa-

tions assigned to the representation under which it is most distinct, and so on, until

all symbols have been assigned.

The component systems are adapted by selecting training data for the spatial

and temporal systems to include only those symbols assigned to the corresponding

representation, and by adjusting the input domain descriptions of the conceptual

system to include only those symbols assigned to the conceptual representation. In

this way, symbols not assigned to a given recognition system are regarded as noise

by that system. Once the systems have been trained, they are then applied to a

sketch serially, and successive systems consider only unrecognized parts of a sketch,

i.e. parts previous systems labeled noise. Figure 4-13 illustrates this process.



(a) Original sketch of a family tree. Tem-
poral recognition is performed first.

(c) The conceptual system recognizes arrows.
The remaining blue area are shown to the
spatial recognizer.

(b) The temporal system recognizes the
divorce-link. The remaining blue areas are
shown to the conceptual recognizer.

(d) The spatial system recognizes ellipses and
rectangles.

Figure 4-13: An example of serial recognition. At each stage, black shapes have been
recognized and blue areas of the sketch are unrecognized.

Results

Table 4.5 contains recognition results for the method described above. These results

are compared with the baseline results, presented in Section 2.3.

Family Tree Flow Chart Circuit
Confusion Matrices 51.9 48.7 51.2

Distance Metrics 50.4 46.1 49.2
Baseline 47.3 37.3 49.9

Table 4.5: Recognition results (% correct symbols) for serial combination of recogni-
tion systems.

This method of combination does provide some improvement over our baseline (the

best single representation system for each domain); however, these results suggest that

---- ---



this combination method is not as strong as the previous parallel method. However,

we have adapted existing recognition systems that were not originally designed to

function in this way (i.e. to take partially recognized sketches as their inputs). A

better test of this method would be to combine purposefully designed component

systems.



Chapter 5

Related Work

We discuss work related to this thesis in three groups. We begin by positioning this

work among other research on pen-based applications and sketch recognition. We then

discuss related work on representations, specifically the use of multiple representations

for pen-based data. Finally, we describe work related to our methods of combining

recognition systems based on different representations.

5.1 Sketch Recognition

Early pen input devices for computers took the form of light pens, such as the Sketch-

Pad system developed by Sutherland in 1963 [62]. This form of interaction actually

predates the computer mouse [14], yet pen input devices did not see the same commer-

cial success as the mouse, which has since become ubiquitous. However, increasingly

powerful processors and ever shrinking hardware have recently lead to several com-

mercial pen-input products, including the Palm Pilot and the Tablet PC, and have

renewed interest in pen-based interaction.

Current research in pen-based computer interaction ranges from that concentrated

primarily on usability and user interfaces, such as [34, 68], to work focused on sketch

recognition, such as this work, which does not consider how the end user may ul-

timately interact with the computer. Research on sketch recognition can be placed

along a spectrum as well, determined by the degree of segmentation performed and



the degree of drawing flexibility permitted. A sketch application may be based on sin-

gle stroke gestures [50, 39], may classify isolated symbols with any number of strokes

[26, 69], or may perform segmentation with varying assumptions about how symbols

may be drawn, whether they must be drawn with a set number strokes, or whether

they may be interspersed [55, 4, 18, 59]. In this discussion, we refer to any system

that assigns labels to isolated symbols as a classifier and one that locates symbols

with in a sketch and assigns labels as a recognizer. While this work focuses on the

later, performing segmentation on minimally constrained drawings, it is related to

both existing classification and recognition techniques.

5.2 Representations

5.2.1 Knowledge Representation

This thesis is based on the idea that sketch data may be represented in several ways

and that the different lenses of these multiple representations supply a variety of

perspectives on the problem of sketch recognition. This in turn is important because

changing perspectives can change a problem's difficulty. This premise is very similar

to ideas proposed in the study of knowledge representations. Levesque and Brachman

note a trade off between expressiveness and tractability, but also contend that one

formalism cannot be "better" than another, but rather each comes with a tradeoff [38].

Considering diagrammatic representation specifically, several works have suggested

that solving a problem is largely a matter of representing it in the best way [22, 35].

Davis et al. note that different representations focus attention in different areas and

lend themselves to different inferences, and the authors warn against attempting to

force a problem into representation that does not suit it [12]. Similarly, this thesis

suggests that one sketch representation alone is not sufficient for all problems or

domains.

---;-,,.--- I--.~ ..



5.2.2 Multiple Representations in Sketch Recognition

This thesis considers three representations for sketches, which we have called spatial,

temporal, and conceptual. While this nomenclature is original, various forms of these

three classes of representations have been used for both sketch recognition and symbol

classification.

Spatial

Many of the spatial approaches to sketch processing have been developed for isolated

symbol classification, rather than the recognition of full sketches. These include work

by Kara and Stahovich, which uses pixel-based, image similarity measures to match

incoming sketched symbols to templates [31] and work by Apte et al.[7] and Fonseca

et al. [15], which each classify shapes based on global spatial features such as the shape

of the bounding box and length of the perimeter of a shape.

In addition to the work by Oltmans [40], Gennari, Kara, Stahovich, and Shimada

take a spatial approach to the problem of sketch recognition [18]. Their approach

combines the isolated symbol classifier of Kara and Stahovich with a spatial segmen-

tation, which relies on changes in ink density, to recognize entire sketches.

Temporal

Many symbol classification schemes and most on-line sketch recognition systems use at

least some temporally based information. For example, timing information is required

in order to orient symbols with pen direction before applying a spatial approach

[40, 18] or to use pen speed to locate corners and segment strokes as the base elements

of a conceptual approach [4]. While only Sezgin and Davis have used a primarily

temporal representation for sketch recognition [55, 56], there do exist temporally

based methods for other pen-based interaction tasks including curve refinement [60]

and isolated symbol recognition [6].



Conceptual

Yin and Sun [69] take a conceptual, parts-based approach to isolated symbol classifica-

tion, by defining a sketched symbol in terms of line and arc primitives and topological

relationships among those primitives, including intersection and tangency. However,

they do not define higher level conceptual objects.

In addition to the recognition system of Alvarado, which this work builds upon

[4], Shilman et al. [58] and Deufemia and Risi [13] also each describe a conceptual

recognition approach. Both define languages for sketch parsing and recognition, which

are similar in concept to the LADDER language developed by Hammond [24].

5.2.3 Multiple Representations in Handwriting Recognition

Handwriting recognition is perhaps the most well studied and commercially success-

ful area of pen-input research. Though more constrained in some ways, handwriting

recognition systems share much with sketch recognition approaches, including simi-

larities in representations. We find handwriting recognition particularly relevant for

this thesis because some prior work has been done on combining representations of

handwriting.

Plamondon and Srihari review some of the large body of work on handwriting

recognition, and divide the field into online and offline approaches [45]. Offline ap-

proaches have only an image available, and thus tend to represent input spatially.

Senior and Robinson [54] describe a representation that includes a histogram of ink

density and is similar to the approach taken by Oltmans [40]. Online handwriting

recognition methods operate on input created with digital pens. Hu et al. represent

handwriting as a time-ordered sequence of stroke segments and use a Hidden Markov

Model-based method for recognition[27]; this is similar to the sketch representation

and methods used by Sezgin and Davis [56, 55].

In work most related to this thesis, Alimoglu and Alpaydin combine standard

online and offline approaches for the problem of handwritten digit recognition [2].

Their work is similar to ours in that they define two representations , which they



call "static" and "dynamic." They find that some of the errors made using each

representation alone are uncorrelated and report an improvement in accuracy when

the two are combined.

5.3 Combining Representations

5.3.1 Combining Classifiers and Recognizers

Multiple classifier systems are the subject of much research, and it is widely recognized

that a combination of classifiers or experts is generally preferred to a single opinion[48,

51, 33]. In spite of a similar premise, much of the existing work in multiple classifier

systems differs from our problem in several important ways. First, the output of most

component classifiers used in combination is relatively simple, for example a class

label for a given instance of data. The output of the recognition systems that we are

examining is a labeled sketch, which may contain many labeled subcomponents as

well as their locations. Second, much of the research in this field is conducted on large,

standard data sets, and our sketch data sets are quite small by comparison, preventing

the use of many standard methods that require extensive training. Despite these

differences, several questions in the field of multiple classifier systems are relevant for

us as well.

Combination Topology

One relevant area of research in classifier combination concerns the topology of the

combination, which may be parallel, serial, or a mix of the two. In this thesis we have

presented both parallel and serial methods of combination. Rahman and Fairhurst [47]

prefer a hybrid method; however Rahman et al. [49] acknowledge that an ideal com-

bination may require access to internal structures in the base classifiers, which may

not always be possible. Alimoglu and Alpaydin [2] compare combination strategies

using multiple classifiers based on different representations of handwritten digits, as

described in the previous section. They find that serial, multi-stage cascading is the



best balance between accuracy and efficiency. In their approach, a simple scheme

handles most cases and difficult cases are passed to a more complex classifier. Stolfo

et al. use a parallel approach to combining the outputs of multiple speech recogniz-

ers [61]. This work is related to ours in that the constituent recognizers act on full

utterances, rather than isolated words. They note that one of the key problems is

determining the granularity of the combination scheme (in their case the choice is

between phonemes and words).

Confidence Measures

Chapter 4 presented domain and symbol complexity measures and used the measures

to judge the reliability of a recognition system's output. This question of how much

to trust the output of each constituent recognizer or classifier has also been examined

previously. Bengio et al. discuss how to measure confidence in several different

identity verification methods and create a multimodal identity verification scheme by

weighting individual methods based on this degree of confidence [8]. Hao et al. test

several methods of computing confidence scores for diverse classifiers on the problem

of handwritten digit recognition [25].

Improving Black Box Systems

In this work, we have built upon existing, well developed recognition systems, modi-

fying them relatively little and treating them as near "black boxes", which limits how

they may be combined, as internal steps are not accessible. Rahman et al. consider

a similar problem: how to improve a general purpose, commercial speech recognizer

[49]. They post-process the results of a single commercial speech recognition system

to achieve a better final ranking of possible utterance labelings for a specific user or

environment.



5.3.2 Distance Measures

A key component of this thesis is judging the credibility of a given representa-

tion/system on a particular domain or symbol in order to combine systems most

effectively. Section 4.2.2 introduced three distance metrics (spatial, temporal, and

conceptual) to calculate the similarity of two sketched symbols and gauge their con-

fusability. These methods are related to several existing applications of distance

measures for the comparison of simple images and handwriting. Calculating the simi-

larity of an image or a handwritten character to templates or to members of a training

data set is a common method of classifying such data. The key difference between

the application of distance measures in this thesis and exiting applications is that

in this work, distance measures are not used directly for classification or recogni-

tion. Instead, we use distance measures to provide guidance for combining separate

recognition methods.

Spatial

We define the spatial distance between symbols in terms of distances between edge

direction histograms. Similar approaches have been well studied as a means of image

comparison. Jain and Vailaya [30] apply edge direction histograms, similar to those

used in this work, to the problem of identifying similar trademark images, while

Veltkamp and Latecki [65] compare the properties and performance of a number of

spatial similarity measures, including edge direction histograms, for image retrieval.

Temporal

We represent a symbol temporally as a sequence of events, which is then encoded as

a string. Temporal distances are calculated as string edit distances. Cortelazzo et al.

also represent images as strings and apply a string edit distance to determine similarity

and identify trademark images [10]. Their strings, however, represent spatial elements

of images, rather than temporal elements as in this work, and although their distance

measure is very similar to ours, their representation is fundamentally different.



Conceptual

We calculate a conceptual distance between symbols by computing the distance be-

tween corresponding graph representations. This application of a distance measure

is the most closely related to previous work. Similar graph distance measures have

been applied to pen-based data, while the distance measures discussed above were

applied to static, pixel-based images.

Sanfeliu and Fu apply a graph distance measure to the problem of classifying

hand written English characters [52]. Their graph distance measure is similar to

that used in this work; however, nodes and edges represent individual strokes and

connections between strokes, while in our work a stroke may correspond to more

than one node and edges encode additional relationships between nodes. WeeSan Lee

et al. [37] and Seong-Whan Lee[36] each perform sketched symbol classification by

matching graphs that contain geometric information and define alternatives to the

graph distance measure used in this work.
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Chapter 6

Future Work

This chapter discusses three areas of possible future work: developing more integrated

combination schemes, using recognitions systems other than those employed in this

thesis, and applying a combination of representations and systems to other domains

and tasks.

Alternate Models for Combination

The combination methods we have developed employ representations separately, i.e.

the constituent recognition systems do not consider all available information and they

do not exchange intermediate information, only final labels or segments. Combination

schemes that allow more information exchange between representations would be an

interesting avenue for future work. Such schemes are particularly relevant for sketch

recognition because in many cases, subdecisions affect one another, and improving

one subdecision may impact several neighboring decisions and result in a cascading

improvement in the final result. For example, changing the interpretation of a stroke

from a curve to a line may result in a collection of strokes being reinterpreted as

a square, which may then affect the interpretation of a higher level symbol, and if

domain knowledge is incorporated, the reinterpretation of a symbol may affect the

meaning of a nearby symbol.

One way of allowing this information exchange between representations would be a

combination scheme that uses iterative refinement. Each constituent system, based on



a single representation, would evaluate a sketch, share intermediate information with

other systems, and then reevaluate based on new information. In this work we have

treated existing systems as near black boxes, making relatively few changes to internal

structures; however, such an iterative method would require different constituent

systems (or significant changes to current systems) since most stand alone systems

are not capable of sharing and accepting intermediate information.

A second way of combining information from different representations would be

to combine evidence from multiple representations in a single probabilistic model.

Several recognition systems, in particular the conceptual system used in this work

[4] and a related temporal system [56], use such models; however, these systems

ignore some possible sources of information from other representations, which could

be includes as observations.

Alternate Implementations of Representations

We have considered only a single recognition system based on each of the three repre-

sentations (spatial, temporal and conceptual). However, it would be useful to examine

different recognition implementations in order to better understand the relationship

between a representation and a particular implementation of that representation. In

particular, there is a question of which recognition results are due to the implemen-

tation and which are due to the underlying representation. A challenge in answering

this question is that creating implementations requires significant development time

(the three implementations used in this thesis are theses themselves). Furthermore,

there are currently few systems which act on the kinds of unconstrained sketches

examined in this work.

Other Symbolic Domains and Sketching Tasks

This work examines three symbolic domains (family trees, flow charts and circuit

diagrams); however, there are many others to which this work could be applied. For

example, military planning diagrams, chemistry molecules, and mechanical or physical

systems have been used in other sketch recognition work [17, 42, 3]. Expanding our



work to new sketching domains would provide more reference points to better gauge

the strengths and weaknesses of each representation/system. Including more domains

with different combinations of characteristics, like the degree of temporal interspersing

or pixel overlap between symbols, could help to refine the complexity metrics for

domains and symbols in Chapter 4. One challenge to incorporating new domains

in this work is data collection. Locating knowledgeable subjects, who are willing to

provide sufficient training data, can be difficult for many specialized domains (e.g.

military planning diagrams).

In addition, we consider only recognition of symbolic sketches, but there are many

other pen-based tasks for which a combination of multiple representation or systems

could be useful, for example the beautification of artistic sketches. In particular, the

segmentation approaches presented in Chapter 3, which do not use domain knowledge,

could be useful as part of a user interface application that groups strokes to facili-

tate editing or indexing, but does not perform recognition (for example the digital

notebook created by Wang et al. [67]).





Chapter 7

Conclusion

This thesis is based on the idea that looking at a problem from different perspectives

may make it appear easier or harder. It explores ways of improving recognition

accuracy by combing different sketch representations, and recognition systems that

are based on those representations. There are four main contributions of this work.

* We have developed spatial, temporal and conceptual approximate segmentation

methods, which do not rely on domain knowledge.

* We have applied the segmentation methods to improve recognition accuracy.

* We have introduced confusability as a means of judging the credibility of a

recognition system and as a means of combining systems.

* We have developed representation specific measures, which approximate con-

fusability without the need to build systems.

We have presented two methods for combining recognition systems. The first

improves recognition by improving segmentation, while the second seeks to predict

how well a particular system will recognize a given domain or symbol. We have

shown that combining several recognition systems based on different representations

can improve the accuracy of existing recognition methods. This work brings us closer

to the level of recognition accuracy necessary to apply sketch recognition in a realistic

design setting.
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