
LHCb-2008-022
Feb 18

th, 2008.

Description of the Vetra Project
and its Application for the VELO Detector

T.Szumlaka, C.Parkesa

aDepartment of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow, G12 8QQ, U.K.

Abstract

Vetra is the LHCb data reconstruction project which emulates the performance of the TELL1
readout board processing algorithms. This project is required for monitoring and commissioning the
LHCb silicon detectors. A bit-perfect emulation of the TELL1 processing algorithms is performed.
This project allows raw data (non-zero suppressed) to be processed to produce the standard zero
suppressed cluster data, used by the LHCb reconstruction project Brunel.

The Vetra framework is used by the VELO and ST detectors in LHCb. This note provides a general
description of Vetra but concentrates on the VELO usage. Vetra is used to monitor the performance
of the detector and the data acquisition board algorithms. The parameters that control the data ac-
quisition boards are determined and optimised using Vetra. The project is used widely in the VELO
and is used for testbeam and laboratory tests, including production testing for the modules.

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1

Date: May 19, 2008

Document Status Sheet

1. Document Title: Description of the Vetra Project and its application for the VELO
detector

2. Document Reference Number: LHCb-2008-022

3. Issue 4. Revision 5. Date 6. Reason for change

Draft 1 Dec 18, 2007 First version of the note.

Contents

1 Introduction . 4

2 General Description . 4
2.1 Core Packages . 5
2.2 Utility Packages . 6
2.3 Monitoring Packages . 6
2.4 External Packages . 7

3 Non-Zero Data Stream Decoding . 7

4 TELL1 Acquisition Board Processing Emulation - VELO case. 8
4.1 The TELL1 Emulator . 8
4.2 NZS Data Preparation and Processing 10

5 Implementation of the TELL1 Emulator for the VELO 11
5.1 Interaction between Engine and Wrapper 12
5.2 Engine (C-module) Data Interface . 13
5.3 Implementation Example . 14

6 Condition Database for Vetra . 14

7 Conclusions . 16

8 Acknowledgements . 16

9 References . 17

page 2

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1

Date: May 19, 2008

List of Figures

1 Component packages of the Vetra . 5
2 Structure of the RawEvent . 8
3 Decoding of the Velo raw banks . 8
4 The algorithm baseline sequence . 9
5 Content of the VeloFull raw bank . 10
6 Preparation of the decoded NZS data for emulation 11
7 Engine classes and wrappers . 12
8 Layout of the database used by Vetra 15

page 3

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
2 General Description Date: May 19, 2008

1 Introduction

The Vetra 1 project was developed to facilitate the development and commissioning of the TELL1 [1]
board processing algorithms. In time Vetra became a versatile tool and an essential part of the VELO
software; it has been used for laboratory testing during construction, test-beam operation and detector
commissioning.
The Vetra project will be used by the VELO sub-detector during data taking as a monitoring tool and
for parameter tuning. It will be used to calculate the values of parameters of the TELL1 processing
algorithms, for example cross talk coefficients or clusterization seeding and inclusion thresholds [2].
This note focuses on the description of the Vetra project for the VELO detector. However, the Vetra
framework has also been adapted for the use of the ST 2 silicon detector, but this is not described here.
This note describes the structure and capabilities of the Vetra software framework. The details of the
processing algorithms and Vetra based analyses will be provided in a separate note. A general descrip-
tion of Vetra is provided in section 2. This is followed by two chapters describing the most important
components of Vetra - non-zero suppressed (NZS) data handling (reading and decoding are presented
in section 3) and the TELL1 software emulator (section 4). In section 5 the C++ implementation details
are given and the baseline emulation described. Condition Database (CondDB) [3] creation and usage
is presented in section 6. A summary and conclusions are given in section 7.
The functionality of Vetra (v5r2) is complimentary to that of the existing LHCb projects, it provides:

• Decoding of the non-zero suppressed banks (including pedestal bank and error bank)

• TELL1 board (zero suppression) emulation

• High level detector monitoring requiring non-zero suppressed data (used in test beams, com-
missioning and standard running of the experiment)

• Processing parameters determination (used in commissioning and standard running of the ex-
periment)

The distinct difference between Vetra and the other presently available LHCb projects is that the Vetra
project makes use of NZS data streams (e.g. VeloFull bank or pedestal bank). The final output of Vetra
- the emulated zero suppressed cluster bank - is identical to the bank that is produced by the data
acquisition board. In this respect it is similar to the Boole [4] application which also provides the
cluster bank as its output but for simulated rather than real data. The emulated ZS bank from Vetra is
used by the Brunel [5] project to reconstruct tracks and vertices.
It is also possible to run Vetra over the real ZS data and perform a detector specific tracking without
the Brunel overhead. This functionality proved to be very useful during the VELO test beam when
the alignment procedure, VELO tracking, and reconstruction software were all tested for the first time
using the real data.

2 General Description

Vetra provides a mechanism to emulate each of the algorithms that are executed in the TELL1 data
processor board. A bit perfect emulation of the algorithms is provided and the output of the chain is
the emulated zero suppressed raw bank. In addition the framework allows alternative algorithms to
be developed and their performance compared with the baseline TELL1 algorithms.
For the VELO, the data is prepared by taking the VeloFull bank produced by the TELL1 and decoding
this into VeloTELL1Data [6] objects. Each VeloTELL1Data object contains the digitised signals from all
2048 strips from one VELO silicon sensor (see section 3 for more details).

1Vetra is named in honour of the famous CERN physicist and creator (sic) of anti-matter Vittoria Vetra.
2The algorithms used by the ST are: pedestal following with the Beetle header cross-talk correction, linear common mode

subtraction and clusterization.

page 4

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
2 General Description Date: May 19, 2008

The emulation is broken up into a number of distinct phases (more information on this can be found
in section 4) that directly correspond to the real processing performed by FPGA 3 processors on the
TELL1 boards. The output of each stage (up till the final clustering) is stored in the VeloTELL1Data
objects.
At each stage of the emulation process detailed monitoring of the output data can be performed. It is
also possible to make a direct comparison of the output of the whole chain with the zero-suppressed
data bank produced by the TELL1 for verification of the TELL1 processing, and to indicate problems
with data processing on the TELL1 boards.
The remaining parts of this section provides a short description of the structure and functionality of
each of the Vetra component packages. The structure is illustrated in Fig. 1. Only the packages directly
related with the Vetra project are presented all other dependencies, for instance framework specific
components, are omitted.

Core

Vetra

TELL1Engine

VetraKernel

Utils

VeloTELL1Algorithms

VeloTELL1DevelAlgorithms

VeloTELL1Tools

VetraAnalysis

Moni

VeloDataMonitor

VeloFullDataMonitor

VeloTELL1Checkers

VeloClusterDataMonitor

VeloTrackDataMonitor

Extern

VeloDAQ

VeloEvent

Tell1Kernel

MDF

VeloACDC

Figure 1 The component packages of the Vetra project. The essential external packages are also
shown.

2.1 Core Packages

Tell1/Vetra
Short description: this is the core package of the application and contains the executable code and
option files needed for the correct configuration of a job.
Tell1/VetraKernel
Short description: contains the base classes (e.g. VeloTELL1Algorithm), algorithms and plain classes
used by other packages and tool interfaces. From the framework point of view the VetraKernel consti-
tutes both the component and linker package.
Tell1/TELL1Engine
Short description: the most important part of the Vetra TELL1 emulation. This contains the so-called
“engine classes” that perform the pre-processing of the specially prepared data. Each engine class im-
plements part of the tell1Lib software library that is used to provide a bit perfect high level model
of the VHDL machine code of the TELL1 firmware. Each engine represents one processing stage per-
formed by the TELL1 boards.
The engine classes are decoupled from the GAUDI [7] framework in the sense they do not inherit from
any of the standard base class. This eliminates any overhead introduced by the GAUDI framework
and makes the classes simple and maintainable by the people supporting the tell1Lib software.
The tell1Lib software is written in C and can be compiled and run on the credit card PC of the TELL1
board. In addition, the interface of each engine class and the naming convention is identical to the

3Field Programmable Gate Array.

page 5

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
2 General Description Date: May 19, 2008

one used in tell1Lib . This allows ‘copy paste’ functionality and facilitates rapid updates of the engine
classes when new tell1Lib releases are provided.

2.2 Utility Packages

Velo/VeloTELL1Algorithms
Short description: these algorithms provide the interfaces to the TELL1 algorithm emulation per-
formed by the engine classes of the TELL1Engine package. One of these interfaces or ‘wrappers’ is
provided for each of the engine classes. They handle the preparation of the input data for the engines,
run the processing, and store the output data. The data for each processing stage is retrieved and
stored on the Transient Event Store.
Each wrapper inherits from GaudiAlgorithm and uses its engine counterpart as a plug-in.
Using this wrapper-plugin approach the GAUDI environment is bound with the stand alone tell1Lib
software to make the emulation follow as close as possible the hardware and firmware structure.
Velo/VeloTELL1DevelAlgorithms
Short description: this package accommodates the development of alternative processing algorithms,
which can then be compared with the performance of the baseline bit-perfect emulation software. This
code is not based on the tell1Lib .
Velo/VeloTELL1Tools
Short description: contains implementation code of all tools used for NZS data analysis and monitor-
ing. Each tool inherits from the appropriate interface in the VetraKernel package.
Velo/VetraAnalysis
Short description: this stores the analyses to calculate and optimise the parameters of the TELL1
board processing algorithms. All algorithms related with NZS data analysis, other than monitoring,
are located here. At the time of writing it contains the cable cross-talk computer algorithm that calcu-
lates the correction coefficients for the FIR algorithm (see section 4) and a basic algorithm for analysis
of the cluster bank (for both real and emulated ZS banks). In the future the package will be extended
to incorporate further algorithms such as those to compute Beetle header cross talk correction coeffi-
cients, resolution parameterisations, and thresholds for clusterization process.
Velo/VeloACDC
Short description: this package is related with the VELO test beam Alignment Calibration Data Chal-
lenge (ACDC) campaign and contains a full description of the detector geometry used in all stages of
the test beam. This package is required when using Vetra to analyse any data taken during the ACDC
tests.

2.3 Monitoring Packages

Velo/VeloDataMonitor
Short description: contains a set of monitoring algorithms designed especially for the VELO commis-
sioning making use of the full data. The most important tasks of this package are: continuous noise
monitoring, tests of the detector cabling and verification of the mapping between the TELL1 boards
and the silicon sensors.
Velo/VeloFullDataMonitor
Short description: partly obsolete, all functionality of this package has been reimplemented in the
VeloDataMonitor package. The VeloFullDataMonitor code has been propagated to the current release of
Vetra only for the sake of backward compatibility and it will be removed in the future.
Velo/VeloTELL1Checkers
Short description: simple monitoring of the NZS data at each stage of the TELL1 emulation is pro-
vided. This provides information on the data quality and the Beetle chips condition (noisy or dead

page 6

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
3 Non-Zero Data Stream Decoding Date: May 19, 2008

channels can be detected from an analysis of the produced histograms). Examples showing the rec-
ommended usage of the VeloTELL1Data class interface are also provided.
The following packages are released within the Vetra framework mainly for historical reasons. It is
foreseen to move the software to Lbcom project in the near further.
Velo/VeloClusterDataMonitor
Short description: implements monitoring of all the information accessible via the VELO cluster’s in-
terface. It is possible to produce both a collection of histograms and NTuples for further more specific
analysis if necessary. An additional algorithm ClusterDataMoniUserHistos is provided to facilitate more
advanced user specific analysis. This package is designed to monitor clusters in data - no simulation
(Monte-Carlo truth) information is available.
Velo/VeloTrackDataMonitor
Short description: this package is designed along the same lines as the cluster monitoring package.
It provides monitoring for information retrieved from the track interface and can also determine both
biased and unbiased residuals. Again no simulation information is used.
A TrackDataMoniUserHistos algorithm is also provided that can be used for non-standard user specific
analysis.

2.4 External Packages

Velo/VeloDAQ
Short description: This package is part of the Lbcom component project and contains the decoding
algorithms of all the VELO data banks. The ZS bank is decoded to VeloLiteClusters and VeloClusters
that are subsequently used in the pattern recognition and track reconstruction in Brunel. The decoding
of the NZS data from the full banks is discussed in section 3 of this note.
Event/VeloEvent
Short description: contains all the VELO specific event classes used throughout the software.
DAQ/Tell1Kernel
Short description: contains all the definitions and typedefs related with the TELL1 emulation and
NZS data decoding. These typedefs are gathered within the VeloTELL1 namespace.
DAQ/MDF
Short description: this package handles files containing real data created by the LHCb Event Builder
machinery. The most important functionality of the package from the Vetra point of view is a set of
converters to handle transformation of persistent binary MDF files into the RawEvent structure that
is used in the software to access the raw banks.

3 Non-Zero Data Stream Decoding

The primary input for Vetra is the decoded NZS data, for the VELO this comes from decoding the
VeloFull raw bank. In addition data from the VeloPedestal and VeloError banks [8] can be used. The
VeloPedestal bank contains the pedestals currently used in the TELL1 board (the TELL1 board may
have determined these in a processing algorithm or uploaded them from the ECS system). The Velo-
Error bank contains information on synchronisation errors that have occurred during data processing.
The decoding of these three VELO banks is discussed in this section.
Before the decoding procedure can be performed the binary data stream created by the Event Builder
needs to be transformed into a RawEvent object and registered in the transient event store (TES), see
Fig. 2. This transformation is done automatically by the RawDataCnvSvc at the start of the Vetra job.
The RawEvent may be regarded as a collection of raw banks containing data from all the LHCb subde-
tectors that can be accessed from within an GaudiAlgorithm using its standard interface. The VeloError
bank is decoded into a dedicated VeloErrorBank class that provides a simple interface that can be used

page 7

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
4 TELL1 Acquisition Board Processing Emulation - VELO case. Date: May 19, 2008

Binary persistent
form (MDF file)

MDF

Velo

VeloFull

VeloPedestal

VeloError

RawEvent

Figure 2 A binary file created by the Event Builder is transformed into the RawEvent structure using
the converter service provided by the MDF package.

����

��������

��������	
��

������

��� ����

������
����	
�	

���� ���������	
�	�

�������	
�	

���� ��������
����	
�	�

����� ����� �
��

���� ������� ������� � ��

����� ����� �
��

���� ���������
��� �����

	
����
 �!��

���� ������� ������� � ��

	
����� ����� �
��

���� ������� ����������

���������"����� ������

���������"�

Figure 3 Decoding of the Velo raw banks. The final VELO data objects for each bank are shown with
the TES location at which they are stored.

for monitoring the TELL1 behaviour. The VeloFull and VeloPedestal banks are both decoded into the
VeloTELL1Data object class (see Fig. 3). The pedestal data is not subjected for any further processing
and is used for monitoring purposes only.
The VeloFull bank contains the raw ADC data, i.e. the digitised charge signals collected from the strips
of the VELO silicon sensors. In addition the bank also contains header data from the Beetle front-end
chips, this is sent together with the ADC samples and an Event Info block [9]. The Event Info block
includes information from bunch counters and is decoded into a dedicated EvtInfo class. Four info
blocks are provided for one VELO sensor (one per each processing unit of the TELL1 board). Both the
headers and the ADC data are decoded into the VeloTELL1Data objects. The decoded ADC samples
can then be processed by the TELL1 emulator.

4 TELL1 Acquisition Board Processing Emulation - VELO case.

This section provides a general description of the TELL1 emulation for the VELO as implemented in
Vetra.

4.1 The TELL1 Emulator

After a positive L0 trigger decision is obtained the data from the VELO detector is sent off for pre-
processing by the TELL1 acquisition electronic boards. The pre-processing sequence is performed by
programmable FPGA processors and its purpose is to produce the ZS raw bank (VELO clusters).

page 8

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
4 TELL1 Acquisition Board Processing Emulation - VELO case. Date: May 19, 2008

Each pre-processing step is implemented as a separate algorithm. The suite of algorithms are executed
by the processing units of the TELL1 and are implemented in the low level VHDL language as a part
of the TELL1 firmware. The VHDL code is not easily human readable and hence is cumbersome to
maintain, update and debug. Hence a high-level language model of the VHDL firmware has been
created as a set of C-modules each of which represents one step of the pre-processing. The C-modules
are a part of the tell1Lib and are meant to provide bit perfect results identical to those produced by
the TELL1 boards.
The C-modules are written in plain C, this makes it possible to run the code on the credit card PC
module that is a part of the TELL1 board. In order to create a reliable emulation executed within the
standard LHCb software environment and keep the C-modules unchanged it was decided to adopt a
wrapper-plugin approach, as described in section 5.

Emulator

VeloTELL1FIRFilter

VeloTELL1PedestalSubtractor

VeloTELL1LCMS

VeloTELL1Reordering

VeloTELL1MCMS

TES

LHCb::VeloTELL1Data
(Raw/Velo/DecodedADC)

LHCb::VeloTELL1Data
(Raw/Velo/FIRCorrected)

LHCb::VeloTELL1Data
(Raw/Velo/ADCMCMSCorrected)

LHCb::VeloTELL1Data
(Raw/Velo/ADCCMSuppressed)

LHCb::VeloTELL1Data
(Raw/Velo/ADCReordered)

LHCb::VeloTELL1Data
(Raw/Velo/SubtractedPedADCs)

VeloTELL1ClustrerMaker

LHCb::RawBank::Velo
(Emu/RawEvent)

Figure 4 The algorithm sequence of the baseline TELL1 emulation for the VELO, shown together
with the TES locations of the stored data. The transfer of the input data for each algorithm is shown
with a dashed line, and the output data transfer with a solid line.

The emulation sequence presently implemented in Vetra for the VELO is shown in Fig. 4. The list of
algorithms constituting this baseline emulation is as follows:

• Pedestal Subtractor - subtract pedestal offset values for each channel.

• Pedestal Updater 4 - refreshes the value of the pedestal estimate for each channel, this value is
then used in the Pedestal Subtractor for the next event.

• Digital FIR filter - responsible for removing the cross talk from the cable or other sources.

• Mean Common Mode Suppression is an algorithm that has been introduced after the ACDC3
test beam to counteract saturation effects in the Beetle chip’s channels caused by deposition of
large charges in those channels. It turn out that a very large charge (above 127 ADC counts 5)
deposited on a given strip leads to severe Beetle’s base line shift that affects adjacent channels.
The base line shift can reach even 50 ADC counts [10].

4The combined operation of Pedestal Subtraction and Pedestal Update is known as Pedestal Following.
5One ADC count unit corresponds to the charge of 442 electrons.

page 9

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
4 TELL1 Acquisition Board Processing Emulation - VELO case. Date: May 19, 2008

• Reordering - procedure used to reorder the channels. The channels are reordered from the Beetle
electronic channel order to the strip numbering order that follow the geometry of the R/φ VELO
sensors. This sensor geometry order of the strips is required for the clusterization algorithm.

• Linear Common Mode Subtractor - removes common mode noise

• Zero Suppression (clusterization) - at this step clusters are formed from the the channels. Prede-
fined cluster thresholds are used in the cluster finding algorithm, known as the high or seeding
threshold and the low or inclusion threshold.

The sequence presented here is not necessarily the final one that will be used for the VELO, both the
implementation of the algorithms and even their order may change in the future. However, the type
of algorithms and the structure of the emulator is expected to remain, and will also be used for the ST
(where, for example, the FIR algorithm and the Reordering algorithm are not required).
The performance of the algorithms are being studied and extensively tested. Verification studies have
been performed 6 using data created by using the Beetle front-end chip injection unit to produce test
pulses in given electronic channels of the front-end chip. The performance is then tested using test
beam data.

4.2 NZS Data Preparation and Processing

The content of the NZS raw bank for one silicon sensor is presented schematically in Fig. 5. The same
structure is produced for each VELO sensor and contains data from the strips on the sensor and 256
Beetle front-end chip headers.
During the decoding process (described in section 3) the data samples and Beetle headers are sepa-
rated, decoded into VeloTELL1Data objects and stored in the TES. One VeloTELL1Data object is created
per sensor for both the data and the Beetle headers. The input stream of the VELO TELL1 emulation
is a vector of these VeloTELL1Data objects.

���������������	
����	

���������������	
����	

�������� �������	
����	

����������������	
����	

�������� �
���	�

����	
����	�������

�
�
�

�����	
����	�������

Figure 5 Contents of the VeloFull raw bank as created by the Event Builder. The data sends out by
the Beetle chips over 36 clock cycles consists of the Beetle headers (4 values) and data samples (32
values).

Before the input data can be processed for the VELO dummy channels need to be added to the real
data. This is necessary because the number of inner and outer strips on each VELO Φ sensor is an odd

6See Appendix A.

page 10

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
5 Implementation of the TELL1 Emulator for the VELO Date: May 19, 2008

number and the FPGA processors are constructed to operate on packets of 32 channels. The addition
of the dummy channels makes it possible to process the data from the Φ type sensors (in addition it is
necessary for technical reasons to insert the dummy strips also in the data from the R type sensors).
In order to obtain bit-perfect agreement, the same procedure must also be performed for the Vetra
TELL1 emulation. The details of the insertion of the dummy channels into the input data vector of
the 2048 raw data samples (ordered according to electronic chip channel number) are shown in Fig. 6.
The input data can be divided logically into 64 analogue links. Each analogue link consists of 32 read
out (electronic) channels. The input data for each processing unit of the TELL1 board is made of 16
analogue links. The FPGA processors can process data in a number of parallel threads called process-
ing channels each of which is responsible for the handling of two analogue links of data (64 samples).
In order to conform properly to this hardware data processing model within the Vetra emulation 64
dummy channels need to be added at the end of the data stream for each FPGA processor.
The input data, with added dummy channels, is then formatted to interface to the C-modules as a
3-dimensional array of size DATA[4][9][64]; the first index corresponds to the number of processing
units, the second to the number of processing channels (threads) and the last one represents the 64
data samples to be processed in each FPGA thread. The correct formatting of the input data is critical
for the behaviour of the reordering and clusterization algorithms.

��������	�
��

��������	�
��

��������	�
��

�

�

�

�

�

�

�

�

�

�

�

�

������

������

������

������ ������ � ����������

�

�

�

�������	������������

�������	������������

� ��������� ��!��������� "���

#$�% &'���&� �������� (�)

Figure 6 Preparation of the decoded NZS data for the TELL1 emulation. Before processing two
additional analogue links of dummy channels need to be added to the data stream of each FPGA
processor.

5 Implementation of the TELL1 Emulator for the VELO

This section discusses implementation details of the TELL1 emulator for the VELO, to assist users in
adding their own algorithms. The term ‘engine’ is used for a class that encapsulates the appropriate

page 11

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
5 Implementation of the TELL1 Emulator for the VELO Date: May 19, 2008

tell1Lib C module. By analogy the term ‘wrapper’ is applied to the GaudiAlgorithm that uses an engine
to process the NZS data. The following sections describe the interaction between the engines and
wrappers and the interfaces to the engine class. An example of how to use the engine class is provided.

5.1 Interaction between Engine and Wrapper

TELL1LCMSEngine

Engine class

Engine wrapper

tell1Li
b

c-modules

velo_fir_process

velo_pedestal_updat
e
velo_pedestal_proces
s

velo_reorder_convert

velo_reorder_channel

velo_lcms_process

velo_mcms_process

Vetra

VeloTELL1Algorithms

VeloTELL1FIR

VeloTELL1PedestalSubtacto
r

VeloTELL1LCMS

VeloTELL1Reordering

VeloTELL1ClusterMaker

VeloTELL1MCMS

velo_zs_process

Figure 7 Dependency between the engine classes and the wrappers. Each engine class encapsu-
lates the appropriate module from the tell1Lib and is used as plug-in by the corresponding wrapper
algorithm.

The relationship between an engine class and a wrapper is depicted schematically in Fig. 7. Each such
class (derived from a TELL1Engine base class) has its counterpart algorithm that can be executed
within the GAUDI framework. These classes perform the actual processing of the NZS data. The
main tasks of the wrappers are to instantiate and configure the appropriate engines, format and feed
the input data to them, run the processing and finally to retrieve and store the output data.
Each processing algorithm needs to be provided with a number of parameters to operate (engine
configuration). For instance the C-module responsible for pedestal subtraction - velo pedestal process
- needs to be provided with following set of parameters:

• pedestal algorithm enable flag (a single number)

• data scaling mode flag (a single number)

• zero suppression enable flag (a single number)

• header correction enable flag (a single number)

• header correction thresholds (two numbers)

• header correction values (two numbers per analogue link)

• pedestal masks - to enable or disable pedestal correction for a given channel (2048 numbers)

The number of the parameters needed for the full VELO setup for all algorithms is estimated to be of
the order of 10

6. The parameters can be retrieved twofold:

• from the option files if the static configuration is chosen

• dynamically from the Condition Database

page 12

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
5 Implementation of the TELL1 Emulator for the VELO Date: May 19, 2008

A detailed description of the configuring procedure will be given in the last part of this chapter.
All the data that are used by the emulator’s algorithms is stored inside the TES. As the Gaudi TES
is based on an abstraction of the standard template library (STL), and as it is not possible to use the
STL containers directly in the C language, all the input data must be properly formatted to conform to
an engine interface before it can be passed to the engine for processing. This simply requires a logical
rearrangement of the data from the STL vectors into plain arrays. However, it is important to take care
of the proper memory handling for these insecure table data types. A more detailed description of the
engine modules data interface is given below.
The wrapper-engine pattern that has been used for the TELL1 emulator implementation has been
proved successful with the VELO test beam data samples. The software created proved to be fast
and stable. The separation of the GAUDI environment technical overhead from the actual code that
models the TELL1 processing allows the developers of the tell1Lib software to focus on providing the
C code only, without worrying for instance about problems with data storage technology used in the
LHCb software.

5.2 Engine (C-module) Data Interface

The data interface of each C-module corresponds to the hardware implementation of the NZS data
manipulation performed by the FPGA processors. As the data processing is done in parallel by a
number of threads it is very convenient to align the data as a multi dimensional array. The number
of all elements in the table is equal to a sum of the number of electronic channels (2048) of the VELO
silicon sensor – each TELL1 board operates on the data from one VELO sensor – and the number of
the dummy channels (256).
The appropriate functionality for the data transformation from a STL container into a plain array
has been implemented inside the TELL1Engine base class. The details of the implementation are
discussed below using the pedestal subractor process as an example - the same pattern is used for all
other modules and wrappers.
It was decided to use typedefs rather than explicit array objects to increase the security of the memory
management. All the definitions needed are implemented in the V eloTell1Core header file and placed
in the DAQ/Tell1Kernel package. Also, all the data manipulation that is done outside the C-modules
are performed using the STL algorithms only to ensure that the data translation will not be corrupted.
For instance the type of array used to pass the input data to the pedestal module has been aliased as:

typedef int Data [PP_FPGA][PROCESSING_CHANNELS][CHANNELS];

where the indices denotes the number of processing units per TELL1 board (4), the number of threads
per FPGA processor (9) and the number of physical channels processed in one thread respectively
(64).
For the sake of performance it was decided to use one raw memory buffer for each engine to store the
data. Initialisation and copying of this chunk of memory is done by using special functions designed
to operate on raw memory: std::memset and std::memcpy to initialise and copy the memory buffer re-
spectively.
The data flow between each engine and wrapper is as follow:
- initialisation of the memory buffer that will hold the data to be processed (the buffer is of type Data)

std::memset(**m_cModuleData, 0, sizeof(Data));

- copying of the input data (of type std :: vector〈signed int〉) to the buffer

std::memcpy((**m_cModuleData), &(*inData().begin()), sizeof(Data));

- after the processing the memory buffer contains the output data that needs to be transfered back to
the wrapper

std::memcpy(&(*outData().begin()), (**m_cModuleData), sizeof(Data));

page 13

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
6 Condition Database for Vetra Date: May 19, 2008

5.3 Implementation Example

In order to explain how a given engine class is employed to preform processing we will continue to
use the pedestal subtraction algorithm as an example. In this case the Tell1PedestalProcessEngine class
is used to remove pedestal noise from the input data by the VeloTELL1PedestalSubtractor algorithm.
One processing object is created for each TELL1’s data stream. Unique configuration applied for each
engine allows to take into account differences in noise generated on different sensors (and in turn
setting different clusterization thresholds), maps of dead strips, Beetle cross talk corrections etc. This
approach makes the emulation be much closer to the reality than in the case when a single processing
object would be used to process all the data.
The collection of processing objects is defined as one of the wrapper’s data members:

std::map<unsigned int, TELL1PedestalProcessEngine*> m_pedestalEngines;
std::map<unsigned int, TELL1UpdateProcessEngine*> m_updateEngines;

Instantiation and configuration is preformed once per job. All the parameters required by the engine
can be set during that step using its public interface (all the needed parameters are retrieved by the
wrapper). The following example shows how to create a new processing object and set its enable flag
parameter (single number) and strips mask (an array of numbers).

m_pedestalEngines[tell1]=new TELL1PedestalProcessEngine();
m_pedestalEngines[tell1]->setProcessEnable(m_pedestalEnableMap[tell1]);
m_pedestalEngines[tell1]->setLinkMask(m_linkMaskMap[tell1]);

After the configuration each processing object can accept the input data. The main purpose of this
preparation step is to set up all the parameters that are needed for the processing (see section 5.1).

m_pedestalEngines[tell1]->setInData(rawADCs);
m_pedestalEngines[tell1]->runSubtraction();
subPedADCs=m_pedestalEngines[tell1]->outData();

where the rawADCs and subPedADCs are containers with the NZS data from one sensor before and
after subtraction respectively.

6 Condition Database for Vetra

Vetra can be operated by taking its configuration parameters from either options files or from a condi-
tions database. The use of options files is known as the STATIC mode, and is the default in v5r2, and
is used for single detector commissioning, laboratory and testbeam studies. The full detector running
will, however, use the DYNAMIC mode in which the parameters are taken from a database.
For the full VELO detector we will use different configuration parameters for each TELL1 in order to
optimise the performance. In total up to 10

6 TELL1 configuration parameters will be used. Further-
more, these parameters will be updated on a regular basis as a result of analyses using Vetra. Hence,
using options files to store these parameters is not a practical solution. Instead, these parameters will
be stored in a conditions database.
The TELL1 boards will be configured using these database parameters. The values in the VELO
database partition are stored in xml format. These files are parsed by the PVSS control system of
LHCb, and used to configure the TELL1 boards.
The largest number of parameters are for the clustering thresholds and pedestal sums, which are
stored for each strip in the detector. Running the VELO detector requires an even larger number of
parameters. However, those parameters such as the Beetle chip settings that have no direct impact on
the TELL1 processing algorithms will not be stored in the conditions database.

page 14

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
6 Condition Database for Vetra Date: May 19, 2008

As a result of the large number of entries required in the database it was decided to provide a sepa-
rate partition, specific to the Vetra use case, rather than add all these parameters to the existing LHCb
databases. This additional partition is only needed for Vetra studies, which will be conducted at CERN
(Tier 0). These parameters are not used in Brunel and hence the VELO partition need not be propa-
gated with the LHCb software to outside centres (Tier 1 etc..).

The LHCb database can then be arranged with the VELO partition as the top layer above the standard
partitions, as in Figure 8. Analyses using the VELO partition can then also have access to parameters
stored in the standard LHCb partitions of the database.

The TELL1 configuration parameters are stored in the database using one basic xml object (TAG) per
TELL1. Hence, a new version of this object is required to be stored if any of the parameters for this
board are changed.

The VELO partition of the condition database is created in two steps:

• Preparation of the valid xml code

• Storing the xml condition inside SQLite database

Once the database file has been created it is possible to connect to it from within a GAUDI job. The
Vetra partition is added as the very top layer of the database by the following configuration of the
database service:

CondDBCnvSvc.CondDBReader="CondDBLayeringSvc";
CondDBLayeringSvc.Layers={’CondDBAccessSvc/VELOCOND’,

’CondDBDispatcherSvc’};
VELOCOND.ConnectionString=
"sqlite_file:\$VETRAROOT/VetraCondDB/Velo/VELOCOND.db/VELOCOND";

LHCBCOND DDDB

VELOCOND

CondDBDispatcherSvc

CondDBLayeringSvc

Figure 8 Layout of the database that is used by a Vetra job in DYNAMIC configuration mode.

The behaviour of these database service configuration commands is explained here. Since we want to
combine databases using partitions as layers we need to create an appropriate service to handle this
kind of layout [3]. The first line of the code above performs this function. Next the layers themselves
need to be defined - in the example above the top layer is defined as VELOCOND. The other databases
will be browsed by the dispatcher service when needed. The last part of the configuration is the
ConnectionString that defines the location of the database and its name.

The first version of the VELO database contains baseline default parameters that are the same for all
TELL1 boards. Having taken the first real data the Vetra application will be used to recalculate the
parameters accordingly. This will allow the tuning of their values for each board separately and hence
to improve the physics performance of the VELO detector. The parameters calculated by Vetra will
then be stored in the configuration database.

page 15

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
8 Acknowledgements Date: May 19, 2008

7 Conclusions

This note describes the Vetra project which is dedicated to the analysis and monitoring of non-zero
suppressed (NZS) data. The project contains NZS data bank decoding and complete TELL1 electronic
board emulation. The processing allows the reproduction of the zero suppressed data bank that would
result from the TELL1 board. This zero suppressed data bank is the standard input data for the LHCb
reconstruction software. The emulator uses part of the tell1Lib library that models the firmware that
is run on the acquisition boards. The software for the modelling of the firmware is provided as a set
of C-modules that correspond to the processing stages performed in the FPGA processors.
Previously the software contained the full chain of raw data processing for the VELO detector only.
However, the ST group has also prepared their software for Vetra release in version v5r2. If required,
it would be possible accommodate any other detectors that use the TELL1 acquisition boards for data
pre-processing.
The Vetra software has been used successfully to process and analyse data taken during the VELO
test beam, data taken in the laboratory, and initial commissioning data in the experiment. At present
the main development effort is focused on updating the Vetra for the commissioning purposes of the
VELO detector.
In the final running of the experiment non-zero suppressed data will be written out at a low rate
in addition to the standard zero-suppressed data. The Vetra software will then be used to determine
the parameters required by the TELL1 processing algorithms and to monitor the performance of these
algorithms. Refined processing parameters will be subsequently used for updating the Vetra CondDB.

8 Acknowledgements

We are grateful to Guido Haefeli and his team for supporting the tell1Lib software library that has
been used within Vetra framework to emulate the TELL1 board.
We would like to thank Kurt Rinnert for performing the optimisation studies of Vetra which decreased
the execution time of the software.
We would also like to thank Marco Clemencic for his advice and assistance during the preparation of
the VELO partition of the database.
Thanks must also go to Olaf Behrendt for generating the many testpulse samples which were used to
verify the bit-perfect emulation of the algorithms.

page 16

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
9 References Date: May 19, 2008

9 References

[1] G. Haefeli, A. Bay, A. Gong, H. Gong, M. Muecke, N. Neufeld, and O. Schneider, ‘The LHCb
DAQ interface board TELL1‘, Nucl. Instrum. and Meth. A 560 (2006) 494

[2] G. Haefeli, ‘Contribution to the development of the acquisition electronics for the LHCb experi-
ment‘, Thèse EPFL, no 3054 (2004) (PhD thesis)

[3] M. Clemencic, ‘Conditions Database Usage‘, presentation at the Core Software meeting of 32nd
Software Week, 17th-20th March 2008

[4] Description of the Boole project, http://lhcb-release-area.web.cern.ch/LHCb-release-
area/DOC/boole/

[5] Description of the Brunel project, http://lhcb-release-area.web.cern.ch/LHCb-release-
area/DOC/brunel/

[6] T. Szumlak, C. Parkes, ’VELO Event Model’, LHCb-2006-054

[7] http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm

[8] G. Haefeli, A. Gong, ‘VELO and ST error bank data format‘, EDMS note 694818 v.1
G. Haefeli, A. Gong, ‘VELO and ST pedestal bank data format‘, EDMS note 695007 v.1

[9] G. Haefeli, A. Gong, ‘VELO and ST non-zero suppressed bank data format‘, EDMS note 692431
v.2

[10] J. Wang, ‘Status of the JC effect and its correction in the Tell1 algorithm‘, presentation at the Velo
meeting of 47th LHCb Week, 21st-25th January 2008

page 17

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
9 References Date: May 19, 2008

Appendix A
Verification procedure for the TELL1 emulation in Vetra.
The verification of the Vetra emulation is performed on the generated data produced by the charge
injection unit of the TELL1 board. The purpose of this procedure is to verify the performance of the
emulation against the actual firmware code run by the FPGA processors. The TELL1 board is operated
with input data in pre-defined patterns (generated by putting test-pulses in the front-end chips of the
detector). The signals are arranged to mimic single and multi strip clusters for both types of VELO
sensor geometry. The test data exercises every processing channel. Non-zero suppressed data and
zero-suppressed data banks are produced by the TELL1. The non-zero suppressed data is then also
processed through the emulator software. The zero-suppressed output bank of the emulator is then
directly compared with that from the TELL1 board. It is possible to run this verification job with the
processing parameters set in both static (taken from the option files) and dynamic (condition database)
modes. Using this comparison technique the TELL1 emulation has been shown to be bit-perfect.

Appendix B
Example of a Vetra job
This appendix provides an example of how to run a Vetra job with the baseline collection of processing
algorithms. We assume here that the user has access to the lxplus machine (of course it is perfectly
possible to use the software on any machine with the lhcb software installed).
The first step is getpacking and building the Vetra application:

getpack Velo/Vetra v5r1

The default option file provided for base line processing is options/Velo/VetraTELL1NZS.opts and the
default input file contains data taken during the ACDC3 VELO test beam. The default processing
algorithms order is defined in the options/Velo/TELL1Emulator.opts file and for the present release (v5r2)
it is as follow:

TELL1ProcessingVELOSeq.Members+={
"VeloTELL1EmulatorInit"
,"dataTranslator"
,"VeloTELL1PedestalSubtractor"
,"VeloTELL1FIRFilter"
,"VeloTELL1MCMS"
,"VeloTELL1Reordering"
,"VeloTELL1LCMS"
,"VeloTELL1ClusterMaker"
};

1) Running over the test beam data.
During the November 2006 ACDC test beam the VELO was only partially populated a special detector
geometry description database is needed. This is implemented inside the Velo/VeloACDC package that
is a part of the Vetra project. In order to use this geometry one needs to:

• define the database location (via option file)

DetectorDataSvc.DetDbLocation=$LOCATION;

where the location should be set to:

location="$XMLDDDBROOT/DDDB/Velo/VeloACDC/ACDC3.xml"

• setup the following environmental variables:

XMLDDDBROOT=$VELOACDCROOT/xml
XMLCONDITIONSROOT=$XMLDDDBROOT

page 18

Description of the Vetra Project and its application for the VELO detector Ref: LHCb-2008-022
Public Note Issue: 1
9 References Date: May 19, 2008

by sourcing ../scripts/VeloACDC3.(c)sh script from the cmt/ folder of the Vetra project.

The Vetra job can be run using either STATIC or DYNAMIC configuration (by default the configuration
is currently set to STATIC). In the former case no more adjustments need to be done. In the latter
case one needs to edit the main option file and generate the sqlite file containing the Vetra conditions
database. In order to create the database one needs to run the following two scripts:

python/write_HP4_xml_cond.py
scripts/create_HP4_sqlite_file.sh

The first script will create a xml file with the TELL1 conditions, while the second one will dump those
conditions into a sqlite database. After completing the above steps one needs to comment the following
line from the ../options/Velo/VetraTELL1NZS.opts file:

DetectorDataSvc.DetDbLocation="$XMLDDDBROOT/DDDB/Velo/VeloACDC/ACDC3.xml";

and uncomment this one:

#include "$VETRAROOT/options/Velo/VeloHP4CondDB.opts"

Also, this line must be uncommented in the options/Velo/TELL1Emulator.opts:

#include "$VETRAROOT/options/Velo/CondDBEmulation.opts"

Having completed this, one can now run a job by executing the following command from either of
the job/ or cmt/ folders of $VETRAROOT:

../$CMTCONFIG/Vetra.exe ../options/Velo/VetraTELL1NZS.opts

This produces a root file and a digi file as the output. Inside the root file one can find a number of basic
monitoring histograms with NZS data plotted against channel or strip number. The digi file contains
real and emulated raw banks that can be subjected to further analysis (e.g track reconstruction, ver-
texing etc.). The monitoring stages can be controlled via the TELL1Checkers.opts file.
One crucial parameter that needs to be set up is the convergence limit that indicates the number of
events needed to train the pedestal following algorithm. This limit may be changed using the option:

VeloTELL1EmulatorInit.ConvergenceLimit=2048;

This option can be found in the TELL1Emulator.opts file (it is recommended to run any ACDC3 data
analysis with the convergence limit set to 4000).
2) Commissioning of the VELO detector.
This case is very similar to the running the emulation over the test beam data in DYNAMIC mode. In
order to create the VELO database partition one needs to use the following scripts:

python/write_velo_xml_cond.py
scripts/create_sqlite_file_from_xml.sh

The next step is to uncomment the following line from the ../options/Velo/VetraTELL1NZS.opts:

#include "$VETRAROOT/options/Velo/VeloHP4CondDB.opts"

The last step is to add an appropriate mapping between the TELL1 serial numbers and sensor num-
bers. The latest mapping is always stored inside the

{../options/Velo/commissioning/CommissioningConditions.opts}

option file. The application, and setting the convergence limit, can then be run as above in point 1) of
this appendix.

page 19

