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Abstract

Price management, production planning and inventory control are important deter-
minants of a firm's profitability. The intense competition brought about by rapid
innovation, lean manufacturing time and the internet revolution has compelled firms
to adopt a dynamic strategy that involves complex interplay between pricing and
production decisions. In this thesis we consider some of these problems and develop
computationally efficient algorithms that aim to tackle and optimally solve these
problems in a finite amount of time.

In the first half of the thesis we consider the joint pricing and inventory control
problem in a deterministic and multiperiod setting utilizing the popular log linear
demand model. We develop four algorithms that aim to solve the resulting profit
maximization problem in a finite amount of time. The developed algorithms are then
tested in a variety of settings ranging from small to large instances of trial data.

The second half of the thesis deals with setting prices effectively when the customer
demand is assumed to follow the multinomial logit demand model, which is the most
popular discrete choice demand model. The profit maximization problem (even in the
absence of constraints) is non-convex and hard to solve. Despite this fact we develop
algorithms that compute the optimal solution efficiently. We test the algorithms we
develop in a wide variety of scenarios from small to large customer segment, with
and without production/inventory constraints. The last part of the thesis develops
solution methods for the joint pricing and inventory control problem when costs are
linear and demand follows the multinomial logit model.

Thesis Supervisor: Georgia Perakis
Title: Professor of Operations Research
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Chapter 1

Introduction

1.1 Motivation

Setting and managing prices effectively is one of the key determinants of a firm's

profitability. Today when consumers can compare prices for an entire assortment of

substitutable goods at the click of a mouse, setting and managing prices effectively

has become even more important. Notable examples of industry sectors where this

setting applies include the airline, hotel, car - rental and fashion industries. Pricing

managers need to take into consideration a number of factors like how the price for a

particular product/offering will compare with other similar products of the competi-

tors, other products in the comany's own product line and where the possibility exists

with used second hand variants of the same product [1]. The problem of determining

prices effectively is further compounded by seasonal variations in demand, temporary

promotions and short product life cycles (Eg. Cellphone handsets). All these factors

are driving firms towards adopting a dynamic pricing strategy which can rapidly re-

spond to changes in the competitive enviroment. Two key components of a dynamic

pricing strategy are good demand models and the ability to solve these large scale

models involving the entire assortment of products. In this thesis we are concerned

with the latter i.e. given a revenue model (based on a specific demand function), how

to solve it accurately and efficiently in minimal amount of time. In order to test our

proposed algorithms we utilize the loglinear and multinomial logit demand models.



These two demand models have been utilized in a wide variety of industry settings

(for details see Chapters 2 and 3).

Another important dimension of the above problem is production planning / inven-

tory control. Production decisions must take into account the seasonal fluctuation

in demand, the short duration demand surge on account of promotions and most

importantly the effect of relative differences in prices between products on the de-

mand for a specific product. Historically there has been a disconnect between price

theory and inventory control although both problems are complementary. Frequently

the inventory control systems assume a given fixed price structure and focus only

on cost minimization [2]. However given the variability in demand, effect of relative

differences in prices on product sales and the fact that often times the products being

manufactured or stored share the same production or warehouse space (Eg. a car

manufacturer manufacturing different car variants), there is a strong motivation to

study both the aspects of the problem under a unified frameowork utilizing models

that simultaneously address both aspects of the problem. In this thesis we address

this problem for the cases when demand is assumed to follow the log linear demand

model (Chapter 2) and the multinomial logit (MNL) demand model (Chapter 4).

There is an extensive literature on pricing based on MNL demand model and solving

the joint pricing and inventory control problem (JPICP) based on different demand

models. We will briefly review the relevant literature at the beginning of each chapter.

1.2 Contributions and Thesis Outline

The thesis is divided into four chapters including the current one. Chapters 2 and 3

can be read independently. However as Chapter 4 builds on concepts developed in

all the preceeding chapters, hence the reader is strongly advised to read the preceed-

ing chapters before taking up Chapter 4. A definition list of mathematical terms /

conditions is included in the appendix for the convenience of the reader. The termi-

nology defined in the appendix have been underlined throughout the thesis. A brief

l___.~_r__~~l_~__i:___1_1___ I~~_r__ 1__ .li~i~ --1_1_1__~_1.11 __nI -- r~ll---lilllll --Ili-~-lllls--~---~C~-~-^; i-i-~ -iilie----~^~_~__~~lIX-i~-XI--l__.li(-__ ._- X----i_ .l-iililitLiii i~i - - ------ -I



discussion on the content of different chapters is provided next.

Chapter 2 considers algorithms to find the optimal solution to the joint pricing and

inventory control problem in the context of a nonlinear and deterministic demand

function. The problem and the demand function utilized (log-linear) are covered in

the first two sections. This is followed by a discussion on the developed solution

techniques. Computational results are included next, followed by conclusion that

brings together the important points of the chapter and includes suggestions for fu-

ture research work. The main contribution of this chapter is the development of

accurate and computationally tractable algorithms that perform better than com-

mercially available software in a wide variety of settings. In particular an algorithm

based on a combination of quasi newton and projection methods was found to be

computationally the most efficient for solving the joint pricing and inventory control

problem when demand follows the log linear model and costs are linear.

Chapter 3 considers the problem of optimally pricing different products in a product

line when customer demand is assumed to follow the nonconvex multinomial logit

(MNL) demand model. In the first section we review the literature that discusses

the wide applicability of discrete choice demand models. The subsequent sections

describe algorithms for finding the optimal prices of different products in response

to a MNL demand model. Computational results on the algorithm performance and

accuracy are included in the penultimate section which is followed by a brief con-

clusion section. Contributions of Chapter 3 include the developement of a set of

algorithms based on the Karush Kuhn Tucker conditions for solving the nonconvex

profit maximization problem, run time comparison of the developed algorithms with

other known algorithms and a brief discussion on the advantages and disadvantages

of the developed algorithms. The algorithms based on the KKT optimality conditions

were found to be computationally the most efficient for the cases with a large number

of products and customers in the relevant market segment.



Finally Chapter 4 utilizes concepts from Chapters 2 and 3 in order to propose an

algorithm for solving the joint pricing and inventory control problem when the de-

mand model is assumed to be MNL. The first section introduces the two models. This

is followed by algorithm development in the next section. Computational results are

then presented followed by suggestions on how the existing model can be expanded

and improved further. The main contribution of this chapter is the development of

a computationally efficient and tractable algorithm for solving the JPICP based on

the MNL demand model.



Chapter 2

Joint Pricing and Inventory

Control Problem with Log Linear

Demand

In this chapter we describe algorithms for solving the joint pricing and inventory

control problem (JPICP) under the log - linear demand model. Section 2.1 provides

a broad overview of the log - linear demand model, its important properties and of

algorithms for solving the JPICP problem. We formulate the problem in Section 2.2.

Section 2.3 provides a detailed description of three variants of the developed algorithm

and discusses underlying assumptions necessary for the algorithms to converge to

an optimal solution. A runtime performance comparison of these algorithms is then

provided in Section 2.4, followed by a discussion on the advantages and disadvantages

of the developed algorithms. As the developed algorithms build on and extend an

earlier work by Rao [15], some of the proofs and general discussion on convergence

criteria of iterative Newton based schemes have been omitted.



2.1 Problem Overview

2.1.1 Algorithms for solving the Joint Pricing and Inventory

Control Problem

In this subsection we will review some of the work that has been done in addressing

the JPICP problem. One of the first JPICP models was formulated by T.M. Whitin

[2]. The proposed model was based on a linear demand and cost model for a single

product in a single time - period. Known lot size models were modified to include

'price' as a variable. The new variable was introduced utilizing the demand function

for the product under consideration. Whitin's work was improved upon by Pekelman

[3] who considers a continuous time horizon and a time dependent demand curve for

a single product with convex production costs. The proposed algorithm for solving

this joint pricing and production problem utilizes control theory and is based on a

state constraint in the form of a non negative constraint on the inventory level. Pekel-

man's work has been extended by a number of other researchers. In an extension that

considers nonlinear but strictly convex production costs in a similar setting, Teng et

al. [4] propose a forward branch and bound algorithm based on imposing upper and

lower bounds on both state and control variables and utilizing Lagrangian form of

maximum principle. Feichtinger and Harl [5] extend Pekelman's model to nonlinear

demand models and allow for product shortages or backorders. Utilizing the gener-

alized maximum principle and phase potrait analysis, they show that if one starts

with initial excesss inventory both the price and production rate will initially remain

at zero. This phase will be followed by a phase where price will start to increase

but production rate will still remain at zero. Finally once the inventory falls below

a set threshold, production will start while price will continue to rise further. In an

infinte time horizon the authors show that both production rate and price converge

to their long run optima. Gaimon [6] considers an extension of Pekelman's model

where the time dependent demand function is still linear but production capacity

can be acquired or increased over time leading to lower marginal costs and reduced



inventory carrying cost. Jorgenssen et al. [7] utilize Pekelman's model in the setting

of a monopolistic firm that plans out its production, pricing and inventory policy for

a finite and fixed time horizon. They enhance the model with marketing insights,

for example, that past period prices affect current period prices, as well as principles

of industrial organization that dictate that with time firm's learn by doing, resulting

in lower per unit production cost. The authors solve their proposed single product

model using a path synthesizing procedure.

All the models considered so far while considering important and interesting aspects

of the JPICP problem are all restricted to the case of a single product in a discrete or

continuous time setting. We next consider some models that have been developed in

a multiproduct multiperiod setting. One of the first works to explicitly consider both

multiple products and shared production capacities in a discrete multiple time setting

was done by Gilbert [8]. Assuming seasonable variation in demand and negligible set

up costs, he exploited the resulting structure of the problem to split it into two parts

- (1) an LP (linear program) to generate the optimal basis to minimize production

costs given a a fixed demand vector (2) an NLP (nonlinear program) utilizing the

dual variables of the LP to solve the pricing problem associated with maxmimizing

the firm's net profit. This model utilizes a solution technique very similar to the

one utilized in this thesis. Nevetheless, we propose and develop efficient ways to

solve the NLP part of the problem. Furthermore seasonality of demand is not ex-

plicitly addressed in this thesis. In yet another relevant work Adida and Perakis [9]

extend Pekelman's original single product model to a multiproduct model with ca-

pacity constraints. The continuous time model is based on a linear demand function,

linear inventory costs and increasing strictly convex production costs. The solution

technique for the model utilizes adjoint variables and dual multipliers iteratively to

compute the optimal policy for the different decision variables. The model presented

in this thesis is similar to the one utilized in this work, the key diffrences being (i)

we choose demand functions that are nonlinear and sometimes also nonconvex, and

(ii) we discretize time.



2.1.2 Log Linear Demand Model

A product's demand function depends on a whole multitude of factors such as price,

advertising, brand name etc. Modelling all the relevant variables makes the demand

function more acurate [19]. However, often accurate information about all the model

parameters is not readily available. Most demand functions are designed to take into

account only price related effects. Elasticity of demand relates change in quantity

demanded with changes in price i.e. (p) = () . (a). The log - linear demand function

is characterized by constant elasticity i.e E(p) is a constant. See also for example [19]

for a general discussion on the log linear demand model. For a single product with

only one alternative (or substitute) this demand function is given by:

In(D) = Co + Clpo + C2Pc

Here Co denotes the demand for the product when price is zero, C1 is the own price

elasticity of the product, p, is the price of the product, p, is the price of the alternative

product and C2 is the cross price elasticity of the product with the alternative. The

coefficient C1 has to be negative for the law of demand to hold ( i.e. as the price

of product increases, the demand for the product goes down). The coefficient C2

is positive or negative depending on whether the other product is a substitute or a

complement. For a single product with no alternative (C2 = 0) Figure 2-1 illustrates

the log-linear demand function. In a multiproduct setting the log linear demand

model as a function of prices is given by:

ln(d(P)) = ai - BTP, Vi = 1, 2, ..., N (2.1)

In Equation (2.1) N is the number of all products under consideration, P and Bi

denote the N x 1 price and price sensitivity (of product 'i' E N with respect to all other

products) vectors respectively. ai is a scalar constant which represents the demand

for the product when the price equals zero. Utilizing the log - linear demand model

the expression for the revenue, r(D), in a multiproduct setting is given by Equation



Price

Demand

Figure 2-1: Log linear demand function for a single product

(2.3). In the equation for r(D), D is the vector of demand for different products (in

a multi period setting D and P will be N x T matrices , where N is the total number

of products and T is the total number of time - periods under consideration), a is

the vector representing the demand for different products when their prices are set to

zero and B - 1 is the inverse of the N x N price sensitivity matrix. It is worth noticing

that the revenue equation has been written in the demand space. This can be done

as long the matrix B is strictly diagonally dominant which ensures that B - 1 exists,

which in turn ensures the existence of the inverse of the demand function given by

Equation (2.2).

P(D) = B-l{a - In(D)} (2.2)

R(D) = [B- 1{a - In(D)}]T .D (2.3)

The log - linear demand function introduced above has several useful properties.

Most notable among these is the fact that demand is always nonnegative which implies

that the quantity arising from the demand function is always nonnegative and no

additional constraint is needed to ensure that fact. Also by taking the log of the

demand, one can recover the linear form which makes it easy to estimate the different

coefficients utilizing linear regression.



2.2 JPICP Formulation and Model Description

In this section a formal model of the JPICP is introduced in terms of a generic de-

mand function d(P). The important model parmeters and variables are as follows:

d(p)it, pit, ui and it denote the demand, price, units produced and units stored

respectively for product i in time period t

cit and hit denote the cost of producing and inventory holding cost of product i in

time period t

Ct denotes the total production capacity in time period t

N denotes the number of all available products

T denotes the number of all the discrete time - periods under consideration

Utilizing the notation defined above, a generic model of the JPICP can be written

as (Profit = Revenue - Cost):

NT

P1: max E (pitd(p) it - citut - hitit) (2.4)
i=1 t=1

subject to:

d(p)it = I,t1 - lit + u t, Vi = 1, 2...., N Vt = 1, 2, .... , T (2.5)

N

ut < Ct, Vt = 1, 2,..., T (2.6)
i=1

i (0) = l, Vi = 12, .... , N (2.7)

d(p)it >O, Vi = 1, 2, ...N Vt=1, 2, .... , T (2.8)

Pit > 0, Vi = 1, 2,...N Vt = 1, 2, .... , T (2.9)



uit 0, Vi = 1, 2, ...N Vt = 1, 2, ...T (2.10)

lit 0, Vi = 1, 2, .... ,N Vt = 1, 2, ... ,T (2.11)

Constraint (2.5) ensures that the entire demand for the product is met either by

producing or utilizing the stored inventory of the product in the specific period. Con-

straint (2.6) ensures that the sum of all the goods produced in a specific period does

not exceed the total joint production capacity corresponding to that period. Finally

Constraint (2.7) initializes the initial supply of inventory so that Constraint (2.5) is

well defined for time period t=1. The remaining constraints simply ensure the non-

negativity of the model variables.

Before proceeding to the next section where algorithms for solving the JPICP effi-

ciently in a log linear setting are discussed, it will be worthwhile to take note of the

following important observations. These observations are discussed in depth in the

next section.

1. If the demand function is invertible i.e. d(P) is a one to one function over its

entire domain, then the problem (P1) can be transformed completely into the

demand space.

2. Also in case of an invertible demand function, if 'somehow' the demand levels

are set, then its possible to separate out the 'cost part' of the objective and

minimize it by solving a separate linear program.

3. Furthermore the linear program for minimizing the cost part of the objective

can be reformulated into a network optimization problem which in practice can

be solved very efficiently.



2.3 JPICP Algorithms under Log Linear Demand

We begin this section with a brief description on how to reformulate the cost mini-

mization part of the original formulation (P1) into a linear transportation problem

(see [15] for more details). In a linear transportation problem, there are a set of de-

mand (dj) and supply nodes (si). The supply nodes have a fixed capacity and each of

the demand nodes have a fixed demand that needs to be satisfied. The supply nodes

are connected to the demand nodes by a set of arcs with cost cij i.e. cij represents

the cost per unit of the goods transported from supply node i to demand node j.

Assumming that the problem is feasible or in other words Ei si = EjJ dj, in general,

the linear transportation problem can be written as:

M N

min E cijxij (2.12)
i=1 j=1

subject to:
M

xij dj, Vj = 1, 2, ... , N (2.13)
i=1

xij = si, Vi = 1, 2, ... , M (2.14)
j=1

xj > 0, Vi = 1, 2, ..., M Vj = 1, 2,..., N (2.15)

The cost part of the objective in the optimization problem (P1) can be reformu-

lated into a linear transportation problem as follows (see also [15] for a more detailed

discussion):

Let us denote the total supply capacity (this is the sum of the goods that can be

produced as well as the available inventory) for each period t (= 1,2...,T) with C, and

assosiate this capacity with the supply node s (= 1,2,...,T) corresponding to that time

period i.e. we will have one supply node for each of time period under consideration.

Next we create N X T demand nodes, where dit is the demand for product i in period

t, N is the total number of products and T is the total number of time - periods



under consideration. Finally we create a set of arcs (s, i, t) denoting flow of goods xit

from supply node s to demand node dit with cost bi. The point to note here is that

in practice s < t, because s > t will imply supplying goods produced in the future to

meet demand in the past. The cost asociated with each of the supply arcs is given by

bi = c + Vs,<t h". In the equation for the cost associated with the arcs, cy denotes

the cost of producing the product i in time - period s and ,,<u<t hu represents the

sum of storing the particular product from the period s when it was produced to

the t when it was finally sold/consumed. Further to account for the initial inventory

(i.e. inventory at time t = 0), we may either set it to zero or add a set of additional

N supply nodes with arcs to all the demand nodes dit denoting the initial inventory

level. The cost of the connecting arcs should be set to bi = Es<u<t hy.

Based on the above definitions and reformulations the cost part in the optimization

problem P1 can be rewritten as:

D1 : c(D) = min. b txZ (2.16)
i=1 t=1 s=1

subject to:

Z -C8 , Vs = 1,2, .... T (2.17)

Ex > dit, Vi = 1,.., N Vt = I, 2,...,T (2.18)
s=1

x> 0, Vi = 1, 2, ..., N Vt = 1, 2, .., T Vs = 1, 2,...,T (2.19)

We next outline the set of assumptions under which the algorithms introduced

later in this section are guaranteed to converge to the global optimal solution (for

proofs refer to [15] and Chapter 2 in [17]).

Assumption 2.1 The demand function D(P), where

D(P) = (d,1(P), d12(P), ..... ,dNT(P), is invertible or in other words there is a one

to one mapping from the price space to the demand space (RNT -, RNT).



Assumption 2.2 The matrix B is strictly diagonally dominant and has positive

diagonal elements and non positive off diagonal elements.

This assumption ensures that the price sensitivity matrix B is invertible and

positive definite. Furthermore it implies that the products are gross substitutes.

Assumption 2.3 The revenue function denoted by r(D) = P(D)TD is a

concave function.

Assumption 2.4 r(D) has continuous first and second derivatives.

Assumption 2.5 The function -r(D) is Lipschitz continuous with constant L > 0.

The above assumptions are required to ensure that the profit maximization problem

has a concave objective over a convex feasible region. This in turn ensures that

the iterative algorithms based on considering a local quadratic approximation of the

objective at each iteration converge to the global optimal. We next outline a new

JPICP formulation (P2) which is based on the demand space and makes use of the

new production decision variables xt introduced in the beginning of this section.

P2 : maxD,x

N T NTT

ditp(D)it - bS x S
i=1 t=1 i=1 t=1 8=1

Ss > dct, Vi
s=1

=1, 2,..N Vt = 1, 2,.., T

a x < C,, Vs=l,2, ..,T Vt=s,..,T
i,g:s<g<t

du>, Vi= 1, 2..,N Vt= 1,2,...,T (2.23)

(2.24)

subject to:

(2.20}

(2.21)

(2.22)

pit(D) 2 0, Vi = 1, 2,..., N Vt = 1i, 2,..., T



We utilize the log linear demand model, which is one of the deterministic nonlinear

demand models. This model will enable the optimization problem (P2) to satisfy the

required assumptions on the revenue function of the objective. The problem (P2)

can be rewritten as:

T N N T T

P3 : maxD, j Zdit(Z Bj(aj -l(dt))) - Y E3 3b (2.25)
t=l i=1 jEN i=1 t=l s=l

subject to:

t

Z t > dit, Vi = 1, ..., N Vt = 1,2..., T (2.26)
s=1

SXig Cs, Vs = 1,2,..,T Vt = s,..,T (2.27)
i,g:s<g<t

eai dit , Vi = 1, 2,..,N Vt=1,2,..,T (2.28)

In the above formulation the elements ai of vector 'a', representing the demand

for different products when the price equals zero is assumed to be the same for all

the different periods t = 1, 2, .., T. Notice that relation (2.28) implies that prices

stay positive at all times. This follows directly from Equation (2.2) in conjunction

with assumption 2.2 (this implies matrix B is a M matrix and hence that B - 1 > 0

componentwise). In a log - linear demand model as demand is always positive, we

can drop constraints corresponding to Equation (2.23). The formulation (P3) can be

solved directly utilizing a non - linear solver such as LOQO. We refer to the algorithm

for solving formulation (P3) through LOQO as ST1.

Another iterative algorithm for solving formulation (P3) can be developed by re-

placing at each iteration, the part of the objective corresponding to r(D) with its

local quadratic approximation around the current iterate D. The algorithm (ST2) is

oulined below:



Step 1:

Start with a feasible point D in the feasible region of the problem (P3). Compute

Vr(D), diag H(D) at this point

Step 2:

Construct a local quadratic approximation of r((D)) at D. Use this quadratic ap-

proximation instead of the exact function r((D)) in the objective of (P3).

Step 3:

Solve the optimization problem (P3) using a QP solver such as CPLEX.

Step 4:

Check the difference between the optimal demand D and D. If this difference is less

than a fixed tolerence (= 10-8), stop, otherwise replace D with the optimal demand

found in Step 3, D, and recompute Vr(D), diagH(D) and goto step 2.

A quadratic local approximation of r(D) around a feasible point D is given by

Equation (2.29).

1
r(D) = r(D) + Vr(D)"(D - D) + -(D - D) T .diagH(D).(D - D)2

(2.29)

In the above equation diagH(D) denotes the diagonal part of the Hessian matrix

of r(D). Utilizing a log linear demand model r(D) for a single period is given by

equation 2.30.

N N

r(D) = B- 1 (a- ln(D)).D = Z(Z B (aj -n(dj)))di
i=1 j=1

The mth(= 1, 2.., N) term of Vr(D) is given by equation 2.31.

[Vr(D)]m
N

B (aj
j=1

(2.30)

(2.31)
N

dm
- In(d,)) - bj

j=1



Finally the Hih term of the Hessian matrix is given by:

B-1 -1
H [D] - B (2.32)

dj di

We next develop a third algorithm denoted by ST3 for solving problem (P3).

This algorithm is an extension of (ST2). In this algorithm apart from utilizing a

local quadratic approximation for r(D), the cost part c(D) of the objective is replaced

by its linear approximation. As the assumed cost function is piecewise convex (see

[16]) over its entire domain, subgradients of the cost function will always exist. These

subgradients can be computed by solving the dual of the optimization problem (D1)

given by (D2). The reason for this follows from strong duality of linear optimization

(refer to [16]). According to this theorem, the decision variables in problem (D2)

represent the marginal costs associated with the constraints of optimization problem

(Dl). In other words the dual variables can be interpreted as the improvement in

the objective of (Dl) for each additional/less unit of right hand side of constraints

in the optimization problem. The other point to note is that since the cost function

is piecewise convex, more than one value for the subgradients can exist as well but

for constructing a linear approximation of the cost function, it will suffice to consider

only the dual variables zit of the dual optimization problem (D2) (for an extended

discussion see [15]).

D2 : maxz, E -ditzit - >: Csys (2.33)
it s

subject to:

z-ys bt, Vi = 1,2,...,N Vt =1,2,..,T Vs = 1,2,...,T (2.34)

Ys >O, Vs = , 2,..., T (2.35)

zit 0, Vi = 1,2,...,N Vt=1,2,..,T (2.36)



The new problem formulation (P4) is based on a local quadratic approximation of

r(D) and a linear approximation for the cost c(D) is included next.

P4 : maxD
1

r(D) + Vr(D)T (D - D) + -(D - D)T .diagH(D)(D - D) - zT (D - D)
2

(2.37)

N t

i=1 t=1

g

s=1

Vg = 1, 2, ..., T

V Vt = 1, 2,.., T

(2.38)

(2.39)

The algorithm for solving the JPICP problem based on optimization models (D2)

and (P4) is outlined next.

Step 1:

Start with a feasible point D in the feasible region of the problem (P4).

Vr(D), diagH(D) at this point.

Step 2:

Compute

Solve the optimization problem (D2).

Step 3:

Construct a local quadratic model of r((D)) at D and a linear model of the cost

function c(D) based on the optimal decision variables zit of (D2).

Step 4:

Solve the optimization problem (P4) using a QP solver such as CPLEX.

Step 5:

ea > di , Vi = 1, 2,..,



Check the difference between the optimal demand D and D. If this difference is less

than a fixed tolerence (= 10-8), stop, otherwise replace D with the optimal demand

D, recompute Vr(D), diagH(D) and goto step 2.

We conclude this section with a discussion of the last algorithm ST4 which is

a hybrid of ST3 discussed above and the algorithm in [15]. The two algorithms

differ only in how the objective in the problem (P4) is modelled. If E it |Dit - Ditl

is less than E (= 3.5), then in step 4 of the algorithm discussed above, we solve

the optimization problem (P4), otherwise optimization problem (P5) (which is the

model utilized in [15]) is solved. The model (P5) is build around a fixed Hessian in

the objective and is never updated. Based on our experience this makes it difficult

for the model to converge to a solution when the tolerence criteria is set to a very

low value such as 10-8 which is the default value utilized in commercially available

optimization softwares such as LOQO.

T N 0.025L -
P5 : minD E( (2Hitdit - (dit - dt) 2)) (2.40)

t=1 i=1

subject to:

N N

Hit = - E(B(-ln(-djt)+aj))+Z(B -dmt/dit)+Zit Vi = 1,2,..,N Vt = 1,2,..T
j=1 m=1

(2.41)

N g g

dit C, Vg = 1,2,...,T (2.42)
i=1 t=1 s=l1

eai dit , =Vi =1, 2,.., N Vt = 1, 2,.., T (2.43)

The objective of (P5) has a few new variables which are defined below:

1
S current iteration number



L = Lipschitz continuity constant = 2. L 1 (E/L-1 bi)

For a general discussion on the principles behind the different optimization models

introduced in this chapter please refer to Nonlinear Programming by D.P. Bertsekas

[17].

2.4 Runtime Performance Comparison of the JPICP

Algorithms

In this section we will compare the computational performance and accuracy of the

different algorithms we presented in Section 2.3. The models were implemented in

AMPL and utilized either LOQO (for ST1) or CPLEX as their solver to solve the

different optimization problems. AMPL is a high level mathematical programming

language that allows for rapid prototyping of optimization models and allows the user

to choose the most suitable solver for the optimization model being implemented from

a wide variety of available solvers. CPLEX is a high performance optimizer. It is

one of the fastest available solvers for solving linear programs, quadratic programs,

quadratically constrained programs and mixed integer programs. LOQO is another

optimizer that is designed to solve any smooth nonlinear optimization problem. It

is based on interior point methods and in particular, it utilizes a primal-dual path

following algorithm. The data files were generated utilizing MATLAB. The instances

included in this section were run on a shared computer with two Intel Xeon 1500

MHz processor and combined cache of 512 KB (256 KB each).

All model parameters were randomly generated from a uniform distribution and

then modified if required to ensure that the generated instances satisfy Assumptions

2.1 - 2.5 discussed in Section 2.3. The production and inventory holding cost/period

were generated from a uniform distribution between 0 and 1. The 'a' vector denoting

the demand when the price of the products equals zero was generated utilizing a

----------- ------



uniform distribution between 1 and 2. The inverse of the price sensitivity matrix

was randomly generated from a uniform distribution and modified to ensure that it is

invertible. The joint production capacities were generated based on the initial feasible

demand vector D and then adjusted to ensure that the capacity constraint is tight in

at least some of the time - periods under consideration.

The solvers (i.e. CPLEX and LOQO) were used with their default settings. The

tolerance parameter for the iterative schemes (ST2, ST3 and ST4) was set to 10-8.

The time required by the different algorithms to generate the optimal solution is in

terms of cpu seconds. This time is the sum of two components:

1. The CPU time utilized by the solver to solve the optimization problem. This

can be monitored by utilizing the AMPL command _totalsolve_time. Alter-

natively the user can keep track of the time required to solve the optimization

problem each time by using _solve_time.

2. The CPU time utilized by the AMPL script itself to perform such tasks as

computing the first and second derivatives and updating other iteration specific

variables. The AMPL script time can be monitored utilizing _ampltime.

Figure 2-2 shows the computational performance of different JPICP algorithms.

For a small number of products and time periods all four algorithms are comparable in

terms of total time required to solve the problem. However as the number of products

and time periods are simultaneously increased, the algorithms begin to differ in their

computational performance. ST4 is clearly the fastest, followed by ST3 and ST2.

Table 2.1 compares the optimal profit generated by the diffrent solution algorithms.

Table 2.2 compares the Li norm of the optimal demand (i.e. TE 1 E 1 di) generated

by the different algorithms. The optimal profit and L1 norms of the optimal demand

generated by all four algorithms is in close agreement reflecting the fact that all four

methods proposed in Section 2.3 have a high degree of accuracy. Figure 2-3 and tables

2.1 and 2.4 present similar information for sample instances in which the number of

products was fixed to 100 and only the number of time periods was varied from 10

to 60. Again ST4 is the fastest algorithm and the optimal problem parameters (i.e.



L1 norm of demand and profit) are in close agreement.
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Figure 2-2: Run time comparison of different algorithms. (Product, Periods) denotes
that a value of 10 on the x - axis indicates that the instance had ten products and
ten time - periods

(Products,Periods) Profit (ST1) Profit (ST2) Profit (ST3) Profit (ST4)
10,10 7202.05 7202.05 7202.05 7202.05
20,20 53145.9 53145.9 53145.9 53144.4
30,30 174949 174949 174949 174946
40,40 436998 436998 436998 436943
60,60 1437430 1437430 1437430 1437430

Table 2.1: Comparison of optimal profit generated by different algorithms

(Products,Periods) Dstart Dopt (ST1) Dopt (ST2) Dopt(ST3) Dopt(ST4)
10,10 470.9096 188.478 188.478 188.478 188.478
20,20 1734.1 708.424 708.424 708.424 709.236
30,30 3471.6 1437.73 1437.73 1437.69 1438.62
40,40 6482 2675.85 2675.85 2675.85 2682.8
60,60 14463 5979.53 5979.53 5979.53 5994.85

Table 2.2: Comparison of optimal L1 norms of optimal demand generated by different
algorithms

3000

I 2500

2 2000

A 30

-- STI

-3-S12

-9-313

--- Sr4

i --



t STI
-4-ST1

-S-TS

0 I0 20 30 40 50 60 70

Periodsroducts = 100

Figure 2-3: Run time comparison of different algorithms. In these instances the total
number of products was fixed at 100 and only time periods were varied

(Products,Periods) Profit (STi) Profit (ST2) Profit (ST3) Profit (ST4)
100,10 749526 749526. 749526: 749481

100,20 1429830 1429830 1429830 1429680
100,30 2075240 2075260 2075260 20.75040

100,40 2795550 2795550 27955,50 2795290

100,60 4258260 4258360 4258360 4257900

Table 2.3: Comparison of optimal profit generated by different algorithms

(Products,Periods) Dstart Dopt (ST1) Dopt (ST2) Dopt(ST3) Dopt(ST4)
100,10 4367.6 1791.67 1791.67 1791.67 1794.02
100,20 8395.4 3455.47 3455.47 3455.47 3462.77
100,30 12137 5018.74 5018.74 5018.74 5030.57
100,40 16063 6645.66 6645.66 6645.66 6661.09
100,60 24919 10277.7 10277.7 10277.7 10305.6

Table 2.4: Comparison of optimal L1 norms of optimal demand generated by algo-
rithms
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Figure 2-4: Run time comparison of ST1 and ST4 for a randomly generated starting
point
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Figure 2-5: Run time comparison of ST1 and ST4 for a starting point far from the
optimal solution
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Figure 2-6: Run time comparison of ST1 and ST4 for a starting point close to the
optimal solution

As ST1 utilizes the LOQO solver which in turn utilizes interior point method (IPM)

to locate the optimal solution, its performance can be expected to vary depending on



(Products,Periods) Profit (ST1) Profit (ST4)
20,20 57492.1 57465.6
40,40 463761 463727
50,50 873333 873273
60,60 1454250 1454120
80,80 3470420 3470370

Table 2.5: Comparison of optimal profit generated by ST1 and ST4

(Products,Periods) D(Small) D(Medium) D(Large) Dopt(ST1) Dopt(ST2)
20,20 848.0227 1756.1 1885.8 718.303 722.574
40,40 3243.6 6692.9 7185.6 2750.86 2756
50,50 4944.8 10188 10967 4195.84 4204.11
60,60 6970.4 14320 15370 5920.45 5933.11
80,80 12327 25295 27148 10474.4 10482.7

Table 2.6: Comparison of starting L1 norms of the initial feasible demand

whether the initial feasible demand (or Di,it) is very close or far from the optimal

demand. The other three algorithms utilize network and normal versions of the

simplex algorithm implemented in the CPLEX solver, the performance of which,

although to some extent does depend on the starting point but this dependance is

relatively small compared to an IPM based procedure. Figures 2-4 - 2-6 compare the

total time taken by ST1 (which utilizes IPM) and ST4 (which utilizes network and

normal versions of the simplex method) to solve the same data instances but each

time starting from a different starting point. From the figures it can be verified that

the IPM based algorithm ST1 is much more sensitive to the starting point than the

simplex method based algorithm ST4. The algorithm ST4 takes about the same

amount of time in all three cases and for the relatively large size instance comprising

of 80 products in 80 time - periods delivers superior performance in all the three

scenarios. The starting points (classified as D(Small), D(Medium) and D(Large)

depending on how close their Li norm is to the L1 norm of the optimal demand

Dopt) are included in Table 2.6.



2.5 Conclusions

In this chapter we introduced four algorithms for solving the JPICP problem based on

the observation that the cost part of the problem can be effectively transformed into

a linear transportation problem. All four algorithms were shown to be accurate and

computationally tractable although they do differ substantially in their computational

efficiency. For the data instances utilized in this work, ST4 was computationally the

most efficient of the four developed algorithms although ST3 comes very close to

ST4 in terms of computational efficiency and is more accurate than ST4 in terms

of the optimal solution computed by the model. The algorithms developed in this

chapter have a much higher degree of accuracy (10-8 vs. 0.05) than the algorithm

developed in the earlier work by Rao [15]. Also ST4 runs faster for comparable data

instances when compared with the algorithm in [15], if the tolerence levels are set to

be the same. We also demonstrated that the choice of solver can have implications on

the computational efficiency of the models as some solvers are based on their in built

algorithms and are more sensitive to the initial starting point of optimization prob-

lems than others. An interesting avenue for further work would be to test the four

algorithms developed in this chapter on real data instances procured either from su-

permarkets or other similar establishments where the deterministic log linear demand

function can be utilized to model the customer demand.





Chapter 3

Pricing in Response to the

Multinomial Logit Demand

Function

In this chapter we introduce algorithms for efficiently computing optimal prices when

demand follows the Multinomial Logit (MNL) demand model. In Section 3.1 we give a

broad overview of discrete choice models, their relative advantages over deterministic

demand models and algorithms developed to locate the optimal solution in response to

demand that follows the MNL model. This is followed by Section 3.2 which contains

a description of the most popular and widely used discrete choice model i.e., the

Multinomial Logit (MNL) model. In Section 3.3, we provide a description of an

algorithm developed based on the Karush Kuhn Tucker (KKT) optimality conditions.

In Section 3.4 we proceed to describe an alternative algorithm based on a logarithmic

reformulation of the MNL based revenue model. Computational performance of the

algorithms is documented in Section 3.5. Finally, Section 3.6 wraps up the chapter

with a brief discussion on relative advantages and disadvantages of the developed

procedures.



3.1 Problem Overview

3.1.1 Discrete Choice Models

Discrete choice models (DCM) are probabilistic models that describe the decisions

made by individuals while choosing from a discrete set of alternatives. DCMs have

several advantages over deterministic demand models [19]. They can be used to

represent differences in preference among customers of a particular market segment.

They are also suitable for situations where customers exhibit a time varying variety

seeking behavior. Also being probabilistic models that model uncertainty in choice

outcomes, with DCMs one does need to identify and separate all pertinent variables

governing customer behavior. This kind of modelling of random customer choice be-

havior was introduced for the first time by Luce [20] and perfected by McFadden

[211. An overview of important families of DCMs and their properties was given by

McFadden in his 2000 Nobel lecture [21].

In DCMs the expected benefit of a particular choice to the customer is given by

utility functions and the customer chooses the alternative with the highest utility.

More formally let there be 'n' alternatives in a choice set 'S', denoted by j = 1,2,...,n.

A customer's utility for each of these products is given by:

uj = uj + j

In the above utility equation uj represents the deterministic component of product j's

utility which can be determined by survey data/econometric analysis (Eg. uj = Tx,

where 1 is a vector of attribute weights and x is vector of observed attribute values)

and j represents the mean zero random component. In DCMs the probability that

a particular alternative is chosen (discrete choice probability) is given by:

Pj(S) = P(Uj > max {U : i S})



Depending on the hypothesis on the distribution of the error terms j , we get'different

DCMs. If the error terms are independent and identically distributed normal random

variables, the resulting model is called a Probit Model. On the other hand if they

have a Gumbel or a double exponential distribution the resulting model is called

a Logit Model. Many other variants of DCMs based on a different assumption on

the distribution of error terms exist as well. The assumption made on the error

term distribution is critical as it directly relates to whether or not the resulting

discrete choice probabilities have a closed form expression. In case of independent

and identically distributed Gumbel random variables, it is possible to derive close

form expressions for the discrete choice probabilities and this is precisely the reason

for the popularity of the Multinomial Logit (MNL) demand model. Under the MNL

model, the probability that an alternative 'j' is chosen is given by:

P(S) = e4/

The parameter '/t' is a scale factor that is related with the Gumbel distribution. The

MNL model on account of its analytical tractability has been used as the demand

model of choice in a wide variety of settings. Guadagni and Little [22] employed it

in a marketing context to study the brand choice behavior of coffee consumers. Ben-

Akiva and Lerman [23] employed it in their study of demand forecasting for urban

transportation systems. Berkovec [24] utilized it in his short run general equilibrium

model of the automobile market based on demand and production rate of new auto-

mobiles and the scrappage rate of old automobiles. Train, McFadden and Ben-Akiva

[25] used the MNL to study the demand for local telephone service based on residen-

tial calling patterns and service choices. Anderson and dePalma [26] employed it as

a model of product differentiation in game theoretic setting.

However despite its widespread use as the most popular DCM, MNL suffers from

one significant limitation. The assumption that the errors in the unobserved portion

of the utility (i.e. j) are independent of each other gives rise to what is known

as Independence from Irrelevant Alternatives (IIA) property of MNL. This property



implies that for two alternatives 'i', 'j' , the probabilities of choosing either one of

them is independent of the choice sets containing these alternatives. Debreu [27, 19]

highlighted this property of MNL with the help of the following example:

Suppose S (={Car, Bus}) represents the set of our transportation choices and we are

equally likely to choose either of the alternative i.e. Pear(S) = 0.5 and Pb,,(S) = 0.5.

Now if we introduce a new set T (={Car, Red Bus, Blue Bus}), MNL predicts that

Par(T) = 0.67, Predbus(T) = 0.67 and Pbluebus(T) = 0.67. In reality we can expect

the probabilities to be Pcar(T) = 0.5, Predbus(T) = 0.25 and Pbluebus(T) = 0.25 as the

color of the bus is most likely to be an irrelevant attribute of the choice we make to

commute from one point to another.

IIA depending on the context can be a useful or a limiting modelling property. It

restricts the use of the MNL model to choice sets that contain members that are

'equally dissimilar' in some sense. In general models where only the average behavior

is under consideration violations of this assumption seem to have a less profound

effect on model accuracy. The main reason for the existence of other DCMs is in part

due to the IIA property of the MNL model as all the alternate models try to work

around the IIA property of the MNL. Generalized Extreme Value (GEV) models,

nested MNL and Mixed MNL (MMNL) are some of the MNL variants that have been

specifically developed to work around the IIA property of the MNL model while still

providing closed form analytical expressions for some of the parameters of interest.

More information on the derivation of different kinds of DCMs and their relative ad-

vantages and disadvantages can be found in Kenneth Train's Discrete Choice Methods

with Simulation [28]. Information specifically relevant to MNL in a multi - product

setting can be found in Theory and Practice of Revenue Mangement by Talluri and

Ryzin [19].

3.1.2 Algorithms for Pricing in Response to DCMs

In this subsection we will review some of the work that has been done in solving for

optimal prices in response to the MNL demand model. MNL is the most popular

and widely used discrete choice demand model. Despite its widespread popularity,
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revenue / profit functions resulting from a MNL based demand model are nonconvex

and as a direct consequence of this the resulting optimization problems are hard to

solve. Due to this, to the best of our knowledge, the algorithms that exist in the

literature, cannot compute provably the globally optimal solution. In this subsection

we will restrict ourselves to algorithms that find the globally optimal solution when

demand follows the MNL model. One of the first algorithms for finding the global

optimum when demand follows the MNL model was developed by Hanson and Martin

[10]. They utilized a path following algorithm based on solving a relaxed version of

the problem at each iteration. The algorithm was developed for the unconstrained

model i.e., there is no restriction on the production / inventory storage capacity.

Gallego and Stefanescu [11] in their study on the effects of upgrades and upsells

offered to customers on revenue streams of a firm have utilized a capacity constrained

MNL model and proposed a column generation based heuristic to compute the glob-

ally optimal solution. However the computational performance of the heuristic they

proposed is not known for large scale data instances. More recently Levi and Perakis

[14] Keller et al. [13] have proposed a provally optimal algorithm for locating the

global optimal solution of a MNL based capacity constrained profit function. The

first Igorithm is based on the KKT optimality conditions while the latter is based on

a convex reformulation of the problem. The formulation we consider in this thesis

is similar to the model in [13], [14] and we will utilize this model to compare the

computational efficiency of our proposed algorithms for capacity constrained MNL

problem.

3.2 Description of the MNL based Model

In this section we describe the MNL based revenue model which we will use through-

out this chapter. The profit maximization problem described here is similar to the

one considered by Keller et al. [13] (see Section 3.4). We consider the case of a

retailer offering a fixed assortment of substitutable products subject to capacity and



inventory constraints. As the price of one product directly affects the demand for

all products in the entire assortment, pricing decisions for the entire assortment of

products need to be made jointly.

Consider a set N containing 'i' (= 1,2,...n) different products. We assume that

the deterministic component of the utility function (i.e. ui) is given by a linear in-

attributes model represented by (3.1). In the equation bi, Pi and ci represent the price

sensitivity coefficient, price and cost of product 'i' respectively.

ui = xi = bipi Vi E N (3.1)

The demand for the different products in the assortment in the MNL setting is

then given as in ([191):

MS.e-
di(x) = - jVi E N (3.2)

1 + ZiEN e-

In Equation (3.2), 'MS' represents the total number of customers in the market

segment under consideration and e- i represents the MNL choice probability
1+jEN ei

that a particular product is chosen by the consumer. Furthermore, if we impose linear

constraints on the demands to model production / capacity / inventory storage limits,

the resulting optimization problem is represented by equations (3.3) - (3.5):

R: max MS. i (3.3)
iEN 1 + EjeN e--x

subject to:

Uk - Akidi(X) > 0, Vk E M (3.4)
iEN

x >0, Vi N (3.5)

In the optimization problem (R), A is a M x N matrix representing the linear
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capacity / inventory holding constraints, uk is the maximum production /inventory

holding capacity and ai represent the inverse of the price sensitivity coefficients (or

ai = 1/bi). Optimization problem (R) is in general non convex and as discussed

in Section 3.1, is a hard to solve maximization problem. For the remainder of this

chapter we will devise computationally tractable and efficient algorithms that are

designed to locate the globally optimal solution for problem (R).

3.3 Algorithm based on the KKT Optimality Con-

ditions

In this section we will develop an algorithm for solving the non convex optimization

problem (R). This algorithm is an extension of an algorithm developed based on the

KKT optimality conditions for the problem developed by Levi and Perakis [14]. The

original algorithm was developed based on the following assumption:

Assumption 3.1

Aki -Uk> 0, Vk E M,Vi EN
MS -

Assumption 3.1 is equivalent to saying that some of the constraints in problem (R)

will be violated, if one allocates all demand to one product. One of the implications

of the above assumption is that it ensures that the set represented by the constraints

in Equation (3.4) is a convex set. Notice also that the feasible region of optimization

problem (R) has a non empty interior. As a result, the Slater condition holds and the

KKT optimality conditions are necessary conditions, i.e. the optimal solution satisfies

these conditions. The KKT conditions (ignoring the non-negativity constraint on xi)

for the optimization problem (R) are given by Equations (3.6) - (3.8):

R(x)+ Ak.-fk) = 0 (3.6)
Oxi keMkcEM



fk()(zk = 0,

fk(x) > 0,

Vk E M

VkeM

Ak > 0, Vk E M

Equations (3.6) - (3.9) utilize the following expressions:

C = R(x)/MS

8R(x)9Rx) = d(x) (ai(1 - xi) + C), Vi
oxi

fk(x) = Uk - MS. Z(Aki - (uk/MS))e- x i,
iEN

ifk ()
Oxi E

lEN

A Odi(x)
&xi

Odj(x) = d(x)d(x)/MS,
axi

Ofi(x) = d(x)2M S  d (x),
axi

Vk E M, Vi E N

V1I i

V1 =i

If we substitute the expressions for R() and ') in Equation (3.6) and utilize

the complementary slackness condition given by (3.7), a closed form expression for

the globally optimal x* is given in Equation (3.16) (for more details and a proof see

[14]).

(C + EkeM Ak(Aki - (Uk/MS))
,Vi EN

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Vk eM (3.12)

(3.13)

(3.14)

(3.15)

EN

(3.16)



If we replace x from Equation (3.16) to function fk (see Equation (3.12)), we

obtain Equation (3.17).

(C+E-kG M  k(Aki-(uk/MS)))

f = Uk-MS. (Aki-(uk/MS))e( Akr/ ) Vk E M (3.17)
iEN

Conditions (3.7) - (3.9) form the nonlinear complementarity problem (NCP(fC))

(see [12]). Solving the (NCP(fc)) problem is equivalent to solving the optimization

problem (01(C)) as the Jacobian matrix of vector f is symmetric and positive semi-

definite. As a result multipliers A can also be computed by solving the optimization

problem (01(C)) which utilizes the assumed optimal value of C (for a proof see [14]).

M N (c+E M X(Ai-(l/MS))

01(C) : minA ukAk + MS. Zaie-(+ ai ) (3.18)
k=1 i=1

subject to:

Ak > 0, Vk E M (3.19)

After solving minimization problem 01(C), we will have all the required parame-

ters to evaluate Equation (3.16). This is an important observation to be kept in mind

as we proceed next to derive a scheme to generate a sequence of Cs, that will lead us

to the globally optimal solution for problem (R).

An iterative scheme to generate a sequence of ansatz/guesses for the optimal value

of C can be devised by substituting in Equation (3.10) the expression for R(x). After

rearranging and cancelling some terms, the result will be Equation (3.20), where the

only unknown is C. This equation can be solved for the optimal value of C*, by

utilizing a binary search or a Newton based procedure for solving one equation with

one unknown.

N M

C - Z(ai + E Ak(Ak - (uk/MS)))e- ' = 0 (3.20)
i=1 k=1

The previous discussion gives rise to the following algorithm (T1) for finding the



optimal value of objective (R(x)) (see [14] for more details):

Step 1:

Set upper bound U = (1/e)E 1 ai

Set lower bound L = 0

Set C = (U+L)/2

Set Ak = 0, Vk E M

Step 2:

For the given C, solve the optimization problem (01(C))

Step 3:

Compute xi = C+EMi Ak(Aki-(Uk/MS)) + 1 , V i E N

Step 4:

Compute F(C) = EN 1(ai + EM=1 Ak(Aki - (Uk/MS)))e-xi

Step 5:

Compute D = C - F(C)

For D = 0, goto step 8

Step 6:

For D > 0, set U = C

For D < 0 , set L = C

Step 7:

Compute U - L. For (U-L) > 10- 8, goto step 2

Step 8:

Compute optimal Revenue, R(x) = MS.N 1 e-xj

This algorithm utilizes a binary search to solve Equation (3.19). This is justified

as, D(C) = C - F(C), is a monotonically increasing function of C. Furthermore, we

can develop an upper and lower bound for the optimal C*. The upper bound utilized

in the above algorithm was selected based on run time observations and is a valid

upper bound for all data instances considered in this chapter.

Algorithm TI though tractable and guaranteed to converge to the global opti-

i--~~' I"'-~~'~;~; -i--lil i;llii'~~'n*r ------ ~r--------i r-ri--- ---- --;-,l-ir; --r~,-. ; ir;i;il-; --;;;-*-irr--- r-;;i--r;--r-r -- --l- -r ~r i--- IIXXI i-----X--I-^; -~~__lllii _~(_iii



mal of the problem is computationally expensive. The main reason for this is step

2, which requires solving a relatively hard optimization problem (01(C)) at each

iteration. This problem can be alleviated by utilizing appropiate upper and lower

bounds on D(Crrent, A). Specifically bounds on D(Ccrren,,,,,,t, A) can potentially help

to improve the computational efficiency of the algorithm by cutting down on the

number of times the optimization problem (01) is solved. This will be the case if

the bounds on D(Current, A) are constructed utilizing multipliers A that have been

computed at some point in past iterations. In particular, let us assume that we have

two bounds, D. and D1, such that Di(Ccurrent, ) D(Ccurrent, A) Du(Ccurrent, A),

where multipliers A solve optimization problem (01) at some past iteration. If

0 < Di(Ccurrent, A) < D(Current, A) < Du(Current, ), then the upper bound U in

the algorithm discussed above, can be updated to 0 current, without computing the

multipliers A through solving the optimization problem (01) at that particular step.

Similarly if D (Current, A) < D(Current, A) < Du(Ccrrent, A) _ 0, then the lower

bound L in the algorithm can be updated to Ccurrent, without computing the exact

solution to (01) at that particular step. Based on these observations we can con-

struct a new algorithm (T2) to find the optimal solution for problem (R). However,

before outlining the idea behind the exact new algorithm T2, it will be worthwile to

construct the required upper and lower bounds D,(C, A) and D1 (C, A).



Proposition 3.1: If A are the optimal multipliers from minimization problem (01(C))

for C and Acurrent is the optimal solution to minimization problem (01(Crr,,ent)) for

Ccurrent, then a lower bound for D is given by D, (Current, -) = Ccurrent -(1/MS) .[kEM UkX+

MS. KiEN ae-xi(Ccrent ,)]

Proof:

O1(Current, A current) o 01(crrent, A) (3.21)

UkA current + MS. aje-icr-urrent,,\cwre) Uk k + MS. a5e-0crrentX)E ukAk + MS. E aie-urtAur J - E UkXk + MS. E aie-xi(current)
keM iEN kEM iEN

(3.22)

This follows from the facts that (01) is a minimization problem and Acurrent solves

the optimization problem (01(Ccurrent)). A is a feasible vector. As Acurre" t minimizes

(01 (Current)), utilizing NCP(fcurrent) implies

4 currentf current (Acurrent) = 0, Vk E M (3.23)

UkA current = MS. E Acurrent(Aki - (uk/MS))e(-xi(Current,Acurrent)) (3.24)
iEN

Summing over all the constraints,

kA curren = MS. urrent (Ak~ (uk/MS))e(-i(ccurre' ntArrent)) (3.25)
keM iEN keM

Utilizing the above expression for EkEM kcurrent in equation (3.22)

MS ( A(urrent (Aki - (uk/MS)) + ai)e ( - Xi(ccurrent,A urTent )) (3.26)

iEN kEM

SUkk + MS. ae-Xi(CcurrentX)

kEM iEN



Acurrent(Aki - (k/IMS)) + ai)e(-xi(curent,Acrrent ) (3.27)
iEN kEM

S( UkAk + MS. E aie- i(currentK))

kEM iEN

Multiplying both sides of the above equation by -1 and adding Ccurrent.

Ocurrent - (E (Aki - (uk/MS)) + ai)e( - (cc.urren,A urrent)) (3.28)
iEN kEM

Ccurrent- MS(Z UkAk + MS. Z ae-(c'rren"))
kEM iEN

D(Ccurrent, A current) > D (Ccurrent, -)

Proposition 3.2: If- are the optimal multipliers to minimization problem (01(C))

for C, Acurrent is the optimal solution to minimization problem (01(Ccurrent)) for

Ccurrent and bdd is the bound given by Equation (3.29), then an upper bound for D is

given by Du(C, ) = currrent - F(C, A).min(1, bdd)

(Ccurren t-C)

bdd = maxi e ai (3.29)

Proof:

01(C, A) < 01(C, Acurren t )  (3.30)

This follows from the fact that (01) is a minimization problem. Substituting the

expression for the objective function in problem (01) and rearranging the terms we

get,

ukk + MS. aie-xi(cA) Uk curr'ent + MS. aie (',Acuren) (3.31)
kEM iEN kEM iEN



Zukk+MS. es) uk current+MS. ai e-x(Ccurrent,Aure"t)e C a

kEM iEN kEM iEN

(3.32)

SUkAk +
keM

MS. aie-xi(c,) < S kAcurrent

iEN keM

+ MS. a aie-i(current,Acurrent).bdd

iEN

(3.33)

As A minimizes 01(C), utilizing NCP(fC), we have,

Akfk(A) = 0, Vk EM

UkAk = MS. E Ak(Ak - (uk/MS))e(-"xi(C' ))
iEN

Summing over all the constraints,

Suk = MS. , E)k(Ak - (Uk/MS))e(- i( 'c))
kEM iEN kEM

Similarly,

current fCcuurent (ren current)=
k k ("current) =-0

VkEM

Uk crrent = MS. current(Ak uk/MS))e(-(current,Acurrent))

iEN

Summing over all the constraints,

UkA current= MS. E E Acurrent(Aki
kEM iEN kEM

- (Uk/MS))e(-xi(currentAcurrent 
))

Utilizing the above expressions following from NCP(fC), NCP(fCcurrent) in Equa-

tion (3.33), we have,

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)



MS. k(Aki - (uk/MS))e( - xi(X)) + MS. i aie-x(c,X)

iEN keM iEN

MS. A rrent(Aki - (uk/MS))e(-'i(current ,Acurren))

iEN kEM

+ MS. aie-i(ccrrent,current ).bdd
iEN

(3.40)

Cancelling common terms and after some rearrangement, Equation (3.40) can be

written as:

E(E -k(Aki - (uk/MS))e(- i(O ))
iEN kEM

+ ai)e- xi(A)

current(Aki - (k/MS))e(-xi(crren,Ac)rrent

iEN kEM

+ bdd.[E (ai
iEN

+ A current(A k i - (uk/MS))e(-xi(curen,,Acurrent)))

iEN keM

- (5 k Ac u r rent (Ak i - (Uk/MS))e(-xi(C.euent " ))).bdd

iEN kEM

(3.41)

F(C, A)_ Aurrent (Aki- (uk/MS) ) e(-xi(curTent ,Acr
t )) (1-bdd)+bdd.F(Ccurrent, Acrrent)

iEN kEM

(3.42)

Now we need to consider two cases:

(1) current > C

In this case bdd > 1, therefore we can drop the negative term ZieN EkEM 'kArrent(Aki-

(uk/MS))e(-X(ccu rentAcuret))(1 - bdd) from the RHS of Equation (3.42), to get

(1/bdd).F(C, A) F(Ccurrent, Acurrent ) (3.43)



(2) Ccurrent< C

In this case 0 < bdd < 1, so we can omit bdd from the term MS. ZiEN aie-i(current,Acurren ).bdd

in the RHS of Equation (3.40) to get,

MS. E E -k(Aki - (uk/MS))e(-i(cA)) + MS. 5 aie-x(-C'X)
iEN kEM iEN

K

Acurrent(A
kk (Aki

iEN kEM

(Uk/MS))e(-x (Ccurrent ,,crre" + MS. E aie-x (Ccurrent Acurrent

iEN

(3.44)

This is same as,

F(C, A) < F(Ccurrent, )current) (3.45)

Cases (1) and (2) can be combined into one equation by:

min(, bd).F(C, A) <bdd
F(Ccurrent, Acurrent )

Multiplying both sides of equation (3.46) by -1 and adding Courrent to both sides,

we get

Ccurrent - min(1, -- ).F(C, A) > Ccurrent - F(Ccurrent, A crrent)
bdd

DU(C, A) 2 D(Current, current)

Using the expressions for Du and D, derived above, we next proceed to outline

the algorithm T2 that can be utilized to locate the optimal solution to optimization

(3.46)

(3.47)



problem (R).

Step 1:

Set upper bound U = (1/e) EiN ai

Set lower bound L = 0

Set Ak = 0, Vk E M

Set C = (U + L)/2

Step 2:

Set C = (U+L)/2

Compute xi = C+EMl Ak(Aki-(Uk/MS)) + 1 V i E N

Step 3:

Compute D 1, utilizing the currently stored value of A and xi, computed in step 2

Step 4:

For D1 > 0 , set U = C, goto step 7

For D1 < 0 , goto step 5

Step 5:

Recompute xi based on C and the currently stored value of A. Compute D,

For D < 0, set L=C, goto step 7

Step 6:

Recompute A by solving (01(C)). Set C to C

Compute xi

Compute D

For D > 0, set U = C

For D < 0, set L = C

Step 7:

Compute U - L. For (U-L) > 10- 8, goto step 2

Step 8:

Compute the optimal Revenue, R(x)= MS.i=1 + e - x j

Theorem 3.1:

Under Assumption 3.1, the iterates of algorithm T2 converge to the globally optimal



solution of problem (R).

Proof:

The proof follows easily from Propositions 3.1 and 3.2 and from the fact that the origi-

nal algorithm T1 is guaranteed to locate the globally optimal solution of problem (R).

In the actual implementation of the above algorithm, in step 6 the As were only

computed if D, - E > 0 and (U-L) > n. This was done because D" is a tight bound

for the actual D, so in cases when D > cE > 0 > Di, computationally it was observed

that it is very likely that even the actual D is positive so we can safely update the

upper bound U, without computing the actual As. This step also utilizes the fact

that if the difference between (U - L) _ n, than the current vector A is 'on average'

close enough to the vector A at the optimal solution C*, so we can again skip the

computationally expensive process of solving the optimization problem (01). These

parameters (i.e. ii, E) may need to be tuned depending on the data instances under

consideration.

We conclude this section by discussing another algorithm T3 for solving optimiza-

tion problem (R). This algorithm was derived from the fact that the optimal solution

of the unconstrained problem (i.e. version of (R) without the contraints) is itself a

natural upper bound on the revenue of the capacity constrained problem (R). So if

we were to solve the unconstrained version of (R), we could use the optimal objective

value (optimal profit C) as an upper bound U for the constrained version of (R). As

solving the unconstrained version is much faster (as there no As to compute at each

iteration), we start solving the constrained version of the problem through solving

the unconstrained version of (R). We continue to do so till its time to update the

lower bound on the revenue. At this point as the lower bound of the unconstrained

problem tells us nothing about the lower bound of the constrained problem, we need

to compute the As. From this point on in the algorithm we only need to compute the



As at each iteration if D < D1. However computationally it was observed that the

set of As is computed only at the point when the lower bound is updated for the first

time. This on average is a good approximation of the actual set of As that hold at the

optimal solution provided the difference between the upper and lower bounds (U - L)

is less than p. If not the set of As may need to be recomputed again when the lower

bound is updated (D < D1). This discussion is somewhat justified by Proposition 3.1

(i.e. since D > D1). The observations summarized above in general hold good for the

data instances utilized for this thesis. For the trial data the value of p was set to 1.

In general the parameter p may need to be tuned for the algorithm T3 to generate

accurate results. The complete algorithm T3 is outlined below:

Step 1:

Set upper bound U = (1/e) Ei ai

Set lower bound L = 0

Set C = (U+L)/2

Set p = 1

Set Ak = 0, Vk E M

Step 2:

Compute zi = c+' Ak(Aki-(uk/MS)) +1 V i E N

Step 3:

Compute F(C) = E ,I 1(ai + ZEM1 Ak(Aki - (uk/MS)))e - xi

Step 4:

Compute D = C - F(C)

For D = 0, goto step 7

Step 5:

For D > D, > 0, set U = C

For D < 0 , solve the optimization problem (01) if (U-L) > p and set L = C

where 01 = min E U~A + MS. EN aie-

subject to: Ai > 0 , Vi E M

Step 6:

Compute U - L. For (U-L) > 10-8, goto step 2



Step 7:

Compute optimal Revenue, R(x) = MS.EN1 a+xe-Xi
,= 1+jfl=le-- j

3.4 Algorithm based on Log Reformulation of the

MNL Demand Model

In this section we outline a reformulation of the problem (T4) developed by Keller

et al. [131 to solve optimization problem (R). Solving this reformulation (T4) is

based on a convex reformulation of the problem and is guaranteed to converge to the

global optimal. To explain this reformulation, we need to redefine some of the model

parameters in terms of new variables. The new parameters and variable substitutions

are defined next in Equations (3.48) - (3.50).

1
00 (3.48)

1 + EiEN exj

O = (di(x)/MS) = e-xiOo, Vi E N (3.49)

xi = -log(i), Vi E N (3.50)

Utilizing the new decision variables 0i and 90 defined above, the optimization

problem R can be re - written as:

R(o):max - MS. aOilog(L), ViEN (3.51)
iEN

subject to:

Uk - MS. Akii(x) > 0, Vk M (3.52)
iEN

N

E i = 1 (3.53)
i=O

i;



Oi > 0, Vi E N

0o > 0 (3.55)

Equation (3.53) represents an additional constraint that ensures that the prob-

abilities sum to one as 0i in this formulation denotes the choice probability that a

particular alternative is chosen.

3.5 Runtime Performance Comparison of Differ-

ent MNL Pricing Algorithms

In this section we will compare the computational performance and accuracy of the

different solution algrithms presented in Section 3.3. The models were implemented

in AMPL and utilized LOQO in order to solve the different optimization problems.

The data instances included in this section were run on a shared computer with two

Intel Xeon 1500 MHz processor and combined cache of 512 KB (256 KB each). All

data instances were randomly generated. The A matrix required in the models was

generated randomly from a uniform distribution between (0,1] in such a way that

Assumption 3.1 held for all trial data instances. The price sensitivity vector b was

randomly generated from a uniform distribution between [0.5,2.5]. The capacity vec-

tor u was generated from a normal distribution with mean N (where N is the total

number of products) and standard deviation 10, which was further scaled up (for MS

> 105) or down (for MS < 105). The starting point of Os for algorithm T4 were

initialized to 1 while the upper bound for C in the KKT based algorithms was

initialized to 1. eiN(1/bi).

In Tables 3.1 and 3.2 we compare the optimal results and computation times for

algorithms Ti and T4 for unconstrained data instances of problem (R). A one

to one comparison of the optimal values and computation times of the two algorithms

(3.54)



reveals that both algorithms are accurate and efficient for the unconstrained instances

of the problem. Algorithm T4 can be seen to be typically twice as fast as algorithm

T1 for the trial data utilized for these experiments.

Products Revenue (T1) Time (TI) Revenue (T4) Time (T4)
25 104641 0.044002 104641 0.04
100 241867 0.152008 241867 0.068001
400 340056 0.48803 340056 0.236014
900 456213 1.1 456213 0.424024
1600 528972 2.08413 528972 0.976055

Table 3.1: Run-time comparison of algorithms T1 and T4 for unconstrained version
of problem (R) with MS = 105. Time is measured in cpu seconds.

Products Revenue (TI) Time (TI) Revenue (T4) Time (T4)
25 1.0924 0.068004 1.0924 0.04
100 2.37603 0.148009 2.37603 0.068001
400 3.69198 0.49603 3.69198 0.236014
900 4.38097 1.17607 4.38097 0.424024

1600 5.23188 2.14013 5.23188 0.976055

Table 3.2: Run-time comparison of algorithms T1 and T4 for unconstrained version
of problem (R) with MS = 1. Time is measured in cpu seconds.
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We next compare the optimal results and computation times for algorithms T1 -

T4 for constrained version of the optimization problem (R). Tables 3.3, 3.5 and

3.7 compare the computational performance while Tables 3.4, 3.6 and 3.8 compare

the optimal revenues generated by the four algorithms (T1 - T4). For the data in-

stances for which all four algorithms terminated within a reasonable amount of time,

the maximum difference between the optimal revenues generated by the different al-

gorithms is 4.75% (for the 25 product data instance with MS = 105) and on average

the optimal solutions are within 0.2% of each other. For data instances with a large

number of products, algorithm T3 is computationally the most efficient (on average

1.5 times faster than T4). For small to medium sized data instances the performance

varies with the solution method T4 being more efficient for some while the solution

method T2 is more efficient for others. An important observation that can be made

from the results tabulated in Tables 3.1,3.2, 3.4, 3.6, 3.8, 3.3, 3.5 and 3.7 is that algo-

rithm T4 encounters problems when the Os start getting smaller. This situation will

most likely occur whenever the number of products is large or the customer segment

to be served is large when compared to the production/inventory capacity. The most

likely reason for this is the fact that the objective in this method utilizes the log func-

tion which is not a well behaved function for small values. So for the unconstrained

instances of the problem (Tables 3.1 and 3.2) when ordinarily none of the Os can be

expected to get very small, solution method T4 is computationally most efficient for

all values of MS. For the constrained instances of the problem, there is a gradual

degradation in performance of algorithm T4 as one moves from data instances with

MS = 1 to MS = 105 and from small size product instances to large size product

instances.

However small Os may not be the only reason for the relatively poor performance

of algorithm T4 for data instances with large number of products or large value of

MS. This is evident from the results included in Table 3.9. The data instances

used to generate the results in the table are the same as those utilized to generate

Table 3.3 with the only exception being the products whose optimal Os were of the



smallest order of magnitude (Eg., for the data instance with 400 products these were

of order 10- 7) were removed from the corresponding data files. The results included

in the table show that the relative performance of the KKT based algorithms and

the log algorithm remains unchanged i.e. for 'small' data instances algorithm T4 still

performs better while for larger data instances the KKT based algorithms perform

better.

Products T1 T2 T3 T4
25 0.168005 0.248014 0.160009 0.024001
100 0.66404 1.83611 1.27608 0.300016
400 - 34.294102 22.9454 16.677054
900 - 187.040006 127.212 197.74427
1600 - 537.662008 428.271 1939.4889
2025 - 984.08101 691.58301 4889.9756

Table 3.3: Run-time comparison of algorithms T1-T4 with MS = 1. Time is measured
in cpu seconds. '-' indicates that the simulation took too long to run.

Products T1 T2 T3 T4
25 1.20826 1.20827 1.20827 1.20827
100 2.303063 2.30365 2.30365 2.30365
400 - 3.76279 3.76279 3.76279

900 - 4.66478 4.66478 4.66478

1600 - 5.13357 5.13357 5.13357

2025 - 5.38896 5.38896 5.38896

Table 3.4: Optimal Revenue computed by algorithms T1-T4 with MS = 1. '-'
indicates that the simulation took too long to run.

Products T1 T2 T3 T4
25 0.908055 0.164009 0.196011 0.096007
100 21.16928 1.708101 2.144136 1.420084
400 1023.3282 71.8848 68.0123 158.97008
900 - 422.275 624.987 2218.91834*

1225 - 1292.5 1322.518 2944.8947

1600 - 12575.478 2691.21 17496.4336*

Table 3.5: Run-time comparison of algorithms T1-T4 with MS = 102. Time is mea-
sured in cpu seconds. '-' indicates that the simulation took too long to run. 'Y'
indicates that the simulation did not generate the optimal solution.



Products TI T2 T3 T4
25 2.19094 2.19904 2.19034 2.19094

100 16.2074 16.2795 16.1889 16.2074
400 71.9604 48.327 71.8227 71.9604
900 - 162.2 162.184 148.137*

1225 - 221.561 221.976 221.981

1600 - 293.9 294.101 275.599*

Table 3.6: Optimal Revenue computed by algorithms T1-T4 with MS = 102. ''

indicates that the simulation took too long to run. '*' indicates that the simulation
did not generate optimal results.

Products T1 T2 T3 T4
25 0.752046 0.19201 0.220011 0.224013

100 17.51706 3.114201 3.56422 0.068001
400 - 131.5282 137.5124 177.71507

900 - 1556.619 1560.447 3051.95235

1600 - 16141.454 9836.577 *

1764 - 32477.5 11286.774 *

Table 3.7: Run-time comparison of algorithms T1-T4 with MS = 10s . Time is mea-
sured in cpu seconds. '-' indicates that the simulation took too long to run. 'Y'
indicates that the simulation encountered problems.

We now include a brief discussion on the differences in computational performance

of solution methods T2 & T3 and further improvements that can be made to the

KKT based algorithms in order to improve their computational performance. Both

algorithms are quite similar with method T3 being a slightly less refined version of

T2 (T2 requires additional steps). However an important run time observation is

that optimization problem (01) is much harder to solve for small values of

C as compared to large values (eg., solving the problem (01) at C = 0.1 will

take longer than solving it at C = 5). Solution method T2 being more refined delays

solving problem (01) until very late in the algorithm and as a result, requires more

time to generate the optimal solution to (01) as compared to T3 which in general

ends up solving problem (01) at a slightly higher value of C. This explains the fact

that even though both solution methods are very similar, for very large data instances

solution method T3 performs marginally better than T2.



Products T1 T2 T3 T4
25 44.5122 42.3945 43.7656 44.5122
100 2115.26 2176.43 2110.52 2115.26
400 - 9937.16 9906.58 9922.5
900 22927.2 22860.9 22899.5
1600 - 42313.7 42249.6 *

1764 - 46502.5 46410.5 *

Table 3.8: Optimal Revenue computed by algorithms T1-T4 with MS = 105. '

indicates that the simulation took too long to run. '*' indicates that the simulation
encountered problems.

Products T2 T3 T4
16 0.088 0.108 0.04
81 1.72 1.372 0.208

361 22.185 17.6691 13.84
841 271.305 362.286 352.106

Table 3.9: Run-time comparison of algorithms T2, T3 and T4 with MS = 1, after
removing products with small value of optimal 8. Time is measured in cpu seconds.

One natural way to improve the computational efficiency of the KKT based al-

gorithms is to come up with better upper bounds for the optimal profit of opti-

mization problem (R). To explore this idea we use the unconstrained optimal profit

(r*) of the data instances as an upper bound instead of the default upper bound

(= 1. Ei E N(1/bi)). The results are tabulated in Table 3.10. T5a is the same as

algorithm T2 except that we start from the unconstrained optimal solution of the

problem as an upper bound. In T5b the time required to find the unconstrained

optimal solution is included within the total computation time whereas in T5a this

time is excluded. In T5c we start from a random point w which satisfies the following

inequality, r* > w > . Ei N(1/bi).

As expected for most instances algorithm T5a takes the least amount of time while

T2 takes the longest with some exceptions. The exceptions arise mainly because of

the run time observation that has already been made i.e., the smaller the value of C,

the harder it is to solve the problem (01). Generally starting at a lower value of the

upper bound, one can expect to cut down on the time the algorithm takes to arrive at



the point where the solution to problem (01) needs to be computed. For the problem

instances when algorithm T5a takes longer to run than the other algorithms, the

value of C at which the solution to problem (01) is computed is lower, hence T4a

requires a lot longer to solve problem (01) as compared to other algorithms (see Table

3.10). To further clarify this point assume that we start initially from '1.5' as upper

bound for one method (say T5a) and '2' as the upper bound for some other method

(say T2). As the lower bound for both the methods is same and fixed at L = 0, the

value of C will be '0.75' for the first method and '1' for the second method. Further

let's assume that based on the respective algorithms we need to compute the solution

to optimization problem (01) at this value of C. We can expect the method utilizing

C = 0.75 to take much longer than the method utilizing C = 1, resulting in higher

total run time for the first method as compared to the second method.

Based on the discussion in the preceeding paragraph for speeding up the KKT

based solution procedures, in our opinion it appears that while finding tighter upper

bound may help, what might help more these algorithms to become significantly more

efficient, is an easier and faster way to solve optimization problem (01).

Products T2 T5a T5b T5c
25 0.19201 0.096005 0.17201 0.168009
100 3.114201 2.304143 3.08819 3.1722
400 131.5282 320.19638 320.5204 130.2282
900 1556.619 1256.25371 1257.7218 1526.431
1600 16141.454 16409.674 16654.822 20286.686

Table 3.10: Run-time comparison of algorithms T2,T4 and T5 with MS = 10'. Time
is measured in cpu seconds.

3.6 Conclusions

In this chapter we introduced four algorithms for solving the nonconvex profit max-

imization problem based on the Multinomial Logit Demand (MNL) model under

capacity constraints. All four algorithms converge although they do differ in their



computational efficiency. The algorithms based on the KKT conditions were shown

to be the fastest for data instances with a large number of products and a large number

of customers in the segment. The algorithm based on a log reformulation was found

to be the fastest for the unconstrained version of problem (R). An interesting avenue

for further work would be to test the four algorithms developed in this chapter on

real data instances procured either from supermarkets or other similar establishments

where the MNL can be utilized to model the customer demand. Another avenue for

further work can be to devise more efficient ways to solve optimization problem (01)

which will help to improve the computational efficiency of the algorithms based on

the KKT conditions. Also as newton based algorithms for solving system of equations

are faster than binary search based algorithms, devising a newton based scheme for

solving Equation (3.19) can potentially speed up the algorithms based on the KKT

optimality conditions for both the constrained and unconstrained versions of problem

(R).



Chapter 4

Joint Pricing and Inventory

Control Problem under the

Multinomial Demand

This chapter describes the joint pricing and inventory control problem (JPICP) with

the multinomial logit (MNL) demand model. The first section describes the JPICP

model in the MNL setting. This is followed by algorithm description based on a convex

reformulation of the demand model proposed by Keller et al. [13] and introduced in

Section 3.4 of the previous chapter. Runtime performance of the developed algorithm

is discussed in Section 4.3. Finally Section 4.4 brings together the important ideas

of this chapter and addresses both the advantages and disadvantages of the proposed

algorithm.

4.1 JPICP in a MNL Setting

In this section we introduce two models of the JPICP based on the MNL demand

model. In both models the cost part of the objective is piecewise convex and can

be represented utilizing the a linear transportation problem as in Chapter 2. The

first model (Ml) of the problem is based on a nonconvex objective function. Notice

that for this model the feasible region is a convex set. The variables and parameters



have the same meaning as those described in Chapters 2 and 3 (where no inventory

constraints were present). This model can be solved directly by utilizing the nonlinear

LOQO solver.

N T aitite(-it) N T T
M1 : maxy,x MS. at1 + eI T - bit (4.1)

1+E N ET ,Y -Zb it i (4.1)
i=1 t=1 1k=1 i=1 t=l s=1

Sxs > MS 1+ t =iex- jik Vi= 1,2,.., N Vt= 1, 2,.., T (4.2)
s----1 1+ N 1 Ek e--jk

Xig _ C, Vs =1,2,..,T (4.3)
i,g:g>s

-it k 0, Vi = 1,2,..,N Vt = 1,2,..,T (4.4)

xs > 0, Vi=1,2,..,N Vt=1,2,..,T Vs=1,2,..,T (4.5)

The new decision variables Tit are defined by the equality, Tit = bitpit,where bit and

pit have the same meaning associated with them as in Chapter 3. The constraints

described in relation (4.2) ensure that all demand is met while those represented

by inequality (4.3) ensure that the joint production capacity for each period is not

violated.

The second model of problem (M2) based on the convex reformulation of the

MNL demand model (see [13]) is presented next.

NT NT T

M2: maxo,o,, - MS. ajOitlog( )t- bx (4.6)
i=1 t=l i=1 t=l s=1

x < Cs, Vs = 1,2,..,T (4.7)
i,g:g>s



t

xt MS.Oit, Vi = 1,2,..,N Vt = 1,2,..,T (4.8)
s=1

NT

E E Oit + 0o = 1 (4.9)
i=1 t=1

Ot > 0, Vi = 1, 2,.., N Vt = 1, 2,.., T (4.10)

00 > 0 (4.11)

xS >0, Vi = 1,2,..,N Vt=1,2,..,T Vs = 1,2,..,T (4.12)

4.2 An Iterative Algorithm based on a Log Refor-

mulation of the MNL model

As the objective in model (M2) is concave (for a proof see [13]), this model can

be utilized for an iterative algorithm similar to ST3 discussed in Chapter 2. At

each iteration, as in algorithm ST3 (see Chapter 2), we consider a local quadratic

approximation of the revenue part and a linear approximation of the cost part, in

the objective function at the current iterate. The gradient of the revenue function is

given by Equation (4.13). The diagonal approximation of the Hessian matrix is given

by Equation (4.14).

N T Ojk
Vr(O)it = -MS.ait(1+1n(Oit/0o))-MS. ajk 00 V 'i = 1, 2..,N Vt =1,2,..,T

j=1 k=1

(4.13)



NT

diagHi = -MS.ait(1 + Ot/Oo)(1/it) - (MS.ait/Oo) - MS. E E ajk(Ojk/(2))
j=1 k=1

(4.14)

The dual problem utilized for computing the gradient of the cost function in the

objective of model (M2) is given by optimization problem (D3).

D3 : maxy, tzit Csys (4.15)

subject to:

Vi = 1, 2,..., N Vt = 1, 2,.., T Vs = 1, 2,..., T

Ys > 0, Vs = 1, 2,..., T

Vt = 1, 2, .. , T

(4.17)

(4.18)

The reformulated optimization model approximated at a point Oit is given by the

optimization problem (P5). In order for this iterative scheme to converge to the

optimal solution all assumptions discussed in Section 2.3 must hold.

-1 -( ).diagH(( - ) -
P5 : maxo r(O) + Vr()T(9 - ) + 1(9 - )T diagH()(O -) -

2

N g

MS. E O l

i=1 t=1

g

s=1

Vg = 1, 2, ..., T

N T

i=1 t=l

zit - Ys, bit, (4.16)

(4.20)

(4.21)

zi > 0, Vi = 1,2, ..., N

zT'(o - ) (4.19)



Oit O, Vi = 1, 2, .. , N Vt = 1, 2, .. , T

(4.23)0o 2 0

Algorithm ST5 for utilizing the above optimization models (D3 and P5) to solve

the MNL based JPICP is outlined next.

Step 1:

Start with a feasible point 0 in the feasible region of the problem (P5). Compute

Vr(0), diagH(0) at this point.

Step 2:

Solve the optimization problem (D3).

Step 3:

Consider a quadratic approximation of r(0) and a linear approximation of the cost

function at the current iterate values based on optimal decision variables zit of (D3).

Step 4:

Solve the optimization problem (P5) using a QP solver such as CPLEX.

Step 5:

Check the difference between the optimal decision variables 0 and 0. If this difference

is less than a fixed tolerence (= 0.01), stop, otherwise replace 0 with the currently

optimal variables 0, recompute Vr(0), diagH(0) and go to step 2.

(4.22)



4.3 Computational Performance of the Algorithm

In this section we will compare the computational performance and accuracy of the

models M1 and ST5 presented in the last section. The instances included in this

section were run on a shared computer with two Intel Xeon 1500 MHz processor

and combined cache of 512 KB (256 KB each). Model (Ml) was solved utilizing the

LOQO solver and CPLEX was used to solve the optimization problems in ST5. The

total time was calculated using the same procedure as the :instances in the preceeding

two chapters. The tolerance criteria utilized for ST5 was 0.01.

The data instances and model parameters were generated using MATLAB. The

production and inventory holding cost/period were generated from a: uniform distri-

bution between 0 and 1. The market segment (MS) variable was set to 105. The joint

production capacity was generated from a normal distribution having mean N x T

(where N is the total number of products and T is the total number of time periods)

and standard deviation of 10.

Table 4.1 contains information on the computational efficiency and accuracy of

ST5 and M1. The optimal results are not too far off (within 4% of each other)

implying both algorithms worked well for the data instances utilized to generate

the table. However ST5 is more efficient than M1. This is in agreement with the

computational behavior of the LOQO based MNL revenue model studied in Chapter

3. However one thing to be kept in mind when comparing the results is that the

tolerance criterion utilized for ST5 is much higher than 10- s (i.e. 10-2) utilized

for all the other algorithms presented in this thesis. In particular the update rule

for 0 in step 5 needs to be improved. For the current version of the algorithm this

rule is given 0 new = -od + a(O - 0) with a = 1. However for this particular model

iterative (newton based) procedures with a = 1 do not always converge to the optimal

solution. Another problem with the current version of ST5 is oscillation and some

checks based on the relative improvement of the objective and change in the optimal

decision variables have been utilized to make sure that the algorithm terminates after

a finite number of steps.



(Products,Periods) Profit (Ml) Total Time (cpu sec) Profit (ST5) Total Time (cpu sec)
5,5 19718.1 0.428025 18905.6 0.060002

10,10 218702 50.835205 218329 0.156009
15,15 602666 575.200026 602509 0.576035
20,20 44177500 5682.82 44133300 0.948058

25,25 - - 309410000 7.27245

Table 4.1: Comparison of optimal profit and total time required by M1 and ST5. '-'
indicates that the data instance took very long time to run

4.4 Conclusions

In this chapter we proposed a computationally efficient and tractable algorithm ST5

for solving the JPICP based on a MNL demand model. The proposed algorithm

is build around observations that the cost part of the objective can be minimized

separately by solving a linear transportation problem and the actual nonconvex MNL

based revenue function can be replaced by its concave equivalent. The proposed

algorithm though efficient appears to have some convergence problems. An interesting

avenue for further work will be to come up with appropiate step size rules for this

algorithm that will resolve the convergence problem of the proposed scheme and to

then test it comprehensively with different data instances similar to the ones used to

test algorithms in Chapter 3.





Appendix A

Definitions

Concave Function: A function for which all points satisfy the inequality,

f(Ax + (1 - A)y) > Af (x) + (1 - A)f(y), Vx, y E ~ and 0 < A < 1, is defined as a

concave function. For a function to be concave the negative of its Hessian matrix

has to be at least positive semi-definite. For a strictly concave function the negative

of its Hessian matrix has to be strictly positive definite.

Cost: The total amount of capital required in manufacturing and storing a

particular product.

Hessian Matrix: It is the matrix of partial second derivatives of a function f. A

sample HessianMatrix for a function of two variables, f(x,y), is given by :

H(x,y) = [°'" 2 2 ]
0X2  axay I aOxy ay2

Lipschitz Continuous: It is condition on smoothness of a continuous function

(f:R m __, R) which is given by the following relationship:

LIIx - x*II IIf(x) - f(x*)11, Vx, VL > 0.

z* is the optimal solution of the problem under consideration, x is the current

iterate value and L is the Lipschitz continuity constant.

Local Quadratic Approximation: It is the Taylor approximation of a function,

f(x), at a point Y truncated after the first three terms.



M-matrix B: A matrix with positive diagonals, non positive off-diagonals, which

is positive semi-definite.

Piecewise Convex Function: A function which is defined by

f(x) = maxi mix + bi is called a piecewise convex function (see also [16]).

Price Sensitivity: A coefficient that reflects how the price of a particular product

is affect when the price of another comparable product changes.

Positive Definite Matrix: A matrix whose all eigenvalues are strictly greater

than zero, is called a positive definite matrix.

Positive Semi-Definite Matrix: A matrix whose all eigenvalues are greater than

or equal to zero, is called a positive semi-definite matrix.

Profit: Cost deducted from the revenue yields profit.

Revenue: Revenue is the product of total number of units sold and price/unit.

Strictly Diagonally Dominant Matrix: If the sum of the absolute values of all

the off diagonal elements in all rows of a square matrix are strictly less than the

absolute value of the corresponding diagonal terms then the matrix under

consideration is called a strictly diagonally dominant matrix. Note a strict diagonal

dominant matrix is also positive definite but the inverse is not always true.

Subgradient: For a piecewise convex function, f(x), p is a subgradient of the

function at. , if Vx in its domain, the following relationship is satisfied:

f(x) - f () > gT (x - ).

Substitutes: Products that can be used readily in place of another product. Eg.

Similar toothpastes marketed by different brands.
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