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Summary 

 

PLD catalyses hydrolysis of phosphatidylcholine (PtdCho) to produce phosphatidic acid 

(PtdOH) and choline.  PtdOH is a second messenger responsible for a multitude of cell 

processes, ranging from cytoskeletal rearrangement to cell proliferation.  Antigenic 

stimulation of RBL-2H3 mast cells and growth factor stimulation of endothelial HeLa 

cells results in PLD-dependent exocytosis and endocytosis, respectively.  A novel 

fluorescent PtdCho (fPtdCho) was used to label both cell lines and Bligh-Dyer lipid 

extraction of fPtdCho-labelled RBL-2H3 cells showed the lipid was intact post-labelling.  

fPtdCho co-localised up to 50% with the lysosomal marker LysoTracker Red in RBL-

2H3 cells, and was not secreted in response to antigenic stimulation as recorded using 

real-time confocal microscopy.  Primary alcohol treatment of fPtdCho-labelled RBL-

2H3 cells altered fPtdCho-labelling to diffuse from punctate distribution, suggesting 

PLD-generated PtdOH is responsible for retention of punctate fPtdCho staining.  PLD 

isoforms 1b and 2a were labelled with Cherry (a red fluorescent protein) and transiently 

expressed in fPtdCho-labelled HeLa cells.  Localisation was assessed using FRET by 

FRAP technology in live cells and showed that substrate and lipase were in close 

proximity.  These findings will facilitate future development of a live real-time in vivo 

PLD assay.  Furthermore, localisation of PLD and its activator Rac1 was assessed at rest 

and in EGF-stimulated HeLa cells in real-time. This showed co-localisation between 

PLD and Rac1 following stimulation.  The fluorescent PtdCho was also used to develop 

a novel real-time in vitro PLD assay, monitoring fPtdCho metabolism at two second 

intervals.  This in vitro assay is more sensitive than traditional end-point assays and will 

help clarify the relative rate of PLD activation in response to small G-protein activators 

and other co-factors in real-time.         
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Chapter 1: Introduction 

 

1.1: Phosphatidylcholine  

 

Phosphatidylcholine (PtdCho) is both structurally important as a cylindrical lipid and 

precursor of key second messengers (Dowhan and Bogdanov, 2002; McDermott et 

al., 2004).  It is the substrate of phospholipases A2, C and D which produce 

lysophosphatidic acid, diacylglycerol (DAG) or phosphatidic acid (PtdOH) 

respectively (Larrodera et al., 1990; Cai et al., 1992; Kinkaid and Wilton, 1995).  

This thesis focuses predominantly on the hydrolysis of PtdCho to PtdOH and choline 

by phospholipase D (PLD). PtdCho is composed of glycerol, two fatty acid chains 

and a phosphate (PtdOH) carrying the choline headgroup (Sprong et al., 2001). 

PtdCho is a cylindrically shaped lipid unlike its precursor phosphatidylethanolamine 

(PtdEth) and its product, PtdOH (see Fig. 1.1 pathway highlighted in red) which are 

both cone shaped lipids (Dowhan and Bogdanov, 2002).  Cylindrical lipids typically 

form lipid bilayers as both the head group and hydrophobic domains are of similar 

diameter (Dowhan and Bogdanov, 2002).  Cone shaped lipids such as PtdEth contain 

a small head group relative to large hydrophobic domains and preferentially form 

inverted micellar structures.  These structures are supported by the head groups 

sequestering an internal aqueous core and the hydrophobic domains orienting 

themselves outwards, thus forming a non-bilayer structure (Dowhan and Bogdanov, 

2002).   

 

Homeostasis of choline and PtdCho is maintained in mammalain cells primarily 

through the cytidine diphosphocholine (CDP-choline) pathway shown in Fig. 1.1, 

highlighted in green (Li and Vance, 2008).  The main source of choline in 

mammalian cells is dietary, and after choline is absorbed, it is phosphorylated by 

choline kinase to phosphocholine via the CDP-choline pathway.  At this stage, 

choline can also be oxidised by choline oxidase and converted to betaine by betaine 

aldehyde in certain cells such as hepatocytes (Prichard and Vance, 1981).  The CDP-

choline pathway converts phosphocholine to CDP-choline by cytidine 5‟-

triphosphate (CTP):phosphocholine cytidylyltransferase (CCT).  This is a rate-

limiting step as CCT is active when membrane-bound and inactive in its soluble form 
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and the concentration of phosphocholine is up to 40-fold higher than that of CDP-

choline (Li and Vance, 2008; Vance and Vance, 2008).  The „bottleneck‟ is attributed 

to regulation of CCT by reversible movement of the enzyme on and off membranes 

through its interactions with anionic lipids, such as the nuclear membrane in Chinese 

hamster ovary (CHO)-K1 cells (Xie et al., 2004; Lagace and Ridgway, 2005; Li and 

Vance, 2008).  The CCT site of lipid interaction has been identified as three α-helical 

repeats which enhances the ability of CCT-binding to membranes deficient in 

PtdCho and regulates enzyme activity (Lykidis et al., 2001; Xie et al., 2004; Li and 

Vance, 2008).  Finally, the intrinsic endoplasmic reticulum (ER) membrane lipid 

CDP-choline is converted to PtdCho by CDP-choline: 1,2-diacylglycerol 

cholinophosphotransferase (CDP-DAG –Vance and Vance, 2008). 

 

PtdCho is also synthesised by the methylation of phosphatidylethanolamine (PtdEth) 

by phosphatidylethanolamine N-methyltransferase (PEMT) shown in Fig. 1.1 

(highlighted in purple) and is most active in the liver (Vance and Ridgway, 1988).  

PEMT is a 22.3kDa protein primarily localised to the ER, however previous in vivo 

studies have not shown reactivity with ER proteins but instead were linked to 

mitochondrial-associated membranes (Cui et al., 1993).  Furthermore, recent studies 

suggest that both the N- and C-termini of PEMT are localised externally to the ER as 

the four transmembrane domains of PEMT span the membrane (Shields et al., 2003).  

PtdCho synthesised by the PtdEth pathway is thought to be essential to membrane 

stability and synthesis when dietary choline is limited thus also limiting PtdCho-

synthesis via the CDP-choline pathway (Li and Vance, 2008).  Studies utilising 

CCTα knockdowns reduce CCT activity of the hepatocytes to 15% of that normally 

expected (Jacobs et al., 2004).  In CTα-deficient hepatocytes, PEMT activity 

increased twofold when compared with controls (Jacobs et al., 2004).  However, 

increased PEMT activity (facilitating PtdCho-synthesis) did not compensate for 

decreased PtdCho-synthesis via the CDP-choline pathway in CCTα-deficient 

hepatocytes (Jacobs et al., 2004).  PtdCho-choline homeostasis is thought to be 

crucial for sustained normal liver function (Li and Vane, 2008).   
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Figure 1.1: The synthesis and metabolism of phosphatidylcholine.  The cycle of 

phosphatidycholine (phospholipase D substrate) and choline (product of 

phosphatidylcholine hydrolysis) is summarised below (modified from Lagace and 

Ridgway, 2005; Li and Vance, 2008).  The green pathway highlights 

phosphatidylcholine synthesis by the cytidine diphosphocholine (CDP-choline) 

pathway beginning with acetylcholine and choline obtained from the diet.  The red 

pathway highlights processes dependent on phospholipase D activity and the purple 

pathway highlights synthesis of phosphatidylcholine by phosphatidylethanolamine.   

 

Enzyme abbreviations used in the figure are cytidine diphosphoethanolamine (CDP-

ethanolamine), and cytidine diphosphocholine-diacylglycerol (CDP-DAG).  The 

numbers labelling the figure below correspond to the following enzymes: (1, 16) 

choline acetyltransferase, (2) choline kinase, (3) phosphocholine cytidylyltrasnferase, 

(4) CDP-choline: 1,2-diacylglycerol cholinophosphotransferase, (5) sphingomycelin 

synthase, (6) sphingomyelinase, (7) choline oxidase, (8) betaine aldehyde 

dehydrogenase, (9) phosphatidylserine synthase, (10) phosphatidylserine 

decarboxylase, (11) phosphatidylethanolamine N-methyltransferase, (12) various 

phospholipd and lysophospholipid activities, (13) ethanolamine kinase, (14) 

phosphoethanolamine cytidylyltransferase, (15) CDP: ethanolamine = 1,2-

diacylglycerol ethanolamine phosphotransferase, (17) phospholipase D, (18) CDP-

choline synthase, (19) phosphatidylserine synthase.   
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1.2: Phospholipase D structure and localisation 

 

1.2.1: An introduction to the structure of mammalian phospholipase D 

 

Phospholipase D (PLD) is a well characterised lipase involved in a variety of cellular 

processes ranging from exocytosis to apoptosis.  All members of the PLD 

superfamily contain as least one copy of the conserved catalytic HxK(x)4D(x)6GSxN 

(HKD) motif (where x is any amino acid – Ponting and Kerr, 1996; Stuckey and 

Dixon, 1999).  The catalytic site of PLD is often constituted by dimerised HKD 

motifs consisting of conserved histidine, lysine, aspartate and asparagine residues, 

which are necessary for enzymatic activity (Ponting and Kerr, 1996; Stuckey and 

Dixon, 1999).  The preferential substrate of mammalian PLD is phosphatidylcholine 

(PtdCho) which PLD hydrolyses to phosphatidic acid (PtdOH) and choline. 

 

Regulatory domains such as the phox homology domain (PX) and the pleckstrin 

homology domain (PH) are located at the N-terminus of both mammalian PLD1 and 

PLD2 (Ponting et al., 1996; Hodgkin et al., 2000; Sciorra et al., 2002).  These 

domains mediate the specificity of lipid binding and protein-protein interactions.  

The PH domain has high substrate specificity for PtdIns(4,5)P2 and functions 

together with a polybasic motif to target PtdIns(4,5)P2-rich membranes (Steed et al., 

1998; Holbrook et al,. 1999; Sciorra et al., 1999; Sciorra et al., 2002).  The polybasic 

motif has recently been identified and is only conserved in PtdIns(4,5)P2-dependent 

PLDs such as mammalian PLD1 and PLD2, and yeast Spo14p (Sciorra et al., 1999; 

Sciorra et al., 2002).  Although deletion of the polybasic motif does not affect PLD 

localisation, it does affect lipase activation (Sciorra et al., 2002).   

 

Although several regions of PLD are highly conserved between the two isoforms and 

different species, the PLD1 „loop‟ region is variable.  Between conserved PLD-

specific catalytic domains I and II (see Fig. 1.2), PLD1 possesses a „loop‟ region.  

The „loop‟ region is highly variable between closely related species (such as human 

and rat) and PLD1 also undergoes alternative splicing (Hammond et al., 1997; 

Redina and Frohman, 1998; Sung et al., 1999a).  The loop of PLD1a is 116 amino 

acid residues whereas alternative splicing results in the removal of 33 amino acids to 

produce the PLD1b isoform (Hammond et al., 1997; Redina & Frohman, 1998; Sung 
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et al., 1999b).  Mammalian PLD2 does not contain this highly variable region and 

catalytic activity is unaffected by the addition of the „loop‟, although PLD2 activity 

is modestly reduced (Sung et al., 1999a).  Furthermore, deletion of this region in 

human PLD1 increased activity by threefold, suggesting it may act as a regulator of 

PLD1 activity (Sung et al., 1999b).  This regulatory region is probably responsible 

for the low basal activity of PLD1 in vivo (Sung et al., 1999b).  The sections 

following will summarise the characteristics of conserved PLD regions in terms of 

regulation and activity.   

 

 

 

 

Figure 1.2: A representation of the typical structure of mammalian PLD1 and 

PLD2.  The diagram was modified from McDermott et al., 2004.  The targets of 

small G-proteins and PtdIns(4,5)P2 activators are highlighted on the PLD1 

representation.  These regions have been characterised by identifying the effects of 

point mutations/deletions in these regions.   
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1.2.2: Phox homology domain 

 

The phox homology (PX) domain was first identified at the N-terminus of human, 

yeast and nematode PLD (Ponting et al., 1996; Liscovitch et al., 2000; McDermott et 

al., 2004).  Although there is a high degree of sequence conservation of N-termini in 

mammalian PLD1 proteins, there is less homology between mammalian PLD1 and 

PLD2 (Sung et al., 1999a; Sung et al., 1999b).  The first 100-330 amino acids 

encode the PX domain (approximately 140 amino acids) and the pleckstrin homology 

(PH) domain of mammalian PLD (Sung et al., 1999b).  The role of the PX domain 

remains unclear, although its removal has no impact on catalytic activity or 

activation by Arf (Liscovitch et al., 2000; Xu et al., 2001).  Mutagenesis of the PX 

domain of PLD1 renders the enzyme inactive in vitro but increases basal activity in 

vivo and remains responsive to PMA, although to a lesser extent than wildtype PLD 

(Sung et al., 1999b).  PX domains have been implicated in protein-protein 

interactions and lipid binding; specifically phosphatidylinositides (Ponting and Kerr, 

1996; Xu et al., 2001) including phosphatidylinositol 3,4-bisphosphate 

(PtdIns(4,5)P2),  PtdIns(3)P, PtdIns(3,5)P2 and PtdIns(3,4,5)P3 (Xu et al., 2001).   

 

The PX domain of PLD1 specifically binds PtdIns(3,4,5)P3 in vitro but that of PLD2 

does not (Lee et al., 2005).  In addition, mutagenesis of the PX domain results in 

changed PLD1 localisation in NIH-3T3 cells and is thought to mediate signal 

transduction via ERK1 and 2 (Lee et al., 2005).  A modelling study using 

mammalian PLD1 suggested that the PX domain has two binding pockets (Stahelin 

et al., 2004).  The primary binding site is specific to PtdIns(3,4,5)P3 whilst the 

secondary binding site has moderate affinity for anionic lipids such as phosphatidic 

acid (PtdOH) or phosphatidylserine (Stahelin et al., 2004).  When both binding 

pockets are occupied, PX membrane affinity is synergistically increased (Stahelin et 

al., 2004).  The PX domain of PLD2 acts as a GTPase activating protein (GAP) 

which can bind directly to the GTPase domain of dynamin (Lee et al., 2006).  The 

PX domain itself is thought to have GAP activity and PLD2 with diminished GAP 

function increases epidermal growth factor (EGF) stimulated endocytosis in HEK-

293 cells (Lee et al., 2006).  These properties implicate the PX domain in signal 

transduction, membrane affinity, localisation and regulation.     
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1.2.3: Pleckstrin homology domain 

 

PLC has a known conserved pleckstrin homology domain which binds to 

PtdIns(4,5)P2.  As PtdIns(4,5)P2 stimulates PLD activity, studies comparing the 

sequence of PLC with human PLD (hPLD1a or hPLD1b) or Spo14p (a 

PtdIns(4,5)P2-dependent yeast PLD) at first did not identify PH domains (Hammond 

et al., 1995; Hammond et al., 1997).  However, PH domains were later identified in 

hPLD1 and hPLD2 isoforms, thus clarifying the role of PtdIns(4,5)P2 in PLD 

regulation (Steed et al., 1998; Holbrook et al., 1999).  The sequences of hPLD1 and 

PLD2 were compared to those of proteins with known PH domains, such as Bruton‟s 

tyrosine kinase (Btk) and PLCδ (Hodgkin et al., 2000).  The interaction between 

PLD and PtdIns(4,5)P2 was quantified using surface plasmon resonance (SPR) and 

monolayers containing PtdEth, PtdCho and activating PtdIns(4,5)P2 (Hodgkin et al., 

2000).   PH domain residues involved in inositol-phosphate binding were conserved 

between Btk and PLD1 and PLD2 (Hodgkin et al., 2000).  

 

Mutations or the deletion of conserved N-terminal PH domain residues rendered 

PLD1, PLD2 and Spo14p inactive in vivo due to a change in localisation (Sciorra et 

al., 2002).  The removal of the N-termini of PLD1 and PLD2 resulted in increased 

basal activity and responsivity to small G-protein activators (Sung et al., 1999a; 

Sung et al., 1999b; Sciorra et al., 2002).  Deletion of the N-terminus of PLD2 

(including the PH domain) resulted in increased catalytic activity and responsiveness 

to Arf stimulation (Sciorra et al., 2002). In addition, a chimera of PLD2 with an 

insertion of the characteristic „loop‟ region of PLD1 decreased basal PLD2 activity, 

suggesting a regulatory role of basal PLD activity (Sciorra et al., 2002).  Deletion of 

the N-termini of human PLD1 (325 residues) and mouse PLD2 (308 residues) did not 

affect their binding affinity or activation by PtdIns(4,5)P2 (Sciorra et al., 1999).  This 

suggests that the regulation of PtdIns(4,5)P2 activation of PLD occurs via another 

PtdIns(4,5)P2- specific binding domain (Sciorra et al., 1999; Sciorra et al., 2002).  A 

polybasic motif has been identified in both PLD1 and PLD2 is thought to mediate 

PtdIns(4,5)P2 stimulation of PLD.  The PH domain is selective for PtdIns(4,5)P2 but 

with a lower affinity than the polybasic motif, and the two synergistically function to 

target PtdIns(4,5)P2-rich membranes (Sciorra et al., 2002).  PLD1 localises to the 

Golgi apparatus and endosomes in COS7 cells and, upon stimulation, migrates to the 
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plasma membrane and then returns to the endosomes (Du et al., 2003). PLD1 

(without PX or PH domains) maintains its ability to translocate to the plasma 

membrane via interactions with its PtdIns(4,5)P2-specific binding site (Du et al., 

2003).  However, although plasma membrane translocation is not affected, the return 

of PLD1 to perinuclear endosomes was inefficient without PX and PH domains (Du 

et al., 2003).  The specific role of the PH domain in PLD activation and membrane-

targeting is complex and has yet to be fully elucidated.  
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1.2.4: Polybasic motif 

 

The polybasic motif has been identified in PLD which is PtdIns(4,5)P2-dependent for 

activity such as mammalian PLD1 and PLD2, and yeast Spo14p.  The PH domain is 

required for PtdIns(4,5)P2 specificity, however it is thought that the binding affinity 

and activation of PLD is regulated by the less specific but higher affinity polybasic 

motif (Sciorra et al., 1999; Sciorra et al., 2002).  The polybasic motif is characterised 

by a sequence of 21 amino acids rich in charged (i.e. basic) residues which are 

conserved in combination with aromatic and aliphatic residues, typically comprised 

of six arginine, lysine or histadine amino acid residues (Sciorra et al., 1999; Sciorra 

et al., 2002; McDermott et al., 2004).  The location of the motif is controversial but 

has been identified between conserved region II and the second HKD motif, close to 

the catalytic core (see Fig. 1.2 - Sung et al., 1999b; Sciorra et al., 2002; Mansfeld 

and Ulbrich-Hoffmann, 2009).  Mutations of the polybasic motif in human PLD2 and 

yeast Spo14p did not affect their localisation but reduced their responsiveness to 

PtdIns(4,5)P2 and were rendered non-functional (Sciorra et al., 2002).  This supports 

the theory that the PH domain and polybasic motif function together to target PLD to 

the appropriate intracellular compartment (using PtdIns(4,5)P2 specificity and 

binding), thus ensuring enzyme activity.   
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1.2.5: PLD catalysis 

 

Members of the PLD superfamily are characterised by the presence of a conserved 

catalytic HxK(x)4D(x)6GSxN (HKD) motif (where x is any amino acid – Ponting 

and Kerr, 1996; Stuckey and Dixon, 1999).  The HKD motif (otherwise known as 

conserved regions (CR) II and IV) is comprised of conserved histidine, lysine, 

aspartate and asparagine residues essential for enzymatic activity (Ponting and Kerr, 

1996; Stuckey and Dixon, 1999).  The bacterial endonuclease Nuc is a member of 

the PLD superfamily with only one HKD and four short motifs which are common to 

all family members (Ponting and Kerr, 1996).  However, most members of the PLD 

superfamily have two HKD motifs and the four short motifs appear in duplicate (i.e. 

located between domains I and II, and domains III and IV – Ponting and Kerr; 

McDermott et al., 2004).  This duplication of conserved regions led to the 

supposition that PLD is a bi-lobed enzyme which is the product of a gene duplication 

and fusion event (Ponting and Kerr, 1996).  Point mutations of residues in either 

HKD motif of PLD1 rendered the enzyme inactive (Sung et al., 1997; Sung et al., 

1999a).  The basic lysine residue of the HKD motif is thought to aid binding to an 

acidic substrate and when mutated results in enzyme inactivity (Sung et al., 1997; 

Davies et al., 2002; Fedeli et al., 2006).  Similar mutagenesis experiments on the 

HKD motifs of PLD2 and yeast Spo14p enzymes corroborated data indicating that 

both HKD motifs were necessary for catalytic activity (Sung et al., 1999a; Sung et 

al., 1999b).  Mutation of the lysine residue of the second HKD motif of SPO14 

results in enzyme inactivity (in vitro) and inhibition of meiosis (Sung et al., 1997).   

 

Two models of PLD catalysis were proposed, the first of which suggested that each 

HKD motif functioned independently, and the other that the HKD motifs dimerise to 

form a single active site (Ponting and Kerr, 1996).  As mutations in one HKD motif 

resulted in an inactive lipase, it is probable that the active site of PLD is an HKD 

motif dimer (Sung et al., 1997; McDermott et al., 2004).  In addition, when the C- or 

N-termini of mammalian PLD1 (isolated from rat brain) were expressed individually 

in COS7 cells there was no PLD activity (Xie et al., 1998).  However, when the two 

were co-expressed in the COS7 cell line wildtype PLD1 activity was restored (Xie et 

al., 1998).  The reassociation of N- and C-termini occurred exclusively in vivo and 

was dependent on the conserved HKD motifs (Xie et al., 1998; Xie et al., 2000).  
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This further supports the theory that both HKD motifs are needed for PLD catalysed 

hydrolysis of PtdCho. 

 

The bacterial endonuclease Nuc which has only one HKD motif and one copy of the 

four short motifs was the first member of the PLD superfamily to be crystalised 

(Ponting and Kerr, 1996; Stuckey and Dixon, 1999).  Nuc was isolated from the 

pKM101 plasmid of Salmonella typhimurium and the crystal structure of this 

monomer provided information about how HKD motifs form dimers.  Two HKD 

motifs from separated Nuc endonucleases lie parallel on the DNA forming a single 

active site connected by hydrogen bonds (Stuckey and Dixon, 1999).  Resolving the 

crystal structures of other PLD superfamily members, including the (human) DNA 

repair enzyme tyrosyl-DNA phosphodiesterase (Tdp1) which also has one HKD 

motif, reinforced that the catalytic site of PLD superfamily members exists as a 

dimer of two HKD motifs (Davies et al., 2002).  Although HKD motifs of 

mammalian PLDs are also thought to form dimers, it is unclear whether these are 

homodimeric (between HKD motifs of the same PLD) or heterodimeric (between 

HKD motifs of separate PLDs).  Recent studies proposed that rat PLD (rPLD1 and 

rPLD2) have the potential to exist as both homodimers and heterodimers (Kam and 

Exton, 2002). 

 

In vitro experiments using plant PLD (from cabbage) and radio-labelled 

phosphatidylglycerol (substrate), suggested the presence of a phosphatidyl-enzyme 

intermediate following hydrolysis or transphosphatidylation (Stanacev and Stuhne-

Sekalec, 1970).  This catalytic mechanism was dubbed a „ping-pong‟ reaction 

whereby PLD catalysis involves a phosphatidylated enzyme intermediate (Ponting 

and Kerr, 1996).  In the past Nuc has been used to identify the histidine of the HKD 

motif as a nucleophile in catalysis (Gottlin et al., 1998).  Crystallisation of the 

endonuclease further elucidated the role of the histidine residues forming the 

homodimeric catalytic site of Nuc (Stuckey and Dixon, 1999).  The histidine residue 

from one HKD motif acts as a nucleophile and attacks the phosphate of the 

phosphodiester bond, thus forming a covalently bonded phosphoenzyme intermediate 

(see Fig. 1.3 – Stuckey and Dixon, 1999).  The histidine residue of the second HKD 

motif acts as an acid and protonates the leaving group of lipid.  The reaction then 

progresses to form the product (PtdOH) in the presence of water through hydrolysis, 
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or Ptd-alcohol in the presence of primary alcohol through transphosphatidylation 

(Stuckey and Dixon, 1999).  Experiments using mammalian PLD and more recently 

PLD from Streptomyces septatus TH-2 have been used to further clarify the role of 

HKD residues in PLD catalysis (Sung et al., 1997; Uesugi et al., 2005; Uesugi et al., 

2007).  Recent studies have identified the N-terminal HKD motif as the nucleophile 

in the first part of PLD catalysis, and the effect of specific residues on substrate 

recognition (Uesugi et al., 2005; Uesugi et al., 2007).           

 

 

 

Figure 1.3: PLD hydrolysis and transphosphatidylation reactions with a PtdCho 

substrate.  The figure summarises hydrolysis and transphosphatidylation of PtdCho 

by PLD where there is a covalently bonded PLD-PtdOH intermediate.  Both 

hydrolysis and transphosphatidylation reactions involve the nucleophilic attack of the 

diester phosphate group by either water or a hydroxyl group (i.e. from a primary 

alcohol), respectively (McDermott et al., 2004).  The diagram is modified from 

Uesugi et al., 2007 and Uesugi and Hatanaka, 2009 and X represents a polar group. 
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Transphosphatidylation is a transesterification reaction unique to PLD superfamily 

members.  It was first identified in plant PLD (using cabbage PLD – Yang et al., 

1967) and was developed to quantify PLD activity in vivo (Wakelam et al., 1995).  

Transphosphatidylation occurs in the presence of a primary alcohol (usually butan-1-

ol) which PLD binds to preferentially (up to 1000-fold preference) over water 

(Frohman and Morris, 1999).  It results in accumulation of the metabolically stable 

phosphatidylalcohol (Ptd-alcohol) instead of easily degraded PtdOH.  The stability of 

Ptd-alcohol enables in vivo PLD activity assays and can also act as a „functional‟ 

inhibitor of PLD activity in vivo.     

 

The vaccinia virus protein VP37 has one HKD motif which is required for cell to cell 

spread of vaccinia virus and is thought to be functionally homologous to mammalian 

PLD (Sung et al., 1997).  Although there are many conserved sequences in PLD, 

they are not all essential for enzymatic activity.  The serine residue of the HKD motif 

forms covalent bonds with PtdOH resulting in a PLD-PtdOH intermediate.  The 

PLD1 lysine-898 residue of the HKD motif substituted with arginine maintained the 

basic side group but altered orientation and distance from the protein backbone 

(Sung et al., 1997).  This mutant was inactive both in vivo (expressed in COS7 cells) 

and in vitro, and did not respond to small G-protein activators (PKCα, Rho A or 

Arf1).  Mutating the lysine residue did not impact upon PLD1 localisation and was 

corroborated using mouse PLD2, which was also inactive when the corresponding 

lysine residue was substituted with arginine (Sung et al., 1999b).   

 

The role of lysine and aspartate residues varies depending on the enzyme substrate.  

The crystal structure of the Nuc endonuclease implicated both lysine and aspartate 

residues in binding and neutralising the substrate (Stuckey and Dixon, 1999; 

McDermott et al., 2004).  Later, the crystal structure of Streptomyces sp. strain PMF 

PLD was compared to that of Nuc from S. typhimurium (Leiros et al., 2000).  The 

three dimensionally reconstructed structures were similar, however the coordinate 

bond of the histidine residues in the active site varied between the two.  Aspartic acid 

residues were located away from the histidine and active site, which may facilitate 

deeper penetration of phosphate into the active site (Leiros et al., 2000).  

       

The conserved regions of PLD superfamily members have been extensively 
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investigated using dimerised mammalian PLDs as well as bi-lobed monomer PLDs.  

Although PX and PH domains are important for PKCα activation, lipid binding and 

PtdIns(4,5)P2 specificity, some domains are dispensable in terms of catalytic activity 

(Sung et al., 1997).  The least characterised region of PLD is the first conserved 

domain (CR I) in which some point mutations render the enzyme inactive whereas 

others hardly affect enzymatic activity.  The mutation of leucine-405 to aspartic acid 

results in PLD inactivity, whilst the substitutions of glycine-412 with alanine or 

glutamic acid have minimal impact (McDermott et al., 2004).  The deletion of this 

region in PLD1 did not affect activity or PtdIns(4,5)P2 binding (Sung et al., 1999b; 

McDermott et al., 2004). 

 

The IYIENQF motif is found in eukaryotic PLDs and has been characterised in the 

Torpedo acetylcholinesterase (ActChoEase) enzyme (Harel et al., 1993).  The 

catalytic site of ActChoEase is rich in aromatic residues (such as tryptophan, 

phenylalanine and tyrosine) and specific for acetylcholine hydrolysis (Harel et al., 

1993).  There are 14 conserved aromatic amino acid residues which contribute to 

approximately 60% of the total surface area of ActChoEase (Xu et al., 2008).  The 

conserved domain III (CR III) of PLD has a sequence enriched with aromatic amino 

acids which could increase the rate of catalysis (e.g. by interacting with the choline 

head group of PtdCho) or limit substrate specificity (Frohman et al., 1999).  This 

region also encodes a consensus caveolin binding sequence φXφXXXXφ, where φ is 

an aromatic residue (Frohman et al., 1999; McDermott et al., 2004).  The PLD 

sequence of this motif is Y/FxYxxxF/Y which is thought to target PLD1 to the 

membrane and PLD2 to caveolae (Okamoto et al., 1998; Frohman et al., 1999). 

 

The serine reside of a short motif (IGSANIN) conserved in PLD1 located nearest the 

C-terminus is necessary for correct localisation, catalytic activity and post-

translational modification (Manifava et al., 1999).  Palmitoylation increases protein 

hydrophobicity and may assist in PLD1-phospholipid interaction (Manifava et al., 

1999).  Modification of the serine-911 residue of PLD1 to alanine resulted in the loss 

of palmitoylation and changed the expression of PLD1 from punctate perinuclear 

localisation to cytosolic in COS cells (Manifava et al., 1999).  This suggests that 

palmitoylation may not only be dependent on the correct residues but also the 

catalytic activity of PLD1 (Manifava et al., 1999; McDermott et al., 2004).      
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1.2.6: Expression and subcellular localisation of PLD1 and PLD2 

 

PLD1 and PLD2 are expressed in a variety of tissues and cell lines and both isoforms 

are commonly co-expressed (although this is not always the case – Meier et al., 

1999).  Expression of PLD in mammalian tissues and cell lines has been analysed 

primarily using mRNA levels owing to the lack of high affinity antibodies to PLD 

isoforms (Meier et al., 1999).  Although mRNA levels have been used as „markers‟ 

for PLD expression, it is unclear how these correspond to protein expression 

(McDermott et al., 2004).  The two isoforms are expressed in tissues ranging from 

heart to brain and have varying expression levels in tissues of the same species, thus 

implying different functional roles (Meier et al., 1999; Millar et al., 1999; 

McDermott et al., 2004).  The splice variants of the two PLD isoforms are variable in 

expression levels.  PLD1 has two splice variants, PLD1a and PLD1b, where PLD1a 

has an insertion which does not affect enzymatic activity.  Studies assessing 

expression levels of hPLD1a and hPLD1b found that the shorter splice variant, 

hPLD1b, was more abundant than hPLD1a in most cell lines (Steed et al., 1998).  

Although in vitro assays suggested that PLD1a and PLD1b splice variants had 

similar properties in vitro, studies analysing expression levels of rPLD1a and 

rPLD1b in a yeast model (S. pombe) indicated that the two splice variants responded 

differently to small G-protein activators (Hammond et al., 1997; Katayama et al., 

1998).  There are three splice variants of PLD2; PLD2a, PLD2b and PLD2c which 

vary in abundance depending on the type of tissue or cell line (Steed et al., 1998; 

Millar et al., 1999).  PLD2a and PLD2b are expressed in approximately equal 

amounts and are the most abundant PLD2 isoforms (although PLD2a is slightly more 

prominent – Steed et al., 1998; Millar et al., 1999).  PLD2c has a 56 base pair 

insertion which prematurely terminates the polypeptide resulting in truncated protein 

(Steed et al., 1998).  PLD2c has the lowest abundance and is expressed at low levels 

in some tissues, for example brain and skeletal muscle (Steed et al., 1998). 

 

The subcellular localisation of PLD1 and PLD2 remains unclear as localisation 

varies in different cell lines and characterisation is often dependent on the particular 

molecular markers or antibodies used to probe organelles and assess co-localisation.  

PLD1a and PLD1b localise to late endosomes and lysosomes of NRK cells but not 

the Golgi apparatus or the ER (Toda et al., 1999).  Similarly GFP-PLD1b localised to 
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the secretory granules and lysosomes of RBL-2H3 cells (but not the Golgi apparatus) 

and migrated to the plasma membrane upon stimulation (Brown et al., 1998).  Using 

U937 promonocytic leukocytes and L1210 lymphocytic leukemia cells, PLD1 was 

also found to localise to the plasma membrane in unstimulated cells (Kim et al., 

1999).  In the HeLa cell line, PLD1a and PLD1b displayed endosomal localisation 

but did not localise to the Golgi apparatus, caveolae or clathrin coated vesicles 

(Hughes and Parker, 2001; reviewed in McDermott et al., 2004).  Further studies 

using NIH-3T3 and COS7 cells identified PLD1 localisation in caveolae-enriched 

microdomains (Kim et al., 2000; Xu et al., 2000).  PLD1 localises to the plasma 

membrane (co-localising with EGFR) upon EGF stimulation and is also found in 

caveolin-1 and vesicular structures in the COS7 cell line (Han et al., 2002b).  GFP-

PLD1 co-localised with antibody markers for multivesicular endosomes and late 

endosomes in HeLa cells (Hiroyama and Exton, 2005b).  The same study showed 

GFP-PLD1 localisation in the trans-Golgi but not the ER, early endosomes or 

lysosomes of HeLa cells (Hiroyama and Exton, 2005b).  In the rat pituitary cell line 

GH3, nuclear localisation of PLD1 was enhanced substantially in response to 

brefeldin A, which resulted in the collapse of the Golgi apparatus (Freyberg et al., 

2001).   

 

PLD2 is constitutively active when over-expressed in COS7 cells and translocates 

from the plasma membrane to sub-membranous vesicles upon serum stimulation 

(Colley et al., 1997; Gemeinhardt et al., 2009).  PLD2 localised with Golgi and ER 

markers in the COS7 cell line and migrated to the cell edge upon serum stimulation 

(Divecha et al., 2000).  PLD2 also localises to the plasma membrane of the RBL-

2H3 mast cell line and to the plasma membrane and cytosolic particles in the HeLa 

epithelial cell line (Cockcroft et al., 2001; Hiroyama and Exton, 2005b).  GFP-PLD2 

did not localise with markers for the ER, Golgi or early endosomes but did co-

localise with β-actin in HeLa cells (Lee et al., 2001; Hiroyama and Exton, 2005b).  

PLD2 expression was also found in the cytosol of HeLa cells where PLD2 

translocated to membrane ruffles and co-localised with PIP kinase Iα in EGF-

stimulated cells (Honda et al., 1999).  PLD2 localised with endothelial caveolae in 

primary human endothelial cells and was found in caveolin-enriched membrane 

microdomains (CEMMS) in NIH 3T3 fibroblasts (Xu et al., 2000; Cho et al., 2004).  

In rat NRK cells PLD2 localises to the perinuclear Golgi region and was distributed 



 17 

throughout the cell in dense cytoplasmic punctiform structures – a fraction of which 

localised with caveolin-1 and the plasma membrane (Freyberg et al., 2002).  PLD2 

was present in the Golgi apparatus exclusively in the cisternal rims and peri-Golgi 

vesicles of rat pituitary cells and, in response to brefeldin A, PLD2 translocated to 

the nucleus (Freyberg et al., 2002). 
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1.3: Phospholipase D activation and regulation (PLD1 and PLD2) 

 

1.3.1: PLD activity in the presence of lipids 

 

The acidic phospholipids which constitute mammalian membranes are 

phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidic acid 

(PtdOH) and phosphatidylinositol (PtdIns – Lemmon et al., 2008).  Inositol lipids are 

involved in a diverse range of cellular functions including cytoskeletal rearrangement, 

protein kinase activation, vesicular trafficking and exocytosis (Hinchilffe et al., 1998; 

McDermott et al., 2004).  The simplest member of this lipid family is PtdIns which 

makes up approximately 0.5-1.0% of the lipid layer, which faces inside the cell, 

compared to approximately 25-35% PtdSer (McLaughlin and Murray, 2005; 

Lemmon et al., 2008).  PtdIns has a 1,2-diacylglycerol (DAG) backbone and 

contains five free hydroxyl groups on the inositol ring (McDermott et al., 2004; 

Lemmon et al., 2008).  PtdIns can be phosphorylated at the 3-, 4-, and/or -5 positions 

to produce phosphatidyl bis- or tris- phosphates (McDermott et al. 2004, Lemmon et 

al., 2008).  Several members of the PtdIns lipid family can directly influence PLD 

activity, although the most potent member is phosphatidylinositol 4,5-bisphosphate 

(PtdIns(4,5)P2), which is necessary for both mammalian and yeast PLD activity 

(DiNitto and Lambright, 2006; Seet et al., 2006; Mansfeld and Ulbrich-Hofmann, 

2009).  Although PtdIns(4,5)P2 is the most effective PLD activator, PtdIns(3,4,5)P3 is 

also effective (Hammond et al., 1997).  Other PtdIns family members, such as PtdIns, 

PtdIns(3,4)P2 and PtdIns(3)P, are either nearly or fully ineffective in respect to PLD 

stimulation (Liscovitch et al., 1994; Hammond et al., 1997; Hodgkin et al., 2000).   

 

Cellular levels of PtdIns(4,5)P2 exceed agonist stimulated-levels of PtdIns(3,4,5)P3, 

PtdIns(3,4)P2 or PtdIns(3)P and agonist-stimulated PLD activity has been 

demonstrated in the absence of measurable PtdIns 3-kinase activity (Cross et al., 

1996).  If PtdIns 3-kinase does regulate PLD, it is unlikely to be direct regulation.  

PtdIns(3,4,5)P3, a product of PtdIns 3-kinase action, has been shown to regulate the 

GTP status of ARF by interacting with the PH domain of the guanine nucleotide 

exchange factor (GEF) ARNO (Chadrin et al., 1996; McDermott et al., 2004).  

 



 19 

Whilst investigating the effect of a GTPγS-dependent cytosolic factor (later 

identified as Arf), which stimulated PLD activity in human promyelocytic leukemic 

(HL60) cells, Ptd(4,5)P2 was identified as essential for PLD activity and as 

functioning synergistically in Arf stimulation of PLD (Brown et al., 1993).  In 

addition, mammalian PLD isolated from rat brain membrane was potently stimulated 

by PtdIns(4,5)P2 in vitro (Liscovitch et al., 1994).  Maximal activity of partially 

purified PLD is increased tenfold in a PtdIns(4,5)P2-specific manner, however other 

more abundant lipids (e.g. PtdSer, PtdOH, PtdIns(4)P or PtdIns) were ineffective in 

stimulating PLD activity (Liscovitch et al., 1994).  Similarly, PtdIns(4,5)P2 potently 

increased the activity of partially solubilised PLD isolated from human atrial 

myocardium measured using fluorescent in vitro HPLC assays (Kruz et al., 2004).  

Another member of the PtdIns lipid family, PtdIns(3,4,5)P3, produced from 

PtdIns(4,5,)P2 by PtdIns 3-kinase, also stimulated myocardial PLD activity with the 

same potency as PtdIns(4,5)P2 but with lower efficiency (Kruz et al., 2004).  In vitro 

assays using glutathione-S-transferase labelled human PLD1b (GST-hPLD1b) 

established that both natural polyunsaturated PtdIns(4,5)P2 and synthetic dipalmitoyl 

PtdIns(4,5)P2 were effective GST-hPLD1b activators in the presence of Rac1 

(Hodgkin et al., 2000).  Furthermore, the synthetic PtdIns(3,4)P2 lipid was also an 

effective GST-hPLD1b activator (Hodgkin et al., 2000).  PLD1 bound PtdIns(4,5)P2 

with high specificity and affinity in lipid vesicles (independent of PtdCho content) 

and was not activated by the PtdIns(4,5)P2 headgroup (inositol 1,4,5-triphosphate) or 

the DAG backbone (Hodgkin et al., 2000).   

 

The aminoglycoside antibiotic neomycin is a high-affinity ligand of PtdIns(4,5)P2 

and inhibits membrane-bound PLD, although it has no effect on detergent solubilised 

or partially purified PLD activity (Liscovitch et al., 1994; Kurz et al., 2004).  

Neomycin induced inhibition of partially purified rat brain PLD can be reversed by 

adding PtdIns(4,5)P2, indicating that neomycin binds endogenous PtdIns(4,5)P2 

(Liscovitch et al., 1994).  Although PLD2 is not activated by some small G-proteins 

that induce PLD1 activity, PtdIns(4,5)P2 is necessary for the activity of both 

mammalian isoforms (Hammond et al., 1995; 1997; Colley et al., 1997).  Both 

mammalian and yeast PLD PtdIns(4,5)P2 binding specificity is attributed to the 

highly conserved pleckstin homology (PH) and phox homology (PX) domains (Steed 

et al., 1998; Holbrook et al., 1999; Seet et al., 2006).  The PH domain of human 
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PLD1 has been identified as essential for PtdIns(4,5)P2 specificity and PLD1 activity 

and localisation (Hodgkin et al., 2000).  Two lipid binding pockets have been 

identified on the PX domain of rat PLD1 which are thought to cause the high level of 

specificity to PtdIns(4,5)P2 and other members of the PtdIns lipid family to a lesser 

extent (Stahelin et al., 2004).   

 

In vivo synthesis of PtdIns(4,5)P2 originates predominantly from PtdIns(4)P, by type 

I PtdIns 4-P 5-kinases (PtdIns(4)P 5-kinases), such as type Iα PtdIns(4)P 5-kinase in 

the COS7 cell line (Divecha et al., 2000).  PtdIns(4)P kinase, purified from bovine 

brain membranes could be activated by PtdOH by a factor of 20 in micelles 

containing a combination of PtdIns(4)P and Triton X-100 (Moritz et al., 1992).  

Furthermore, activation of PtdIns(4)P kinase by PtdOH was completely inhibited in 

the presence of PtdIns(4,5)P2.  Further experiments utilising natural membranes and 

PtdOH generated by PLD catalysis from purified from rat brain, suggested that 

PtdOH may be an essential regulator of PtdIns(4)P kinase (Moriz et al., 1992).  

 

In COS7 cells, both PLD1 and PLD2 interact with type Iα PtdIns(4)P 5-kinase and in 

vivo PLD2 activity can be regulated solely by expression of this PtdIns(4)P 5-kinase  

(Divecha et al., 2000).  Co-expression of PLD2 and type Iα PtdIns(4)P 5-kinase in 

porcine aortic endothelial (PAE) cells showed that the lipid kinase altered 

localisation to cytoplasmic punctiform structures thus co-localising with PLD2 

(Divecha et al., 2000). Transfection of PAE cells using haemagglutinin (HA)-tagged 

type Iα PtdIns(4)P 5-kinase resulted in plasma membrane localisation and increased 

activation in response to lyso-PtdOH stimulation (Jones et al., 2000).  Type Iα 

PtdIns(4)P 5-kinase activation was notably reduced in cells pre-treated with butan-1-

ol, therefore indicating the involvement of PLD as the in vivo generator of PtdOH 

(Jones et al., 2000).  Arf6 (a PLD1 activator) also co-localises with type Iα 

PtdIns(4)P 5-kinase in membrane ruffles of agonist-stimulated HeLa cells, and data 

suggests that this lipid kinase is a downstream effector of Arf6  (Honda et al., 1999).  

Similarly, PLD2 migrates to membrane ruffles suggesting elevated PtdIns(4,5)P2 

(Honda et al., 1999).  Studies utilising purified lysosomes and Golgi membranes 

have identified PLD activation as essential for the synthesis of PtdIns(4,5)P2 

(Arneson et al., 1999; Siddhanta et al., 2000).  PtdOH generated by a PLD1-like 

enzyme, located on the lysosomal surface, potently stimulates type I PtdIns(4)P 5-
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kinase and is inhibited by butan-1-ol treatment (Arneson et al., 1999).  Similarly in 

vitro PtdIns(4,5)P2 generation by Golgi membranes was halted upon treatment with 

butan-1-ol (Siddhanta et al., 2000).  This association between PLD localisation and 

activity with that of PtdOH activation of type Iα PtdIns(4)P 5-kinase suggests a 

positive feed-back loop (McDermott et al., 2004).   
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1.3.2: Protein kinase C 

 

The protein kinase C (PKC) superfamily has three subfamilies; the classical isoforms 

(α, β and γ), the novel isoforms (δ, ε, ε, ζ and µ) and the atypical isoforms (δ and λ).  

The classical PKC isoforms can be stimulated by DAG, Ca
2+

 or phosphatidylserine 

(PtdSer)-stimulated, whilst novel isoforms are not Ca
2+

 regulated and atypical 

isoforms are not regulated by Ca
2+

 or DAG (Singer et al., 1996; McDermott et al., 

2004).  PLD can be stimulated using Ca
2+

 ionophores (e.g. A23187) and phorbol 

esters (e.g. PMA) in a variety of tissues and immortalised cell lines which implicates 

a Ca
2+

/DAG-sensitive PKC (e.g. classical or novel PKC isoforms – McDermott et al., 

2004).  In addition, prolonged pre-treatment of cells with phorbol esters or PKC 

inhibitors (e.g. Ro 31-8220) results in the abolishment of agonist-stimulated PLD 

activity (Min et al., 1998b).  There are two types of PKC inhibitors, selective 

inhibitors, such as the benzophenanthridine alkaloid chelerythrine (selective for Ca
2+

 

or phospholipid-dependent PKC), and non-selective inhibitors, such as staurosporine 

(Herbert et al., 1990; Bosch et al., 1999; Singer et al., 1996).  

 

Studies have shown that activation of PLD by PKC isoforms is complex and may 

occur either through phosphorylation, idependently of phosphorylation or indirectly 

as discussed below (Singer et al., 1996; Brown et al., 1998; Min and Exton, 1998; 

Feng et al., 2000).  PLD is stimulated by PKCα, PKCβ1 and PKCβ2 but not PKCγ or 

any other novel or atypical PKC isoforms in vitro (Frohman et al., 1999).  This in 

vitro PLD activation occurred without the addition of phorbol esters, although in the 

presence of phorbol esters, the potency and efficacy of PKC-mediated PLD 

activation was augmented (Frohman et al., 1999).  In vivo studies (using either Swiss 

3T3 or Rat-6 fibroblasts) have established that PKCα and PKCβ1 enhance agonist-

mediated PLD activation using platelet-derived growth factor and endothelin-1 

respectively (Pai et al., 1991; Eldar et al., 1993). Dephosphorylation of PKCα 

(purified from porcine brain cytosol), using protein phosphatase 1γ or 2A, resulted in 

a loss of kinase activity but did not affect PKCα activation of PLD, suggesting that 

PKC-activation of PLD is independent of phosphorylation (Singer et al., 1996; 

McDermott et al., 2004).  Furthermore, rat brain PLD1 (rPLD1) expressed in PMA-

stimulated Rat-1 fibroblasts indicated that the PKCα binding domain of rPLD was 

located on the N-terminus and formed a multi-component complex which underwent 



 23 

serine/threonine phosphorylation (Min and Exton, 1998).  Serial deletions of the first 

319 N-terminal amino acid residues of purified recombinant PLD1 showed enhanced 

PLD activity.  The most enhanced mutant resulted from deletion of the first 168 

amino acid residues, indicating a regulatory domain in this region (Park et al., 1998).  

N-terminal residues 51-115 of recombinant PLD1 were essential for both PMA 

stimulation and PKCα activation of the phospholipase (Park et al., 1998).  Further 

studies support this data showing that deletions of the first 325 N-terminal amino 

acid residues of PLD1 are required for PKCα-mediated PLD1 activation both in vivo 

and in vitro, that PLD1 and PKCα are closely associated and can be co-

immunoprecipitated, and that this region functions to inhibit basal PLD activity in 

vivo (Sung et al., 1999b).  The data may suggest that PKC activation of PLD1 is a 

result of alleviating an inbuilt inhibition (Park et al., 1998; McDermott et al., 2004).  

However, co-expressing PLD1 with dominant negative PKCα (mutated at the ATP-

binding site) resulted in a notable inhibition of phosphorylation and PLD1 activation 

upon EGF stimulation, suggesting a phosphorylation dependent and independent 

mechanism of PLD1 activation by PKC which has yet to be fully clarified (Frohman 

et al., 1999; Han et al., 2002b). 

 

Although PKC association with PLD1 has been extensively studied, PKC regulation 

of PLD2 has also been reported.  PKCδ was co-immunoprecipitated with PLD2 in rat 

phenochromocytoma PC12 cell extracts in vivo and associated with PLD2 in a PMA-

dependent manner in vitro (Han et al., 2002a). Expression of PLD2 in PC12 cells 

increased PMA and bradykinin-stimulated PLD activity, and upon stimulation PLD2, 

was phosphorylated (Han et al., 2002a).  The specific inhibition of PKCδ (using 

rottlerin) prevented PMA-stimulated PLD2 activity in PC12 cells, suggesting 

phosphorylation-dependent regulation of PLD2 (Han et al., 2002a).  

 

Although PLD is activated by PKC, the mechanism by which the lipase is activated 

may be indirect.  PLD1 is known to translocate to the plasma membrane in response 

to agonist stimulation, e.g. PMA stimulation of RBL-2H3 cells (Brown et al., 1998).  

PKC (such as PKCβ) is also targeted to the plasma membrane of live cells by two 

membrane targeting domains known as the C1 and C2 regions (Feng et al., 2000).  

PKC translocation to the plasma membrane may then facilitate PLD interaction with 

both its substrate PtdCho and PtdIns(4,5)P2, a lipid activator (Feng et al., 2000; 
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McDermott et al., 2004).  The activation of PLD1 by PKC in the COS7 cell line 

resulted from direct PLD1 phosphorylation by PKC which occurred in the caveolin 

and plasma membrane (Kim et al., 2000).  Furthermore, PLD2 activation by PKCδ in 

vivo correlated to direct phosphorylation of PLD2 and translocation of PKCδ from 

the cytosol to the plasma membrane, where PLD2 was primarily localised (Han et al., 

2002a).  

 

PKCα synergistically stimulates PLD activity in combination with other small G-

protein activators such as Arf1, RhoA, Rac1 or Cdc42 (Singer et al., 1996; Hodgkin 

et al., 1999).  In Rat1 fibroblasts, PKCα binds to rPLD1 and another 220kDa 

phosphorylated protein in response to phorbol ester stimulation (Min and Exton, 

1998).  The 220kDa protein can be co-immunoprecipitated with rPLD1, indicating 

that PKC-mediated serine/threonine phosphorylation of PLD-associated proteins may 

ultimately result in PLD activation (Min and Exton, 1998).  Furthermore, 

phosphorylation of scaffolding proteins may also facilitate translocation of PLD 

(Min and Exton, 1998; Exton, 1999).  Synergistic activation of PLD by Arf and Rho 

family members and PKC may be attributed to the phosphorylation of guanine 

nucleotide exchange factors (GEFs) by PKC (Fleming et al., 1997; Exton, 1999).  In 

Swiss 3T3 cells, the Rac1-specific GEF, Tiam1, was selectively threonine 

phosphorylated in response to a range of stimulators including PMA and 

lysophosphatidic acid (Fleming et al., 1997).  Cells exposed to prolonged PMA 

treatment or treatment with a PKC inhibitor (Ro-31-8220) resulted in a dramatic 

reduction in the phosphorylation of Tiam1.  Furthermore, in vitro assays indicated 

that PKC activity was sufficient for threonine-phosphorylation of Tiam1 (Fleming et 

al., 1997).  PKC phosphorylation of Rho family GEFs, such as Tiam1, may activate 

small G-proteins which are known activators of PLD1 and thus stimulate PLD 

activity (Fleming et al., 1997; Exton, 1999).  Treatment of cells using clostridial 

toxins inhibits PMA stimulation of PLD, further indicating that PKC has an 

important role in PLD activation (Exton, 1999; McDermott et al., 2004). 

 

Although PKC and Arf family members have been found to work together as 

activators of PLD activity, several studies have suggested that the two proteins do 

not work synergistically.  PMA stimulation of PLD in the HEK cell line was 

characterised as phosphorylation-dependent and involving PKC independently from 
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Arf stimulation of PLD (Rümmenapp et al., 1997).  PKC activated PLD in HEK cell 

membranes required ATP and treatment with staurosporine (competitive at the ATP-

binding site) resulted in a dramatic decrease in PMA stimulation of PLD 

(Rümmenapp et al., 1997). 

 

Rat PLD1 was not activated synergistically by Arf3 and RhoA or by PKCα or 

PKCβII with these small G-proteins (Min et al., 1998a).  Synergistic activation of 

purified recombinant hPLD1b or PLD from detergent-extracted HL60 membranes, 

using a combinantion of PKCα, Arf1 and Cdc42 has been established (Hodgkin et al., 

1999).  In vitro data indicated that both PKCα and PKCβII directly phosphorylated 

rPLD1 and that this phosphorylation corresponded to the inhibition of the rPLD1 

catalytic site.  In vitro studies suggest that PKC negatively regulates rPLD1 activity 

by phosphorylation (Min et al., 1998a).  Furthermore, rPLD1 activation by PKCα 

and PKCβII, in response to PMA stimulation was ATP-independent (Min et al., 

1998a).  The presence of ATP may act as inhibitory to the activation of purified 

rPLD1 by PKC (Min et al., 1998a; Min and Exton, 1998).  The three residues 

identified in direct phosphorylation of rPLD1 by PKCα in vitro were serine 2, 

threonine 147 and serine 561 (Kim et al., 1999).  Mutation of any of these key 

phosphorylated residues resulted in significantly attenuated PLD activity in response 

to PMA stimulation in vivo (Kim et al., 1999).  Further in vivo studies using a triple 

rPLD1 mutant of these residues resulted in significantly attenuated PLD activation 

upon PMA stimulation (Kim et al., 2000).  Furthermore, PLD1 becomes threonine-

phosphorylated during PMA treatment of COS cells expressing wildtype PKCα (Kim 

and Exton, 2003).  PKCα lost the ability to bind to the PLD1 active site when the 

first 10 residues were deleted or residue 10 (phenylalanine) was mutated to alanine or 

aspartic acid (Kim and Exton, 2003).  In addition, time course experiments indicated 

that PMA stimulation of PLD1 reduced with time as phosphorylation increased.  This 

further supports negative regulation of PLD1 by PKCα, although phosphorylation is 

a slow process and initial activation of PLD1 was highly correlated with PKCα 

binding (Kim and Exton, 2003).   

 

Agonist activation of PLD also often results in the stimulation of PtdIns(4,5)P2 

hydrolysis by phospholipase C (PLC – Exton et al., 1997).  PLC hydrolysis of 

PtdIns(4,5)P2 ultimately results in diacylglycerol production and activation of PKC 
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(Exton et al., 1997).  An epithelial cell line expressing wildtype or mutant platelet 

derived growth factor (PDGF) receptor was used to investigate whether PLD 

activation was dependent upon PLC hydrolysis of PtdIns (Yeo et al., 1994).  PDGF 

stimulation of cells expressing wildtype PDGF receptors activated both PLD and 

PLC, however cells expressing kinase-deficient PDGF receptors did not show this 

effect (Yeo et al., 1994).  Stimulation of PLD and PLC was restored using a mutant 

PDGF receptor able to bind to PLCγ1 and no other signalling molecule (Yeo et al., 

1994).  PLCγ1 activation and corresponding PLD stimulation was probably PKC-

dependent as treatment of these cells with PKC-inhibitor R0-31-8220 or pre-

treatment with PMA resulted in notably reduced PDGF activation of PLD (Yeo et al., 

1994).  Furthermore, experiments using a fibroblast cell line stably expressing 

PLCγ1 indicated that PLD activation in response to PDGF stimulation is dependent 

on PLCγ1 expression (Lee et al., 1994).  Pre-treatment with tyrosine kinase 

inhibitors (such as staurosporine or genistein) resulted in dramatically reduced PLD 

activity and inhibition of PDGF receptor and PLCγ1 tyrosine phosphorylation in 

PDGF-stimulated cells (Lee et al., 1994).  Co-expression of PLD1 and PLCγ in 

HEK-293 cells resulted in increased basal PLD1 activity (Slaaby et al., 2000).  

Although basal PLD2 activity was unaffected by PLCγ, co-expression of PLCγ 

facilitated insulin stimulated PLD2 activation (Slaaby et al., 2000). Furthermore 

PLD2 was thought to be constitutively associated with PKCα in the HEK-293 cell 

line (Slaaby et al., 2000).  Both PLD1 and PLD2 were activated maximally when co-

transfected with PKCα in the presence of PLCγ in insulin-stimulated HEK-293 cells 

(Slaaby et al., 2000).     
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1.3.3: ADP-ribosylation factors 

 

ADP-ribosylation factor (Arf) family members are approximately 21kDa in size and 

conserved in both structure and function, sharing more than 60% identity in 

eukaryotes (Boman and Kahn, 1995).  The Arf family is divided into Arf and Arf-

like (Arl) proteins and are part of the regulatory GTP-binding protein Ras 

superfamily (Boman and Kahn, 1995).  The six ubiquitous mammalian Arf proteins 

have been divided into three classes and are categorised based on size, amino acid 

composition, gene structure and phylogenetic analysis (Boman and Kahn, 1995; 

Moss and Vaughan, 1998).  Mammalian Arf1, Arf2 and Arf3 are members of class I, 

Arf 4 and Arf5 are in class II and Arf6 is alone in class III (Moss and Vaughan, 1998; 

Donaldson and Honda, 2005).  Arf1, Arf3, Arf5 and Arf6 have been implicated in 

mammalian PLD activation and show only modest differences in potency and 

efficiency (Brown et al., 1993; Massenburg et al., 1994; Brown et al., 1995; 

Hiroyama and Exton, 2005a).  In vitro assays suggest that partially myristolyated 

recombinant Arf1 resulted in potent PLD activation (from human promyelocytic 

leukemic (HL60) cell membranes) similar to that of native protein, whereas non-

myristoylated Arf1 was a weak PLD activator (Brown et al., 1993).   

 

Although Arf stimulates PLD activity directly, other Arf regulatory proteins such as 

guanine nucleotide exchange factors (GEFs) may have a knock-on effect on Arf 

stimulation of PLD (Li et al., 2003).  Arf nucleotide site opener (ARNO)/cytohesin 

family GEFs are thought to prefer Arf1 as a substrate but may also interact with Arf6 

at the plasma membrane of some cell lines (Cohen et al., 2007).  Transiently 

expressed ARNO in a rat fibroblast cell line which overexpress human insulin 

receptors resulted in ARNO translocation to the plasma membrane in response to 

insulin (Li et al., 2003).  ARNO is thought to mediate Arf and PLD activation in 

response to insulin via the insulin receptor (Li et al., 2003).  Exchange factor for 

Arf6 (EFA6) is a Sec7 domain-containing Arf GEF, which is Arf6 specific and 

distinct from the ARNO family of GEFs (Franco et al., 1999).  EFA6 also has a 

homologue which contains a Sec7 domain, pleckstrin homology (PH) domain and 

the same ~150 C-terminal amino acids thought to be responsible for a coil motif 

(Derrien et al., 2002).  The EFA6 homologue also interacts with Arf6 both in vitro 

and in vivo (in baby hamster kidney cells) and so is a possible candidate for indirect 
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PLD regulation (Derrien et al., 2002).  Cytohesin-1 and general receptors for 

phosphoinositides (GRP1) are also known Arf GEFs both of which contain highly 

conserved Sec7 and PH domains (Roth, 1999).  The PH domains of GRP1 and 

cytohesin-1 are Arf1 specific, bind to PtdIns(3,4,5)P3 and may be recruited to 

membranes by PtdIns 3-kinase activity (Klarund et al., 1997; Meacci et al., 1997; 

Roth, 1999).        

 

Inhibitors such as the fungal metabolite brefeldin A have previously been used to 

characterise the role of Arf by inhibiting GEFs that are responsible for the activation 

of some Arf family members (Donaldson et al., 1992).  Brefeldin A treatment of 

cells results in interference of protein transport from the endoplasmic reticulum (ER) 

to the Golgi apparatus, resulting in protein acuumulation in the ER (Klausner et al., 

1992).  Brefeldin A treatment of human embryonic kidney (HEK) cells, stably 

expressing the muscarinic acetylcholine receptor (mAChR) human m3 subtype, 

resulted in the loss of mAChR-mediated PLD activation (Rümenapp et al., 1995).  

Inhibition of PLD activation was reconstituted in permabilised cells using purified 

recombinant Arf and was GTPγS-dependent (Rümenapp et al., 1995).  Arf proteins 

and their related nucleotide exchange factors regulate the signalling cascade leading 

from mAChR activation to PLD stimulation in HEK cells (Rümenapp et al., 1995).  

Furthermore, expression of dominant negative Arf1 with preference for the GDP-

bound state in HeLa cells resulted in inhibition of ER transport and had a brefeldin 

A-like phenotype (Dascher and Balch, 1994).  Although multiple studies have 

demonstrated inhibition of PLD stimulation in brefeldin A treated cells other studies 

have shown treatment with this fungal metabolite has no effect on PLD activity. 

Short (1 hour) treatment of HL60 cells with brefeldin A did not affect activation of 

PLD, therefore PLD is unlikely to be regulated by brefeldin A sensitive Arf in HL60 

cells (Guillemain and Exton, 1997).  However, prolonged (6 hours) treatment of 

HL60 cells with brefeldin A gradually and completely inhibited activation of PLD by 

formyl-Met-Leu-Phe and partially inhibited activation by PMA (Guillemain and 

Exton, 1997).  The result of prolonged brefeldin A treatment on HL60 cells may 

result from the disruption of the Golgi apparatus and inhibition of phospholipase C 

activity (Guillemain and Exton, 1997).  The Arf isoform responsible for PLD 

activation may be brefeldin insensitive or, alternatively, Arf does not participate in 

HL60 PLD activation.       
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HEK cells stably expressing mAChR human m3 subtype were carbachol-stimulated 

and digitonin permeabilised and Arf activity measured as cytosol to membrane 

localisation upon fractionation (Rümenapp et al., 1995).  Carbachol treatment of 

cells prior to permeabilisation resulted in a ~60% reduction in the release of Arf, 

therefore indicating an increase in membrane association which is essential for PLD 

activation (Rümenapp et al., 1995; McDermott et al., 2004).  In addition, Arf and 

RhoA induced maximal activity of membrane-associated PLD in HL60 cells in the 

presence of polyphosphorylated inositol lipids (Martin et al., 1996).  Endogenous Arf 

and Rho increased their association with membranes in GTPγS-treated HL60 cells, 

resulting in increased PLD activity (Martin et al., 1996).  The addition of EDTA 

resulted in decreased membrane translocation of Arf, increased translocation of Rho 

and a decrease in stimulated PLD activity (Martin et al., 1996).  Furthermore, PLD2 

and Arf6 co-localise to the plasma membrane of RBL-2H3 cells following antigenic 

stimulation (Cockcroft et al., 2001). 

 

Human PLD1a and PLD1b splice variants are both stimulated by Arf, as is rat PLD1 

(Hammond et al., 1995; Hammond et al.,1997; Park et al., 1997).  Reports indicate 

that both PLD1 and PLD2 can be Arf-stimulated, although the magnitude of response 

varies considerably.  Arf1 stimulated activity of hPLD1 expressed in Hi5 insect cells 

20-fold compared with a twofold increase of hPLD2 activity (Lopez et al., 1998). 

The PLD1 effector region of Arf1 was identified using substitution and deletion 

mutants of the small G-protein (Jones et al., 1999).  The site of interaction between 

PLD1 and Arf1 was identified as the α2 helix, part of the β2-strand and the N-

terminal helix inclusive of the subsequent loop (Jones et al., 1999).  Furthermore, the 

first 17 N-terminal amino acids of Arf1 were essential for PLD activity and secretion 

in HL60 cells (Jones et al., 1999).  The first 308 N-terminal amino acids of 

mammalian PLD2 are responsible for both the high basal activity and Arf regulation 

of PLD2 (Sung et al., 1999a).  Removal of the first 308 N-terminal amino acids of 

PLD2 resulted in decreased basal activity in vivo and heightened responsiveness to 

Arf proteins (Sung et al., 1999a).    Furthemore dominant negative Arf6 inhibited 

PLD2 and consitutively active Arf6 selectively activated PLD2 in HeLa cells 

(Hiroyama and Exton, 2005b).  Although some studies show that PLD2 is Arf-

regulated, PLD2 has historically been characterised as the oleate-dependent PLD 
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isoform.  Two forms of PLD solubilised from rat brain membranes suggested that 

one form of PLD was Arf1, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) 

and GTPγS-dependent, whereas the other form was oleate-dependent and unaffected 

by Arf, PtdIns(4,5)P2 and GTPγS (Massenburg et al., 1994).  Subcellular 

fractionation of RBL-2H3 cells indicates that Arf1-stimulated PLD migrates with 

markers for secretory granules, whereas oleate-stimulated PLD migrates with plasma 

membrane markers (Cockcroft et al., 2001).  This migration pattern is consistent with 

GFP-PLD1 localisation to secretory granules and GFP-PLD2 localisation to the 

plasma membrane (Brown et al., 1998; Cockcroft et al., 2001). 

 

PLD regulation by Arf can be through direct interaction between lipase and small G-

protein, or indirect interaction via Arf GEFs or via PtdIns(4)P 5-kinase stimulation 

(Martin et al., 1996).  Arf stimulation of PLD increased in the presence of Mg
2+

 ions 

and ATP in HL60 cells, possibly due to augmented PtdIns(4,5)P2 levels as a result of 

increased PtdIns(4)P 5-kinase activity (Martin et al., 1996).  A GTPγS-dependent 

protein was identified as the regulator of PtdIns(4)P 5-kinase in the presence of PLD-

generated PtdOH (Honda et al., 1999).  This PtdIns(4) 5-kinase activator was 

identified as a 21kDa protein which showed sequence homology with both Arf1 and 

Arf3 (Honda et al., 1999).  In vitro data indicated that Arf1, Arf5 and Arf6 could 

activate PtdIns(4)P 5-kinase in the presence of PtdOH and GTPγS.  Arf6 alone 

coincides spatially with the kinase in vivo and therefore PtdIns(4)P 5-kinase may 

bind PtdOH directly resulting in a conformational change facilitating the binding of 

activated Arf (Honda et al., 1999).       
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1.3.4: Rho family GTPases 

 

Rho family GTPases are found in all eukaryotic cell lines and form a distinct 

subsection of the Ras-related small GTPase superfamily (Aspenström et al., 2004; 

Jaffe and Hall, 2005).  Rho family GTPases are encoded by 22 mammalian genes 

which can be divided into eight groups and include RhoA, Rac1 and Cdc42, known 

phospholipase D (PLD) activators (Powner et al., 2002; Walker et al., 2002; 

Aspenström et al., 2004; Jaffe and Hall, 2005).  Rho family proteins are involved in a 

range of cellular processes including cytoskeletal rearrangement.  Transfection of 

RhoA in an endothelial cell line resulted in the assembly of actin stress fibres, 

whereas Cdc42 and Rac1 expression induced formation of thick bundles of actin 

filaments (Aspenström et al., 2004).  Rac1 was also involved in the formation of 

lamellipodia when expressed in the endothelial cell line (Aspenström et al., 2004).  

Rac1 was shown to mediate the rapid accumulation of actin filaments at the plasma 

membrane, thus producing membrane ruffles, in a growth-factor stimulated fibroblast 

cell line (Ridley et al., 1992).   

 

The role of Rho family GTPases in PLD regulation was first characterised in 

neutrophil subcellular sections, where GTPγS and phorobl 13-myristate 12-acetate 

(PMA) stimulated PLD resulted in phosphatidic acid (PtdOH) generation and 

transphosphatidylation (Olson et al., 1991).  This suggested that PLD activation 

required specific protein factors localised in the plasma membrane and, in the 

presence of inhibitors (e.g. guanosine diphosphate and guanosine monophosphate), 

failed to stimulate PLD activity (Olson et al., 1991).  Several studies have since 

implicated members of the Rho family of GTPases as PLD activators in a range of 

cell lines and tissues.  Activation of PLD has been established in tissues ranging from 

brain to lung and from the Golgi apparatus of Chinese hamster ovary (CHO) cells to 

the nuclei of Madin-Darby canine kidney (MDCK) cells (Balboa and Insel, 1995; 

Ktistakis et al., 1996; Provost et al., 1996).  Examples of PLD activation include 

activation by Cdc42 and RhoA in the cytosol of human promyelocytic leukemic 60 

(HL60) cells (Siddiqi et al., 1995).  Another Rho family protein RalA is thought to 

mediate tyrosine kinase activation of PLD (Jiang et al., 1995).  Rat tissues including 

liver, lung, spleen and brain showed an increase in PLD activity in response to RhoA 

in the presence of GTPγS (Provost et al., 1996).  Furthermore, in vitro PLD assays 
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utilising purified recombinant protein have identified direct activation of PLD1 by 

Rac1, Cdc42 and RhoA in the presence of GTPγS (Hodgkin et al., 1999).   

 

The yeast-2-hybrid system was used to elucidate RhoA interaction with 

phospholipase D (Yamazaki et al., 1999).  Activation of human PLD1 (hPLD1) by 

RhoA was identified at the C-terminus of the lipase whilst N-terminal hPLD1 did not 

interact with RhoA (Yamazaki et al., 1999). Furthermore, lipid modification of 

RhoA facilitated more efficient interactions between the lipase C-terminus and 

activator (Yamazaki et al., 1999).  Further studies using the yeast split-hybrid system 

were used to analyse binding and expression of RhoA in the COS7 cells to further 

elucidate RhoA-mediated hPLD1 activation (Du et al., 2000).  COS7 cells transiently 

expressing hPLD1 mutants were harvested and hPLD1 activity assayed in vitro in the 

presence of RhoA and Arf (Du et al., 2000).  Mutation at residues I870 (I870T) and 

combined mutations of Q975 and D999 (Q975R and D999V), resulting in near 

complete loss of RhoA, facilitated hPLD1 activation (Du et al., 2000).  Studies using 

phage display of different rat PLD1 (rPLD1) peptides identified the site of GTP-

bound RhoA interaction between amino acid residues 873-1024 of the rPLD1 C-

terminus (Cai and Exton, 2001).  Single mutations in amino acid residues 946-962 

resulted in reduced RhoA activation of rPLD1 (Cai and Exton, 2001).  Furthermore, 

double mutations of key residues such as K946A with K962A or V950A resulted in 

near complete loss of RhoA activation of rPLD1 and PMA stimulation showed no 

effect (Cai and Exton, 2001).  

 

The switch I domain is a common interaction site of Ras-like G-proteins and is 

essential for PLD activation (Bae et al., 1998).  Furthermore, isoprenyl modification 

of the switch I domain enhances in vitro activation of rPLD1 whilst mutation of the 

conserved residues (e.g. Y84, T37 and F39) eliminated PLD activation (Bae et al., 

1998).  A chimeric protein substituting the N-terminal third of Cdc42 with RhoA 

increased PLD activation which was attributed to the Q52 residue adjacent to the 

switch II domain (Bae et al., 1998).  Furthermore, Cdc42 binding and activation of 

hPLD1 is inhibited by point mutation Y40C in the Cdc42 switch I domain (Walker 

and Brown, 2002). 
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Cdc42 binds directly to PLD1 and consequently activates the lipase in the presence 

of GTP (Walker et al., 2000).  Cdc42 binding to PLD1 does not require lipid 

modification, however geranylgeranylation of Cdc42 at the C-terminus is required 

for lipase activation (Walker et al., 2000).  As lipid modification is necessary for 

Cdc42 activation of hPLD1, this implies that co-localisation of Cdc42, hPLD1 and 

phosphatidylinositol 4,5-bisphosphate at membranes is crucial for the activation 

process (Walker and Brown, 2002). Deletion of the 13-amino acid Rho insert region 

of Cdc42 (residues 120-139) did not diminish PLD1 binding, however modification 

of the Rho insert region of Cdc42 did inhibit PLD1 activation by Cdc42, as well as 

activation by Arf and protein kinase C (Walker et al., 2000).  This suggests that 

binding and activation of hPLD1 by Cdc42 are distinct, with the switch I domain 

mediating GTP-dependent PLD1 binding and the insert helix responsible for 

activation (Walker and Brown, 2002). 

 

Although there is evidence for the direct interaction between Rho family GTPases 

and PLD activation, this may also result via indirect means (McDermott et al., 2004).  

PLD1 is known to translocate to the plasma membrane in response to stimulation in 

several cell lines (Brown et al., 1998; Powner et al., 2002).  For example, Rac1 and 

PLD1 both translocate to the plasma membrane of RBL-2H3 cells in response to 

antigenic stimulation (Powner et al., 2002).  In this case, Rac1 association with 

PLD1 possibly facilitates translocation to the plasma membrane and so PLD1 is 

located in a region of activation (McDermott et al., 2004).  This translocation 

therefore provides an example of the alternative activation mechanisms which Rho 

family proteins utilise to mediate PLD activation.       
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1.3.5: PLD inhibitors 

 

Although there are no known inhibitors which act directly on PLD, some proteins 

indirectly inhibit PLD activity.  PLD1 has a low basal activity in vivo; however 

PLD2 is thought to be constitutively active and possibly regulated by cytosolic 

factors in vivo (Colley et al., 1997).  Preliminary studies identified several cytosolic 

factors from tissues that inhibited recombinant PLD2 in vitro (Colley et al., 1997).  

Bovine brain provided the most abundant inhibitory activity and so an enriched 

preparation of inhibitors was produced (Colley et al., 1997).  This preparation had 

both PLD1 and PLD2 inhibitors, one of which was PLD2-specific (Colley et al., 

1997).  The 18kDa protein was not a GTP-binding protein as it was GTPγS-

dependent, remaining stable at 70
o
C and inhibition could not be overcome by adding 

phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 – Colley et al., 1997).  

Recombinant PLD2 was used in reconstituted assays to identify regulators in cells 

and tissues (Jenco et al., 1998).  The in vitro PLD2-specific heat stable inhibitory 

protein isolated from bovine brain was a mixture of α- and β-synucleins (Jenco et al., 

1998).  All three naturally occurring synucleins (α-, β-, and γ-synuclein) are equally 

effective PLD2 inhibitors as are the A53Y or A30P mutants associated with 

Parkinson‟s disease (Ahn et al., 2002; Payton et al., 2004).  In vitro inhibition of 

PLD2 by these protein factors could not be overcome by PtdIns(4,5)P2 or 

characteristic PLD1 activators.  Synucleins are typically located in the brain and are 

thought to localise to presynaptic nerve terminals where they have been implicated in 

synaptic transmission (Jenco et al., 1998). Tyrosine phosphorylation of α-synucleins 

is associated with a regulatory role in PLD inhibition as mutation of tyrosine 125 to 

phenylalanine results in an increased inhibitory effect in vivo (Ahn et al., 2002).  The 

phox (PX) and pleckstrin (PH) homology domains of PLD and the amphipathic 

repeat region and non-Aβ component of α-synuclein are required for binding 

between the two (Ahn et al., 2002).  Furthermore, Ca
2+

-dependent protein kinase 

phosphorylation has been implicated in reduced synuclein inhibition of PLD2 (Jenco 

et al., 1998).     

 

Another non-PtdIns(4,5)P2-dependent inhibitor of both oleate- and PtdIns(4,5)P2-

dependent PLD activity is β-actin (Lee et al., 2001).  β-actin inhibition of PLD2 

could be partially overcome by ADP-ribosylation factor 1 (Arf1) in vitro (Lee et al., 
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2001).  β-actin is a 43kDa PLD-binding protein isolated from rat brain, which 

inhibits both PLD isoforms with similar binding and potency in a concentration 

dependent manner (Lee et al., 2001).  The region between amino acids 613 and 723 

of PLD2 is essential for direct β-actin binding (Lee et al., 2001).  Co-

immunoprecipitation studies using the COS7 cell line showed that both PLD1 and 

PLD2 co-immunoprecipitated with β-actin (Lee et al., 2001).  Another cytoskeletal 

actin-binding protein, α-actinin is a member of the spectrin superfamily and a known 

inhibitor of myocardial PLD (Park et al., 2000; Sjöblom et al., 2008).  In non-muscle 

cells α-actinin localises to actin filaments and to local adhesion sites (Sjöblom et al., 

2008).  Myocardial PLD is primarily associated with α-actinin and localises to 

sarcolemmal membranes (Park et al., 2000).  Like β-actin, α-actinin binds directly to 

PLD2 and in vitro binding assays have identified the first 185 N-terminal amino 

acids of murine PLD2 as the site of interaction (Park et al., 2000).  Furthermore, 

purified α-actinin inhibition of PLD2 is reversible in the presence of Arf1 (Park et al., 

2000).  Although α-actinin and β-actin interact at different sites, the interaction 

between α-actinin and PLD2 can be terminated by β-actin (Lee et al., 2001).  

Although α-actinin shares sequence homology with fodrin, another PLD inhibitor, 

the two proteins function via different mechanisms (Fukami et al., 1996; Lukowski 

et al., 1998).  While a PtdIns(4,5)P2 binding site (between residues 168-184) has 

been identified on α-actinin PLD2, inhibition is thought to proceed via direct 

interaction between lipase and inhibitor rather than PtdIns(4,5)P2 sequesteration 

(Fukami et al., 1996; Park et al., 2000).   

 

Numerous PLD inhibitors act by hydrolysing or sequestering PtdIns(4,5)P2 so that 

this essential cofactor is unavailable to PLD (McDermott et al., 2004).  Fodrin is an 

actin-binding protein which is a non-erythroid spectrin and located on the 

intracellular face of the plasma membrane (Lukowski et al., 1996; Lukowski et al., 

1998).  Fodrin contains a PtdIns(4,5)P2-binding PH domain which is thought to 

sequester PtdIns(4,5)P2, rendering it unavailable to PLD, thus inhibiting lipase 

activity (Lukowski et al., 1998).  Furthermore, dimeric and tetrameric erythroid 

spectrin, which are fodrin analogues, also facilitate inhibition of PLD activity 

(Lukowski et al., 1996).  Synaptojanin is a 150kDa protein purified from rat brain 

which is a member of the inositol polyphosphate 5-phosphatase family (Chung et al., 

1997).  Synaptojanin inhibits PLD activated by Arf and PtdIns(4,5)P2 in vitro by 
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hydolysing both the 4- and 5- phosphates of the compound, thus converting it to 

phosphatiylinositol (Chung et al., 1997).  As PtdIns(4,5)P2 is hydrolysed by 

synaptojanin, it is unavailable as a cofactor of PLD and so results in in vitro PLD 

inhibition (Chung et al., 1997). 

 

Purification from rat brain identified numerous PLD inhibitors including the clathrin 

assembly protein 3 (AP3), later referred to as AP180 (Lee et al., 1997; Lee et al., 

2000).  AP180 is approximately 165kDa and binds both pre-assembled clathrin cages 

and inositol hexakisphosphate, although this binding does not impact on AP180-

mediated PLD inhibition (Lee et al., 1997).  AP180 binds the PLD co-factor 

PtdIns(4,5)P2 with low affinity but this is not the mechanism which facilitates PLD 

inhibition (Lee et al., 1997).  In vitro binding assays show AP180 is likely to bind 

directly to PLD, thus causing inhibition.  Amino acid residues 290 to 320 of AP180 

are essential for both PLD binding and inhibition (Lee et al., 1997).   

 

Amphiphysins I and II have been identified as PLD inhibitors isolated from rat brain 

(Lee et al., 2000).  Amphiphysin I is a multi-linker protein which interacts with 

amphiphysin II, PtdIns(4,5)P2 and PLD at the N-terminus (Wu et al., 2009).  

Amphiphysins I and II form a heterodimer which then associates with the clathirin 

coat and is thought to interact directly with PLD, inhibiting both PLD1 and PLD2 

isoforms (Lee et al., 2000).  The first 1-373 amino acid residues of amphiphysin I 

reportedly bind to PLD and inhibit activity (Wu et al., 2009).  Lee et al., (2000) 

showed that the heterodimer formed was responsible for dynamin recruitment via the 

two SH3 domains and simultaneously bound the AP2 adapter protein complex.  

Clathrin coat assembly required several proteins including AP2 (which initiates 

clathrin assembly) and AP180. The amphiphysin heterodimer also bound 

synaptojanin to the SH3 domains resulting in competitive binding with dynamin.  

Furthermore, amphiphysin I, AP180 and synaptojanin are all nerve-terminal proteins 

which inhibit PLD and are specific to synaptic vesicles. 

 

Ceramide is at the crux of the sphingolipid pathway and is a second messenger 

mediating a variety of cellular functions including cell proliferation, differentiation 

and apoptosis (Mebarek et al., 2007).  Ceramide may be generated as a result of 

sphingomyelin hydrolysis by various sphingomyelinases or from other processes 
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resulting in ceramide synthesis (Mebarek et al., 2007).  Ceramide is thought to 

mediate a negative feedback loop which limits myogenic differentiation (Mebarek et 

al., 2007).  PLD is necessary for myogenesis and, in a rat myoblast cell line (L60), 

C6-ceramide decreases PLD1 activity and inhibits PLD1-dependent actin fibre 

generation (Mebarek et al., 2007).  C6-ceramide also inhibits PLD activation by 

PMA in HL60 cells but does not prevent the translocation of protein kinase C (PKC) 

to the plasma membrane (Venable et al., 1996).  Cell free assays indicate that PLD 

inhibition by ceramide is facilitated by inhibiting PKC-mediated PLD activation 

(Venable et al., 1996).  Although Venable et al. (1996) showed that PKC 

translocation was unaffected by ceramide treatment, other reports show that PKCα, 

PKCβ, Arf1, Cdc41 and RhoA translocation is inhibited by C2-ceramide 

(Abousalham et al., 1996).  C2-ceramide inhibition of PLD activity via PKC may be 

attributed to intracellular Ca
2+

 levels as C2-ceramide possibly blocks Ca
2+

 influx 

(Nakamura et al., 1996).  Indirect inhibition of PLD by C2-ceramide reversibly 

inhibits mammalian PLD1 and PLD2 (expressed in Sf9 insect cells) in vitro activity, 

by reacting with the catalytic core of the lipases (Singh et al., 2001).  This inhibition 

was more evident when PtdIns(4,5)P2 concentration was rate limiting and assays 

using micelles indicated that PtdIns(4,5)P2 and ceramide were competitively binding 

to PLD (Singh et al., 2001).  PLD2 was also inhibited by C16-ceramide, although 

analogues of both C2- and C16-ceramide did not inhibit PLD activity (Singh et al., 

2001).  

 

Other lipid inhibitors of PLD have been identified in pig colon mucosa.  The PLD 

inhibitor was purified and contained lysophosphatidylserine, phosphatidylinositol 

and lysophosphatidylinositol (Kawabe et al., 1998).  Lysophosphatidylserine was 

identified as the most potent PLD inhibitor and inhibition was not reversible by 

increasing substrate concentration or PtdIns(4,5)P2 of the cell free assays (Kawabe et 

al., 1998).  Lysophosphatidylserine inhibited the activity of oleate-dependent, Arf-

dependent (PLD1a and PLD1b) and PtdIns(4,5)P2-dependent (PLD 2) activity 

(Kawabe et al., 1998).        

 

More recently, pharmacological PLD inhibitors have been identified (Scott et al., 

2009; Su et al., 2009).  Highly potent, isoform-specific PLD inhibitors have been 

synthesised which have a greater than 100-fold selectivity for the different PLD 



 38 

isoforms both in vitro and in vivo (Scott et al., 2009; Su et al., 2009).  The 

pharmacological inhibitor 5-fluoro-2-indolyl des-chlorohalopaemide (FIPI), for 

example, is a potent PLD2 inhibitor both in vitro and in vivo (Su et al., 2009).  FIPI 

inhibits a multitude of processes including cytoskeletal reorganisation, cell spreading 

and chemotaxis (Su et al., 2009).  These PLD-specific inhibitors will aide future 

research identifying the roles of PLD in vivo, solidifying data previously established 

using primary alcohols as functional inhibitors.  
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1.3.6: Post-translational modification 

 

Palmitoylation of human PLD1 is thought to impact upon both enzymatic regulation 

and its localisation (Manifava et al., 1999).  The palmitoylation sites of PLD1 were 

identified as Cys240 and Cys241 within the PH domain, where Cys241 accounted for 

the majority of the post-translational modification (Sugars et al., 1999).  Mutating 

both Cys240 and Cys241 reduced PLD1 enzymatic activity (between 50-80%) in 

vivo although there was no impact upon in vitro PLD1 activity (Sugars et al., 1999; 

reviewed in McDermott et al., 2004).  The localisation of a double Cys240 and 

Cys241 mutant (substituting cysteine with either serines or alanines), resulted in a 

change in the localisation of PLD1 from punctate cytoplasmic expression to 

expression on the plasma membrane of COS cells (Sugars et al., 1999; reviewed in 

Mansfeld and Ulbrich-Hofmann, 2009).  Although it was initially thought that only 

catalytically active PLD1 would be palmitoylated, point mutations of rat PLD1 

(rPLD1) disproved this theory (Xie et al., 2001). Palmitoylation needs both the 

association between both N- and C-termini of PLD1 and, more specifically, the first 

168 amino acid residues are needed for palmitoylation (but are non-essential for 

catalytic activity – Xie et al., 2001).  Removing N-terminal residues of rPLD1 results 

in a catalytically active mutant as the conserved C-terminal is responsible for 

catalytic activity but the protein is not palmitoylated (Xie et al., 2001).  Hierarchy of 

membrane-targeting signals exists for PLD1 involving lipid modification of the PH 

domain.  In this model, PLD1 binds to membranes via its PH domain with a 

subsequent or concurrent fatty acylation, stabilising this interaction (Xie et al., 2001; 

Sugars et al., 2002; McDermott et al., 2004).   
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1.3.7: Phosphorylation of PLD  

 

Phosphorylation has been reported to act both directly and indirectly on enzyme 

regulation (McDermott et al., 2004).  PLD activation has been characterised using 

various growth factors including epidermal growth factor (EGF) in rat pancreatic 

acini cells (Rydzewska and Morisset, 1995).  Activation of EGFR stimulates PLD 

activity and can be inhibited by pre-incubating acini cells with staurosporine, a 

protein kinase C and tyrosine kinase inhibitor (Rydzewska and Morisset, 1995).  Pre-

incubation of endothelial cells with tyrosine kinase inhibitors (e.g. genistein, 

erbstatin or herbimycin) resulted in reduced PLD activation by 4-hydroxynonenal, 

whilst pre-incubation with protein tyrosine phosphatase inhibitors increased 4-

hydroxynonenal PLD activation (Natarajan et al., 1997).  EGF stimulates both PLD1 

and PLD2 but the EGF receptor has been shown to constitutively associate only with 

PLD2, with phosphorylation of the Tyr11 residue of PLD2 following EGFR 

stimulation (Slaaby et al., 1998). However, human EGFR was used in combination 

with rPLD1 with point mutations of the Tyr11 amino acid residue, therefore it is not 

clear if these observations are physiologically relevant (McDermott et al., 2004).  

Expression of human PLD1 in HL-60 granulocytes was phosphorylated on tyrosine 

residues and hPLD1 could be co-immunoprecipitated with a variety of unidentified 

phosphorylated proteins in the presence of tyrosine phosphatase inhibitors, e.g. 

peroxides of vanadate (Marcil et al., 1997). 

 

PLD was stimulated by H2O2 in the presence of vanadate and, in Swiss 3T3 cells, 

rPLD1 formed a complex with platelet-derived growth factor (PDGF) receptor, 

PKCα and another 62kDa protein (Min et al., 1998b).  Treatment of cells with either 

H2O2 or vanadate alone did not stimulate PLD activity or induce tyrosine 

phosphorylation of members of the rPLD1 immune-complex (Min et al., 1998b). 

Characterisation of rPLD1 in Swiss 3T3 cells suggested that phosphorylation and 

PLD activity could be inhibited by protein-tyrosine kinase inhibitors (e.g. genestein 

and herbimycin A), down regulation of PKC through prolonged exposure to PMA 

and inhibition of PKC using inhibitors, e.g. Ro 31-8220 and calphostin C (Min et al., 

1998b).  In addition, studies using HEK-293 cells expressing the M3 muscarinic 

receptor identified two pathways by which overexpressed PLD could be stimulated, a 

PKC- and a Ras/Ral-dependent pathway (Voss et al., 1999).  PLD activation by 
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receptor tyrosine kinase agonists with endogenously expressed receptors in HEK 

cells (such as EGF, PDGF and insulin) were used to investigate PLD activity (Voss 

et al., 1999).   

 

PLD activation in phaeochromocytoma cells (PC12 or PC2) also involves a tyrosine 

kinase, however it remains unclear whether PLD is phosphorylated directly or 

whether an intermediate protein is phosphorylated (Mehta et al., 2003).  

Peroxyvanadate was the only agent which caused tyrosine phosphorylation of PLD, 

although both time-course and concentration-dependent assays indicated that PLD 

activation was not correlated with peroxyvanadate-mediated phosphorylation (Mehta 

et al., 2003).  Human promyelocytic leukemic (HL60) cells treated with 

peroxyvanadate indicated that PLD1 could be directly phosphorylated, as did 

experiments using Swiss 3T3 cells (Marcil et al., 1997; Min et al., 1998b).  

Furthermore, a yeast split-hybrid system was used to produce PLD1 alleles and the 

interaction between PLD1 and G protein-coupled receptors was investigated (Du et 

al., 2000).  Results showed that direct stimulation of PLD1 (in vivo) by RhoA or 

PKC was essential for significant activation but that PLD1 phosphorylation and 

localisation was independent of these stimulatory pathways (Du et al., 2000).  EGF 

stimulation of HEK-293 cells showed phosphorylation of tyrosine-11 of mouse 

PLD2 (Slaaby et al., 1998).  COS7 cells transiently expressing PLD1 stimulated with 

EGF resulted in both activation and phosphorylation of PLD1 (Han et al., 2002b).  

Point mutations at phosphorylation sites (substituting Ser2, Thr147, and Ser561 with 

alanine) resulted in reduced PLD1 activity and inhibited phosphorylation of the 

Thr147 amino acid residue (Han et al., 2002b; Farquhar et al., 2007).  In more recent 

studies PC12/PC2 cells expressing human PLD2 (which does not have a comparable 

tyrosine residue) indicated that hPLD2 was still tyrosine phosphorylated indicating 

that other tyrosine residues can also be phosphorylated (Mehta et al., 2003).  

Although tyrosine phosphorylation has an essential role in PLD2 activation (using a 

variety of agents) it is thought that this is not due to direct phosphorylation of PLD2 

(Mehta et al., 2003). 

 

PKCα binding and activation of PLD1 is dependent on the phenylalanine residue at 

position 663 at the C-terminus of PKCα (Hu and Exton, 2003).  Deletion up to or 

substitution (F663D or F663A) of this residue results in the loss of binding, 
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activation and threonine phosphorylation of PLD1, indicating that both regulatory 

and catalytic domains of PKCα are necessary for these functions (Hu and Exton, 

2003). PLD1 activation by PMA was notably faster than threonine phosphorylation 

and, as phosphorylation increased, PLD1 activity decreased over time.  Initial PMA-

activation of PLD1 is correlated with PKCα binding whilst phosphorylation is 

associated with PLD1 inactivation (Hu and Exton, 2003).    

 

PLD can be activated by RhoA (in the presence of PtdIns(4,5)P2) in membranes m3 

muscarinic acetycholine receptor (mAChR)-expressing HEK-293 cells and is 

phosphorylation-dependent (Schmidt et al., 1999).  The serine/threonine kinase Rho-

kinase is stimulated by RhoA and over-expression or constitutive expression of Rho-

kinase increases m3 mAChR-mediated PLD stimulation, comparable to that 

mediated by RhoA over-expression (Schmidt et al., 1999).  HA-1077, a Rho-kinase 

inhibitor, inhibits RhoA-induced PLD stimulation in the membranes of intact HEK-

293 cells as well as PLD stimulation by the m3 mAChR but not PKC and so is 

thought to be a regulator of PLD activity (Schmidt et al., 1999; McDermott et al., 

2004).  Endogenous serine phosphorylation of PLD1, by a 40kDa casein-kinase 2 

(CK2)-like family member utilizing GTP was observed in intact CHO cells and is 

inhibited by heparin or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB – 

Ganley et al., 2001).  Co-expression of PLD1 with recombinant CK2α and β subunits 

in COS7 cells showed that PLD1 is associated with the β subunit.  Point mutation of 

the serine residue (at position 911) with alanine resulted in a catalytically inactive 

non-phosphorylated PLD1 (Ganley et al., 2001).  In vitro assays of PLD1 activity 

after serine phosphorylation (by CK2) indicated that PLD1-mediated PtdCho 

hydrolysis was unaffected (Ganley et al., 2001).  Serine/threonine phosphorylation of 

rPLD1 has been implicated in maintaining structural stability of the lipase, although 

was not essential for catalytic activity (Xie et al., 2000).  Furthermore, for 

serine/threonine phosphorylation to take place, association between the N- and C-

termini of rPLD1 was required for the modification to occur and it has been 

suggested that CK2 may be the kinase that achieves this change (Xie et al., 2000; 

Ganley et al., 2001).  As phosphorylation does not impact upon catalytic activity or 

the response of rPLD1 to its activators, the role of serine/threonine phosphorylation 

of PLD1 could be involved in phosphorylation-dependent trafficking events or 

influence PLD localisation (Xie et al., 2000; Ganley et al., 2001). 



 43 

1.4: A summary of selected phosphatidic acid targets 

 

1.4.1: Activation of phosphodiesterase-4 (PDE4) isoforms by phosphatidic acid  

 

Phosphodiesterases (PDEs) are responsible for the hydrolysis of cyclic adenosine 

monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), therefore 

modifying intracellular concentrations of these second messengers (Manganiello, 

2002).  cAMP is an omnipresent second messenger with multifaceted spatiotemporal 

regulation and is responsible for many key cellular functions, including transcription 

regulation (Beavo and Brunton, 2002; Houslay and Adams, 2003).  Once cAMP is 

generated, degradation by cAMP-specific PDEs is the only mode of inactivation 

(Houslay and Adams, 2003; Huston et al., 2006).  The PDE superfamily is composed 

of 11 gene families, which are structurally related but functionally distinct and are 

strictly regulated (Manganiello, 2002).  Multiple PDEs can be derived from a single 

PDE gene and it is thought that up to 30 different proteins are synthesised in 

mammalian cells.  PDE4 is the enzyme principally responsible for degrading cAMP 

and the unique N-terminal regions of PDE4 isoforms determine their interactions 

with particular signalling and scaffolding proteins (Huston et al., 2006).   

 

The cAMP-specific PDE4 family members are encoded by four genes (A, B, C and 

D) producing several isoforms, each characterised by distinct N-terminal regions, 

some of which respond to phosphatidic acid (PtdOH) activation (Housley and Adams, 

2003; Huston et al., 2006).  Each of the PDE4 variants encodes a minimum of two 

proteins which are classified as „long‟ or „short‟ variants (Nemoz et al., 1997).  

„Long‟ variants are between 90 and 130kDa (such as PDE4A5, PDE4B1 and 

PDE4D3) whereas „short‟ variants are between 66 and 74kDa (such as PDE4A1, 

PDE4B2, PDE4D1 and PDE4D2 – Nemoz et al., 1997).  PtdOH is a known activator 

of the aforementioned „long‟ PDE4 variants, which are thought to be specifically 

activated by anionic lipids (El Bawab et al., 1997; Nemoz et al., 1997).  However, 

the „short‟ PDE4 variants are unresponsive to PtdOH activation (Nemoz et al., 1997). 

 

PDE isoforms are targeted intracellularly by their association with various proteins 

(Baillie et al., 2002). For example, the entirely membrane-associated PDE4A1 

isoform has an association with PtdOH through its unique tryptophan anchoring 
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phosphatidic acid selective-binding domain 1 (TAPAS-1) N-terminal microdomain 

(Baillie et al., 2002; Huston et al., 2006).  TAPAS-1 is an 11-residue helical domain 

which has high selectivity for PtdOH-interaction (Baillie et al., 2002).  This unique 

microdomain inserts into the lipid bilayer in a calcium-dependent manner, thus 

controlling PDE4A1 membrane association (Baillie et al., 2002; Huston et al., 2006).   

 

PtdOH is also a known activator of PDE4D3 and is thought to aide the formation of 

PDE4D3 dimers (Grange et al., 1998).  Furthermore, the acidic groups of PtdOH are 

essential for activation as PDE4D3 was activated by acidic phospholipids but 

remained unresponsive in the presence of both zwitterionic phospholipids and 

anionic detergents (Grange et al., 1998).  These results support earlier data showing 

PDE4A5 activation by PtdOH but not diacylglycerol (DAG – El Bawab et al., 1997).  

The PtdOH-binding site of PDE4D3 was identified in the N-terminal domain 

between amino acid residues 31-59, a region rich in basic and hydrophobic residues 

(Grange et al., 2000).  Furthermore, deletion of these residues hindered PtdOH-

binding and PtdOH activation of PDE4D3 (Grange et al., 2000).  Depletion of 

endogenous PtdOH in mouse Leydig tumour cells suggested that cAMP levels were 

PtdOH-modulated through direct PDE4D3 interaction in an in vivo model (Grange et 

al., 2000).  Control of cAMP-specific PDE4 isoforms by acidic phospholipids 

indicates a mechanism by which external stimuli, such as growth factors, hormones 

or other proteins (e.g. lectin protein concanavalin A) are able to influence cAMP-

dependent signal transduction in stimulated cells (El Bawab et al., 1997; Nemoz et 

al., 1997).    
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1.4.2: Activation of the mammalian target of rapamycin by phosphatidic acid 

 

Phosphatidic acid (PtdOH) and choline are the products of phospholipase D (PLD) 

catalysed hydrolysis of phosphatidylcholine (PtdCho).  PtdOH is a second messenger 

in its own right and has a range of targets, one of which is the mammalian target of 

rapamycin (mTOR – Fang et al., 2003).  There are two distinct mTOR complexes 

known as mTORC1 and mTORC2 (Bai and Jiang, 2010).  The rapamycin-sensitive 

mTORC1 has been extensively studied and is regulated by a range of factors 

including grwoth factors, mitogens and PtdOH (Bai and Jiang, 2010).  PtdOH 

enhances activity of the cytosolic protein kinase mTOR in vivo (Hay and Sonenberg, 

2004; Stace and Ktistakis, 2006).  Past studies have both identified and cloned 

mTOR and found that this kinase forms a complex with an intracellular receptor 

responsible for inhibiting progression of the cell cycle (Brown et al., 1994).  The 

drug rapamycin was first isolated from a strain of soil bacteria and forms an 

inhibitory complex with its intracellular receptor, the FK506-binding protein, 

FKBP12 (Chen et al., 1995; Hay and Sonenberg, 2004).  This complex binds to the 

C-terminus of TOR proteins therefore inhibiting their activity (Chen et al., 1995; 

Hay and Sonenberg, 2004).  The mTOR region which binds the intracellular receptor 

FK506-binding protein also binds PtdOH with a high degree of selectivity (Fang et 

al., 2001; Stace and Ktistakis, 2006).  Mammalian cells stimulated with mitogen 

resulted in the PLD-dependent increase of cellular PtdOH (Fang et al., 2001).  

PtdOH was found to directly bind to the mTOR region targeted by rapamycin and 

this interaction correlated with an increase in mTOR-activated downstream effectors 

(Fang et al., 2001).   

 

PtdOH generated by both PLD hydrolysis of PtdCho and by diacylglycerol kinase 

(DAG kinase) phosphorylation of DAG has been implicated in mTOR activation 

(Fang et al., 2003; Ávila-Flores et al., 2005; Stace and Ktistakis, 2006).  mTOR is 

known to regulate cell growth and proliferation by targeting ribosomal S6  kinase 1 

(S6k1) and eukaryotic translation inhibition factor 4E binding protein 1 (4E-BP1 – 

Fang et al., 2003).  PLD1-generated PtdOH was implicated in mTOR regulation as 

over-expression of wildtype PLD1 in serum-stimulated cells resulted in an increase 

of S6K1 activity (Fang et al., 2003).  Furthermore, depletion of endogenous PLD1 

using interference RNA (RNAi) resulted in drastic inhibition of both S6K1 and 4E-



 46 

BP1 hyper-phosphorylation in mammalian cell lines (Fang et al., 2003).  PtdOH 

generated by DAG phosphorylation has also been shown to increase phosphorylation 

of the downstream mTOR target p70S6 kinase (Ávila-Flores et al., 2005).  Over-

expression of DAG kinase δ (but not DAG kinase α) in serum-starved HEK-293 cells 

resulted in the phosphorylation of the mTOR target p70S6 kinase (Ávila-Flores et al., 

2005).  Addition of serum to cells over-expressing DAG kinase δ resulted in higher 

p70S6 kinase phosphorylation and resistance to rapamycin treatment (Ávila-Flores et 

al., 2005).  The effect of the DAG kinase δ on the downstream hyper-

phosphorylation of p70S6 kinase required the PtdOH binding region of mTOR 

(Ávila-Flores et al., 2005).  Depletion of endogenous DAG kinase δ using small 

interfering RNA (siRNA) resulted in attenuated phosphorylation of p70S6 kinase in 

serum-treated cells (Ávila-Flores et al., 2005).  These findings indicate that PtdOH 

produced from PLD-indepentent pathways are also effective mediators of mTOR 

signalling (Ávila-Flores et al., 2005; Stace and Ktistakis, 2006).  Recent studies have 

indicated that PLD2-generated PtdOH may activate p70S6 kinase directly (Lehman 

et al., 2007).  Over-expression of PLD2 in the COS7 cell line resulted in increased 

ribosomal p70S6 kinase activity and corresponding downstream phosphorylation 

events (Lehman et al., 2007).  Activation of p70S6 kinase was thought to be PLD2-

dependent and mTOR-independent as neither rapamycin-inhibition nor silencing the 

mTOR gene attenuated the increase in p70S6 kinase activity induced by PLD2 

(Lehman et al., 2007).   

 

Although PtdOH is an established mediator of mTOR signalling, the spatial 

interaction between PtdOH and mTOR remains unclear (Stace and Ktistakis, 2006).  

As mTOR often targets proteins involved in translational control by enabling 

recruitment of ribosomes to messenger RNA (mRNA), this kinase possibly 

constitutively localises to intracellular membranes (Fang et al., 2003; Stace and 

Ktistakis, 2006).  mTOR localised to intracellular membranes would potentially be 

activated by PLD-generated PtdOH, thus facilitating the phosphorylation of 

downstream targets (Fang et al., 2003; Stace and Ktistakis, 2006).  However, other 

possibilities such as non-membrane associated mTOR activity and mTOR activation 

by a pre-existing „pool‟ of PtdOH cannot yet be discounted (Stace and Ktistakis, 

2006).       
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1.4.3: The effect of phosphatidic acid on the serine/threonine kinase Raf1 

 

The serine/threonine kinase Raf1 is an essential part of the mitogen-activated protein 

kinase (MAPK) signalling cascade (Rizzo et al., 2000).  Activation of phospholipase 

D (PLD) by extracellular signals and consequent phosphatidic acid (PtdOH) 

generation resulted in activation of the Raf1-MAPK signalling cascade (Rizzo et al., 

1999).  Glutathione S-transferase (GST)-fusion protein of Raf1 containing the 

cysteine-rich domain (amino acid residues 139-184) bound to liposomes in a 

phosphatidylserine (PtdSer)-dependent manner.  Furthermore, the Raf1 GST-fusion 

protein encoding residues 1-147, which overlaps with the cysteine-rich domain, was 

able to bind to GTP-Ras with high affinity.  Removal of the last 17 residues, forming 

a Raf1 GST-fusion protein with residues 1-130 resulted in a notable decrease in 

GTP-Ras binding (Ghosh et al., 1994).  Further studies of full-length Raf1 showed 

that the kinase bound both PtdSer and the PLD product PtdOH, and the C-terminal 

domain of Raf1 (residues 295-648) bound strongly with PtdOH.  Deletion mutants 

were used to identify the 35 C-terminal residues (amino acids 389-423) as the 

PtdOH-binding site of Raf1.  Inhibition of PtdOH generation using 1% ethanol, in 

canine kidney cells, resulted in reduced translocation of Raf1 to the plasma 

membrane.  These results identified PtdOH as a key regulator of Raf1 translocation 

and eventual activation in vivo (Ghosh et al., 1996).  Inhibition of Arf proteins by 

brefeldin A corresponded to inhibition of PLD-mediated PtdOH generation, Raf1 

translocation and activation, and MAPK phosphorylation in response to stimulation 

(Rizzo et al., 1999).  Addition of PtdOH to brefeldin A treated cells restored Raf1 

translocation, however PtdOH did not activate Raf1 in vitro or in vivo, suggesting it 

is responsible for Raf1 membrane association (Rizzo et al., 1999).  Progressive 

mutations within the tetrapeptide motif (residues 398-401) of human Raf1 resulted in 

reduction and eventual elimination of Raf1-PtdOH binding (Ghosh et al., 2003).  

Furthermore, mutation of this region showed that Raf1-PtdOH binding and 

consequent signalling is essential in the embryological development of zebrafish 

embryos (Ghosh et al., 2003).  

 

Raf1 activation by insulin in Rat1 fibroblasts (overexpressing the human insulin 

receptor, HIRcB) initiates Raf1 association with intracellular membranes (Rizzo et 

al., 2000).  Mutations of Raf1 in the PtdOH-binding domain inhibited Raf1 
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translocation in response to agonist stimulation, whereas mutation of the Ras-binding 

domain did not (Rizzo et al., 2000; Rizzo and Romero, 2002).  Over-expression of 

the Raf1 mutant preventing translocation in HIRcB cells operated as a dominant 

negative mutant preventing MAPK phosphorylation, thus inhibiting the MAPK 

pathway (Rizzo et al., 2000).  Inhibition of MAPK phosphorylation also occurred in 

cells expressing a dominant negative Ras mutant but did not inhibit Raf1 

translocation in response to stimulation (Rizzo et al., 2000).  Activated Raf1 is 

phosphorylated on serine 338 (predominantly due to oncogenic Ras activity) and 

tyrosine 341 (mainly attributed to Src activity – Mason et al., 1999).  Maximal Raf1 

activity occurs when both sites are phosphorylated.  Inhibiting phosphorylation of 

either site renders Raf1 inactive (Mason et al., 1999).  Furthermore Raf1 

phosphorylation is dependent on the interaction between Raf1 and Ras-GTP (Mason 

et al., 1999).  PLD-generated PtdOH therefore regulates agonist-induced Raf1 

translocation independent of Ras, but is dependent on Ras for activation and 

participation in the MAPK cascade (Rizzo et al., 2000). 
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1.5: The role of phospholipase D in endocytosis and exocytosis 

 

1.5.1: Endocytosis 

 

Phospholipase D (PLD) is an important facilitator of multiple trafficking events 

including vesicle trafficking between the Golgi apparatus and the endoplasmic 

reticulum, and endocytosis.  PLD localisation has been characterised in a variety of 

different cultured cell lines and tissues where expression has been identified in a 

range of organelles including the nucleus, lysosomes, secretory granules, endosomes 

and the Golgi apparatus (Colley et al., 1997; Brown et al., 1998; Kim et al., 1999; 

Freyberg et al., 2002).  PLD generated phosphatidic acid (PtdOH) is necessary for 

the internalisation of receptor-ligand complexes (Antonescu et al., 2010).  

Endocytosis of transmembrane receptors generally progresses via clathrin-coated 

vesicles, which bud from the plasma membrane and eventually deliver their cargo to 

endosomes for recycling or degradation (Haucke et al., 2005).   

 

Initiation of clathrin-mediated endocytosis commences with the recruitment of the 

heterotrimeric adaptor protein AP2 to the plasma membrane (Haucke and Camilli, 

1999).  Several membrane proteins act as docking sites for AP2 including 

synaptotagmin and PLD1 – PLD-generated PtdOH is negatively charged and thought 

to contribute to the AP2 docking site (West et al., 1997; Haucke and Camilli, 1999; 

J.S. Lee et al., 2009). The PLD co-factor phosphatidylinositol 4,5-bisphosphate 

(PtdIns(4,5)P2) also binds and recruits the AP2 complex to sites of endocytosis 

(Chapman et al., 2002).  Increased PLD activity augments membrane recruitment of 

AP2 and is also thought to impact on the association between AP2 and 

synaptotagmin.  In the presence of ATP and the non-hydrolysable GTPγS, PLD 

stimulates the interaction between AP2 and the docking protein synaptotagmin (West 

et al., 1997; Haucke and Camilli, 1999).     

 

Endocytosis of the EGFR is dependent upon PLD1 activity and the PLD1 regulators 

protein kinase Cα (PKCα) and RalA (Shen et al., 2001).  PLD1 activity is thought to 

be auto-regulated by phosphatidic acid, which binds to the phox homology (PX) 

domain of PLD1 (J.S. Lee et al., 2009).    Endocytosis and degradation of EGFR in 

response to EGF stimulation is accelerated by over-expression of PLD1 or PLD2 and 
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slowed by over-expression of catalytically inactive PLD1 or PLD2 (Shen et al., 

2001).  PtdOH promotes binding of the μ2 medium chain of the AP2 complex to the 

pleckstrin homology (PH) domain of PLD1, thus facilitating EGFR endocytosis (J.S. 

Lee et al., 2009).  Internalisation of EGFR is halted in response to PLD inhibitors 

such as the accessory proteins of the brain clathrin coat synaptojanin, AP180 and 

amphiphysin I and II (Shen et al., 2001; Lee et al., 2000; Donaldson et al., 2009).    

 

Inhibition of DAG kinase resulted in a notable decrease of PtdOH, resulting in 

decreased epidermal growth factor receptor (EGFR) endocytosis in the epithelial 

monkey kidney cell line BSC-1 (Antonescu et al., 2010).  However, contrary to 

previous findings, Antonescu et al., (2010) showed that inhibition of PLD activity 

(using both siRNA depletion and pharmacological inhibition) led to elevated cellular 

PtdOH concentration.  Consistent with higher PtdOH levels, PLD inhibition 

promoted EGFR endocytosis and clathrin coated pit dynamics (Antonescu et al., 

2010).  Inhibition of DAG kinase resulted in decreased (over 50%) PtdOH 

production, corresponding to a reduction in EGFR internalisation in BSC-1 cells 

(Antonescu et al., 2010).  This means that the majority of cellular PtdOH is not PLD-

generated and that PtdOH may be regulatory rather than essential for EGFR 

endocytosis (Antonescu et al., 2010).  PtdOH is not universally essential for clathrin-

mediated endocytosis but instead is required for internalisation of a cargo-selective 

subset of clathrin coated pits (Antonescu et al., 2010).  PLD2 interacts with dynamin 

in a GTP-dependent (and EGF-dependent) manner, implicating the lipase in the 

regulation of dynamin via GTP-GDP cycling (Park et al., 2004).  PLD functions as a 

GTPase activating protein (GAP) via its PX domain, thus directly activating dynamin 

(Park et al., 2004).  Expression of the PX domain of either PLD1- or PLD2-

stimulated EGFR endocytosis suggested that the PX domain itself is a GAP (Lee et 

al., 2006; Donaldson et al., 2009).  Wildtype PLD (but not mutated PLD defective 

for GAP function) increased EGFR endocytosis at physiological EGF concentrations 

in vitro (Lee et al., 2006).  The interaction between dynamin and PLD may be 

important to EGF-stimulation of PLD.  Furthermore, PLD may regulate clathrin-

dependent endocytosis independently of PtdOH or DAG production (Donaldson et 

al., 2009). 
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PtdOH production occurs either via PLD-mediated hydrolysis of phosphatidylcholine 

(PtdCho) or through diacylglycerol (DAG) kinase activity (Antonescu et al., 2010).  

Both PtdOH and DAG are negatively charged and promote extreme membrane 

curvature which aids vesicle fission during endocytosis (Snyder and Pierce, 2006).  

The membrane-bound lipase PLD2 has been found to localise to endosomes and the 

plasma membrane.  PLD2 is essential to the clathrin-mediated endocytosis of several 

receptors, including µ-opioid and angiotensin II receptors (Koch et al., 2004; Du et 

al., 2004).  PLD2-generated PtdOH recruits AP2, thus triggering vesicle budding 

from donor membranes (Liscovitch et al., 2000; Kuwahara et al., 2008).  The PLD2 

inhibitor α-synuclein is thought to inhibit endocytosis by negatively regulating PLD2 

activity (Kuwahara et al., 2008).  Mutant α-synuclein (A53T) associated with 

Parkinson‟s disease was a more potent inhibitor of PLD2 activity than the wildtype 

α-synuclein (Kuwahara et al., 2008).  Defects in synaptic vesicle endocytosis due to 

α-synuclein over-expression are therefore possibly caused by upregulation of normal 

α-synuclein function (Kuwahara et al., 2008).   

 

Studies also demonstrated that PLD2 was essential for the recycling of transferrin 

receptor in the epithelial HeLa cell line (Padrón et al., 2006).  However, inhibition of 

PLD2 did not result in the inhibition of transferrin receptor endocytosis, supporting 

more recent data suggesting PLD-generated PtdOH may be regulatory in this process 

(Padrón et al., 2006).  Over-expression of the nucleotide exchange factor ADP-

ribosylation factor 6 (EFA6) did not reduce internal accumulation of transferrin 

receptors in cells which were previously siRNA depleted of PLD (Padrón et al., 

2006).  This possibly indicates that PLD2 is essential for constitutive Arf6-mediated 

recycling of this transferrin receptor (Padrón et al., 2006).  The data may also suggest 

that, in the absence of PLD2, transferrin receptors accumulates in recycling 

endosomes which are unresponsive to EFA6 (Padrón et al., 2006).  Similarly, PLD1 

is essential for B-cell antigen receptor endocytosis in B-cells (Snyder and Pierce, 

2006).  PLD1 functional inhibition by primary alcohol or depletion via siRNA 

knockdown stopped trafficking of B-cell antigen receptor to major histocompatibility 

protein class II (MHC II)-containing compartments of B-cells (Snyder and Pierce, 

2006).    
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PLD2 has also been implicated in constitutive class I metabotropic glutamate 

receptors (mGluR) 1 and 5 endocytosis which is not well characterised and may 

occur through a clathrin-independent pathway (Bhattacharya et al., 2004).  PLD2 is 

essential for the internalisation of mGluR1 and mGluR5, as siRNA knockdown and 

butan-1-ol treatment reduced endocytosis (Bhattacharya et al., 2004).  In addition, 

PLD2 co-localises with the class I mGluRs in the endocytic vesicles of both neurons 

and the cultured HEK-293 cell line (Bhattacharya et al., 2004). 
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1.5.2: Exocytosis 

 

Phospholipase D (PLD) has been implicated in regulated exocytosis in numerous cell 

lines including rat basophilic leukaemia RBL-2H3, monocyte/macrophage HL-60 

and neuroendocrine phaeochromocytoma PC12 cell lines (Way et al., 2000; Skippen 

et al., 2002; Lynch and Martin, 2007).  In RBL-2H3 cells, PLD1 localises to the 

secretory granules whilst PLD2 localises to the plasma membrane (Brown et al., 

1998; Cockcroft et al., 2001).  PLD2 co-localises with ADP-ribosylation factor 6 

(Arf6) on the plasma membrane of antigen stimulated RBL-2H3 cells (Cockcroft et 

al., 2001).  Small G-proteins were identified as regulators of the secretory pathway 

using permeabilised rat peritoneal cells (Howell et al., 1987).  Rat mast cells treated 

with Ca
2+

 and GTPγS following streptolysin-O permeabilisation resulted in 

histamine secretion (Howell et al., 1987).  Several small G-proteins have since been 

identified in the regulation of exocytosis, including Arf family proteins (Way et al., 

2000).  Arf family proteins cycle between the cytosol (GDP-bound form) and plasma 

membrane (GTP-bound form) depending on their activation state (Rümenapp et al., 

1995; Cockcroft et al., 2001).  Permeabilised RBL-2H3 cells respond to antigenic 

stimulation in the presence of Ca
2+

 and MgATP; however an increase in the 

permeabilisation time pre-stimulus resulted in no response to antigen (Cockcroft et 

al., 2001).  The response of RBL-2H3 cells to antigen was quantified by monitoring 

secretion and PLD activation (Cockcroft et al., 2001). In cells which underwent 

extended permeabilisation and did not respond to antigen, the addition of exogenous 

Arf proteins recovered PLD activation and secretion in response to stimulation 

(Cockcroft et al., 2001).   

 

The HL-60 cell line was established from an acute myeloid leukaemia patient and 

cultured cells can differentiate into monocyte/macrophage-like cells (Birnie, 1988).  

This differentiated cell line has since been used extensively in early characterisation 

of PLD and PtdOH in regulated exocytosis (Stuchfield and Cockcroft, 1993).  Arf 

proteins regulate the generation of phosphatidylinositol (4,5)-bisphosphate 

(PtdIns(4,5)P2) in HL-60 cells (Skippen et al., 2002).  Together, Arf proteins and 

presumably PLD-generated phosphatidic acid (PtdOH) regulate the activity of 

phosphatidylinositol 4-phosphate 5-kinase (PtdIns(4)P 5-kinase – Cockcroft et al., 

2001).  Both Arf1 and Arf6 isoforms increase PtdIns(4,5)P2 levels when added to 
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permeabilised cells which are depleted of Arf1 and Arf6 (Skippen et al., 2002).  

Treatment of cells with a sufficiently potent percentage of butan-1-ol to halt 

exocytosis proved toxic and so mutant Arf was used (Skippen et al., 2002).  

Expression of an Arf1 mutant specifically activating PtdIns(4)P 5-kinase still 

increased PtdIns(4,5)P2 levels, albeit with lower efficiency (Skippen et al., 2002).  

Therefore, PLD-mediated phosphatidic acid (PtdOH) synthesis and Arf protein 

activity directly activate PtdIns(4)P 5-kinase and increase PtdIns(4,5)P2 content in 

the plasma membrane of HL-60 cells (Skippen et al., 2002).  Synaptotagmin I and IV 

are Ca
2+

-sensitive receptors and required for dense-core vesicles exocytosis (Lynch 

and Martin, 2007).  Synaptotagmin I binds to PtdIns(4,5)P2 in the plasma membrane 

with a high affinity and plasma membrane concentration of the lipid is important to 

exocytosis (Holz et al., 2000; Chapman, 2002).  Increased levels of plasma 

membrane PtdIns(4,5)P2 in neuroendocrine PC12 cells may facilitate membrane 

fusion between secretory vesicles and the plasma membrane (McDermott et al., 

2004).       

 

PtdIns(4)P 5-kinase and PLD1 are activated by all mammalian Arf isoforms (Arf1-

Arf6) with similar potency and efficacy (reviewed in McDermott et al., 2004).  Arf6 

has been extensively characterised as, in chromaffin cells, Arf6 translocates from 

secretory granules to the plasma membrane in response to stimulation (Caumont et 

al., 1998).  In the related PC12 cells this observation was supported as overexpressed 

Arf6 migrated from granule to plasma membrane fractions upon stimulation (Vitale 

et al., 2002).  Similarly, a catalytically inactive Arf6 GDP-bound mutant was still 

translocated from the secretory granules to the plasma membrane upon cell 

stimulation.  This suggests that GDP/GTP cycling is not essential for Arf6 

translocation.  The guanine nucleotide exchange factor (GEF) ARNO also localises 

to the plasma membrane and so Arf6 on the plasma membrane may be available for 

ARNO at the site of exocytosis (Vitale et al., 2002).   

 

The key to PLD involvement in both endocytosis (involving membrane fusion) and 

exocytosis (involving membrane fission) may be its production of PtdOH.  

Hydrolysis of PtdCho to PtdOH results in negative membrane curvature because of 

the contribution of the cone shaped PtdOH to membrane topology, potentially 

facilitating both membrane fusion and fission events. 
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1.6: Aims 

 

The overarching aim of this project was to use a novel fluorescent PLD substrate 

(fPtdCho) to analyse PLD-substrate interaction in vivo and record real-time PLD 

activity in vitro.  The novel lipid is BODIPY-labelled at the choline head group and 

contains intramolecular quenching groups.  PLD-mediated hydrolysis of the lipid in 

vitro results in increased fluorescence, thus allowing monitoring of real-time PLD 

activity.  PLD localisation with its substrate could be monitored in vivo using live 

rather than fixed cells.  Historically, in vitro PLD assays have been radioactive and 

produced only one datat point, wheras this project achieved assay conditions to 

monitor activity in real-time yielding up to 500 data points.  Furthermore, PLD-

substrate interaction in vivo has never before been attempted using live cells.  The 

broad aims and hypotheses of this project are detailed below: 

 

1) Does fPtdCho stay intact in labelled RBL-2H3 cells? 

 fPtdCho labelling of RBL-2H3 cells was assessed using live confocal 

microscopy as the lipid could not be fixed.  The Bligh-Dyer lipid extraction 

protocol was used on fPtdCho-labelled RBL-2H3 cells to confirm that 

fPtdCho was still intact and not hydrolysed in vivo. 

 

2) Does fPtdCho localise with secretory lysosomes in labelled RBL-2H3 cells?  Is 

fPtdCho-labelling PLD-dependent and, if so, does it respond to antigenic 

stimulation? 

 Antigenic stimulation and degranulation of RBL-2H3 cells is PLD-dependent. 

The hypothesis was that fPtdCho would localise to the secretory lysosomes of 

RBL-2H3 cells, presumably making the substrate available for PLD-mediated 

hydrolysis.  Several molecular markers including LysoTracker Red were used 

to stain fPtdCho-labelled RBL-2H3 cells.  Live confocal imaging was used to 

record data and Image J to assess co-localisation. 

 Primary alcohol treatment of fPtdCho-labelled RBL-2H3 cells helped 

determine whether fPtdCho staining was PLD-dependent.  

Transphosphatidylation altered fPtdCho staining of cells from punctate to 

diffuse, as recorded using live confocal microscopy. 
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 Although staining appeared dependent on PLD-mediated PtdOH generation, 

real-time antigenic stimulation (recorded using live microscopy) did not 

change the localisation of fPtdCho staining. 

 

3) Can fPtdCho be used as a PLD substrate in vitro to analyse lipase activity in 

real-time?  If so, can established assays be modified to yield real-time data? 

 Purified recombinant glutathione-S-transferase (GST) labelled human PLD1 

(hPLD1) was expressed in Sf9 insect cells and used in real-time in vitro 

assays.  Conditions were modified from established end-point PLD assays 

and fPtdCho-hydrolysis monitored fluorimetrically. 

 Basal and G-protein activated PLD activity were recorded at two second 

intervals by measuring fluorescence increase as fPtdCho was hydrolysed. 

 

4) Does PLD1b or PLD2a localise with its small G-protein activator Rac1 in HeLa 

cells?  Does the lipase localise with its activator upon stimulation? 

 PLD1b and PLD2a were labelled with the red fluorescent protein Cherry, 

expressed in the pcDNA3.1(-) plasmid.  HeLa cells were transiently 

transfected with Cherry-PLD1b or -PLD2a and localisation analysed using 

fixed and live confocal microscopy. 

 Rac1 was labelled with green fluorescent protein and transiently transfected 

into HeLa cells.  Cherry-PLD and Rac1 co-localisation was assessed in 

double-transfected cells in resting and agonist-stimulated cells (fixed).  

 

5) Does fPtdCho co-localise in HeLa cells expressing Cherry-PLD1b?  Can this 

then be developed into an in vivo real-time assay?  

 fPtdCho-labelled HeLa cells were transfected using Cherry-PLD1b and co-

localisation between the two assessed using live FRET by FRAP technology.  

Data indicated that the two were in close proximity which lays the foundation 

for developing a live real-time in vivo PLD assay. 
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Chapter 2: Methods 

 

2.1: Materials 

 

All analytical grade reagents used for experimental work were sourced from Sigma-

Aldrich (Dorset, UK) or Fischer Scientific (Loughborough, UK).  Specialist lipids 

were supplied by Lipid Products (Surrey, UK) and molecular markers by Invitrogen 

through Fischer Scientific (Loughborough, UK).  Purified recombinant small G-

protein activators were sourced from Bioquote Limited (York, UK).   

 

2.2: Tissue culture techniques of mammalian cell lines 

 

2.2.1: Subculturing of mammalian cell lines 

 

Rat basophilic leukemia (RBL-2H3), human embryonic kidney (HEK-293), Swiss 

3T3, and HeLa cell lines were cultured using Dulbecco‟s Modified Eagle Medium 

(DMEM) containing glutamax (or glutamine) supplemented with 10% foetal calf 

serum (FCS) (henceforth “complete DMEM”).  Monolayers were cultured in 25 cm
2
 

or 75 cm
2
 sterile vented flasks to a density of 70-90%, passaging every 2-3 days.   

 

Confluent RBL-2H3 cells were washed 3 times using complete DMEM and 

monolayers disrupted using 25 cm cell scrapers.  RBL-2H3 cells were further 

cultured at a 1/10 dilution and discarded before passage 15. 

  

Swiss 3T3, HEK-293 and HeLa cell lines were washed with phosphate buffered 

saline (PBS) before incubating the flask at 37
o
C/5% CO2 (2 minutes) in 2 ml of 

trypsin (0.25%) in medium and saline.  Flasks were tapped hard to displace the cells 

10 ml complete DMEM was added and cells were centrifuged at 800 RPM for 3 

minutes.  The pellet was resuspended in fresh medium and cultured at a suitable 

dilution; typically between 1/3 and 1/10. 
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2.2.2: Freezing and thawing of mammalian cell lines 

 

All mammalian cell lines were cultured to 90% confluency in 75 cm
2
 sterile vented 

flasks and passaged into 1.5 ml cryovials.  Cells were passaged as previously 

described (refer to Section 2.2.1) and centrifuged at 800 RPM for 3 minutes.  The 

medium was removed and the cell pellet resuspended in 1 ml FCS and 10% dimethyl 

sulfoxide (DMSO) before aliquoting 1 ml/cryovial.  Cryovials were frozen -80
o
C for 

up to 24 hours before transfer to liquid nitrogen for long term storage. 

  

Thawing was achieved by transferring cells from liquid nitrogen immediately to 

37
o
C.  They were then transferred to a 75 cm

2
 flask with 10 ml of complete DMEM.  

The medium was replaced 3-4 hours after thawing.  
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2.3: Transient transfections using plasmid DNA 

 

2.3.1: Culturing cells for transient transfection 

 

All mammalian cell lines were subcultured as previously described (refer to Section 

2.2.1) and RBL-2H3, HeLa and Swiss 3T3 cells plated onto 6-well plates with 

methanol-sterilised circular (22 mm diameter) coverslips 24 hours prior to 

transfection.  Cells were seeded at a 1/10 dilution in a final volume of 2 ml complete 

DMEM for 24 hours prior to transfection, achieving a final confluency of 40-50%. 

 

Similarly, HEK-293 cells were passaged and cultured in 6-well plates at a dilution of 

1/10 on methanol-sterilised poly-D-lysine coated coverslips 24 hours prior to 

transfection.  Poly-D-lysine was used at a concentration of 0.1 mg/ml applied to the 

cover slips for 10 minutes and washed 3 times with 2 ml filter sterilised PBS before 

adding 2 ml complete DMEM per well. 

 

2.3.2: Transient transfections using Lipofectamine
TM 

and polyethylenimine  

 

RBL-2H3 cells cultured in 6-well plates were incubated in 1 ml DMEM (no 

additions) for 2 hours prior to transfection. Polyethylenimine (PEI) was used at a 

final concentration of 20 µM in 100 µl of N-(2-hydroxyethyl)-piperazine-N'-2-

ethanesulfonic acid (HEPES) pH 7.5 and incubated with 6 µg of DNA at room 

temperature (RT) for 15-20 minutes.  Lipofectamine
TM

 (6 µl) was added to each 

complex and incubated for 15-20 minutes at RT; complexes were then added to 

RBL-2H3 cells and mixed gently.  Transient transfections were initially incubated on 

a strong magnet (PromoKine) for 15 minutes at 37
o
C/5% CO2 and further incubated 

for 5 hours before 2 ml of complete DMEM halted the transfections.  After 48 hours, 

cells were washed 3 times (5 minutes per wash) with filter sterilised PBS before and 

after incubation with 4% paraformaldehyde (PFA) for 1 hour at room temperature 

(RT).  Cells were then mounted onto slides using Centifluor
TM

 and sealed with nail 

varnish. 

 

HeLa cells were transfected using 3 µg of DNA for single transfections and 6 µg for 

co-transfections.  DNA was incubated in 50 µl HEPES, pH 7.5 with 40 µM PEI for 
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15-30 minutes at RT.  3 µl Lipofectamine
TM

 was then diluted in 50 µl HEPES, pH 

7.5 and added to each complex for a further 15-30 minutes at RT.  Complete DMEM 

was replaced with 1 ml DMEM (no additions) immediately before complexes were 

added and incubated for 6 hours at 37
o
C/5% CO2.  Transfections were quenched with 

2 ml complete DMEM and incubated for a further 24 hours before fixing and 

mounting onto slides.          

 

2.3.3: Transient transfections using Lipofectamine
TM 

and PLUS
TM

 Reagent  

 

HEK-293 or Swiss 3T3 cells cultured in 6-well plates were incubated in 1 ml DMEM 

(no additions) for 2 hours prior to transfection.  Each transient transfection used 

either 6 µg DNA for single transfections or 8 µg DNA for co-transfections.  100 µl 

DMEM (no additions) was added to the DNA before incubation with 6 µl PLUS
TM

 

Reagent for 15-20 minutes.  5 µl Lipofectamine
TM

 was added to each complex and 

incubated for 15-20 minutes and added to the cells before mixing gently.  

 

Transfections using HEK-293 cells were incubated for 4-5 hours at 37
o
C/5% CO2 

before the transfection media was replaced with 2 ml complete DMEM for a further 

48 hours before fixing as previously detailed (refer to Section 2.3.2).   

 

Transient transfections using Swiss 3T3 cells were treated as detailed previously 

(refer to Section 2.3.1).  Cells were incubated on a strong magnet (PromoKine) for 

15 minutes at 37
o
C/5% CO2 and then for 5 hours before adding 2 ml complete 

DMEM.  Cells were fixed 48 hours later using 4% PFA and mounted using 

Centifluor
TM

. 
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2.4: Live confocal microscopy  

 

2.4.1: Maintenance of mammalian cells during live confocal microscopy 

 

RBL-2H3, HEK-293, HeLa and Swiss 3T3 cells were subcultured and seeded in 

fluorodishes – 35 mm in circumference with a 23 mm glass bottom.  All cell lines 

were cultured at a 1/10 dilution in 2 ml complete DMEM in fluorodishes 24 hours 

prior to live confocal microscopy.  

 

During live confocal microscopy, cells were washed once and incubated in 1 ml of 

carbonate supplemented Hank‟s Balanced Salt Solution (HBSS) buffered with 20 

mM HEPES pH 7.4. 1 mM calcium chloride (CaCl2) was added to the HBSS to 

replicate the physiological environment in which cells undergo antigenic.   

 

2.4.2: Live labelling of cells using the novel fluorescence phosphatidylcholine 

 

RBL-2H3, HEK-293, Swiss 3T3, HeLa and MIN6 cells were labelled using a novel 

fluorescent version of phosphatidylcholine (PtdCho), synthesised in the laboratory of 

Professor G. Prestwich (Utah, USA).  The novel BODIPY-labelled PtdCho was 

resuspended in DMSO (100 ng/µl).  Cells cultured in fluorodishes for approximately 

24 hours were labelled with 1 µg DBPC in 1 ml HBSS + 1 mM calcium (Ca
2+

).  

Cells were washed once with 1 ml HBSS + 1 mM Ca
2+

 and labelled with the novel 

lipid for a minimum of 2 hours at 37
o
C/5% CO2.  The 1% DMSO content (10 µl) did 

not have a toxic effect on the cells.   

 

RBL-2H3, Swiss 3T3 and HeLa cells were treated with the novel lipid for up to 24 

hours during a live imaging time course.  Cells were not labelled under sterile 

conditions and so each fluorodish was washed twice with complete DMEM + 100 

U/ml penicillin and 100 µg/ml streptomycin before incubation in 2 ml at 37
o
C/5% 

CO2 overnight.   

 

SP5 confocal microscopy was used for live imaging of the novel fluorescence lipid.  

The argon laser was used for live imaging of novel PtdCho-labelled cells excited at 

488 nm.  Cells were incubated at 37
o
C for the duration of live experiments. 



 62 

2.4.3: Live labelling of cells using molecular markers 

 

RBL-2H3, HEK-293, Swiss 3T3, HeLa and MIN6 cells were labelled using the 

following molecular markers: Hoechst 33342, LysoTracker Red DND-99 (Image-iT 

LIVE Lysosomal and Nuclear Labelling Kit), MitoTracker Red CMXRos, FM4-64, 

acridine orange and BODIPY-PC.  All cell labelling was performed in fluorodishes 

with a final volume of 1 ml in HBSS + 1 mM Ca
2+

. 

 

The nuclear marker Hoechst 33342 was used at a concentration of 2.0 µg/ml in 

HBSS+ 1 mM Ca
2+

 and incubated at 37
o
C/5% CO2 for 15 minutes.  Cells were then 

washed twice with HBSS + 1 mM Ca
2+

 before confocal imaging using the ultra 

violet (UV) laser.   

 

The lysosomal marker LysoTracker Red DND-99 was used at a concentration of 100 

nM.  Cells were labelled for 1 minute at RT before washing with HBSS+ 1 mM Ca
2+

.  

Finally, cells then imaged using the 594 nm laser on the confocal microscope. 

 

The mitochondrial marker MitoTracker Red CMXRos was used at a concentration of 

100 nM.  Cells were labelled for 30 minutes at 37
o
C/5% CO2 before live imaging 

using the 594 nm laser. 

 

The membrane marker FM4-64 was used at a concentration of 2.5 µM and imaged 

immediately using the 488 nm laser of the confocal microscope. 

 

RBL-2H3 and HEK-293 cells were also labelled using acridine orange and BODIPY-

PC.  Acridine orange was used at concentrations of 3 µM and 6 µM and incubated at 

37
o
C/5% CO2 for 5 minutes or 2 hours.  The acyl-modified glycerophosphocholine 

BODIPY-PC was used at a concentration of 1 µg/ml and incubated at 37
o
C/5% CO2 

for 10 minutes or 2 hours, modifying the protocol used by Laulagnier et al., 2005.  

Images were recorded using the argon laser of the confocal microscope at 488 nm.  
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2.4.4: Live treatments and their effects on the localisation of molecular markers 

 

RBL-2H3 cells were treated with methyl-β-cyclodextrin (MBCD), wortmannin, and 

cytochalasin D to determine the effects of each on the localisation of either DBPC or 

LysoTracker Red.   

 

2.4.4.1: Treatment of RBL-2H3 cells with MBCD 

RBL-2H3 cells were pre-treated with 10 mM MBCD in 1 ml HBSS for a minimum 

of 30 minutes and maximum of 2 hours at 37
o
C/5% CO2 prior to labelling with the 

novel PtdCho and real-time live imaging.  1 hour pre-treatment using MBCD at 

37
o
C/5% CO2 was used to asses the effect on LysoTracker labelling in RBL-2H3 

cells prior to live confocal imaging.  RBL-2H3 cells were also treated with 10 mM 

MBCD for up to 1 hour after lipid labelling.   

  

2.4.4.2: Treatment of RBL-2H3 cells with wortmannin 

RBL-2H3 cells were pre-treated with 100 nM wortmannin at 37
o
C/5% CO2 in 1 ml 

HBSS for up to 2 hours and labelled for 2 hours with 1 µg novel PtdCho before real-

time live imaging.  RBL-2H3 cells were also labelled with the novel lipid and then 

treated with wortmannin (100 nM) for up to 1 hour at 37
o
C/5% CO2. 

 

2.4.4.3: Treatment of cells with cytochalasin D 

Cytochalasin D (CD) was used at a 1 mM concentration dissolved in DMSO.  RBL-

2H3 or HeLa cells were labelled with the novel PtdCho for 2 hours and then treated 

with 1 µM CD for 5 hours and imaged every hour as part of a time course.  Similarly 

RBL-2H3 cells were labelled with novel PtdCho and treated with CD for 2 hours 

before antigenic or phorbol 12-myristate 13-acetate (PMA) stimulation and imaged 

using real-time confocal microscopy.  HeLa cells were treated with 1 µM CD for 1 

hour prior to labelling with fluorescent PtdCho and live confocal imaging.  HeLa 

cells transfected with Cherry-PLD1b were treated with CD for 1 hour 24 hours after 

transfection and imaged using live confocal microscopy.    

 

2.4.4.4: UV treatment of RBL-2H3 cells 

RBL-2H3 cells were labelled with 1 µg of the novel PtdCho for 2 hours at 37
o
C/5% 

CO2 in 1 ml HBSS + 1 mM Ca
2+

 before UV treatment.  Cells were exposed to 600 



 64 

mJoules (mJ) of UV light in a UV Crosslinker (Hoefer Scientific Instruments) prior 

to live confocal imaging at various time points up to 24 hours.  

 

2.4.5: Live stimulation of RBL-2H3 cells 

 

RBL-2H3 cells were stimulated live on the confocal microscope, incubated in 1 ml 

HBSS + 1 mM Ca
2+

 and labelled with a molecular marker. 

  

Cells were sensitized overnight using rat anti-DNP IgE (1 μg/ml, LO-DNP-30), 

washed once using 1 ml HBSS + 1 mM Ca
2+

 and labelled with either LysoTracker 

Red or the novel PtdCho.  They were stimulated using 100 ng/ml DNP-KLH in 1 ml 

HBSS + 1 mM Ca
2+

 on the stage of the inverted SP5 confocal microscope at 37
o
C 

(Farquhar et al., 2007).  

 

PMA stimulation was used on RBL-2H3 cells first labelled using either LysoTracker 

Red or the novel fluorescent lipid.  Cells were treated with 100 nM PMA in 1 ml 

HBSS + 1 mM Ca
2+

 on the heated stage of the SP5 confocal microscope. 

 

RBL-2H3 cells stimulated with the calcium ionophore A23187 were washed once 

and labelled with either LysoTracker Red or the novel lipid and incubated in 1 ml 

HBSS + 1 mM Ca
2+

.  0.1 µM A23187 was the most potent concentration (deduced 

using β-hexosaminidase assays) used during live real-time RBL-2H3 cell stimulation.   

 

2.4.6: Stimulation of HeLa cells using epidermal growth factor (EGF)  

 

Transfected HeLa cells were treated with 20 µM epidermal growth factor (EGF) for 

10 minutes at 37
o
C/5% CO2 and then fixed with 4% PFA for 1 hour and washed 3 

times with filter sterilised PBS (5 minutes per wash).  Similarly, HeLa cells used for 

live microscopy were washed once with HBSS + 1 mM Ca
2+

 and stimulated with 20 

µM EGF at 37
o
C during real-time confocal imaging. Cells were also treated with 20 

µM EGF at 37
o
C/5% CO2 for 10 minutes prior to washing with HBSS + 1 mM Ca

2+
 

and real-time confocal imaging.       
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2.5: Fixed labelling of RBL-2H3 cells and immunocytochemistry 

 

2.5.1: Fixed cell images 

 

RBL-2H3 cells were grown on methanol-sterilised coverslips in 6-well plates and 

labelled with LysoTracker Red.  Cells were then fixed using 4% PFA and washed 

once using filter sterilised PBS.  The cells were permeabilized with 0.1% Triton-X-

100 for 5 minutes, blocked with 5% donkey serum for 1 hour and washed again with 

filter sterilised PBS.  The cells were incubated overnight at 4
o
C with primary 

polyclonal rabbit anti-rat histamine unconjugated antibody (1:250) and washed again 

with filter sterilised PBS for 5 minutes.  Finally, the cells were treated with the 

secondary anti-rabbit Alexa 488 antibody (1:500) for 1 hour at RT.  Cells were 

washed with filter sterilised PBS for 5 minutes and mounted onto slides using 

Centifluor
TM

.   
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2.6: Recording activity of stimulated RBL-2H3 cells 

 

2.6.1: Treatment of RBL-2H3 cells in the β-hexosaminidase assay 

 

RBL-2H3 cells were seeded in 12-well plates using a 1/5 dilution of the original 

culture in a 1 ml final volume of complete DMEM.  To eliminate interference from 

FCS proteins, each well was washed twice using no additions DMEM and once using 

HBSS + 1 mM Ca
2+

. 

 

Each well was incubated in 250μl of HBSS + 1 mM Ca
2+

 and stimulated using 

antigenic stimulation in the context of IgE, PMA or A23187 as described previously 

(refer to Section 2.4.5).  A23187 affects secretion in a concentration dependent 

manner and RBL-2H3 secretion was measured in response to 10 μM, 1 μM and 0.1 

μM A23187 to identify the concentration which induces maximum secretion.  All 

stimulation results were calculated as a percentage relative to cells treated with 0.1% 

Triton X-100.   

 

Each treatment was performed in triplicate and allowed to incubate for 1 hour at 

37
o
C/5% CO2.  The reactions were centrifuged at 13,000 RPM for 5 minutes and 

20μl transferred to a 96-well plate.  An equal volume of the β-hexosaminidase 

substrate 1 mM nitrophenyl N-acetyl-D-glucosamide (in 0.1 M sodium citrate buffer, 

pH 4.5) was added for 1 hour (Howl et al., 2003).  The reaction was terminated using 

200 µl 0.1 M sodium carbonate/0.1 M sodium hydrogen carbonate buffer, pH 10.5. 

The resulting yellow pigment was measured using a colorimeter at 405 nm taking 

readings in triplicate and averaged. 
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2.7: Tissue culture techniques of Spodoptera frugiperda 

 

2.7.1: Culturing and maintenance of the Spodoptera frugiperda insect cell line 

 

The Spodoptera frugiperda (Sf9) insect cell line was maintained in TC-100 insect 

medium with L-glutamine and sodium bicarbonate or modified Grace‟s medium 

(TNM-FH) with L-glutamine.  The medium was supplemented with 10% FCS, 100 

U/ml penicillin and 100 µg/ml streptomycin. 

 

Sf9 cells were cultured in monolayers in either 25 cm
2
 or 75 cm

2
 sterile vented flasks 

grown at 27
o
C.  Monolayers were cultured to approximately 90-100% confluency 

before subculturing by tapping the flasks hard to displace the cells and gently 

resuspending.  Typically cells were passaged at 1/2, 1/3, or 1/5 dilutions.  

 

During logarithmic growth, Sf9 doubling time is approximately 24 hours and cells at 

this phase were infected with baculovirus.  Cells were seeded at a density of 

approximately 0.5×10
5
 cells/ml and allowed to grow to 1×10

6
 cells/ml before 

infection.  

 

2.7.2: Freezing and thawing of Sf9 cells 

 

Sf9 cells were cultured to approximately 1×10
6
 cells/ml in sterile vented flasks 

before subculturing.  Cells were tapped hard to displace the confluent monolayer and 

centrifuged at 800 RPM for 3 minutes.  The medium was then refreshed with 1/10
th

 

of the original volume of the culture and the pellet resuspended.  An equal volume of 

10% DMSO in fresh medium was added before aliquoting 0.5 ml into cryoviles.  

Cells were frozen slowly at -80
o
C and transferred for long term storage to liquid 

nitrogen. 

 

Cells were transferred from liquid nitrogen and thawed immediately at 37
o
C.  Cells 

were then transferred to 25 cm
2
 sterile vented flasks with 5 ml complete medium and 

refreshed 1 hour after thawing. 
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2.8: Infection and harvesting of Sf9 cells 

 

2.8.1: Infection of Sf9 cells with baculovirus 

 

Sf9 cells were cultured in 4 ml complete TNM-FH media in 25 cm
2
 sterile vented 

flasks to a density of approximately 1×10
6
 cells/ml at the time of infection.  Cells 

were infected with the baculovirus at 1×10
8
 virions/ml containing either human 

PLD1 (hPLD1) or hPLD2 to give a multiplicity of infection (MOI) of 5.  The 

baculovirus was provided by Professor M. J. O. Wakelam (Cambridge, UK). 

 

2.8.2: Harvesting infected Sf9 cells and purifying protein using the glutathione-

S-transferase (GST) tag  

 

Sf9 cells infected with baculovirus containing GST labelled hPLD1 or hPLD2 were 

incubated at 27
o
C for 48 hours.  Cells were harvested from 25 cm

2
 flasks using cell 

scrapers and centrifuging at 800 RPM for 3 minutes.  Pellets were resuspended in 1 

ml of warmed (37
o
C) PBS and centrifuged at 1600 RPM for a further 3 minutes.  The 

supernatant was discarded and pellet resuspended in 500 µl lysis buffer (10 mM Tris, 

130 mM NaCl, 10 mM sodium fluoride, 10 mM sodium pyrophosphate (NaPPi), pH 

7.5) with 1% Triton-X-100 and protease inhibitors.  The lysate was then sonicated 

briefly and stood for 30 minutes at 4
o
C.  At each step of the purification process a 20 

µl sample was removed and denatured using an equal volume of ×2 NuPAGE 

Sample Reducing Buffer with 1% 2 M dithiothreitol (DTT) and heated to 75
o
C. 

 

Glutathione S-transferase (GST)-hPLD1b and GST-hPLD2a proteins were extracted 

from the lysate using 1 step affinity purification.  Approximately 400 µl glutathione 

sepharose 4B was pulsed at 1000 RPM to give a final bed volume of between 100-

300 µl of glutathione sepharose beads.  Beads were washed with 1 ml lysis buffer, 

centrifuged at 1000 RPM for 20 seconds and allowed to stand (although not to dry). 

  

Following the 4
o
C 30 minute incubation, the lysate was centrifuged for 30 minutes at 

4
o
C at 13,200 RPM.  The pellet remaining was resuspended in 500 µl lysis buffer 

without detergent and the supernatant applied to the sepherose beads and agitated at 

4
o
C for 2-4 hours on a rotator.  The glutathione sepharose column and lysate were 
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centrifuged at 1000 RPM for 60 seconds and the supernatant removed and stored at 

4
o
C.  GST beads were washed using lysis buffer without detergent 3 times to remove 

all traces of detergent from the protein.  During each wash the beads were allowed to 

stand at RT for 5 minutes, and then centrifuged at 1000 RPM for 60 seconds.  Protein 

was eluted using 200 µl of 10 mM glutathione in 50 mM Tris pH7.5 and stored at -

80
o
C.  Samples taken at each stage of the purification process were used to analyse 

the efficiency of protein expression and purification using western blotting. 
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2.9: Western blotting 

 

2.9.1: SDS-PAGE electrophoresis 

 

Samples collected at each step of GST-hPLD purification described previously (refer 

to Section 2.8) were denatured using NuPAGE Sample Reducing Buffer and heated 

to 75
o
C.  To reduce sample viscosity at least 1 freeze thaw cycle was completed.  

NuPAGE Bis-Tris mini gels were used under reduced conditions; the buffer of the 

lower chamber contained running buffer and the upper chamber 200 ml running 

buffer and 500 µl antioxidant.  Half the volumes of samples taken from each GST 

purification step were run (20 µl-30 µl).  Rainbow Molecular Weight Markers were 

used for reference points on each gel.  The NuPAGE gels were run for 50 minutes at 

200V. 

  

2.9.2: Transferring proteins from NuPAGE gel to PVDF membrane 

 

Proteins separated by NuPAGE gels were transferred onto polyvinylidene fluoride 

(PVDF) membranes.  Whatman 3MN filter paper (8.5 cm x 7.5 cm) was soaked in 

transfer buffer (12 mM Tris, 96 mM Glycine, 10% Methanol, 5% of 10% SDS 

solution).  The PVDF membrane (8 cm x 7 cm) was then washed in methanol and the 

excess washed away with distilled water.  The PVDF membrane was soaked in 

transfer buffer and the gel „sandwiched‟ with the PVDF membrane and a piece of 

filter paper on the back of the gel.  A second piece of filter paper was placed at the 

front of the gel.  These layers were then put into a cassette with sponges and run at 

25 V for 90 minutes.  The lower chamber was filled with water and the upper 

chamber with transfer buffer.  

 

2.9.3: PVDF membrane immunoblotting 

 

PVDF membranes were blocked for 1 hour at RT with 5% marvel in TST buffer (10 

mM Tris, 100 mM NaCl, 0.05% Tween 20, pH 7.5 using HCl) with agitation.  

Membranes were washed briefly with 5 ml TST buffer and incubated with the 

primary antibody (in 5% marvel) overnight at RT.  The membrane was washed 5 

times (5 minutes per wash) using 25 ml TST buffer and incubated for 1 hour with the 
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appropriate horse radish peroxidase (HRP) secondary antibody 1:5000 dilution (in 

5% marvel).  The membrane was washed 5 times and developed using the EZ-ECL 

Chemilluminescene Detection Kit for HRP as per the manufacturer‟s instructions.  

Kodax BioMax XAR Film 18 cm x 24 cm was used and developed to analyse 

western blots.  Antibodies used for immunoblotting PVDF membranes are listed in 

Table 2.1.        

 

Table 2.1: Antibodies used to probe GST, hPLD1 and hPLD2 proteins for 

immunoblotting PVDF membranes.  Antibodies used for probing GST and hPLD1 

or hPLD2 were incubated at RT overnight at a dilution of 1/1000 in 5% marvel.  

PVDF membranes were then probed with the appropriate 1/5000 secondary HRP 

antibody for 1 hour at RT.  

 

  

Antigen Supplier Dilutions Secondary Antibody 

GST Sigma 1:1000 Anti-Mouse 

PLD1 Santa Cruz 1:1000 Anti-Goat 

PLD1 Sylvain 

Bourgoin 

(Canada) 

1:1000 Anti-Rabbit 

PLD2 Sylvain 

Bourgoin 

(Canada) 

1:1000 Anti-Rabbit 

 

2.9.4: PVDF membranes: stripping and re-probing 

 

PVDF membranes were incubated in stripping buffer (62.5 mM Tris, 2% SDS, 100 

mM β-mercaptoethanol (BME), pH 6.8 using HCl) for 1 hour at RT with agitation.  

Membranes were transferred to clean falcon tubes and washed extensively with TST 

buffer between 60 to 90 minutes.  PVDF membranes were blocked using 5% marvel 

(refer to Section 2.9.3) and re-probed with primary and secondary antibodies.   
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2.10: Fluorescent in vitro PLD assays 

 

2.10.1: Measuring  in vitro GST-hPLD1 activity 

 

Real-time in vitro GST-hPLD1 assays were completed in a final volume of 100 µl at 

37
o
C.  Each assay contained 50 µl lipid vesicles (x2 stock), 50 µM guanosine 5'-O-

(gamma-thio) triphosphate (GTPγS), 3 mM magnesium (Mg
2+

), 2 mM Ca
2+

 and 400 

mM sodium chloride (NaCl). Vesicles were created using the following: 134 µM L-

α-phosphatidylethanolamine (PtdEth), 24 µM phosphatidylinositol-4,5-bisphosphate 

(PtdIns(4,5)P2) and 0.5 µg of the novel fluorescent lipid.  The lipids were dried under 

a gentle stream of nitrogen gas before resuspending in 400 µl sonication buffer (125 

mM HEPES, 200 mM potassium chloride (KCl), 2.5 mM DTT, 7.5 mM ethyl glycol 

tetraacetic acid (EGTA) and pH 7.5).  Vesicles were vortexed briefly and sonicated 

for 20 seconds at 5mA.  Vesicles were stored at RT and protected from the light; 

fresh vesicles were created for each set of experiments.  Purified recombinant GST-

hPLD1 protein preparations were thawed on ice and added to each assay.  The 

fluorescent vesicles were finally added to the assays.  Known GST-hPLD1 activators 

such as PKCα, histadine-tagged Rac1 wildtype (wt), Rac1 (constitutively active) and 

adenosine diphosphate (ADP) ribosylation factor (Arf1) maintained in buffer 

following the manufacturer‟s instructions (substituting 0.1% glycerol for dextran).  2 

µg of each activator were added to the assay immediately prior to recording PtdCho 

hydrolysis (using relative fluorescence emitted).  Total assay volume was 100 µl in 

black-bottomed, 96-well plate.  Fluorescence readings were taken every 2 seconds 

using a fluorimeter (at 37
o
C) and data recorded concurrently using excitation at 485 

nm and fluorescence emission detection at 535 nm.    
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2.11: Molecular biology techniques 

 

2.11.1: Making and transforming chemically competent cells 

 

Frozen Escherichia coli dh5α was resuspended in 1 ml of Luria broth (LB), plated on 

non-selective LB agar plates and incubated at 37
o
C overnight.  A single colony was 

used to seed a 10 ml super optimal broth (SOB medium) mini-culture (5 g bacto 

tryptone, 1.25 g yeast extract, 0.5 ml 5 M sodium chloride, 0.625 ml 1 M potassium 

chloride and 2.5 ml 1 M magnesium chloride) incubated at 37
o
C/250 RPM overnight. 

 

The mini-culture was used to seed a 200 ml SOB maxi-culture incubated at 37
o
C 

until the optical density (OD) at 550 nm was 0.45.  All of the following steps were 

completed at 4
o
C.   Cells were chilled for 30 minutes and centrifuged for 15 minutes 

at 4000 RPM.  The supernatant was discarded and cells resuspended in 66 ml buffer 

RF1 (100 mM rubidium chloride, 50 mM manganese chloride, 20 mM potassium 

acetate, 10 mM calcium chloride, 15% glycerol, pH 5.8) and chilled for 1 hour.  

Cells were then centrifuged and resuspended in 16 ml buffer RF2 (10 mM 3-(N-

morpholino) propanesulfonic acid (MOPS), 10 mM rubidium chloride, 75 mM 

calcium chloride, 15% glycerol, pH 6.8) and chilled for 15 minutes. Chemically 

competent cells were flash frozen in 200 µl aliquots (using dry ice and ethanol) and 

stored at -80
o
C. 

 

To transform chemically competent cells, aliquots were thawed slowly and ligations 

or plasmid DNA (1:500 of maxi-prep DNA) were added to 100 µl cells.  The cells 

were incubated 15-30 minutes at 4
o
C and heat shocked at 42

o
C for 2 minutes, 

followed by 2 minutes at 4
o
C.  100 µl of ×2 LB was added and the cells incubated at 

37
o
C for 30 minutes with agitation.  The transformed cells were then plated onto 

selective plates and incubated overnight at 37
o
C.   

 

2.11.2: Ligations of cDNA into vector plasmids 

 

Standard ligations used T4 ligase followed the manufactures instructions.  Final 

volumes of ligations (10 μl or 20 μl) were dependent on insert concentration using 

25-50 ng vector and 50-100 ng insert in a ×5 ligation buffer.  Ligations were 
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incubated for a minimum of 3 hours („sticky‟ end ligations) or overnight („blunt‟ end 

ligations).  

 

Shrimp alkaline phosphatase (SAP) or rAPid Alkaline Phosphatase were used in a 2 

step ligation where vector DNA was dephosphorylation (following manufacturer‟s 

instructions).  The vector was dephosphorylated prior to ligation with insert cDNA as 

detailed previously. 

 

All ligations were transformed using chemically competent cells as described 

previously (refer to Section 2.11.1) and plated onto selective LB agar plates.   

 

2.11.3: DNA extraction from Miniprep and Maxiprep E.coli cultures 

 

Miniprep cultures inoculated using a single colony (picked from LB agar plates) 

were grown in 10 ml LB with antibiotics (0.1 mg/ml ampicillin or kanomycin) and 

incubated for 16-18 hours at 37
o
C/280 RPM.  Plasmid Miniprep DNA was extracted 

using the QIAprep Spin Miniprep Kit protocol following the manufacturer‟s 

instructions and eluted using 50 µl autoclaved water.  

Miniprep DNA was amplified using Maxiprep cultures with a total volume of 100 ml 

LB and supplemented with an appropriate antibiotic.  Maxiprep cultures were 

inoculated either with 2 ml Miniprep culture or a single colony and incubated at 

37
o
C/280 RPM for 16-18 hours.  Plasmid DNA Purification QIAGEN Plasmid Maxi 

protocol was used to extract Maxiprep DNA (utilising the QIAGEN Plasmid Maxi 

Kit).  Plasmid DNA was eluted following the manufacturer‟s instructions and 

allowed to air dry before resuspension in 250-500 µl autoclaved water (~1-2 µg/µl). 

 

Concentration and purity of Maxiprep DNA was spectrophotometer-determined at 

260 nm and 280 nm.  Purity was analysed using the A260/A280 ratio and concentration 

deduced using the value for A260 multiplied by 50 (the optical density equals to 1 at 

260 nm of a 50 μg sample) and multiplying by 100 (to convert to μg/μl). 
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2.11.4: Polymerase chain reaction mutagenesis and screening 

 

Primers were phosphorylated using T4 kinase incubated with 6μl ×5 Forward 

Reaction buffer, 1.5μl 2.5 mM adenosine triphosphate (ATP) and 1μl T4 kinase in a 

final volume of 30μl.  The T4 kinase reaction mixture was incubated at 37
o
C for 15 

minutes followed by 10 minute incubation at 65
o
C.  The reaction mixture was 

allowed to cool before primers were used for polymerase chain reaction (PCR). 

 

PCR reactions used to amplify sequences used a standard master mix containing 

150μl betaine/DMSO, 99μl dH2O, 30μl ×10 buffer with MgSO4, 3μl of template 

DNA (diluted 1/50 Miniprep DNA), 12 μl mixed primers after kinase treatment and 

6μl deoxyribonucleotides (dNTPs) from a 10 mM stock concentration.  Each reaction 

contained 90μl PCR master mix and 0.5μl Pyrococcus woesei (PWO) DNA 

Polymerase to maximise the amount of DNA.  Reactions conditions were modified 

depending on the size of the fragment being amplified and extension time was 

appropriate to the length of the DNA (typically 1 minute per 1000 base pairs) at 40
o
C, 

50
o
C and 60

o
C.  

 

Single colonies were picked from selective plates and resuspended in 100 µl of water.  

The mastermix of the PCR reaction contained 20 µl PCR buffer (without Mg
2+

), 10 

µl W-1, 6 µl 50 mM Mg
2+

, 2 µl 10 mM dNTP mix, 2 µl of each primer and 2 µl 5 

u/µl Taq polymerase (recombinant) with VT of 211 µl. 1 µl of the resuspended 

colonies and 9 µl PCR master mix were used for each PCR orientation reaction.  The 

PCR screening program used was at 50
o
C with a 1 minute extension time for 30 

cycles.  PCR screening was used to assess if the ligated fragment was inserted into 

the correct open reading frame (ORF) of the vector plasmid.   

 

2.11.5: Restriction enzyme digests – analytical and preparative 

 

Analytical restriction enzyme digests were used to identify fragment size and 

confirm restriction sites of cloned plasmids.  Analytical digests using 0.5-1 µl DNA, 

1 µl of the appropriate buffer and 0.5 µl restriction enzyme (final volume 10 µl) and 

incubated at 37
o
C for 90 minutes.  The digests were visualised using ×2 loading 

buffer (30% glycerol, 0.025% bromophenol blue) by agarose gel electophoresis.  All 
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restriction enzymes were from Invitrogen (except HindIII, Fermentas) and protocols 

adhered to manufacturers instructions using appropriate buffers and conditions. 

 

Preparative digests using Miniprep or Maxiprep DNA (final volume 30 μl) were 

incubated at 37
o
C for 3 hours.  Preparative digests were run on agarose gels and the 

appropriate bands extracted from the gel (refer to Section 2.11.7). 

 

2.11.6: Agarose gel electrophoresis and DNA quantification 

 

DNA was visualised using UV light after agarose gel electrophoresis where DNA 

was intercalated using ×2 loading buffer containing ethidium bromide.  Both 

analytical and quantitative digests were run on 1-2% agarose gels (1-2 g agarose, 10 

ml ×5 Tris-borate-ethylenediaminetetraacedic (EDTA) acid (TBE) buffer, 10 μl of 10 

mg/ml stock ethidium bromide to VT of 100 ml) in running buffer (25 ml ×5 TBE 

buffer to a VT of 250 ml).  5 μl of 10% 1Kb DNA ladder was used on analytical gels 

to determine the size of fragments produced using restriction enzyme digests. 

 

DNA quantification was used to aid ligations 2 µl of purified insert and vector DNA 

were quantified using agarose gel electrophoresis of the DNA.  Insert and vector 

DNA were compared against 10 μl of 10% 1Kb DNA ladder and quantified. 

 

2.11.7: Purification of preparative DNA 

 

Preparative DNA was purified using gel electrophoresis in which the appropriate 

band was cut from the gels using UV light and purified using the QIAquick Gel 

Extraction Kit (following manufacturer‟s instructions).  DNA was eluted from the 

QIAquick Gel Extraction columns using 50μl autoclaved water and then used for 

ligations. 

 

2.11.8: Sequencing of plasmid DNA 

 

Plasmid Miniprep DNA was sequenced using the Molecular Biology Service, 

University of Warwick.  2 μl of miniprep DNA and a 1/20 dilution of the appropriate 

primer were submitted for sequencing.    
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Sequencing data was viewed (using ChromasLite) and sequences analysed using 

LALIGN (comparing the actual sequence with the predicted sequence constructed 

using GCK).  The entire sequence data for the ~3000 base pairs of human PLD1b or 

PLD2a were combined to make a single ORF and LALIGN was used to demonstrate 

that the obtained sequence matched the expected sequence (generated in silico).  The 

in silico sequence is derived from the published sequences associated with the 

accession numbers for PLD1b (Accession No. Q133393-2) and PLD2a (Accession 

No. O14939).  All the primers used for sequencing (Appendix 1) were designed and 

sourced from VH Bio Limited.   

  

2.11.9: Cloning of pcDNA3.1(-)-mRFP-PLD1b or -PLD2a 

 

Primers to the N-terminal and C-terminal of mRFP from the dsRedm plasmid 

(obtained from Dr G. Ladds, Coventry, UK) using the standard PCR protocol (refer 

to Section 2.11.4) and used to generate a PCR product for the ORF of mRFP with an 

engineered XbaI site, (using primers move dsRed F (XbaI) to engineer an XbaI site 

and move dsRed R).  The PCR product was purifed (QIAquick Gel Extraction Kit) 

and both the PCR product and pcDNA3.1(-) were digested using XbaI-XhoI and re-

purified.  The PCR product was ligated with the linearised pcDNA3.1(-) vector.  

Ligations were transformed by heat shock into chemically competent E. coli and 

plated onto LB agar plates containing ampicillin (100 µg/ml).  Ampicillin resistant 

colonies were screened for the mRFP ORF using a PCR-based screen with forward 

and reverse primers from pcDNA3.1(-) called T7 and 1491.  Positive clones were 

Miniprep cultured in 10 ml LB broth with ampicilin overnight and plasmid DNA 

extracted (QIAprep Spin Miniprep Kit).  Positive clones were sequenced (Molecular 

Biology Service, University of Warwick) using primers T7 and 1491. 

 

PLD1b was cloned by PCR into the EcoRV site of pcDNA3.1(-)-mRFP using T4 

kinase treated PLD1b (start) F and PLD1b reverse primers.  Similarly, PLD2a was 

cloned by PCR into the EcoRV site of pcDNA3.1(-)-mRFP using T4 kinase treated  

PLD2a (start) F and PLD2a reverse primers.  The PCRs were performed using the 

standard protocol (refer to Section 2.11.4) at 40
o
C, 50

o
C and 60

o
C and the products 

purified using gel electrophoresis (QIAquick Gel Extraction Kit).  PLD1b or PLD2a 

were SAP ligated with pcDNA3.1(-)-mRFP linearised with EcoRV.  Ligations were 
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then transformed by heat shock into chemically competent E. coli and plated on to 

LB agar plates containing ampicillin (100 µg/ml).  Ampicillin resistant colonies were 

screened for the presence of the PLD1b ORF or PLD2a ORF using a PCR-based 

screen using forward primer from the mRFP ORF (dsRed sequencing) and reverse 

primers PLD1b XhoI reverse or PLD2a Inside XhoI (reverse).  Positive clones were 

Miniprep cultured overnight in 10 ml LB broth with ampicillin and the plasmid DNA 

extracted (QIAprep Spin Miniprep Kit).  

 

2.11.10: Cloning of pcDNA3.1(-)-Cherry-PLD1b or -PLD2a 

 

Primers to the N-terminal and C-terminal of Cherry form of GFP (obtained from Dr 

G. Ladds, Coventry, UK; Shaner et al., 2004) were used to generate a PCR product 

for the ORF of Cherry-GFP.  The N-terminal primer inserted an XbaI site directly N-

terminal to the ATG of the Cherry ORF using the Cherry forward primer.  The PCR 

product was generated (using Cherry forward and Cherry reverse primers) using the 

standard protocol PCR protocol (refer to Section 2.11.4).  The PCR product was 

purified by gel electrophoresis and ligated into pcDNA3.1(-) linerarised with XbaI 

and EcoRV.  Ligations were transformed by heat shock into chemically competent E. 

coli which were plated onto LB agar plates containing ampicillin (100 μg/ml).  

Ampicillin resistant colonies were screened for the presence of the Cherry ORF 

using a PCR-based screen with primers from either side of the pcDNA3.1 multi-

cloning site using T7 and 1491.  Positive clones were grown in 10 ml LB broth with 

ampicillin overnight and plasmid DNA extracted (Qiagen Miniprep Kit) and 

restricted with XbaI-EcoRV prior to sequencing (Department of Biological Sciences, 

University of Wariwck sequencing service) and this clone was called pcDNA3.1(-)-

Cherry. 

 

PLD1b was cloned by PCR into the EcoRV site of pcDNA3.1-Cherry using primers 

to the N- and C-terminals of PLD1b (using PLD1b (start) forward and PLD1b 

reverse primers).  The PCR was performed at 40
o
C, 50

o
C and 60

o
C and the product 

was purified by gel electrophoresis.  The purified PCR product was then ligated with 

pcDNA3.1-Cherry linerarised with EcoRV.  Ligations were transformed by heat 

shock into chemically competent E. coli which were plated onto LB agar plates 

containing ampicillin (100 µg/ml).  Ampicillin resistant colonies were screened for 
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the presence of the PLD1b ORF using a PCR-based screen with the forward primer 

from Cherry and a reverse primer from PLD1b (PLD1b Xho reverse).  Positive 

clones were grown in 10 ml LB broth with ampicillin overnight, plasmid DNA 

extracted (Qiagen Miniprep Kit) and subject to diagnostic restriction enzyme digests 

with XbaI plus EcoRV or KpnI.  Positive clones were sequenced (Molecular Biology 

Service, University of Warwick). 

 

PLD2a was cloned by PCR into the EcoRV site of pcDNA3.1-Cherry using primers 

to the N- and C-terminals of PLD2a (using PLD2a (start) forward and PLD2a reverse 

primers).  The PCR was performed at 40
o
C, 50

o
C and 60

o
C and the product purified 

by gel electrophoresis.  Purified PCR products were ligated with pcDNA3.1-Cherry 

linerarised with EcoRV.  Ligations were transformed by heat shock into chemically 

competent E. coli and plated onto LB agar plates containing ampicillin (100 µg/ml).  

Ampicillin resistant colonies were screened for the presence of the PLD2a ORF 

using a PCR-based screen with the forward primer from Cherry and a reverse primer 

from PLD2a (PLD2a reverse).  Positive clones were grown in 10 ml LB broth with 

ampicillin overnight and plasmid DNA extracted (Qiagen Miniprep Kit) and 

sequenced (Molecular Biology Service, University of Warwick).  The amino acid 

sequences, protein sequences and plasmid maps of Cherry-PLD1b and Cherry-

PLD2a can be found in Appendices II-IIX. 
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2.12: The TNT Quick Coupled Transcription/Translation System and 

phosphorimaging 

 

2.12.1: TNT Quick Coupled Transcription/Translation System 

 

The TNT Quick Coupled Transcription/Translation System assay (TNT assay) was 

used to ensure stable in vitro protein expression of mRFP, PLD1b and PLD2a.    The 

TNT assay was used to confirm in vitro (radiolabelling amino acid 
35

S-methionine) 

expression of the full-length constructs as in vivo transfections were unsuccessful.  

Radiolabel was incorporated into the protein structure and could be detected using 

phosphorimaging or x-ray film.  A luciferase (61kDa) protein-expressing plasmid 

was used as a control to confirm the reaction occurred and as a marker of size.  TNT 

proteins were made using 20 µl TNT reticulocyte, 2 µl Miniprep DNA, 10µCi 
35

S-

methionine and nuclease free water (final volume of 25 µl per reaction).  Reactions 

were then incubated at 30
o
C for 90 minutes.  TNT protein mixture (5 µl or 6 µl) was 

added to 5 µl water and 10 µl of × 2 loading buffer and then incubated at 75
o
C for 30 

minutes.  Samples were run on pre-cast NuPAGE Bis-Tris mini gels under reducing 

conditions (see Section 2.9.1) for 50 minutes, stained, de-stained and dried overnight, 

previously published in Wright et al., 2008 (see Appendix IX).   

 

Coomassie stain was made using 50 ml ethanol, 10 ml glacial acetic acid and 40 ml 

water with 0.129g of Coomassie Blue.  The gel was submerged in the stain, heated 

for 30 seconds, then cooled with agitation for 15 minutes.  The de-staining process 

occurred in 2 steps: first, the same proportions of ethanol and glacial acetic acid were 

used as the Coomassie stain but without Coomassie Blue.  The second contained 10 

ml ethanol, 5 ml glacial acetic acid and 85 ml water.  Both de-stains were heated for 

30 seconds and allowed to cool with agitation for 15 minutes.  The gel was soaked in 

water for 30 minutes followed by soaking in 10% glycerol for 30 minutes.  The gel 

and cellulose paper were then submerged in ×1 drying solution and dried on a 

scaffold overnight.  Phosphorimaging and the more sensitive x-ray imaging 

technique were used to analyse the gel and identify molecular weight markers.  The 

control TNT protein luciferase was also used as a molecular weight marker of 61kDa. 
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Chapter 3: Characterising a fluorescent PLD substrate 

 

3.1 Introduction 

 

Mast cells are involved in initiating the inflammatory response via cross-linking the 

high affinity immunoglobulin E (IgE) receptors (FcRI) with binding of multivalent 

antigens initiating degranulation (Toru et al., 1996).  These granules contain 

inflammatory mediators such as histamine, serotonin, heparin and proteases.  Mast 

cell stimulation and degranulation has been well characterised in the rat basophilic 

leukaemia (RBL-2H3) cell line which can be induced by antigenic stimulation in the 

context of IgE, increasing intracellular Ca
2+

 concentration via a calcium ionophore or 

activating PKCα with phorbol 12-myristate 13-acetate (PMA).       

 

The localisation of the two predominant mammalian PLD isoforms (PLD1b and 

PLD2a) varies greatly depending on the cell line.  In unstimulated RBL-2H3 cells, 

transiently expressed GFP-PLDlb localises with markers for secretory granules and 

lysosomes but, upon antigenic stimulation, translocates to the plasma membrane 

(Brown et al., 1998).  Degranulation is dependent upon PLD catalysing the 

hydrolysis of PtdCho to generate PtdOH and choline (Brown et al., 1998).  

 

Phospholipases D have the unique ability to mediate a transphosphatidylation 

reaction that was first identified in cabbage PLD (Yang et al., 1967). Primary 

alcohols (such as butan-1-ol) inhibit PLD-catalysed PtdOH production by interfering 

with the transesterification of the lipid substrate (PtdCho) and resulting in 

preferential production of a phosphtidylalcohol (Ptd-alcohol). Primary alcohols are 

therefore referred to as PLD (enzyme) inhibitors but they are more accurately 

described as “functional inhibitors”.  The mechanism by which butanol is proposed 

to work necessarily assumes the presence of an enzyme-phosphatidyl group 

intermediate in the catalytic mechanism. The primary alcohol, acting as a stronger 

nucleophile than the surrounding water, attacks this intermediate, resulting in, for 

example, production of phosphatodylbutanol (PtdBut) rather than PtdOH. Ptd-

alcohols are more metabolically stable than PtdOH in cells and therefore their 

accumulation not only diverts PtOH signalling but also can be used to assay PLD 
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catalysed PtdCho hydrolysis from appropriately labelled cells (Frohman et al., 1999).  

Although transphosphatidylation inhibits degranulation in RBL-2H3 following 

antigenic stimulation, PLD maintains its ability to translocate to the plasma 

membrane (Brown et al., 1998).  This discovery indicates that the product of PtdCho 

hydrolysis, PtdOH, is a key second messenger and mediator of mast cell 

degranulation. The role of PtdOH in diverse cell processes including exocytosis, 

endocytosis and cytoskeletal rearrangement is not yet well understood.   

 

A23187, an antibiotic derived from Streptomyces chartreusensis, binds to divalent 

ions (preferentially to Ca
2+

 ions) and transports them across biological membranes 

(Reed and Lardy, 1972; Luckasen et al., 1974).  This increase in intracellular Ca
2+

 

ions leads to non-PLD dependent exocytosis of RBL-2H3 cells.  The secreory 

granules of RBL-2H3 cells express synaptotagmin (Syt) proteins which are Ca
2+

 

sensitive and initiate plasma membrane and vesicle membrane fusion events.  

   

PLD activity can be measured in a number of ways including the accumulation of 

Ptd-alcohol or via in vitro PtdCho hydrolysis assays.  Mast cell degranulation can be 

measured via beta (β)-hexosaminidase assays (measuring lysosomal secretion).  

Upon PLD activation, the known lysosome marker β-hexosaminidase is secreted 

(Farquhar et al., 2002) which hydrolyses both N-acetylglucosamine and N-

acetylgalactosamine (Watanabe, 1936; Wendeler and Sandhoff, 2009).  

 

Using a novel fluorescent (fPtdCho) synthesised in the laboratory of Prof. Glenn 

Prestwich enabled the characterisation of fPtdCho in several cell lines.  The novel 

fPtdCho is labelled with BODIPY at the choline head group and when it is intact 

BODIPY fluorescence is internally quenched by non-fluorescent aromatic groups 

attached to the acyl-chains (see Fig. 3.1).  When the lipid is hydrolysed by PLD to 

release the BODIPY-labelled choline head group, fluorescence emission increases.   

However, fluorescence is intramolecularly quenched by the presence of aromatic 

groups inserted into the fatty acid chain.  When the lipid is de-quenched (through 

hydrolysis by PLA2, PLC or PLD), fluorescence is expected to increase.  The aim 

was to determine the spatio-temporal activation of PLD (by its multiple regulators) to 

form a PtdCho-hydrolysing complex in vivo in real-time.  Although the novel 
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fPtdCho localised in RBL-2H3 cells in a characteristic manner, RBL-2H3 cells were 

difficult to genetically modify in a reproducible manner. 

 

PLD localisation in RBL-2H3 has been previously characterised using GFP (Brown 

et al., 1998).  However, the BODIPY label of the novel fluorescent lipid was also 

green and so a different fluorophore was needed to unequivocally visualise both PLD 

and its substrate in vivo.  PLD was fluorescently labelled with monomeric RFP 

(mRFP), a derivative of the original DsRed fluorescent protein from the Discosoma 

genus.  DsRed had slow fluorescence maturation (from green to red), and tetramers 

formed in vivo are toxic to cells (Baird et al., 2000). DsRed was genetically altered 

using 33 site-directed amino acid substitutions, resulting in the acceleration of the 

rate of fluorescence maturation and induced preferential formation of either tandem 

dimers or true monomers (denoted mRFP1 – Bevis and Glick, 2002; Campbell et al., 

2002).  Additional modifications to the mRFP fusion tag have improved 

photostability and quantum yield are found in the clone mCherry, which is tenfold 

brighter than mRFP and benefited from GFP-type termini (which aided in N- or C-

terminal fusion) when expressed in mammalian cells (Shaner et al., 2004; Shaner et 

al., 2005; Müller-Taubengerger et al., 2006).  The mCherry fluorescent tag offers the 

longest wavelength, highest photostability and fastest maturation when compared to 

other fluorescent proteins developed from mRFP1, (for example mStrawberry and 

mOrange – Shaner et al., 2004).  In addition, mCherry rapidly reaches near-complete 

maturation, has an increased tolerance to N-terminal fusion and tenfold increase 

resistance to photobleaching (when compared to mRFP1), which renders mRFP1 

obsolete (Shaner et al., 2004; Shaner et al., 2005). 
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Figure 3.1:  The structure of the novel fluorescent PLD substrate.  The novel 

fPtdCho is labelled with BODIPY attached to the choline head group.  

Intramolecular aromatic groups are present on the acyl-chains of the lipid so when it 

is intact BODIPY fluorescence is reduced.  Upon PLD hydrolysis, the choline-

BODIPY head group is released and fluorescence increases in vitro.  The lipid was 

synthesized in the laboratory of Professor G. Prestwich (Utah, USA). 
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3.2: Characterisation of a novel PLD substrate and other molecular markers in 

RBL-2H3 cells 

 

3.2.1: Characterisation of a fluorescent PLD substrate in the RBL-2H3 cell line 

 

The fluorescence of the BODIPY group was not fully quenched in the intact fPtdCho 

lipid and basal fluorescence could still be detected.  RBL-2H3 cells were labelled 

with the 0.5 µg/ml fPtdCho in a salt solution (PBS or HBSS) for 3 hours and the 

lipids extracted using the Bligh-Dyer method (Bligh and Dyer, 1959).  The 

fluorescence of aqueous and lipid fractions from labelled and unlabelled cells were 

compared using a fluorimeter.  Readings were recorded approximately every second 

for 60 seconds using an excitation of 488 nm and emission of 530 nm. The 

fluorescence emissions (see Fig. 3.2a) of the lipid fractions from unlabelled (control) 

RBL-2H3 cells, were up to 11 times lower than cells labelled with fPtdCho.  The 

fluorescence emissions of lipid fractions from labelled cells were up to five times 

higher than that of aqueous fractions.  In addition, although this change in emitted 

fluorescence may not seem substantial, chloroform is known to quench fluorescence 

(Hurtubise, 1975). 

 

RBL-2H3 cells were labelled with 0.5 µg/ml novel fluorescent lipid (in DMSO) for 

1-3 hours at 37
o
C prior to imaging.  Although the fPtdCho was expected to stain the 

plasma membrane, it localised in punctiform structures within the cell cytoplasm (see 

Fig. 3.2b).  Confocal microscopy was used to image the treated cells live at 37
o
C.  

The movement of the internalised fluorescent lipid using real-time imaging was 

recorded over 15 minutes (1 frame/10 seconds) which is condensed into 18 seconds 

(see Fig. 3.2c for condensed recording).  The punctate structures were motile within 

the RBL-2H3 cells and moved within and between the focal planes.  All the cells in 

dishes treated with the fPtdCho were labelled and displayed characteristic punctiform 

localisation. fPtdCho labelling of the RBL-2H3 cells was consistently punctate, 

however the level of fPtdCho uptake was dependent on the cell population and 

duration of cell exposure to the lipid.   
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Figure 3.2: Localisation of the novel fluorescent lipid in RBL-2H3 cells.   
 

a) RBL-2H3 cells were grown in 6-well plates in complete DMEM for 24 hours 

prior to labelling.  The cells were washed once with HBSS + 20 mM HEPES and 

incubated in 1 ml HBSS for 2 hours with 1 µg/ml fPtdCho (in DMSO).  Each 

well was washed with filter sterilised PBS and scraped into a final volume of 700 

µl of methanol. 700 µl of chloroform and 630 µl of water (1 chloroform: 1 

methanol: 0.9 water) were then also added to the methanol fraction.  The mixture 

was centrifuged (1000 RPM for 2 minutes) and the lipid fluorescence (in 

chloroform) and aqueous (in methanol/water) fractions was measured (panel a).  

The HBSS cells were labelled in was also measured.  Fluorescence was accrued 

approximately every second for 60 seconds at an excitation of 488 nm and 

emission of 530 nm in quartz cuvettes.  The fluorescence of labelled and 

unlabelled cell fractions was compared between 2 samples. 

 

b) RBL-2H3 cells used for confocal imaging were grown on glass bottomed 

fluorodishes for 24 hours.  Cells were labelled using 1 µg/ml of fPtdCho for 

between 60 and 120 minutes prior to real-time confocal imaging.  Cells were then 

washed with filter sterilised PBS + 25 mM HEPES, pH 7.4 and incubated in a 

final volume of 1 ml.  Real-time recording was completed over 15 minutes (1 

frame/10 seconds) using the argon laser with an excitation at 488 nm and an 

emission band width between 500 nm-608 nm.  The 488 nm laser power was 

halved and each time point was scanned twice (and averaged) to reduce 

photobleaching.  A scale calibrated to 25 µm is shown in each panel.  The data 

presented are representative images for 1 experiment of at least 4.  Still images of 

the real-time recording are represented below (panel b) whilst the recording is 

shown in Fig. 3.2c.   
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The size of the vesicles was analysed using the Leica Application Software (LAS) 

Advanced Fluorescence (AF) Lite software.  Transects were drawn across cells and 

the fluorescence intensity measured using a stack profile for both DIC and 

fluorescent channels (see Fig. 3.3).  The majority of the vesicles were between 1-2 

µm in diameter, although this varied between 0.3 µm and 2.9 µm.  The diversity in 

vesicle size may be due to vesicle movement as vesicles appeared to „fuse‟.   The 

average size of vesicles was calculated using 189 vesicle sizes, and calculated to be 

1.38 µm (± 0.04).   

 

The novel fluorescent lipid stably labelled RBL-2H3 cells for up to 24 hours.  

Although the total fluorescence diminished between 3 and 22 hours, the labelling of 

punctiform structures in the cell body and processes was maintained (see Fig. 3.4, 

panels a, b).  The lipid was also used to label other cell lines including the Swiss 3T3 

fibroblast cell line.  Although every cell was labelled with the fPtdCho at 3 hours 

(see Fig. 3.4, panels c-e), localisation was not as distinctive as in RBL-2H3 cells.  

Swiss 3T3 cells showed both punctate (see arrows Fig. 3.4, panel e) and diffuse (see 

circle Fig. 3.4, panel e) labelling.  Swiss 3T3 cells were not as effectively labelled as 

RBL-2H3 cells and after 24 hours the labelling was weakened further.   
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Figure 3.2:  The size of fluorescent PtdCho vesicles in the RBL-2H3 cell line.  

RBL-2H3 cells were grown on glass bottomed fluorodishes and labelled with 1 

µg/ml of the novel fluorescent lipid for 90 minutes and imaged using SP5 confocal 

microscopy.  Using the LAS-AF Lite software sections of the cells were analysed 

using lines and fluorescence intensity was exported in stack profiles.  The size of the 

line (region of interest) drawn across the cell is represented along the x-axis (µm).  

The fluorescence intensity across this region of interest excited at 488 nm with an 

emission bandwidth between 500-608 nm is represented on the y-axis.  The 

fluorescence intensity of the 488 nm channel (■) was compared to the „control‟ DIC 

channel (▲).  A representation of 1 region of interest with 2 fluorescence peaks 

(where each peak was identified as a vesicle) is represented below.  Vesicles were 

analysed across 3 separate experiments using 10 regions of interest each.  (n=1, 25 

vesicles were identified, n=2, 52 vesicles were identified, n=3, 48 vesicles were 

identified).  
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Figure 3.4: The stability of fluorescently labelled RBL-2H3 and Swiss 3T3 cells.  
RBL-2H3 and Swiss 3T3 cells were grown on glass bottomed fluorodishes for 24 

hours prior to labelling.  Cells were labelled using 1 µg/ml of fPtdCho for a 

minimum of 60 minutes prior to confocal imaging.  Live cell imaging (at 37
o
C) 

excited fluorescence using the 488 nm argon laser with an emission bandwidth 

between 500 nm-608 nm.  RBL-2H3 cells were imaged at various time-points 

including 3 hours and 22 hours (see panels a, b).  Swiss 3T3 cells were also imaged 

up to 24 hours (see panels c-e).  A scale calibrated to 25 µm is shown in each panel.  

The data presented are representative images for 1 experiment of 5 using RBL-2H3 

cells and 1 of 2 using Swiss 3T3 cells.   
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3.2.3: Localisation of a fluorescent PLD substrate with other live molecular 

markers in RBL-2H3 cells 

 

Although the novel fPtdCho localised to organelles within the cytoplasm, the identity 

of these organelles was unknown.  Fixing the fluorescent lipid using 4% PFA was 

not possible, as the fluorescence was lost.  In addition, the fluorescent lipid would 

leach out of permeabilised cells and so immunocytochemistry was not possible.  

Identifying where the fluorescent lipid localises in the RBL-2H3 cells was therefore 

investigated using live molecular markers.    

 

RBL-2H3 cells were treated first with the fluorescent lipid and then labelled with the 

membrane marker FM4-64.  FM4-64 is an amphiphilic styryl dye comprised of 3 

components: hydrophobic tail, body, and dictionic head.  These contribute to 

membrane labelling, the spectral properties of the dye and prevention of dye passage 

across the membrane, respectively (Betz et al., 1996; Fischer-Parton et al., 2000).  

However, the novel lipid (green) did not co-localise with the FM4-64 (red) and 

localisation did not change over a 15 minute time-course (see Fig. 3.5). 

 

Other molecular markers such as Hoechst 33342 and MitoTracker Red did not co-

localise with the novel fPtdCho (see Fig. 3.6).  Although the mitochondrial marker 

MitoTracker Red (see Fig. 3.6, panel b) and the fluorescent lipid (see Fig. 3.6, panel 

a) labelled punctiform structures within the cell cytoplasm, they did not co-localise.  

Punctate structures labelled with either fluorescent lipid or MitoTracker Red were 

distinct from the nucleus (see Fig. 3.6, panel a, c, e).   
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Figure 3.5: The localisation of the novel fluorescent lipid and the molecular 

marker FM4-64 in RBL-2H3 cells (time course).  RBL-2H3 cells were grown on 

glass bottomed fluorodishes for 24 hours prior to labelling with 1 µg/ml of the novel 

fPtdCho, (in HBSS + 20 mM HEPES for a minimum of 60 minutes).  Cells were 

stained with 2.5 µM FM4-64 (in DMSO) washed once with HBSS and imaged at 

37
o
C.  Both the BODIPY labelled lipid and the FM4-64 dye were excited at 488 nm 

using the argon laser.  The emission bandwidth of the novel fluorescent lipid was 

between 491 nm-552 nm whilst the emission bandwidth for FM4-64 was between 

604 nm-733 nm.  Confocal microscopy was used to record a time-course taking 

snapshots at 0, 5, 10 and 15 minutes.  Although the argon laser was used to excite 

both channels, controls showed there was no overlap in fluorescence detection 

between the 2 markers and localisation was distinct (see overlays below).  A scale 

calibrated to 50 µm is shown in each panel.  The data presented are representative 

images for 1 experiment and of at least 2. 
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Figure 3.6: The localisation of the novel fluorescent lipid with nuclear and 

mitochondrial markers in RBL-2H3 cells.  RBL-2H3 cells were grown on glass 

bottomed fluorodishes for 24 hours prior to labelling with the novel lipid.  Cells were 

labelled using 1 µg/ml of fPtdCho in 1 ml HBSS + 20 mM HEPES + 1 mM Ca
2+ 

 for 

a minimum of 210 minutes prior to confocal imaging (see panel a).  Cells were then 

stained with 100 nM of the mitochondrial marker MitoTracker Red CMXRos (see 

panel b) for 30 minutes at 37
o
C/5% CO2 and with the nuclear marker Hoechst 33342 

(2.0 µg/ml in HBSS) at 37
o
C/5% CO2 for 15 minutes (see panel c).  Cells were 

imaged using live SP5 confocal microscopy at 37
o
C and each channel was scanned 

sequentially.  The fluorescent lipid was excited by the argon laser at 488 nm with an 

emission bandwidth between 495 nm-582 nm.  MitoTracker Red was excited by the 

DPSS 561 laser at 561 nm with an emission bandwidth between 674 nm-795 nm.  

Hoechst was excited using the 405 Diode UV laser with an emission bandwidth 

between 430 nm-480 nm.  A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment of 2. 
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RBL-2H3 cells labelled with the novel fPtdCho were then treated with 100 nM of the 

lysosomal marker, LysoTracker Red (see Fig. 3.7, panel a).   LysoTracker Red is 

weakly basic and a known acidotropic molecular probe, which specifically targets 

and stains acidic compartments in mammalian cells, such as lysosomes (Saito et al., 

2004).  PLD1 localisation varies in different cell lines but it has been suggested that 

PLD1 may localise in lysosomes (Brown et al., 1998; Toda et al., 1999).  The 

excitation/emission spectra of the fluorescent lipid and LysoTracker Red were 

narrowed to minimise cross-channel fluorescence bleed-through.  LysoTracker Red 

was excited at 594 nm with an emission bandwidth between 658 nm-794 nm.  The 

fluorescent lipid was excited at 488 nm and the emission bandwidth was narrowed 

between 495 nm-533 nm.  Background fluorescence was reduced to minimise the 

influence of unlabelled cells. 

 

Co-localisation between LysoTracker Red and the novel fluorescent lipid in RBL-

2H3 cells was analysed using Image J.  Imaging data was collected using serial 

sections (at 1 µm thickness) of each field (see Fig. 3.7, panel b, n=1 and n=2).  

Individual cells in the field were isolated and the co-localisation between the 2 

markers in each section (in the case of n=1 and n=2) was analysed using the 

Colocalisation Finder plugin.  In a third experiment (see Fig. 3.7, panel b, n=3), cells 

were analysed individually in the focal plane with the most fluorescence.  The 

average Pearson‟s Correlation Coefficient between the 3 experiments was 0.5, 

suggesting approximately 50% co-localisation between the 2 markers.  Using the 

unpaired 2-tailed t-test there was no significant difference between the means of 

these data sets.   
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Figure 3.7:  Analysing co-localisation between the novel fluorescent lipid and 

LysoTracker Red using Image J.  RBL-2H3 cells were grown on glass bottomed 

fluorodishes for 24 hours prior to labelling with the 0.5 µg/ml novel fPtdCho in 1 ml 

HBSS + 20 mM HEPES 
 
 for 90 minutes (see panel a, image a).  Cells were then 

stained with 100 nM of the lysosomal marker LysoTracker Red (see panel a, image b) 

for 1 minute before washing twice with HBSS and imaging live at 37
o
C.  The 

fluorescent lipid was excited by the argon laser at 488 nm with an emission 

bandwidth between 495 nm-533 nm using SP5 confocal microscopy.  LysoTracker 

Red was excited by the HeNe 594 laser at 594 nm with an emission bandwidth 

between 658 nm-794 nm.  Serial sections (1 µm thickness) were recorded and cells 

were analysed individually for co-localisation in each section in experiments n=1 and 

n=2.  A total of 4 fields were analysed in n=1 (25 cells in total) and 3 fields were 

analysed in n=2 (18 cells in total).  Co-localisation in individual cells was analysed 

in only 1 focal plane in 8 fields of experiment n=3 (50 cells in total). Image J was 

used to isolate individual cells and calculate the Pearson‟s R using the Colocalization 

Finder plugin.  An average of all the cells in 3 separate experiments is shown in 

panel b.  A scale calibrated to 50 µm is shown in each image (see panel a).  The data 

presented are representative images for 1 experiment of 3. 
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3.2.4: Characterisation of LysoTracker Red in the RBL-2H3 cell line 

 

The exocytosis of secretory vesicles from mast cells contributes to the acute and late 

phase inflammatory response (Baram et al., 1999).  Lysosomes contain an array of 

vasoactive amines (e.g. histamine) found in secretory granules and lysosomal 

enzymes (e.g. β-hexosaminidase), which contribute to the acidic internal 

environment of lysosomes (Anderson and Orci, 1988).  The lysosomal marker 

LysoTracker Red accumulates in this acidic environment thus labeling the secretory 

lysosomes of RBL-2H3 cells (Baram et al., 1999).  The movement and size of 

LysoTracker Red labelled vesicles in RBL-2H3 cells were compared to that of the 

novel fluorescent lipid.  LysoTracker Red localised in punctiform structures located 

in the cell body and processes of RBL-2H3 cells (see Fig. 3.8a for snapshots).  These 

punctiform structures moved within the cell body and processes and between focal 

planes (see Fig. 3.8b for recording).  The movement of these vesicles was recorded 

over a period of 15 minutes using confocal microscopy (1 frame/10 seconds 

condensed to 18 seconds).   

 

The size of the punctiform structures were typically measured between 1-2 µm in 

diameter, much like the structures identified when labelling with the novel fPtdCho.  

The size of the vesicles was analysed using the LAS-AF Lite software as detailed 

previously (see Section 3.2.1, Fig. 3.3).  Vesicle sizes ranged from 0.8 µm to 3.9 µm 

in diameter when comparing 133 sizes of vesicles in 2 separate experiments, in 4 

fields.  The average size of vesicles was calculated using 133 vesicle sizes to be 1.7 

µm (± 0.05).  Using the unpaired 2-tailed t-test there was a significant difference 

between the mean size of LysoTracker Red and novel fPtdCho labelled vesicles.   
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Figure 3.8a:  The localisation and movement of LysoTracker Red vesicles in the 

RBL-2H3 cell line.  RBL-2H3 cells used for confocal imaging were grown on glass 

bottomed fluorodishes for 24 hours.  Cells were labelled using 100 nM LysoTracker 

Red DND-99 for 1 minute and washed twice with HBSS prior to live confocal 

imaging.  Real-time recording was completed over 15 minutes (1 frame/10 seconds) 

using the HeNe 594 laser with an excitation at 594 nm and an emission band width 

between 668 nm-794 nm.  The 594 nm laser power was halved and each time point 

was scanned twice (and averaged) to reduce photo-bleaching.  A scale calibrated to 

25 µm is shown in each panel.  The data presented are representative images for 1 

experiment of at least 2.  Still images of the real-time recording are represented in 

below whilst the recording is shown in Fig. 3.8b.   
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3.2.5: Characterisation of LysoTracker Red in the RBL-2H3 cell line 

 

RBL-2H3 cells treated with 100 nM LysoTracker Red and then fixed with 4 % PFA 

were permeabilised with Triton-X-100, blocked with donkey serum and probed with 

a polyclonal rabbit anti-rat histamine antibody overnight.  Bound primary antibody 

was detected with anti-rabbit Alexa-488 antibody (see Fig. 3.9, panel a, images a-d).  

The excitation and emission spectra of Alexa-488 and LysoTracker Red were 

narrowed to minimise cross-channel fluorescence bleed-through.  LysoTracker Red 

was excited at 594 nm with an emission bandwidth between 618 nm-753 nm.  Alexa-

488 was excited at 488 nm the emission bandwidth was narrowed between 495 nm-

552 nm.  Background fluorescence was reduced to minimise the influence of 

background pixels on co-localisation analysis. 

 

Image J was used to analyse the co-localisation between LysoTracker Red and the 

Alexa-488 cross-linked anti-histamine antibody in fixed RBL-2H3 cells.  Imaging 

data was collected using serial sections (at 1 µm thickness) of 3 fields from 2 dishes 

(see Fig. 3.9, panel b, n=1 to n=3).  Image J was used to isolate individual cells in the 

field and analyse the co-localisation between the 2 markers using the Colocalisation 

Finder plugin.  The average Pearson‟s R between 3 experiments was 0.48, suggesting 

approximately 50% co-localisation between LysoTracker Red and the Alexa-488 

cross-linked anti-histamine antibody.  Using the unpaired 2-tailed t-test there was no 

significant difference between the means of the 3 data sets. 
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Figure 3.9:  Analysing co-localisation between LysoTracker Red and a 

histamine antibody using Image J.  RBL-2H3 cells were grown on coverslips for 

24 hours prior to labelling with 100 nM LysoTracker Red (see panel a, image a) for 

1 minute before fixing for 1 hour using 4% PFA.  The cells were washing once with 

filter sterilised PBS and permeabilised for 5 minutes using 0.1% Triton-X-100.  Cells 

were then incubated in 5% donkey serum (in PBS) before overnight treatment with a 

polyclonal rabbit anti-rat histamine antibody (1:250 dilution) at 4
o
C.  Cells were 

washed once with filter sterilised PBS and incubated at room temperature with anti-

rabbit Alexa-488 antibody (1:500 dilution – see panel a, image b).  Finally, cells 

were washed with PBS and mounted.  The Alexa-488 antibody was excited by the 

argon laser at 488 nm with an emission bandwidth between 495 nm-552 nm.  

LysoTracker Red was excited by the HeNe 594 laser at 594 nm with an emission 

bandwidth between 618 nm-753 nm.  Sequential confocal imaging was used to take 

serial sections (1 µm thickness) of each field.  Individual cells were analysed in each 

serial section and the co-localisation averaged.  Co-localisation analysis was 

completed using Image J and the Colocalization Finder plugin.  A total of 3 separate 

slides (n=1, n=2 and n=3) were visualised and, on each slide, 3 fields were analysed 

(29 cells were analysed).  An average of all the cells in 3 separate experiments is 

shown in panel b.  A scale calibrated to 25 µm is shown in each image (see panel a).  

The data presented are representative images for 1 experiment of 3. 
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3.2.6: Characterisation of a fluorescent PLD substrate and other molecular 

markers in the MIN6 cell line 

 

The MIN6 insulinoma cell line is an insulin secreting pancreatic β-cell line 

(Miyazaki et al., 1990; Ishihara et al., 1993).  The fluorescence of the green fPtdCho 

was lower in MIN6 cells when compared to RBL-2H3 cell line (see Fig. 3.10, panel 

a) and was largely diffuse throughout the cytoplasm.  The fluorescent lipid did not 

co-localise with the membrane marker FM4-64 or label the nucleus (see Fig. 3.10, 

panels b, d).  LysoTracker Red treatment of MIN6 cells resulted in predominantly 

diffuse cytoplasmic staining; however there is also clear localisation in punctiform 

structures (see Fig. 3.10, panel e) and no labelling of the nucleus (see Fig. 3.10, 

panels f, h).  The localisation of the novel fluorescent lipid and LysoTracker Red are 

not comparable to that in RBL-2H3 cells.  This indicates that the structures which are 

labelled in RBL-2H3 may be specialised to mast cells and not to secretory cells in 

general. 
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Figure 3.10: Localisation of the novel fluorescent lipid and other molecular 

markers in the MIN6 cell line.  MIN6 cells were grown on glass bottomed 

fluorodishes and labelled with 1 µg/ml of the novel fPtdCho in HBSS + 20 mM 

HEPES at 37
o
C/5% CO2 for 90 minutes (panel a).  Cells were stained with 2.5 µM 

FM4-64 (panel b) and imaged immediately.  MIN6 cells were also labelled with 2.0 

µg/ml Hoechst 33342 for 15 minutes at 37
o
C/5% CO2 (panel f) and then treated with 

100 nM LysoTracker Red for 1 minute (see panel e).  Cells were washed twice with 

HBSS and data recorded using live sequential confocal microscopy.  Both the novel 

fluorescent lipid and FM4-64 were excited by the argon laser at 488 nm with 

emission bandwidths between 500 nm-608 nm (green) and between 665 nm-794 nm 

(red).  LysoTracker Red was excited using the HeNe 594 laser at 594 nm with an 

emission bandwidth between 668 nm-794 nm.  Hoechst was excited using the 405 

Diode UV laser with an emission bandwidth between 430 nm-480 nm.  A scale 

calibrated to 25 µm is shown in each panel.  MIN6 cells were labelled using the 

novel fluorescent lipid and with LysoTracker Red twice. 
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3.2.7: Comparing the localisation of the novel fluorescent PtdCho to an acyl-

modified BODIPY-PtdCho 

 

The localisation of a commercially available short (acyl)-chain 

glycerophosphocholine also linked to BODIPY (BODIPY-PtdCho) was analysed in 

RBL-2H3 and HEK-293 cells.  RBL-2H3 cells were stained using 1 µg/ml BODIPY-

PtdCho for up to 2 hours.  The fluorescence yield of BODIPY-PtdCho was 

considerably higher than that observed with the novel fluorescent lipid.  Labelling 

RBL-2H3 cells using BODIPY-PtdCho was cytoplasmic, diffuse and non-nuclear.  

Similar to the novel fPtdCho, BODIPY-PtdCho did not stain the membrane or co-

localise with the membrane marker FM4-64 (see Fig. 3.11, panels a-d).  As 

BODIPY-PtdCho does not localise to punctiform structures within the cell, co-

localisation between BODIPY-PtdCho and the lysosomal marker LysoTracker Red 

was not observed (see Fig. 3.11, panels e-h).  BODIPY-PtdCho was a useful control 

for confirming the specific nature of the localisation of the novel fluorescent lipid 

having the same fluorescent group (attached to the choline).   

 

Characterisation of BODIPY-PtdCho localisation in the epithelial HEK-293 cell line 

produced similar results to that seen in RBL-2H3 cells.  Fluorescent staining was 

diffuse and cytoplasmic, and did not localise to the plasma membrane or the nucleus 

(see Fig. 3.12, panels a-d).  Although the localisation of the novel fluorescent lipid 

was also diffuse in HEK-293 cells, the fluorescence yield was notably lower than 

that of BODIPY-PtdCho.   
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Figure 3.11: Localisation of BODIPY-PtdCho with FM4-64 and LysoTracker 

Red in RBL-2H3 cells.  RBL-2H3 cells grown on glass bottomed fluorodishes for 

24 hours were labelled with 1 µg/ml BODIPY-PtdCho in HBSS + 20 mM HEPES 

for either 5 minutes (panel a) or 120 minutes (panel e) at 37
o
C/5% CO2.  Cells were 

stained with either 2.5 µM FM4-64 (panel b) or 100 nM LysoTracker Red (panel f) 

and imaged at 37
o
C.  BODIPY-PtdCho and FM4-64 were both excited by the argon 

laser at 488 nm with emission bandwidths between 500 nm-608 nm (green) and 

between 665 nm-794 nm (red – see panels a-d).  The emission bandwidth of 

BODIPY-PtdCho was narrowed (495 nm-571 nm) when imaged with LysoTracker 

Red.  LysoTracker Red was excited with the HeNe 594 laser at 594 nm with an 

emission bandwidth between 629 nm-764 nm (see panels e-h).  A scale calibrated to 

25 µm is shown in each panel.  RBL-2H3 cells exhibited diffuse staining using 

BODIPY-PtdCho imaged using confocal microscopy in 3 separate experiments.  
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Figure 3.12: Localisation of BODIPY-PtdCho with FM4-64 in HEK-293 cells.  
HEK-293 cells were grown on glass bottomed fluorodishes coated in Poly-D-Lysine 

and labelled with the 1 µg/ml BODIPY-PtdCho in HBSS + 20 mM HEPES at 

37
o
C/5% CO2 for 120 minutes (panel a).  Cells were also stained with 2.5 µM FM4-

64 (panel b) prior to live confocal imaging (at 37
o
C).  BODIPY-PtdCho and FM4-64 

were both excited by the argon laser at 488 nm with emission bandwidths between 

500 nm-608 nm (green) and between 665 nm-794 nm (red – see panels a-d).  A scale 

calibrated to 25 µm is shown in each panel.  HEK-293 exhibited diffuse staining 

using BODIPY-PtdCho in 3 experiments.  
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3.2.8: Characterisation of a fluorescent PLD substrate and other molecular 

markers in the HEK-293 cell line 

 

Although one of the project aims was to create a live in vivo PLD assays, RBL-2H3 

cells proved difficult to transfect.  The HEK-293 epithelial cell line was used as an 

alternative system as the cells are more easily transfected.  The novel fluorescent 

lipid localised in punctate structures within the cytoplasm but the localisation of the 

lipid and its fluorescence yield was variable in HEK cells (see Fig. 3.13, panels a, e).  

In HEK cells, the fluorescent lipid did not localise with the membrane marker FM4-

64 (see Fig. 3.13, panels b, d) or with the nuclear marker Hoechst (see Fig. 3.13, 

panels f, h).  LysoTracker Red localised in punctiform structures within the cell and 

was excluded from the nucleus (data not shown) and largely did not co-localise with 

fPtdCho (see Fig. 3.14, panels a-d).  Whilst the localisation of LysoTracker Red and 

the novel fluorescent lipid were similar, upon transfection fPtdCho labelling of HEK 

cells was no longer punctate.  Transfection of RBL-2H3 cells was not reproducible 

and was often accompanied by a high degree of cell death.  Whilst HEK-293 cells 

were readily transfectable, lipid organisation was not as well structured as that of 

RBL-2H3 cells. 
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Figure 3.13: Localisation of the novel fluorescent lipid and other molecular 

markers in the HEK-293 cell line.  HEK-293 cells were grown on glass bottomed 

fluorodishes coated in Poly-D-Lysine and labelled with 1 µg/ml of the novel fPtdCho 

(in HBSS + 20 mM HEPES) for 120 minutes (panels a, e).  Cells were then stained 

with 2.5 µM FM4-64 (panel b) and imaged immediately.  Cells were also labelled 

with lipid and then with 2.0 µg/ml Hoechst 33342 for 15 minutes at 37
o
C/5% CO2 

(panel f).  HEK-293 cells were washed twice with HBSS and data was recorded 

using live sequential confocal microscopy.  Both the novel fluorescent lipid and 

FM4-64 were excited by the argon laser at 488 nm with emission bandwidths 

between 491 nm-552 nm (green) and between 583 nm-747 nm (red).  Hoechst was 

excited using the 405 Diode UV laser with an emission bandwidth between 430 nm-

480 nm.  A scale calibrated to 25 µm is shown in each panel. The data presented are 

representative images for 1 experiment of at least 2. 
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Figure 3.14: Localisation of LysoTracker Red and fPtdCho in the HEK-293 cell 

line.  HEK-293 cells were grown on glass bottomed fluorodishes coated in Poly-D-

Lysine prior to labelling. HEK-293 cells were labelled with 1.0 µg/ml of fPtdCho (in 

HBSS + 20 mM HEPES) for 120 minutes (panel b) at 37
o
C/5% CO2 and then with 

100 nM LysoTracker Red for 1 minute (see panel a).  HEK-293 cells were washed 

twice with HBSS and data recorded using live sequential confocal microscopy.  

LysoTracker Red was excited using the HeNe 594 laser at 594 nm with an emission 

bandwidth between 658 nm-794 nm.  The novel fluorescent lipid was excited by the 

argon laser at 488 nm with emission bandwidths between 495 nm-552 nm.  A scale 

calibrated to 25 µm is shown in each panel. The data presented are representative 

images for 1 experiment of at least 2. 
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3.3: Stimulation of fluorescently labelled RBL-2H3 cells  

 

3.3.1: Using a secretory lysosomal marker to measure the effectiveness of RBL-

2H3 stimulators 

 

The degranulation of RBL-2H3 cells in response to PMA, IgE-antigen and A23187 

was quantified using β-hexosaminidase assays (Howl et al., 2003).  Release of total 

β-hexosaminidase from RBL-2H3 cells treated with Triton X-100 (0.1%) was scored 

as 100% and secretion from other treatments was calculated as a percentage of the 

total (see Fig.3.15).  Cells treated with 0.1 µM A23187 released approximately 50% 

of total β-hexosaminidase with higher concentrations of A23187 – (1 µM and 10 µM) 

– resulting in approximately 25% and 40% β-hexosaminidase release, respectively.  

The most potent A23187 concentration was also used in live confocal microscopy 

experiments (see Section 3.3.4).  RBL-2H3 cells stimulated using IgE-antigen 

secreted approximately 40% of total β-hexosaminidase.  Whilst PMA appeared to be 

an effective mast cell stimulator using confocal microscopy (see Section 3.3.2), the 

β-hexosaminidase results were not as convincing.  β-hexosaminidase secretion of 

PMA-stimulated RBL-2H3 cells was approximately 15% compared with 12% 

secretion from control unstimulated cells (the percentage of β-hexosaminidase 

secreted by control cells is likely due to cell breakage).  PMA has an undeniable 

stimulatory effect on RBL-2H3 cells morphologically as seen by membrane ruffling, 

blebbing and cell process retraction. However, cells stimulated in this way do not 

secrete substantial quantities of the lysosome marker β-hexosaminidase.       
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Figure 3.15: Measuring secretion of RBL-2H3 cells using PMA, A23187 and 

IgE-antigen using the secretory lysosomal marker β-hexosaminidase.  RBL-2H3 

cells were grown in 12-well plates to approximately 80-90% confluencey 24 hours 

prior to the β-hexosaminidase assay.  Antigenically stimulated cells were primed 

overnight using 1 µg/ml anti-DNP IgE (in complete DMEM).  Primed RBL-2H3 

cells were stimulated using 0.1 µg/ml DNP-BSA for 60 minutes.  Cells were 

stimulated using 0.1 µM A23187, 1 µM A23187, 10 µM A23187, or 100 nM PMA 

for 60 minutes in 250 µl HBSS + 20 mM HEPES + 1 mM Ca
2+

 at 37
o
C/5% CO2.  

0.1% Triton X-100 was used to treat cells for 5 minutes before scraping.  All treated 

cells were scraped and centrifuged at 13,000 RPM for 5 minutes.  20 µl of the 

supernatant combined with 20 µl 1 mM p-nitrophenol-N-acetylglucosamide (in 0.1 

M sodium citrate, pH 4.5) in a 96-well plate was incubated at 37
o
C/5% CO2 for a 

further 60 minutes.  The reaction was terminated using 200 µl 0.1M sodium 

carbonate and sodium hydrogen carbonate, pH 10.5.  Results were measured 

continuously using the 405 nm filter on a plate reader.  Results recorded were 

calculated as a percentage of the values recorded for Triton X-100 treated cells.  All 

assays were read in triplicate and repeated at least 4 times.  The data presented are 

the means of these experiments. 
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3.3.2: The effect of PMA stimulation on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red 

 

RBL-2H3 cells were labelled with the 0.5 µg of the novel fluorescent lipid for 1 hour 

and then stimulated using 100 nM PMA.  PMA stimulates PKCα activity which in 

turn stimulates PLD1b and also results in degranulation.  PKCα is a known PLD1 

activator and the diacylglycerol (DAG) mimetic PMA is used to activate Ca
2+

-

dependent PKCα activation of PLD1 (Takai et al., 1979; Castagna et al., 1982).  

Mast cell morphology changes dramatically upon stimulation with PMA as the 

membrane ruffles and blebs, and the cell processes retract (see Fig. 3.16a for images).  

Upon PMA stimulation, the cell morphology changes but the novel fluorescent lipid 

maintains its motility (see Fig. 3.16b for recording).  Labelled RBL-2H3 cells were 

imaged at 37
o
C using live real-time confocal microscopy.  The recording was over 

30 minutes (1 frame/20 seconds) and has been condensed to 18 seconds (see Fig. 

3.16b for condensed recording), although usually recordings were over 15 minutes.  

Cells were stimulated 60 seconds after the recording commenced and the cells 

responded immediately to PMA stimulation.   

 

Real-time recordings of both control and PMA-stimulated RBL-2H3 cells were 

analysed using the LAS-AF Lite software.  Each cell was identified as a discrete 

„region‟ and the fluorescence and DIC data exported.  A highly fluorescent area 

within an individual cell was identified as a „region of interest‟ and fluorescence and 

DIC data from this region were analysed.  Mean fluorescence intensity (of either the 

whole cell or the region of interest) was divided by the DIC and plotted against time.  

Data were interpreted in this way to account for the movement of the cells between 

focal planes during the real-time recording.  Both non-stimulated control cells (see 

Fig. 3.17) and PMA-stimulated cells (see Fig. 3.18) appeared to display regular 

oscillations in fluorescence.   

 

The amount of fPtdCho present in RBL-2H3 cells varied and so the magnitude of 

oscillations could not be compared between experiments.  However, the oscillations 

were comparable and had a period of approximately 300 seconds.  The fluorescence 

intensity/DIC magnitude of the whole cell compared to the region of interest appears 

to be closer in control cells (see Fig. 3.17), rather than PMA-stimulated cells (see Fig. 
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3.18).  In addition, small reductions in fluorescence/DIC occur approximately every 

100 seconds in PMA-stimulated cells, not seen in controls (see Fig. 3.18).  Although 

it is unclear what these fluorescence oscillations relate to their period appears 

consistant and may relate to the binding of proteins or other lipids to fPtdCho.  

 

 

 

Figure 3.16a: The effect of PMA stimulation on RBL-2H3 cells labelled with 

novel fluorescent PtdCho. RBL-2H3 cells grown on glass bottomed fluorodishes 

(for 24 hours) were labelled using 0.5 µg/ml of fPtdCho for 60 minutes prior to real-

time confocal imaging.  Cells were stimulated using 100 nM PMA approximately 40 

seconds after real-time recording commenced.  Recording was completed over 30 

minutes (1 frame/20 seconds) using the argon laser with an excitation at 488 nm and 

an emission band width between 500 nm-608 nm.  The 488 nm laser power was 

halved and each time point was scanned twice (and averaged) to reduce photo-

bleaching.  A scale calibrated to 25 µm is shown in each panel.  The data presented 

are representative images for 1 experiment of 4.  Still images are represented below 

whilst the recording is shown in Fig. 3.16b.   

 

 

 

 

0 seconds 

20 minutes 

10 minutes 

30 minutes 



 118 

Figure 3.15: Analysis of fluorescence lipid oscillations during real-time 

recording of resting RBL-2H3 cells.  RBL-2H3 cells grown on glass bottomed 

fluorodishes for 24 hours were labelled using 1 µg/ml of fPtdCho for 90 minutes 

prior to real-time confocal imaging. Cells were washed with filter sterilised PBS + 25 

mM HEPES, pH 7.4 and imaged immediately.  Real-time recording was completed 

over 15 minutes (1 frame/10 seconds) using the argon laser with an excitation at 488 

nm and an emission band width between 500 nm-608 nm.  The 488 nm laser power 

was halved and each time point was scanned twice (and averaged) to reduce photo-

bleaching.  Each cell was identified as a discrete „region‟ using the LAS-AF Lite 

software and mean fluorescence intensity and DIC were exported using the stack 

profile setting.  Within the whole cell the most fluorescence region was identified as 

a „region of interest‟ and fluorescence intensity and DIC data were exported also 

using the stack profile setting.  The mean fluorescence intensity was divided by DIC 

for the whole cell (■) and the region of interest (▲), and plotted against time 

(seconds).  The data presented here is representative of 1 cell.  The experiment was 

repeated 4 times and 24 cells were analysed in total.  
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Figure 3.16: Analysis of fluorescence lipid oscillations during real-time 

recording of PMA stimulated RBL-2H3 cells.  RBL-2H3 cells grown on glass 

bottomed fluorodishes for 24 hours were labelled using 0.5 µg/ml fPtdCho for 60 

minutes prior to real-time confocal imaging.  Cells were stimulated using 100 nM 

PMA approximately 40 seconds after real-time recording commenced.  Real-time 

recording was completed over 30 minutes (1 frame/20 seconds) using the argon laser 

with an excitation at 488 nm and an emission band width between 500 nm-608 nm.  

The 488 nm laser power was halved and each time point was scanned twice (and 

averaged) to reduce photo-bleaching.  Analyses of the first 900 seconds (15 minutes) 

of 1 cell are shown below.  Each cell was identified as a discrete „region‟ using the 

LAS-AF Lite software and mean fluorescence intensity and DIC were exported using 

the stack profile setting.  Within the whole cell the most fluorescence region was 

identified as a „region of interest‟ and both fluorescence intensity and DIC data were 

exported.  The mean fluorescence intensity was divided by DIC for the whole cell (■) 

and the region of interest (▲), and plotted against time (seconds).  The data is 

representative of 1 cell.  The experiment was repeated 4 times and 39 cells were 

analysed in total.  
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RBL-2H3 cells were labelled with 100 nM LysoTracker Red for 1 minute and 

stimulated using 100 nM PMA.  Although PMA stimulated degranulation and altered 

cell morphology, LysoTracker Red labelling did not change (see Fig. 3.19a).  

LysoTracker Red localised to RBL-2H3 lysosomes with punctate staining localised 

to both cell body and processes.  LysoTracker Red is an acidotropic molecular 

marker targeting acidic compartments such as the secretory lysosomes in RBL-2H3 

cells (Kaur and Cutler, 2002; Satio et al., 2004).  Similar to RBL-2H3 cells labelled 

with fPtdCho, LysoTracker Red maintained punctate localisation even after PMA-

induced degranulation.  RBL-2H3 cells labelled with LysoTracker Red responding to 

PMA (at 37
o
C) was recorded over 15 minutes (1frame/10 seconds) and condensed to 

18 seconds (see Fig. 3.19b for condensed recording) where PMA was added after 

approximately 100 seconds.  LysoTracker also maintained its motility during mast 

cell degranulation.  LysoTracker Red labelled RBL-2H3 cells were also treated with 

a calcium ionophore (A23187) and IgE/antigen to stimulate degranulation and serve 

as degranulation controls.           
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Figure 3.19a: The effect of PMA stimulation on RBL-2H3 cells labelled with 

LysoTracker Red. RBL-2H3 cells grown on glass bottomed fluorodishes for 24 

hours were labelled using 100 nM LysoTracker Red for 1 minute (and washed twice 

with HBSS + 20 mM HEPES) prior to real-time confocal imaging.  Cells were 

stimulated using 100 nM PMA approximately 100 seconds after recording 

commenced.  Real-time recording was completed over 15 minutes (1 frame/10 

seconds) using the HeNe 594 laser with an excitation at 594 nm and an emission 

band width between 668 nm-794 nm.  The 594 nm laser power was halved and each 

time point was scanned twice (and averaged) to reduce photo-bleaching.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment of 3.  Still images are represented below whilst the 

recording is shown in Fig. 3.19b.   
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3.3.3: The effect of IgE/antigen stimulation on RBL-2H3 cells labelled with 

novel fluorescent PtdCho or LysoTracker Red 

 

RBL-2H3 cells were treated with antigen in the context of IgE to simulate the 

environmental stimuli which promote degranulation in vivo.  RBL-2H3 cells were 

sensitised with 1 µg/ml  anti-DNP IgE overnight (in complete DMEM), labelled with 

0.5 µg/ml lipid (for up to 120 minutes) and stimulated with DNP-BSA either for 2 

minutes prior to imaging (Farquhar et al., 2007), or stimulated during the real-time 

recording.  Cells stimulated prior to imaging were already responding to the 

stimulation when recording began and showed ruffling of the membranes (see Fig. 

3.20a for images).  The effect of IgE stimulation in the context of antigen was 

recorded over 15 minutes (1 frame/10 seconds, condensed to 18 seconds – see Fig. 

3.20b for recording).  The power of the 488 nm laser was halved and each frame 

accumulated twice and averaged to reduce photo-bleaching.  The novel fluorescent 

lipid maintained its punctiform localisation and was not released during 

degranulation induced (see Fig. 3.20a for images). 

 

RBL-2H3 cells, labelled with the novel fluorescent lipid, were stimulated with 0.1 

µg/ml DNP-BSA 3 times every 5 minutes during a real-time recording.  This 

protocol did not impact upon the localisation or retention of the fPtdCho.  Similarly, 

RBL-2H3 cells labelled with the novel fluorescent lipid and stimulated using 0.5 

µg/ml DNP-BSA still maintained the lipid in punctate vesicles.   
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Figure 3.20a: The effect of IgE/antigen stimulation on RBL-2H3 cells labelled 

with novel fluorescent PtdCho. RBL-2H3 cells grown on glass bottomed 

fluorodishes for ~8 hours were primed with 1 µg/ml anti-DNP IgE overnight (in 

complete DMEM).  Cells were labelled with 1 µg/ml fPtdCho (120 minutes) and 

stimulated with 0.1 µg/ml DNP-BSA for 2 minutes (and washed twice with HBSS) 

prior to confocal imaging.  Real-time recording was completed over 15 minutes (1 

frame/10 seconds) using the argon laser with an excitation at 488 nm and an 

emission bandwidth between 500 nm-608 nm.  The 488 nm laser power was halved 

and each time point scanned twice (and averaged) to reduce photo-bleaching.  A 

scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment of 2.  Still images of are represented below 

whilst recording is shown in Fig. 3.20b. 

 

 

 

 

 

 

 

 

 

 

0 seconds 

10 minutes 

5 minutes 

15 minutes 



 124 

Real-time recordings of IgE/antigen stimulated RBL-2H3 cells labelled with the 

novel fPtdCho were analysed using the LAS-AF Lite software.  The analysis was the 

same as that used on PMA-stimulated cells (see Section 3.3.2).  Data is represented 

as mean fluorescence intensity divided by DIC versus time (over 900 seconds).  

Antigenic stimulation produces oscillations in fluorescence approximately every 

200-300 seconds (see Fig. 3.21).  DNP-BSA was added in frame 5 (after 50 seconds) 

from the start of the recording.  These oscillations are consistent with those noted 

previously in control and PMA stimulated RBL-2H3 cells (see Fig. 3.17 and Fig. 

3.18).     

   

„Dips‟ in fluorescence between oscillating peaks were detected in PMA-stimulated 

cells (see Fig. 3.18) and are also evident in degranulation induced by antigenic 

stimulation (see Fig. 3.21).  This may suggest that the oscillations occur in response 

to PLD-dependent mast cell degranulation. Antigenic stimulation of RBL-2H3 was 

repeated in 4 separate experiments and, although oscillations were present in 31 of 

37 cells analysed, the oscillatory pattern was not as consistent as in PMA-stimulated 

cells.  The variability in results could be attributed to the degree of movement 

associated using different types of stimulation (or the response of individual cells) 

during real-time recordings.    

 

RBL-2H3 cells were sensitised with 1 µg/ml anti-DNP IgE overnight (in complete 

DMEM) and labelled with 100 nM LysoTracker Red.   RBL-2H3 cells were 

stimulated during the real-time recordings with 0.1 µg/ml DNP-BSA in a final 

volume of 1 ml HBSS + Ca
2+

.  The effect of IgE stimulation in the context of antigen 

was recorded over 15 minutes (1 frame/10 seconds) and condensed to 18 seconds 

(see Fig. 3.22b for recording).  The power of the 594 nm laser was halved and each 

image was an accumulation of 2 frames and averaged to reduce photo-bleaching.  

Although these precautions were taken, LysoTracker Red fluorescence appeared to 

reduce in response to antigenic stimulation (see Fig. 3.22a for snapshots).  Although 

the fluorescence yield was reduced, the lysosomal marker maintained its intracellular 

punctiform localisation upon degranulation (Fig. 3.22a for snapshots).   

 

Analysis of the real-time recording using the LAS-AF Lite software indicated that 

there were fluorescence oscillations of LysoTracker Red in RBL-2H3 cells 
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responding to antigenic stimulation.  Although these oscillations were identified, 

they were not as consistent as control or PMA stimulated cells labelled with 

LysoTracker Red (data not shown). 
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Figure 3.21: Analysis of fluorescence lipid oscillations during real-time 

recording of RBL-2H3 cells stimulated with IgE (in the context of antigen).  

RBL-2H3 cells grown on glass bottomed fluorodishes for 8 hours were primed with 

1 µg/ml anti-DNP IgE overnight (in complete DMEM).  Cells were stimulated with 

0.1 µg/ml DNP-BSA for either for 2 minutes (using HBSS – n=2) or during the real-

time recording (using HBSS + Ca
2+

 – n=2).  Real-time recording was completed over 

15 minutes (1 frame/10 seconds) using the argon laser with an excitation at 488 nm 

and an emission band width between 500 nm-608 nm.  The 488 nm laser power was 

halved and each time point was scanned twice (and averaged) to reduce photo-

bleaching.  Each cell was identified as a discrete „region‟ using the LAS-AF Lite 

software and mean fluorescence intensity and DIC were exported using the stack 

profile setting.  Within the whole cell the most fluorescence region was identified as 

a „region of interest‟ and both fluorescence intensity and DIC data also were 

exported.  The mean fluorescence intensity was divided by DIC for the whole cell (■) 

and the region of interest (▲), and was plotted against time (seconds).  The data 

presented is representative of 1 cell stimulated (in HBSS + 1 mM Ca
2+

) from 1 

experiment.  The experiment was repeated 4 times and 37 cells were analysed of 

which 31 showed fluorescence oscillations.  
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Figure 3.22a: The effect of IgE/antigen stimulation on RBL-2H3 cells labelled 

with LysoTracker Red. RBL-2H3 cells grown on glass bottomed fluorodishes for 

~8 hours were primed with 1 µg/ml anti-DNP IgE overnight (in complete DMEM).  

Cells were labelled with 100 nM LysoTracker Red for 1 minute and washed twice 

using HBSS + 1 mM Ca
2+

.  Real-time recording was completed over 15 minutes (1 

frame/10 seconds) using the HeNe 594 laser with an excitation at 594 nm and an 

emission bandwidth between 668 nm-794 nm.  The 594 nm laser power was halved 

and each time point was scanned twice (and averaged) to reduce photo-bleaching.  

0.1 µg/ml DNP-BSA was added to the cells approximately 50 seconds (frame 5) after 

the start of the recording.    A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment of 4.  Still images are 

represented below whilst the recording is shown in Fig. 3.22b.  
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3.3.4: Stimulation of RBL-2H3 cells labelled with LysoTracker Red or the novel 

fluorescent PtdCho using a calcium ionophore (A23187) 

 

The calcium ionophore A23187 increases intracellular calcium and results in mast 

cell degranulation.  A23187-stimulation of RBL-2H3 cells results in membrane 

blebbing and ruffling, with cell processes typically extended from either side of the 

cell body either severed or broadened and then retracted (see Fig. 3.23 and 3.24).  

RBL-2H3 cells were labelled with 100 nM of the lysosomal marker LysoTracker 

Red and stimulated with 0.1 µM of the calcium ionophore A23187 (see Fig. 3.23a 

for images).  Real-time imaging of LysoTracker Red labelled cells stimulated with 

A23187 was recorded over 15 minutes (1 frame/10 seconds) and condensed to 18 

seconds (see Fig. 3.23b for recording).  A23187 was added to the cells after 

approximately 50 seconds.  LysoTracker Red localised to the expected punctiform 

structures within the cell body and processes, but the marker disappeared upon 

A23187 stimulation (see Fig. 3.23a for images).  LysoTracker Red was not retained 

in RBL-2H3 cells 2 to 3 minutes after A23187 stimulation.  As LysoTracker Red is 

an acidotropic molecular marker, perhaps A23187 altered the vesicular pH and 

LysoTracker Red no longer labelled them. Alternatively, A23187 altered the vesicle 

membrane, causing release of vesicular contents. 

 

RBL-2H3 cells labelled with 1 µg/ml novel fluorescent lipid (for 180 minutes) in 

HBSS + 20 mM HEPES + 1 mM Ca
2+

 and real-time imaging of A23187-stimulation 

of mast cells was recorded over 15 minutes (1 frame/10 seconds condensed to 18 

seconds – see Fig. 3.24b for recording).  0.1 µM A23187 was added to the RBL-2H3 

cells after approximately 50 seconds (frame 5).  The novel fluorescent lipid 

maintained its characteristic punctiform localisation and was unaffected by A23187 

treatment (see Fig. 3.24a for snapshots).   
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Figure 3.23a: The effect of A23187 stimulation on RBL-2H3 cells labelled with 

LysoTracker Red. RBL-2H3 cells grown on glass bottomed fluorodishes for 24 

hours were labelled with 100 nM LysoTracker Red for 1 minute (and washed twice 

using HBSS + 20 mM HEPES + 1 mM Ca
2+

) prior to imaging.  Real-time confocal 

recording was completed over 15 minutes (1 frame/10 seconds) using the HeNe 594 

laser with an excitation at 594 nm and an emission bandwidth between 668 nm-794 

nm.  The 594 nm laser power was halved and each time point was scanned twice 

(and averaged) to reduce photo-bleaching.  0.1 µM A23187 (in DMSO) was added to 

the cells approximately 50 seconds (frame 5) after the start of the real-time recording.  

A scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment of 3.  Still images are represented below 

whilst the full length film has been condensed to 18 seconds and is shown in Fig. 

3.23b.   
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Figure 3.24a: The effect of A23187 stimulation on RBL-2H3 cells labelled with 

novel fluorescent PtdCho. RBL-2H3 cells grown on glass bottomed fluorodishes 

for 24 hours were labelled with used 1 µg/ml of the novel lipid for 180 minutes (in 

HBSS + 20 mM HEPES + 1 mM Ca
2+

) prior to imaging.  Real-time recording was 

completed over 15 minutes (1 frame/10 seconds) using the argon laser with an 

excitation at 488 nm and an emission bandwidth between 500 nm-608 nm.  The 488 

nm laser power was halved and each time point was scanned twice (and averaged) to 

reduce photo-bleaching.  0.1 µM A23187 (in DMSO) was added to the RBL-2H3 

cells during the real-time recording after approximately 50 seconds (frame 5).  A 

scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment of 4.  Still images are represented below 

whilst the full length film has been condensed to 18 seconds and is shown in Fig. 

3.24b.   

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                                            

 

0 seconds 

10 minutes 

5 minutes 

15 minutes 



 131 

3.4: Identifying the localisation of the novel PtdCho in RBL-2H3 cells in 

response to a range of inhibitors 

 

3.4.1: The effect of wortmannin on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red 

 

Wortmannin is a fungal metabolite and functions largely as a selective 

phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor, but also inhibits PLD, 

PLA2 and PLC (Cross et al., 1995; Nakamura et al., 1997).  Wortmannin was treated 

as an indirect PLD inhibitor here and treatment of RBL-2H3 cells with this fungal 

metabolite could identify if fPtdCho-labelling was PLD-dependent.  RBL-2H3 cells 

treated with 100 nM wortmannin caused broadening of the cell processes and 

membrane ruffling.  RBL-2H3 cells first treated with 100 nM wortmannin for 30 

minutes and then labelled with 100 nM LysoTracker Red were unaffected by the 

wortmannin pre-treatment (n=4 – see Fig. 3.25, panels a-c).  Although wortmannin 

treatment resulted in morphological changes, LysoTracker Red maintained its 

punctiform localisation.       

 

RBL-2H3 cells were also treated with 100 nM wortmannin for 2 hours and then 

labelled with 0.5 µg/ml of the novel fPtdCho (in HBSS + 20 mM HEPES).  

Wortmannin pre-treatment of the cells did not affect the labelling or punctiform 

localisation of the novel fluorescent lipid (n=2 –see Fig. 3.25, panels d-f).  Treatment 

of RBL-2H3 cells with 100 nM, 500 nM or 1 µM wortmannin did not impact on the 

punctiform localisation of the novel fPtdCho (data not shown).  Furthermore, RBL-

2H3 cells labelled first with 0.5 µg/ml novel fPtdCho and then treated with 100 nM 

wortmannin for 30 minutes (in complete media) retained the punctiform localisation 

(n=2).  Preliminary data suggests that cells labelled first with lipid and then treated 

with wortmannin maintained their ability to respond to PMA stimulation.    
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Figure 3.25: The effect of wortmannin on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red.  RBL-2H3 cells grown on glass 

bottomed fluorodishes for 24 hours were treated with 100 nM wortmannin for 30 

minutes (in complete media) and labelled with 100 nM LysoTracker Red for 1 

minute (and washed twice with HBSS + 20 mM HEPES).  The cells were then 

imaged using live confocal microscopy using the HeNe 594 laser with excitation at 

594 nm and an emission bandwidth between 668 nm-794 nm (panels a-c).  Similarly, 

cells were treated with 100 nM wortmannin for 2 hours (in complete media) and 

labelled with 0.5 µg/ml of the novel fluorescent lipid for 2 hours (in HBSS + 20 mM 

HEPES) prior to live confocal imaging.  The argon laser was used with an excitation 

at 488 nm and an emission bandwidth between 500 nm-608 nm to detect the green 

lipid (panels d-f).  A scale calibrated to 25 µm is shown in each panel.  The data 

presented are representative images for 1 experiment of 4 experiments (LysoTracker 

Red labelling) and 1 of 2 experiments (fPtdCho labelling).        
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3.4.2: The effect of methyl-β-cyclodextrin on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red 

 

Methyl-β-cyclodextrin (MBCD) is a depleting agent used to remove cholesterol from 

lipid rafts and the plasma membrane and therefore to assess the role of cholesterol-

rich membrane sub-domains (such as caveolae, detergent-resistant membranes and 

lipid rafts) in signalling (Hiroyama and Exton, 2005b).  Treatment of HeLa cells with 

MBCD suggestsed that PLD localisation in membranes is not reliant upon 

cholesterol (Hiroyama and Exton, 2005b).  RBL-2H3 cells were treated with 10 mM 

MBCD for 30 minutes and labelled with 100 nM LysoTracker Red.  LysoTracker 

Red preserved its characteristic punctiform localisation and motility (see Fig. 3.26, 

panels a-c).  There appeared to be no impact on LysoTracker Red labelling in MBCD 

pre-treated RBL-2H3 cells.  RBL-2H3 cells were first labelled with 0.5 µg/ml novel 

fluorescent lipid (for 120 minutes) and then treated with 10 mM MBCD (for 60 

minutes), however the punctate localisation of fPtdCho was unaffected by this 

treatment (see Fig. 3.26, panels d-f).  Similarly, movement of the punctate vesicles 

was unaffected by cholesterol depletion.  RBL-2H3 cells were treated first with 

MBCD (30, 60 and 120 minutes) and then labelled with 0.5 µg/ml fPtdCho, but 

MBCD pre-treatment did not inhibit the fPtdCho-labelling or localisation in RBL-

2H3 cells. 
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Figure 3.26: The effect of MBCD on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red.  RBL-2H3 cells grown on glass 

bottomed fluorodishes for 24 hours prior were treated with 10 mM MBCD for 30 

minutes and labelled with 100 nM LysoTracker Red for 1 minute, (then washed 

twice in HBSS + 20 mM HEPES).  Cells were imaged using live confocal 

microscopy using the HeNe 594 laser excited at 594 nm with an emission bandwidth 

between 668 nm-794 nm (panels a-c). Similarly, cells were first labelled with 0.5 

µg/ml fPtdCho for 120 minutes and then treated with MBCD for 60 minutes.  The 

cells were then imaged live using the argon laser with an excitation at 488 nm and an 

emission bandwidth between 500 nm-608 nm to detect the green lipid (panels d-f).  

A scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 of 4 experiments (LysoTracker Red labelling) and 1 of 2 

experiments (fPtdCho labelling).            
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3.4.3: The effect of paclitaxel on RBL-2H3 cells labelled with novel fluorescent 

PtdCho or LysoTracker Red 

 

Paclitaxel promotes assembly and stabilisation of microtubules and is used as a 

treatment for certain tumours (Gupta, Jr. et al., 2003).  RBL-2H3 cells treated with 

100 µM paclitaxel (also known as taxol) for 18.5 hours in complete media were 

labelled with either LysoTracker Red or the novel fluorescent lipid.  Paclitaxel 

treatment is typically between 12 and 24 hours so 18.5 hours was used to enable 

labelling and imaging of the cells.  Although paclitaxel induced a change in the 

morphology of the RBL-2H3 cells, labelling of the cells was unaffected.  RBL-2H3 

cells showed membrane ruffling and broadening or truncating of processes upon 

treatment with paclitaxel, similar to the effect of PMA or A23187 treatment (see Fig. 

3.27a and Fig. 3.28a for snapshots).  RBL-2H3 cells were also pre-treated with 100 

µM paclitaxel for 18.5 hours and then labelled with 100 nM LysoTracker Red (see 

Fig. 3.27a for snapshots).  LysoTracker Red labelling was unaffected by paclitaxel 

pre-treatment of RBL-2H3 cells and was maintained in punctiform localisation and 

retained motility.  Real-time confocal imaging over 15 minutes (1frame/10 seconds 

condensed to 18 seconds).  The real-time recording determined that the movement of 

lysosomes was not inhibited by paclitaxel treatment (see Fig. 3.27b for recording).  

0.5 µg/ml of the novel fluorescent lipid was used to label the cells for 3 hours prior to 

real-time confocal imaging.  Although cell morphology was affected by paclitaxel, 

the novel lipid maintained punctate localisation within the cell body and processes 

(see Fig. 3.28a for snapshots).  The fPtdCho also maintained motility recorded using 

real-time microscopy over 15 minutes (1frame/10 seconds condensed to 18 seconds – 

see Fig. 3.28b for recording).   
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Figure 3.27a: The effect of paclitaxel treatment on the localisation and 

movement of LysoTracker Red in RBL-2H3 cells.  RBL-2H3 cells grown on glass 

bottomed fluorodishes for 8 hours were treated with 100 µM paclitaxel (in DMSO) 

for 18.5 hours prior to labelling.  RBL-2H3 cells were labelled with 100 nM 

LysoTracker Red for 1 minute and washed twice in HBSS + 20 mM HEPES + 1 mM 

Ca
2+

.  Control cells were treated with paclitaxel and vehicle (DMSO) and imaged in 

the same manner.  Real-time recording was completed over 15 minutes (1 frame/10 

seconds) using the HeNe 594 laser with an excitation at 594 nm and an emission 

bandwidth between 668 nm-794 nm.  The 594 nm laser power was halved and each 

time point was scanned twice (and averaged) to reduce photo-bleaching.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment of 2.  Still images are represented below whilst the full 

length film has been condensed to 18 seconds and is shown in Fig. 3.27b.   

 

 

 

     

5 minutes 0 seconds 

15 minutes 10 minutes 



 139 

Figure 3.28a: The effect of paclitaxel treatment on the localisation and 

movement of the novel fluorescent lipid in RBL-2H3 cells.  RBL-2H3 cells grown 

on glass bottomed fluorodishes for 8 hours were treated with 100 µM paclitaxel (in 

DMSO) for 18.5 hours prior to labelling with 0.5 µg/ml novel fPtdCho for 3 hours in 

HBSS + 20 mM HEPES + 1 mM Ca
2+

. Real-time recording was completed over 15 

minutes (1 frame/10 seconds) using the argon laser with an excitation at 488 nm and 

an emission bandwidth between 500 nm-608 nm.  The 488 nm laser power was 

halved and each time point was scanned twice (and averaged) to reduce photo-

bleaching.  A scale calibrated to 25 µm is shown in each panel.  The data presented 

are representative images for 1 experiment of 2.  Still images are presented below 

whilst the full length film has been condensed to 18 seconds and is shown in Fig. 

3.28b.   
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RBL-2H3 cells were also treated with nocodazole which is a more potent 

microtubule inhibitor then paclitaxel.  Cells were treated with 5 µM nocodazole for 1 

hour prior to labelling with 0.5 µg/ml fPtdCho for 2 hours.    RBL-2H3 cells lost 

their cell processes and appeared rounded (see Fig. 3.29a for snapshots).  Cell 

rounding precedes cell death; however fPtdCho maintained its punctate localisation 

within the cell body.  Movement of the novel fluorescent lipid was monitored using 

real-time confocal imaging over 15 minutes (1 frame/10 seconds condensed to 18 

seconds – see Fig. 3.29b for recording).  Lipid labelling and movement was 

unaffected by nocodazole pre-treatment. Neither nocodazole nor paclitaxel treatment 

of RBL-2H3 cells inhibited the movement of the novel lipid and so movement of the 

punctiform vesicles may not be linked to microtubules.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 141 

Figure 3.29a: The effect of nocodazole treatment on the localisation and 

movement of the novel fluorescent lipid in RBL-2H3 cells.  RBL-2H3 cells were 

grown on glass bottomed fluorodishes overnight prior to nocodazole treatment.  5 

µM nocodazole (in DMSO) was used to treat the cells for 60 minutes prior to 

labelling with 0.5 µg/ml novel fPtdCho for 120 minutes in HBSS + 20 mM HEPES + 

1 mM Ca
2+

. Real-time recording was completed over 15 minutes (1 frame/10 

seconds) using the argon laser with an excitation at 488 nm and an emission 

bandwidth between 500 nm-608 nm.  The 488 nm laser power was halved and each 

time point was scanned twice (and averaged) to reduce photo-bleaching.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment of 2.  Still images are presented below whilst the full length 

film has been condensed to 18 seconds and is shown in Fig. 3.29b.   

 

 

 

 

 

 

 

 

 

 

0 seconds 5 minutes 

10 minutes 15 minutes 



 142 

3.4.4: The effect of cytochalasin D on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red 

 

Cytochalasin D (CD) is an inhibitor of cytoskeletal change and acts by capping actin 

filaments to stabilise the cytoskeleton (Wakatsuki et al., 2000).  RBL-2H3 cells were 

labelled with 1 µg/ml novel fPtdCho for 2 hours and treated with 1 µM CD for 5 

hours.  The effects of CD on cell morphology were monitored every hour (see Fig. 

3.30, panels a-f) and compared to the labelling of control cells (see Fig. 3.30, panels 

g, h).  RBL-2H3 cells remained labelled in HBSS + 20 mM HEPES + 1 mM Ca
2+ 

for 

up to 7 hours (see Fig. 3.30, panel h).  The novel fPtdCho localised in punctiform 

structures and did not concentrate in any area within RBL-2H3 cells (see Fig. 3.30, 

panel a) prior to CD treatment.  However, in cells treated with CD, the novel lipid 

accumulated at the tips and the bases of cell processes within 1 hour (see arrows, Fig. 

3.30, panel b). Treatment of cells with CD for 3 hours altered cell morphology 

producing rounded cell bodies with multiple short processes (see Fig. 3.30, panels d-

f).    This data suggests that the movement of fPtdCho-labelled vesicles is influenced 

by the state of the actin cytoskeletal and upon inhibition with CD their movement is 

impaired.  Vesicle size was not significantly different from control cells (compared 

using the 2-tailed Student‟s t-test) and CD treatment of cells did not inhibit the 

movement of the fPtdCho. 
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Figure 3.30: The effect of cytochalasin D on the localisation and movement of 

the novel fluorescent lipid in RBL-2H3 cells.  RBL-2H3 cells were grown on glass 

bottomed fluorodishes overnight prior to labelling with 1 µg/ml novel fPtdCho, (for 

2 hours in HBSS + 20 mM HEPES + 1 mM Ca
2+

) and imaged live using confocal 

microscopy (panel a).  Cells were then treated with 1 µM CD and imaged at 1 hour 

time points up to 5 hours (panels b-f).  Control cells were labelled with the fPtdCho 

and imaged alongside CD treated cells for up to 7 hours (panels g, h).  Live imaging 

was completed using the argon laser with an excitation at 488 nm and an emission 

bandwidth between 500 nm-608 nm.  A scale calibrated to 25 µm is shown in each 

panel.  The data presented are representative images for 1 experiment of 2.   
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RBL-2H3 cells labelled with fPtdCho and then treated with CD for 3 hours exhibited 

a change in lipid localisation that was assessed using live confocal microscopy in 

which series sections (0.2 µm thickness) were taken from the bottom to the top of 

cell.  These sections were averaged and used to reconstruct the cell using the 3D 

function of the Leica software.  The rotating 3D reconstructions were converted to 

movies and can be seen in Fig. 3.31a-c.  RBL-2H3 cells labelled with the novel 

fluorescent lipid but not treated with CD (see Fig. 3.31a for 3D reconstruction) 

showed that the punctiform localisation of fPtdCho was dispersed across the cell 

body and processes.  RBL-2H3 cells labelled with fPtdCho and treated with 1 µM 

CD for 1 hour (see Fig. 3.31b for 3D reconstruction) showed that lipid concentrated 

at the base of each cell process (within the cell body).  Similarly, cells treated with 1 

µM CD for 3 hours (see Fig. 3.31c for 3D reconstruction) showed concentration of 

the lipid within the cell body and at the tips of the cell processes. 

 

RBL-2H3 cells were also labelled with the lysosomal marker LysoTracker Red and 

treated with 1 µM CD.  The localisation of LysoTracker Red was punctate and 

spread across the cell body and processes (see Fig. 3.32, panel a).  Cells were then 

treated with CD and imaged after 1 and 3 hours (see Fig. 3.32, panels b, c), and 

LysoTracker Red was seen to concentrate at the tips of the cell processes within 1 

hour (see Fig. 3.32, panel b).  LysoTracker Red localisation did not alter between 1 

and 3 hours after CD treatment.  The localisation and accumulation of LysoTracker 

Red was similar to that seen using the novel fPtdCho (see Fig. 3.30 and Fig. 3.31).  

The effect of LysoTracker Red and fPtdCho labelling on CD treated RBL-2H3 cells 

was comparative as no co-labelling experiments were undertaken. 
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Figure 3.31: The effect of cytochalasin D on the localisation and movement of 

fPtdCho in RBL-2H3 cells reconstructed in 3D.  RBL-2H3 cells were grown on 

glass bottomed fluorodishes overnight prior to labelling with 1 µg/ml novel fPtdCho 

for 2 hours (in HBSS + 20 mM HEPES + 1 mM Ca
2+

).  Live confocal microscopy 

was used to record data prior to CD treatment (Fig. 3.30a). Cells were treated with 1 

µM CD and imaged at 1 hour (Fig. 3.30b) and 3 hours (Fig. 3.30c) points.  Serial 

sections were taken (0.2 µm thickness) from the top to the bottom of the cells.  These 

were averaged and visualised in 3D using the 3D Projection function of the Leica 

software.  Brief movies of the rotating cells can be seen in Fig. 3.30a-c.  

Fluorescence was excited using the argon laser (excitation at 488 nm) and an 

emission bandwidth between 500 nm-608 nm.  A scale calibrated to 10 µm is shown 

in each movie.  The data presented are reconstructions for 1 experiment of 2.   

 

Figure 3.32: The effect of cytochalasin D on the localisation and movement of 

the LysoTracker Red in RBL-2H3 cells.  RBL-2H3 cells were grown on glass 

bottomed fluorodishes overnight and labelled with 100 nM LysoTracker Red for 1 

minute in HBSS + 20 mM HEPES + 1 mM Ca
2+

 and then washed twice.  Cells were 

imaged prior to treatment with CD (panel a).  Cells were then treated with 1 µM CD 

and imaged 1 hour and 3 hours after CD treatment (panels b, c).  Live imaging was 

completed using the HeNe 594 laser with an excitation at 594 nm and an emission 

bandwidth between 668 nm-794 nm.  A scale calibrated to 25 µm is shown in each 

panel.  The data presented are representative images for 1 experiment of 2.   
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3.4.5: The effect of cytochalasin D on antigenic stimulation of RBL-2H3 cells 

labelled with novel fluorescent PtdCho 

 

Cytochalasin D is a „priming‟ agent for IgE-antigen stimulation of RBL-2H3 cells, 

although the mechanism is unknown.  However, CD may prevent the re-distribution 

of FcRI receptors upon antigenic stimulation which would result in the initiation of 

a signalling cascade.  This cascade includes the tyrosine kinase Syk which can 

activate PtdIns 3-kinase phosphorylation of PtdIns(4,5)P2 to PtdIns(3,4,5)P3 and thus 

activate PLD (Rivera and Olivera, 2008).   

 

RBL-2H3 cells were sensitisated with 1 µg/ml anti-DNP IgE overnight (in complete 

DMEM) and labelled with 1 µg/ml of the fPtdCho for 2 hours prior to treatment with 

1 µM CD for 2 hours.  The effect of CD treatment could be seen by the aggregation 

of fPtdCho to the tips of the cell processes (see Fig. 3.33a for snapshots).  RBL-2H3 

cells were stimulated during the real-time recordings with 0.1 µg/m DNP-BSA in a 

final volume of 1 ml HBSS + Ca
2+

 and the effect of CD on  antigenically stimulated 

cells was recorded over 15 minutes (1 frame/10 seconds condensed to 18 seconds – 

see Fig. 3.33b for recording).  The 488 nm laser power was halved and, each frame 

accumulated twice and averaged to reduce photo-bleaching.  The novel fluorescent 

lipid maintained its punctiform localisation, was not expelled upon degranulation and 

did not change upon antigenic stimulation (see Fig. 3.33a for snapshots).  Similarly, 

PMA-stimulated RBL-2H3 cells pre-treated with CD were able to respond and 

fluorescent lipid localisation was unaffected (data not shown).    
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Figure 3.33a: The effect of CD on IgE/antigen stimulated RBL-2H3 cells 

labelled with novel fluorescent PtdCho. RBL-2H3 cells grown on glass bottomed 

fluorodishes for 8 hours were primed with 1 µg/ml anti-DNP IgE overnight (in 

complete DMEM).  Cells were labelled with 1 µg/ml fPtdCho (2 hours) and treated 

with 1 µM CD for 2 hours in HBSS + 20 mM HEPES + 1 mM Ca
2+

.  Real-time 

recording was completed over 15 minutes (1 frame/10 seconds) using the argon laser 

with an excitation at 488 nm and an emission bandwidth between 500 nm-608 nm.  

The 488 nm laser power was halved and each time point was scanned twice (and 

averaged) to reduce photo-bleaching.  RBL-2H3 cells were stimulated with 0.1 

µg/ml DNP-BSA after approximately 50 seconds (frame 5). A scale calibrated to 25 

µm is shown in each panel.  The data presented are representative images for 1 

experiment of 2.  Still images are presented below whilst the recording is shown in 

Fig. 3.33b.  
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3.4.6: The effect of latrunculin B on RBL-2H3 cells labelled with novel 

fluorescent PtdCho or LysoTracker Red 

 

Latrunculin B (Lat B) inhibits actin polymerisation in a different manner to 

cytochalasin D.  Latrunculin B binds G-actin which is released from the actin 

filaments (Lat B binds G-actin 1:1) and stops its re-incorporation into a fibre 

(Pendleton and Koffer, 2001).  RBL-2H3 cells labelled with either LysoTracker Red 

or the novel fPtdCho were then treated with Lat B.  Latrunculin B affected cell 

morphology, resulting in blebbing of the cell bodies and the production of multiple 

processes.  LysoTracker Red localisation was punctate and distributed in the cell 

body and processes of RBL-2H3 cells as expected (see Fig. 3.34a, panel a).  RBL-

2H3 cells were treated with 5 µM Lat B for 1 hour and imaged using live confocal 

microscopy.    LysoTracker Red labelling was reduced and the marker accumulated 

at the tips of the processes (see Fig. 3.34a, panel b), similar to the effect of CD 

treatment of RBL-2H3 cells.   

 

RBL-2H3 cells were also labelled with the novel fPtdCho and treated with 1 µM Lat 

B.  After 1 hour the cell bodies appeared more rounded (when compared with 

controls) and the processes were notably thinner (see Fig. 3.34a, panels c, d).  The 

fluorescent lipid aggregated to the tips of the cell processes, similar to the effect of 

CD treatment on fluorescent lipid localisation.  After 3 hours the cells generated 

numerous processes and the fluorescent lipid was still aggregated to the tips of these 

processes (see Fig. 3.38a, panel e).  The change in fluorescent lipid localisation upon 

Lat B treatment was assessed by reconstructing the cells in 3 dimensions.  Cells were 

imaged using live confocal microscopy in which serial sections (0.2 µm thickness) 

were taken from the bottom to the top of cell.  Sections were then averaged and used 

to reconstruct the cell using the 3D function of the Leica software (seen in Fig. 

3.34b).  RBL-2H3 cells labelled with the novel fluorescent lipid and treated with 1 

µM Lat B for 1 hour (data not shown) and 3 hours (see Fig. 3.34b for 3D 

reconstruction) showed that the lipid maintained its punctiform localisation and 

accumulated to the tips of the cell processes.   
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Figure 3.34a: The effect of latrunculin B on the localisation and movement of 

the novel fluorescent lipid of LysoTracker Red in RBL-2H3 cells.  RBL-2H3 

cells grown on glass bottomed fluorodishes overnight were labelled with 1 µg/ml 

novel fPtdCho for 2 hours in HBSS + 20 mM HEPES + 1 mM Ca
2+

 or 100 nM 

LysoTracker Red for 1 minute.  Cells labelled with LysoTracker Red were washed 

twice and then imaged using live confocal microscopy (panel a).  The cells were 

treated with 5 µM Lat B and imaged after 1 hour (panel b); media was replaced and 

then imaged again at 3 hours (data not shown). Live imaging was completed using 

the HeNe 594 laser with an excitation at 594 nm and an emission bandwidth between 

668 nm-794 nm.  Cells labelled with the novel lipid for 2 hours were imaged prior to 

Lat B treatment (panel c).  Cells were then treated with 1 µM Lat B and imaged after 

1 hour (panel d) and 3 hours (panel e).  Fluorescent PtdCho labelled cells were 

imaged using the argon laser (excitation at 488 nm) and an emission bandwidth 

between 500 nm-608 nm. A scale calibrated to 25 µm is shown in each panel (a-e).  

Fluorescent lipid labelled cells were scanned using serial sections (0.2 µm in 

thickness) from the top to the bottom of the cells.  The serial sections were averaged 

and visualised in 3D using the 3D Projection function of the Leica Software. Movies 

of the rotating cells can be seen of cells treated with 1 µM Lat B for 3 hours (Fig. 

3.34b).  A scale calibrated to 10 µm is shown in each movie.  The data presented are 

representative images/movies from 1 experiment of 2.   
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3.4.7: Using a secretory lysosomal marker to measure the effectiveness of RBL-

2H3 stimulators in the presence of cytoskeletal inhibitors 

 

The effect of the cytoskeletal inhibitors cytochalasin D (CD) and latrunculin B (Lat 

B) were investigated using the β-hexosaminidase assay, as described previously 

(Section 3.3.1).  Cells were first treated with either cytochalasin D or latrunculin B 

for 1 hour and then stimulated using 100 nM PMA, 0.1 µM A23187 and 0.1 µg/ml 

DNP-BSA (cells stimulated using antigenic stimulation were primed overnight using 

1 µg/ml anti-DNP IgE).  The effect of Lat B and CD treatment on the percentage β-

hexosaminidase secretion was compared against control cells but the treatments 

showed no effect on secretion (see Fig. 3.35).  Similarly, RBL-2H3 cells did not 

respond to PMA stimulation and treatment of the cells with Lat B and CD had no 

impact on the percentage β-hexosaminidase secretion.  Although CD is thought to 

amplify the response of mast cells to antigenic stimulation, there was no significant 

difference between antigenically stimulated control and CD treated cells (compared 

using the 2-tailed Student‟s t-test).  Similarly, Lat B treated cells which were 

stimulated with IgE-antigen consistently showed a higher percentage of β-

hexosaminidase secretion but this was also not significantly different from control 

cells.  There was no impact of Lat B and CD treatment on cells stimulated with the 

calcium ionophore A23187, both treatments (and control stimulation) resulted in an 

average 40-45% β-hexosaminidase secretion.   
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Figure 3.35: The effect of Lat B and CD on RBL-2H3 mast cell secretion in 

response to PMA, A23187 and IgE-antigen using the secretory lysosomal 

marker β-hexosaminidase.  RBL-2H3 cells were grown in 12-well plates to ~80-

90% confluencey 24 hours prior to the β-hexosaminidase assay.  Cells stimulated 

with IgE-antigen were primed overnight using 1 µg/ml anti-DNP IgE (in complete 

DMEM).  Cells were treated with either 1 µM Lat B or 1 µM CD for 1 hour prior to 

stimulation.  Cells were stimulated using 0.1 µM A23187 or 100 nM PMA for 60 

minutes in 250 µl HBSS + 20 mM HEPES + 1 mM Ca
2+

 at 37
o
C/5% CO2.  Primed 

RBL-2H3 cells were stimulated using 0.1 µg/ml DNP-BSA for 60 minutes.  0.1% 

Triton X-100 was used to treat cells for 5 minutes before scraping.  All treated cells 

were scraped and centrifuged at 13,000 RPM for 5 minutes.  20 µl of the supernatant 

was combined with 20 µl 1 mM p-nitrophenol-N-acetylglucosamide (in 0.1 M 

sodium citrate, pH 4.5) in a 96-well plate and incubated at 37
o
C/5% CO2 for a further 

60 minutes.  The reaction was terminated using 200 µl 0.1 M sodium carbonate and 

sodium hydrogen carbonate, pH 10.5.  Results were measured continuously using the 

405 nm filter on a plate reader and calculated as a percentage of the values recorded 

for Triton X-100 treated cells.  All assays were read in triplicate and repeated 3 times.  

The data presented are the means of these experiments. 
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3.4.8: The effect of UV treatment on RBL-2H3 cells labelled with novel 

fluorescent PtdCho  

 

Treatment of most cell types with UV-light will initiate apoptosis (Teraki et al., 1999; 

Klums and Schwarz, 2000).  Apoptosis is programmed cell death and is essential to a 

number of processes including ensuring normal cell turnover to facillitating the 

correct development and function of the immune system (Elmore, 2007).  RBL-2H3 

cells were labelled with 1 µg/ml of the novel fluorescent lipid for 120 minutes (see 

Fig. 3.36, panel a) before UV treatment.  After 10 minutes UV irradiation, the RBL-

2H3 cells maintained the punctate localisation of the novel fPtdCho (see Fig. 3.36, 

panel b).  Cells were incubated in complete media with Pen/Strep between time 

points (e.g. between 5 hours 30 minutes and 22 hours).  Although cells were removed 

from the labelling media, the green lipid was consistently present intracellularly (see 

Fig. 3.36, panels c, d).  The effects of apoptosis, including shrinking of the cells and 

membrane ruffling were seen approximately 6 hours after UV irradiation of RBL-

2H3 cells.  RBL-2H3 cells retain their contents, including inflammatory mediators, 

such as histamine, during apoptosis.  The localisation of fPtdCho changed from 

punctate to diffuse (see Fig. 3.36, panel c) and was maintained for up to 22 hours 

(see Fig. 3.36, panel d).   
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Figure 3.36: The effect of UV irradiation on the localisation and movement of 

the novel fluorescent lipid in RBL-2H3 cells.  RBL-2H3 cells grown on glass 

bottomed fluorodishes overnight were labelled with 1 µg/ml novel fPtdCho for 120 

minutes in HBSS + 20 mM HEPES + 1 mM Ca
2+

 prior UV-irradiation.  The cells 

were first labelled and then imaged using live confocal microscopy (panel a).  Cells 

were UV irradiated using a UV cross-linker and exposed to 600 mJ UV rays and 

imaged at 10 minutes (panel b), 5 hours 30 minutes (panel c) and 22 hours (panel d) 

after UV irradiation.  At 10 minutes the cells were maintained in the labelling HBSS 

+ 20 mM HEPES + 1 mM Ca
2+

 solution, however between the subsequent time 

points, cells were transferred into complete media with antibiotics.  Live imaging 

was completed using the argon laser with an excitation at 488 nm and an emission 

bandwidth between 500 nm-608 nm.  A scale calibrated to 25 µm is shown in each 

panel.  The data presented are representative images for 1 experiment of 2.   
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3.4.9: The effect of butanol on RBL-2H3 cells labelled with novel fluorescent 

PtdCho 

 

Primary alcohols inhibit PLD catalysed PtdOH production by interfering with the 

transesterification of the substrate lipid and resulting in preferential production of a 

Ptd-alcohol and consequent functional inhibition of PLD.  RBL-2H3 cells were 

labelled using the novel fluorescent lipid and treated with 0.3% butanol (either butan-

1-ol or butan-2-ol).  Cells labelled with fPtdCho exhibited the expected punctate 

localisation prior to treatment with butan-1-ol (see Fig. 3.37, panel a).  However, 

upon treatment with 0.3% butan-1-ol for 15 minutes, the fluorescent lipid staining 

appeared diffuse and excluded the nucleus (see Fig. 3.37, panel b).  Cells labelled 

with the fPtdCho were also treated with 0.3% butan-2-ol which acted as a control.  

The fluorescent lipid maintained its punctiform localisation after cells were treated 

with butan-2-ol with no change in the distribution of the lipid (see Fig. 3.37, panels c, 

d).  RBL-2H3 cells labelled with fPtdCho and treated with either butan-1-ol or butan-

2-ol were also stimulated with IgE-antigen (see Fig. 3.38a, panels a, b).  Cells which 

were treated with butan-1-ol did not respond to antigenic stimulation as no 

membrane ruffling or truncating of cell processes was evident over the 15 minute 

real-time recording (condensed to 18 seconds – see Fig. 3.38b for recording).  

Antigenically stimulated butan-2-ol treated cells exhibited ruffling of the cell 

membrane and processes, indicating that the cells were responding over the 15 

minutes of real-time recording (condensed to 18 seconds – see Fig. 3.38c for 

recording). 
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Figure 3.37:  The effect of butanol treatment on RBL-2H3 cells labelled with 

fluorescent PtdCho.  RBL-2H3 cells grown on glass bottomed fluorodishes 

overnight were labelled with novel fPtdCho in HBSS + 20 mM HEPES + 1 mM 

Ca
2+

prior to butanol treatment.  Cells were first labelled and then imaged using live 

confocal microscopy (panel a, c).  Cells were treated with 0.3% butan-1-ol (panel b) 

or butan-2-ol (panel d) for 15 minutes at 37
o
C/5% CO2.  Live imaging was 

completed using the argon laser with an excitation at 488 nm and emission 

bandwidth between 500 nm-608 nm.  A scale calibrated to 25 µm is shown in each 

panel.  The data presented are representative images for 1 experiment of 3. 
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Figure 3.38a:  The effect of butanol treatment on RBL-2H3 cells labelled with 

fluorescent PtdCho and stimulated in the context of IgE/antigen.  RBL-2H3 cells 

were primed overnight with 1 µg/ml anti-DNP IgE (in complete DMEM).  Cells 

were then labelled with the novel fPtdCho in HBSS + 20 mM HEPES + 1 mM Ca
2+

 

and treated with 0.3% butan-1-ol (panel a) or butan-2-ol (panel b) for 15 minutes at 

37
o
C/5% CO2 and stimulated using 0.1 µg/ml DNP-BSA (added during the real-time 

recording). Real-time recording was completed over 15 minutes (1 frame/10 seconds) 

using the argon laser with an excitation at 488 nm and an emission bandwidth 

between 500 nm-608 nm.  The 488 nm laser power was halved and each time point 

was scanned twice (and averaged) to reduce photo-bleaching.  A scale calibrated to 

25 µm is shown in each panel.  The data presented are representative images for 1 

experiment of 2. Still images are represented below whilst the recordings are shown 

in Fig. 3.38b (butan-1-ol) and Fig. 3.38c (butan-2-ol). 
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3.4.10: Using a secretory lysosomal marker to measure the effectiveness of RBL-

2H3 stimulators in UV-irradiated or alcohol treated cells 

 

The effects of butanol and UV irradiation on secretion were characterised using the 

β-hexosaminidase assay as described previously (Section 3.3.1).  Cells were first 

treated with 0.3% butan-1-ol or butan-2-ol for 15 minutes at 37
o
C/5% CO2 or UV-

irradiated (600 mJ).  Treated cells were then stimulated using 100 nM PMA or 0.1 

µg/ml DNP-BSA and cells stimulated using antigenic stimulation were primed 

overnight using 1 µg/ml anti-DNP IgE.  Neither butanol treatment nor UV irradiation 

significantly affected the percentage β-hexosaminidase secretion compared to 

untreated cells (see Fig. 3.39).  RBL-2H3 cells were unresponsive to PMA 

stimulation and neither butanol nor UV irradiation affected the percentage of β-

hexosaminidase secreted.  Antigenic stimulation of RBL-2H3 cells treated with 

butan-1-ol or butan-2-ol were not significantly different from control IgE stimulation 

(analysed using the 2-tailed Student‟s t-test).  Antigenic stimulation of UV irradiated 

cells was significantly different from control cells (analysed as previously described).  

UV irradiated cells treated with Triton X-100 expelled ~35% β-hexosaminidase 

when compared to control cells treated with 0.1% Triton X-100.           
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Figure 3.39: The effect of UV irradiation and butanol on RBL-2H3 mast cell 

section in response to PMA, A23187 and IgE-antigen using the secretory 

lysosomal marker β-hexosaminidase.  RBL-2H3 cells were grown on 12-well 

plates to approximately 80-90% confluencey 24 hours prior to the β-hexosaminidase 

assay.  Cells stimulated with IgE-antigen were primed overnight using 1 µg/ml anti-

DNP IgE (in complete DMEM).  Cells were treated with either 0.3% butan-1-ol 

(But-1) or butan-2-ol (But-2) for 15 minutes at 37
o
C/5% CO2.  Cells were UV-

irradiated using a UV crosslinker for 600 mJ.  RBL-2H3 cells were stimulated using 

100 nM PMA for 60 minutes in 250 µl HBSS + 20 mM HEPES + 1 mM Ca
2+

 at 

37
o
C/5% CO2.  Primed RBL-2H3 cells were stimulated using 0.1 µg/ml DNP-BSA 

for 60 minutes.  0.1% Triton X-100 was used to treat cells for 5 minutes before 

scraping.  UV irradiated cells were also treated with Triton X-100 (UV Triton X-

100).  All treated cells were scraped and centrifuged at 13,000 RPM for 5 minutes.  

20 µl of the supernatant was combined with 20 µl 1 mM p-nitrophenol-N-

acetylglucosamide (in 0.1 M sodium citrate, pH 4.5) in a 96-well plate and incubated 

at 37
o
C/5% CO2 for a further 60 minutes.  The reaction was terminated using 200 µl 

0.1 M sodium carbonate and sodium hydrogen carbonate, pH 10.5.  Results were 

measured continuously using the 405 nm filter on a plate reader and calculated as a 

percentage of the values recorded for Triton X-100 treated cells.  All assays were 

read in triplicate and repeated at least 3 times.  The data presented are the means of 

these experiments. 
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3.5 Discussion 

 

3.5.1: Characterising the localisation and stability of the novel fluorescent lipid 

 

The novel fluorescent form of phosphatidylcholine (fPtdCho) was used to label RBL-

2H3 mast cells and consistently localised in punctiform structures within the cell 

body and processes.  These punctate structures were approximately 1 µm in diameter 

and could be stably labelled for up to 24 hours (the longest time-point taken).  

Although the novel lipid could potentially be hydrolysed by a number of 

phospholipases in vivo (including PLA2, PLC and PLD), the punctiform structures 

imaged using confocal microscopy were most likely of the intact lipid confirmed 

using the Bligh-Dyer lipid extraction method (see Fig. 3.2).    The characteristic 

punctate localisation of the fPtdCho in RBL-2H3 cells was not consistent between 

fibroblast, epithelial and insulin-secreting cell lines.  RBL-2H3 cells labelled with the 

novel fluorescent lipid showed no co-localisation between the lipid and plasma 

membrane, mitochondrial or nuclear markers.  Similarly, the localisation of an acyl-

modified BODIPY-labelled PtdCho was distinct to that of the novel fPtdCho.  

Although the same fluorescent group (BODIPY) was used on both forms of 

phosphatidylcholines, the hydrophobic groups attached to the novel lipid may have 

influenced its localisation in vivo.  In fact, fully hydrophilic fluorogenic PtdCho 

analogues have been synthesised to integrate into the lipid bilayer easily and act as 

substrates for various lipases including PLD (Rose and Prestwich, 2006).  

 

Although PLD1 expression varies between cell lines, it has been shown to localise to 

lysosomes and, in unstimulated RBL-2H3 cells, GFP-PLD1 localises with lysosomal 

and secretory granule markers (Brown et al., 1998; Toda et al., 1999).  Most cells of 

haematopoietic lineage, including mast cells, have modified the function of their 

lysosomes to store newly synthesised secretory proteins rather than degrade 

unwanted protein (reviewed in Blott and Griffiths, 2002).  Secretory lysosomes not 

only remain acidic and retain proteins used for degradation, they also possess the 

facility to undergo regulated exocytosis (reviewed in Blott and Griffiths, 2002; 

Griffiths, 1996).  The lysosomal marker, LysoTracker Red is an acidotropic 

molecular probe and specifically targets acidic compartments such as the secretory 

lysosomes in RBL-2H3 cells (Kaur and Cutler, 2002; Satio et al., 2004).  The novel 
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fPtdCho showed approximately 50% localisation with the lysosomal marker in RBL-

2H3 cells.  This co-localisation suggests that there are two „pools‟ of secretory 

vesicles in RBL-2H3 cells, one of which is populated with the PLD substrate PtdCho 

and another which is not.  As the lysosomal marker labels all acidic compartments 

within the cell, it is possible that the fPtdCho accumulates only in the vesicles which 

are dependent on PLD activity (confirmed using butan-1-ol).  In support of this 

hypothesis, LysoTracker Red-labelled lysosomes in PFA-fixed samples co-localised 

up to 50% with a histamine antibody.  Histamine is a marker of secretory lysosomes 

in mast cells as it is released as part of the inflammatory response (Griffiths et al., 

1996).  Studies characterising the effect of mastoparan analogues suggest that there 

are two pools of secretory vesicles and that there are differences in the molecular 

regulation of β-hexosaminidase and 5-hydroxytryptamine (5-HT) exocytosis 

(Farquhar et al., 2002).  In addition, PLD activation was correlated with release of β-

hexosaminidase but not 5-HT, indicating further that there may be one pool of 

vesicles which is PLD-dependent and another which acts independently (Farquhar et 

al., 2002). 

 

3.5.2: The effect of UV irradiation on RBL-2H3 cells labelled with fluorescent 

PtdCho or LysoTracker Red 

 

UV irradiation of RBL-2H3 cells initiates apoptosis, and this type of cell death is 

characterised by membrane blebbing, cell shrinkage, mitochondrial and nuclear 

disruption, phosphatidylserine exposure, fragmentation of DNA and finally ordered 

fragmentation into membrane-enclosed bodies (Degtereve et al., 2003; Assunção 

Guimarães and Linden, 2004; Wright et al., 2008).  PLD1 contains a caspase 3 

cleavage site, which could play a role in regulating the apoptotic program (Wright et 

al., 2008).  The expression of a caspase 3 resistant PLD1b in HEK-293 cells reduced 

PtdCho hydrolysis (initiated by UV irradiation), suggesting that PLD may be a target 

for caspase mediated destruction, or become deregulated when cleaved by caspase 3 

during apoptosis (Wright et al., 2008).  The organelles labelled by the novel fPtdCho 

in RBL-2H3 cells were probably degraded and the cellular contents not expelled, 

indicating regulated apoptosis.  As a result, lipid localisation became diffuse and 

labelled the cytoplasm but did not disappear from the cells altogether.  This suggests 

that deregulation of PLD1 also had an impact on the rate of fPtdCho hydrolysis and, 
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consequently, PtdOH production.  As labelled RBL-2H3 cells were initiated into 

apoptosis with UV treatment, which caused the fPtdCho-labelled vesicles to 

disappear, this suggests that they are a target for the apoptotic program.  As apoptosis 

is cell death without inflammation and release of inflammatory mediators, this is 

consistent with the structures being inflammatory vesicles.  Reduction of 

fluorescence of the novel fPtdCho could also be attributed to photobleaching of the 

BODIPY tag as a result of UV irradiation, although punctate labelling was 

maintained immediately after UV treatment and only became diffuse after 

approximately 5 hours.  Further experiments using other apoptotic initiations such as 

TNF-α or TNF-β would eliminate the risk of photobleaching the substrate and may 

further support the hypothesis (Teraki et al., 1999).    

 

3.5.3: The effect of antigenic stimulation on RBL-2H3 cells labelled with 

fluorescent PtdCho or LysoTracker Red 

 

Antigenic stimulation of mast cells requires cross-linking of the high affinity IgE 

receptor FcεRI (Toru et al., 1996).  Antigen stimulation of RBL-2H3 cells resulted in 

secretion of ~40% of total β-hexosaminidase.  The fPtdCho which is thought to 

localise to secretory granules was not secreted upon antigenic stimulation.  The 

lysosomal marker LysoTracker Red retained punctate localisation upon antigenic 

stimulation, although the fluorescence yield was reduced.  In RBL-2H3 cells, eGFP-

PLD1b co-localises with secretory granule and lysosomal markers (Brown et al., 

1998) and the fPtdCho PLD substrate possibly localises to the same structures.  

 

PLD has been identified as a key regulator of RBL-2H3 exocytosis and the inhibition 

of PtdOH production by PLD results in a notable reduction in β-hexosaminidase 

secretion in RBL-2H3 cells (Brown et al., 1998).  However, RBL-2H3 cells treated 

with butan-1-ol exhibited little difference in β-hexosaminidase secretion when 

compared to controls and butan-2-ol treated cells.  Although β-hexosaminidase 

secretion was unaffected, the characteristic punctate localisation of fPtdCho was lost 

once treated with butan-1-ol.  The novel fPtdCho maintains its punctate localisation 

in butan-2-ol treated cells.  This suggests that the membrane fusion events and 

signalling cascades facilitated by PtdOH are necessary in the maintenance of 

punctate lipid labelling.  PtdOH produced in a PLD-dependent manner may 
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contribute either structurally to membrane integrity or downstream as it is also a 

known second messenger. Antigenic PLD stimulation required sustained PtdOH 

production during membrane ruffling and this implicates PLD activity in the 

localisation of the novel fPtdCho (O‟Luanaigh et al., 2002).  Butan-1-ol treated cells 

labelled with fPtdCho did not appear to respond to antigenic stimulation by 

membrane ruffling and truncating of cell processes, although β-hexosaminidase 

assay data were inconclusive.  The lack of response to antigenic stimulation 

(characterised by membrane ruffling) in RBL-2H3 cells treated with butan-1-ol has 

been documented elsewhere and is reversible (O‟Luanaigh et al., 2002).  In addition, 

membrane ruffling was shown to be independent to exocytosis of secretory granules, 

therefore supporting the confocal data presented here (O‟Luanaigh et al., 2002).       

 

3.5.4: The effect of PMA stimulation on RBL-2H3 cells labelled with novel 

fluorescent lipid or LysoTracker Red  

 

RBL-2H3 cells labelled with either LysoTracker Red or the novel fPtdCho were 

stimulated using PMA to activate PKC (most notably the Ca
2+

-dependent PKCα), a 

known PLD1 activator (Takai et al., 1979; Castagna et al., 1982).  Although mast 

cells degranulate upon stimulation with PMA, they do not secrete β-hexosaminidase 

which supports the suggestion that there are two pools of secretory vesicles in RBL-

2H3 cells (Brown et al., 1998; Farquhar et al., 2002).  These results were confirmed 

as PMA stimulated cells secreted only ~3% more than control (i.e. unstimulated) 

cells.  There was a notable change in the cell morphology upon PMA stimulation, 

although both the novel fPtdCho and LysoTracker Red retained their punctiform 

localisation. 

 

3.5.5: The effect of a calcium ionophore (A23187) on RBL-2H3 cells labelled 

with novel fluorescent lipid or LysoTracker Red 

 

The calcium ionophore A23187 increases intracellular calcium, so resulting in mast 

cell degranulation.  Mast cells express the calcium and phospholipid-binding 

synaptotogamins (Syt) II, III and V on their secretory vesicles (Baram et al., 1999; 

reviewed in Stinchcombe and Griffiths, 2001).  Mast cell excoytosis is mediated by 

membrane fusion events controlled by soluble N-ethylmaleimide-sensitive fusion 
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factor attachment proteins (SNAREs) which are regulated by Syt and Rab proteins 

(reviewed in Schimmöller et al., 1998).  SNAREs vary between different organelles 

but their function is to bring together vesicle SNAREs (v-SNAREs) which interact 

with target membranes (t-SNAREs) or vesicle associated membrane proteins 

(VAMPs – Puri and Roche, 2008).  Mast cells express syntaxins 2, 3 and 4, VAMPs 

2, 7 and 8, and synaptosome-associate protein (SNAP)-23 (Hibi et al., 2000; Paumet 

et al., 2000; Puri and Roche, 2008).  VAMP-2 is not involved in exocytosis whilst 

VAMP-8 has recently been identified as a key regulatory protein of secretory granule 

exocytosis (Arora et al., 1994; Puri and Roche, 2008).  The increase in intracellular 

Ca
2+

 concentration associated with A23187 treatment of RBL-2H3 cells did not 

impact upon localisation of the novel fPtdCho.  However, the acidotropic marker 

LysoTracker Red leached out from degranulating RBL-2H3 cells within 5 minutes of 

A23187 treatment.  The impact on the lysosomal marker could be attributed to a pH 

change within the lysosomes as their acidic content would have been expelled more 

aggressively than in antigen-IgE- or PMA-stimulated cells, which resulted in 

degranulation through a PLD-dependent pathway.  LysoTracker Red and the novel 

fPtdCho may also be labelling different parts of the secretory vesicle.  As the novel 

lipid is retained and LysoTracker Red is not, the lysosomal marker is likely to be 

within the vesicle whilst the novel lipid is more likely to localise to the vesicular 

membrane. 

 

3.5.6: The impact of a wortmannin or MBCD on LysoTracker Red or 

fluorescent PtdCho labelled RBL-2H3 cells  

 

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is a lipid activator of PLD both 

in vivo and in vitro (Hodgkin et al., 1999).  The pleckstrin homology (PH) domain of 

PLD uses lipids such as PtdIns(4,5)P2 to anchor the lipase to membranes in vivo or to 

vesicles containing PtdIns(4,5)P2 in vitro (Hodgkin et al., 2000; Höer et al., 2000).  

PtdIns(4,5)P2 is phosphorylated to phosphatidylinositol 3,4,5-triphosphate 

(PtdIns(3,4,5)P3) which has also been found to increase the activity of myocardial 

PLD in human atrial tissue, but with lower efficiency than PtdIns(4,5)P2 (Kruz et al., 

2004).  Both PLD1 and PLD2 respond to PtdIns(4,5)P2 stimulation (Frohman et al., 

1999; Kruz et al., 2004).  The fungal metabolite wortmannin has been found to 

inhibit PLC and PLD activity in neutrophils, possibly by acting as a 
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phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor (Reinhold et al., 1990; 

Bonser et al., 1991; Cross et al., 1995; Cross et al., 1997).  PtdIns 3-kinase activity is 

receptor initiated and phosphorylates PtdIns(4,5)P2 to PtdIns(3,4,5)P3 (Reinhold et al., 

1990; Bonser et al., 1991; Cross et al., 1995; Cross et al., 1997).  Treatment of RBL-

2H3 cells with wortmannin did not affect the punctate localisation of the novel 

fPtdCho or the lysosomal marker LysoTracker Red.  Wortmannin is used as a PLD 

inhibitor and is known to inhibit several other lipases (including PLC and PLA2) at 

concentrations higher than that needed for PtdIns(4,5)P2 inhibition (Cross et al., 

1995).  The fluorescent PLD substrate was unaffected by wortmannin treatment but 

additional information could be gathered if PLD was stimulated by PMA or IgE after 

wortmannin treatment and analysing fluorescence oscillations. 

 

Methyl-β-cyclodextrin (MBCD) removes cholesterol from the plasma membrane 

(Hiroyama and Exton, 2005b) and, in HeLa cells, the localisation of PLD was 

unaffected by cholesterol depletion (Hiroyama and Exton, 2005b).  MBCD treatment 

of RBL-2H3 cells labelled with the fPtdCho or LysoTracker Red did not change the 

localisation of either marker.  This suggests that, like PLD, its substrate localises to 

the secretory lysosomes independent of the cholesterol content of the plasma 

membrane. 

 

3.5.7: The effect of microtubule or cytoskeletal dynamics on RBL-2H3 cells 

labelled with novel fluorescent lipid or LysoTracker Red 

 

Microtubules are arranged in polymerised tubulin heterodimers (composed of α- and 

β-tubulin) and play an important role in many cellular processes, including 

intracellular transport of vesicles (Gupta Jr. et al., 2003; Jordan and Wilson, 2004).  

Paclitaxel is an anti-tumour agent that promotes assembly and stabilisation of 

microtubules (Gupta Jr., et al., 2003; Jordan and Wilson, 2004).  Nocodazole 

treatment of HeLa cells results in microtubule depolymerisation, redistribution of 

tubulin and contractile morphology (Chang et al., 2008).  There appeared to be no 

change in movement or localisation of punctate structures labelled with LysoTracker 

Red or fPtdCho in RBL-2H3 cells.  This suggests that the localisation and movement 

of these structures is independent of the microtubule network.        
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RBL-2H3 cells were labelled and treated with two inhibitors which can influence the 

organisation and stability of the actin cytoskeleton.  Cytochalasin D (CD) is an 

inhibitor of actin polymerisation and is thought to „prime‟ RBL-2H3 cells to 

antigenic stimulation (Oka et al., 2002).  CD treated RBL-2H3 cells sensitised with 

IgE exhibited an increase in actin assembly, degranulation and intracellular Ca
2+

 

(Oka et al., 2002).  However, our results showed no impact on β-hexosaminidase 

secretion in RBL-2H3 cells treated with CD and antigenic stimulation.  Despite CD 

having no effect on β-hexosaminidase secretion of RBL-2H3 cells, both fPtdCho and 

LysoTracker Red changed localisation.  Both fluorescent markers were localised to 

the tips of the cell processes although their movement was not inhibited.  CD has 

been found to cause irregular areas of de novo F-actin aggregation, whilst 

depolymerising pre-existing actin in a human breast cancer cell line (Mortensen and 

Larsson, 2003).  One possibility is that the inhibition of actin polymerisation did not 

inhibit the movement of the labelled vesicles but did cause the concentration of 

LysoTracker Red or novel fPtdCho to the bases and the tips of the cell processes.  

These areas may be points at which actin polymerisation activity was at its greatest.  

Treating RBL-2H3 cells with CD and then staining with rhodamine-phalloidin could 

show whether these points of fPtdCho and LysoTracker Red „pooling‟ correlated 

with actin formation.  

 

Latrunculin B (Lat B) is a macrolide toxin (from Red Sea sponge) that destabilises 

actin filaments.  Latrunculin binds to G-actin released from the actin filaments at a 

1:1 ratio and prevents its re-incorporation into a fibre (Pendleton and Koffer, 2001).  

In contrast to CD, Lat B depletes F-actin over a period of time, dependent upon the 

rate of filament turn-over (Ayscough et al., 1997; Pendleton and Koffer, 2001; 

Mortensen and Larsson, 2003).  The movement of fPtdCho in RBL-2H3 cells was 

not inhibited upon treatment with Lat B.  However, the novel fPtdCho accumulated 

to specific points within the RBL-2H3 cells, which were visually similar to those 

seen after CD treatment. The similarity in the effect of the two inhibitors indicates 

that, although the movement of the fPtdCho was not inhibited, the fusion events 

between vesicle and plasma membrane or other vesicles may be regulated by the 

actin cytoskeleton.  Dependending on the conditions, mast cells pre-treated with 40 

µg/ml Lat B and stimulated using the compound 40/80 showed a decrease between 

~20-30% in β-hexosaminidase secretion (Pendleton and Koffer, 2001).  RBL-2H3 
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cells treated with Lat B and stimulated with antigen-IgE or A23187 showed no 

difference in β-hexosaminidase secretion.  The discrepancy between our results and 

published data may be due to the difference in cell type and treatment conditions 

associated with mast cell stimulation.  Evanescent-field fluorescence microscopy was 

used to assess the movement of secretory vesicles along fluorescently labelled actin 

fibres in neuroendocrine PC-12 cells (Lang et al., 2000).  Although some secretory 

veiscles were mobile (along F-actin bundles) others appeared „docked‟ or restrained 

by the actin cytoskeleton (Lang et al., 2000; Burgoyne and Morgon, 2003).  In 

addition, PC-12 cells treated with Lat B showed diminished vesicle movement (Lang 

et al., 2000; Burgoyne and Morgan, 2003).  This is consistent with the accumulation 

of vesicles labelled with fPtdCho observed at the bases and the tips of cell processes 

of RBL-2H3 cells treated with Lat B or CD.  Further characterisation of membrane 

fusion (in excotytosis) and vesicular movement along the actin cytoskeleton in 

chromaffin cells – using total internal reflection fluorescent microscopy (TIRFM) – 

suggests that the disruption of actin dynamins does not significantly impact upon 

granule motion (Allersma et al., 2006; Burchfield et al., 2010).   

 

Our data indicate that the actin cytoskeleton is integral to the trafficking of fPtdCho 

labelled vesicles in RBL-2H3 cells.  Treatment with inhibitors does not appear to 

affect the movement of the fPtdCho-labelled structures, however this project was 

unable to measure the rate and distance over which these vesicles move.  Quantifying 

the speed and distance of fPtdCho-labelled structures in non-treated RBL-2H3 cells 

would enable an analysis of inhibitor-treated cells and the effect on labelled vesicles.  

The movement and accumulation of the fluorescently labelled vesicles suggests that 

there may be two populations of vesicles which move using different mechanisms 

and so are not inhibited by identical treatments.  Furthermore, developing a live actin 

label which is either Cherry- or eGFP-labelled would facilitate real-time analysis of 

fPtdCho- or LysoTracker Red-labelled vesicles in RBL-2H3 cells, and the effect of 

cytoskeletal inhibitors on their movement.   
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Chapter 4: Establishing a novel fluorescent in vitro PLD 

assay 

 

4.1: Introduction 

 

Members of the phospholipase D (PLD) superfamily hydrolyse the phosphodiester 

bond of glycerophospholipids to release a free (unphosphorylated) head group and 

phosphatidic acid (PtdOH).  Mammalian PLD preferentially hydrolyses PtdCho – 

generating PtdOH and a choline – and predominantly exists in two isoforms, PLD1b 

and PLD2a, the expression levels of which vary markedly between cell lines (Meier 

et al., 1999).   

 

Members of the PLD superfamily are found in a wide variety of organisms including 

bacteria, plants and mammals, and are characterised by the presence of a  conserved 

HxK(x)4D(x)6GSxN (HKD) motif (where x is any amino acid – Ponting and Kerr, 

1996; Stuckey and Dixon, 1999).  The HKD motif consists of conserved histidine, 

lysine, aspartate, and asparagine residues that are essential for the enzyme activity of 

PLD (Ponting and Kerr, 1996; Stuckey and Dixon, 1999).  The lysine residue in the 

HKD motif is thought to aid substrate-binding of PLD and, when mutated, renders 

the lipase inactive (Sung et al., 1997; Davies et al., 2002; Fedeli et al., 2006).  The 

first crystal structure of a PLD superfamily member was of the bacterial 

endonuclease Nuc – isolated from the pKM101 plasmid of Salmonella typhimurium.  

The crystal structure of Nuc provided structural information as to how two HKD 

motifs from separate Nuc endonucleaes lie in parallel to form a single active site 

joined by hydrogen bonds (Stuckey and Dixon, 1999).  Mammalian PLD has two 

HKD motifs which are thought to form an interactive catalytic site analogous to that 

characterised in Nuc which is either homodimeric (between HKD motifs of the same 

PLD) or heterdimeric (between HKD motifs of separate PLDs - Kam and Exton, 

2002). 

 

PLD1 and 2 have up to 50% sequence conservation between the regions that 

contribute to their regulation and substrate specificity (Sung et al., 1999b).  Sequence 

comparison between human PLD1 and 2 with Bruton‟s tyrosine kinase (Btk) – an 
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enzyme known to contain a pleckstrin homology (PH) domain – identified a 

conserved PH domain.  The inositol-phosphate binding site in the PH domain of Btk 

was characterised as involving residues Lys228, Ser230 and Arg253.  The PLD PH 

domain was phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) binding-specific 

(Hodgkin et al., 2000).  Deletion of the PH domain renders PLD inactive whilst point 

mutations within the conserved PH domain inhibits PLD activity and prevents 

normal localisation (Hodgkin et al., 2000).   

 

A phox (PX) domain in the N-terminal region of PLD is also conserved in human 

and nematode PLDs (Liscovitch et al., 2000).  N-terminal deletions up to 325 amino 

acid residues do not greatly affect basal PLD activity (Sung et al., 1999b) and the PX 

domain may have a role in regulation rather than catalytic activity (Liscovitch et al., 

2000).  In vivo deletion of the PX domain of PLD1 increases basal activity of the 

lipase whilst retaining PKCα responsivity.  However, in vitro PLD1 is rendered 

inactive and non-responsive to Arf, Rho and PKCα when the PX domain is deleted 

(Sung et al., 1999b).  The PX domain of PLD1 has a high affinity for 3-

phosphorylated inositides which increases enzymatic activity (Lee et al., 2005).  The 

PX domain of PLD2 is implicated in the activation of PKCδ through direct 

interaction with its kinase region and independent of lipase activity (Kim et al., 

2005). 

 

Although PLD1 and 2 contain highly conserved regulatory regions and PLD1 splice 

variants (PLD1a and PLD1b) have 99.9% homology, they may undertake different 

intracellular functions (Katayama et al., 1998).  PLD1 has been characterised 

extensively in the context of activators which stimulate PLD1 both in vivo and in 

vitro.  The splice variant related to the current project – PLD1b – is activated in the 

presence of PtdIns(4,5)P2, ADP-ribosylation factor (Arf1 or Arf6), protein kinase Cα 

(PKCα), and members of the Rho superfamily (Hammond et al., 1995; Hammond et 

al., 1998; Katayama et al., 1998).   In vitro PLD1 assays using radio-labelled 

phosphatidylcholine (PtdCho) in the presence of cofactors shows synergistic 

stimulation of enzyme activity (Hammond et al., 1997).  PLD2 is unresponsive to 

small G-protein activation and there is conflicting evidence of PLD2 activation by 

sodium oleate in vitro (Katayama et al., 1998; Massenburg et al., 1994).  
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In the past, most in vitro PLD assays monitored enzyme activity using tritiated 

PtdCho and produced a single data point that reflected the particular conditions used 

in the assay.  PLD would be incubated with a small proportion of 

dipalmitoylphosphatidyl [methyl 
3
H]-choline ([

3
H]-(Pam)2PtdCho) substrate in a 

complex with native PtdCho (isolated from lecithin egg yolk) and PLD hydrolysis 

would produce water-soluble choline (Kupferberg et al., 1981; Wang and Wang, 

2001).  The vesicles used to assess PLD-activity in vitro differed depending on the 

source of protein (e.g. plant or mammalian PLD) and the PLD isoform.  Vesicles 

would typically contain phosphatidylethanolamine, phosphatidylinositol 4,5-

bisphosphate and PtdCho of which the radiolabelled PtdCho would make up a very 

small proportion (Brown et al., 1993; Massenburg et al., 1994; Kim et al., 1999; 

Wang and Wang, 2001).  Assays for PLD2 frequently included either sodium oleate 

or oleic acid dependending on the assay (Chalifa et al., 1990; Messenburg et al., 

1994; Kim et al., 1999; Wang and Wang, 2001).  The incorporation of sodium oleate 

meant that there was detergent (activity) present in the assay so that lipid vesicles 

formed readily.  Typically the reactions were incubated at 37
o
C and terminated using 

a chloroform/methanol solvent mixture or trichloroacetic acid and bovine serum 

albumin (BSA – Brown et al., 1993; Kim et al., 1999; Farquhar et al., 2007).  The 

phases were then separated and the aqueous phase containing [
3
H]-choline quantified 

by liquid scintillation counting/spectroscopy (Brown et al., 1993; Kim et al., 1999; 

Hodgkin et al., 1999; Farquhar et al., 2007).  Although thin layer chromatography 

(TLC) was also used to analyse and quantify in vitro assay results, liquid scintillation 

counting was more common (Chalifa et al., 1990).  In addition, new methods of in 

vitro analysis were developed including 
31

P NMR, 
1
H NMR and fluorescent TLC 

(where BODIPY-PtdCho was incorporated into vesicles – Ella et al., 1994; Yang and 

Roberts, 2003).   

 

Fluorogenic analogues of PtdCho have been synthesised and phospholipases C and D 

were used to evaluate their application as lipase substrates (Rose and Prestwich, 

2006).  The amphiphilic PtdCho analogues were synthesised to allow integration into 

cells via the lipid bilayer and so facilitate lipase assays in vivo (Rose and Prestwich, 

2006).  A novel fluorescent PtdCho (fPtdCho) substrate was used to further develop 

the fluorescent TLC assays, first used to characterise PLA2 activity (Feng et al., 

2002).  The novel fPtdCho is labelled with BODIPY at the choline head group and, 
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whilst intact, BODIPY fluorescence is internally quenched by non-fluorescent 

aromatic groups attached to the acyl-chains (Fig. 3.1).  When the lipid is hydrolysed 

by PLD to release the BODIPY-labelled choline head group, fluorescence emission 

increases.  Fluorescent in vitro assays were developed using previously established 

assay conditions (Hodgkin et al., 1999; Farquhar et al., 2007). In this project, 

collection of consecutive data points from these fluorescent assays permitted the 

recording of PLD activity in real-time.  The opportunity to monitor the effect of 

small G-protein activators on PLD1b activity in real-time could help characterise 

their interactions and ultimately the rate at which they stimulate lipase activity.  The 

previously established radiolabelled PLD assays were not sensitive enough to 

monitor the effects of assay components, such as magnesium (Mg
2+

) and calcium 

(Ca
2+

) in the absence of activators.  As data was collected concurrently, the effect of 

Mg
2+

 and/or Ca
2+

 ions on PLD activity could be monitored in real-time by measuring 

fluorescence emission over time.   

 

The novel fluorescent version of the in vitro PLD assay provides an opportunity to 

characterise further PLD catalysed hydrolysis and its interaction with activators in 

real-time.  The product of a single assay is now up to 500 data points, thus yielding 

significantly more kinetic information resulting from altered assay conditions.  

Eventually this fluorescent in vitro assay could also be used to assess the 

stoichiometry between small G-proteins and PLD activity by using PLD as an 

effector.  
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4.2: Activation of GST-hPLD1 using small G-protein or protein kinase 

activators 

 

A newly developed real-time assay utilised the unique properties of a fluorescent 

PtdCho (fPtdCho) substrate to characterise GST-hPLD1b activity.  Although the 

novel fluorescent lipid intramolecularly quenches the BODIPY labelled choline, this 

process is not 100% efficient.  The vesicles used in this real-time assay incorporated 

the fPtdCho and therefore had a basal level of fluorescence, which was recorded for 

each experiment.  Background fluorescence (measured with all assay components 

except the fluorescent vesicles and protein) was also recorded for each experiment.  

As the lipid was hydrolyzed by GST-hPLD1, fluorescence in the assay increased (as 

the BODIPY labelled head group was no longer internally quenched), therefore 

indicating GST-hPLD1 enzyme activity.   

 

Real-time in vitro assays were completed in a final volume of 100 µl at 37
o
C.  The 

core components of each assay consisted of 50 µl lipid vesicles, 50 µM GTPγS and 

400 mM NaCl. Vesicles constituted 100 µg L-α-phosphatidylethanolamine (PtdEth), 

50 µg phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and 0.5 µg of the 

fluorescent lipid.  Lipids were combined and dried under a stream of nitrogen gas 

before resuspending in 400 µl sonication buffer (refer to Section 2.10.1). Known 

GST-hPLD1 activators such as PKCα, Rac1 and Arf1 were used to determine the 

activity and responsiveness of purified recombinant GST-hPLD1 protein 

preparations.  2 µg of each activator was added to the assay immediately prior to 

recording fPtdCho hydrolysis by using relative fluorescence emitted.  The most 

effective stimulation of GST-hPLD1 was achieved using a combination of wildtype 

Arf1 and Rac1 (Hodgkin et al., 1999).  Fluorescence readings were taken at 2 second 

intervals using a fluorimeter, and data were recorded concurrently using excitation at 

485 nm and fluorescence emission detection at 535 nm.   Established tritiated assay 

conditions were adjusted to accommodate the changed fluorescent assay but used 

similar concentrations of magnesium (Mg
2+ 

– 3 mM), calcium (Ca
2+

– 2 mM) and the 

non-hydrolysable GTP analogue (GTPγs – 50 µM).   

 

In the absence of protein activators, basal GST-hPLD1 activity was low with only a 

small increase in emitted fluorescence over 60 minutes compared to that of the 
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fluorescence vesicles alone.  Combined activation of GST-hPLD1 by wildtype Arf1 

and Rac1 proved to be the most effective and reproducible in vitro activation of the 

protein.  The combined activation of GST-hPLD1 by wildtype Arf1 and Rac1 and 

GTPγS resulted in an increase in emitted fluorescence of approximately 15,000 

fluorescence units compared to unactivated GST-hPLD1 (see Fig. 4.1).  The 

activated GST-hPLD1 protein showed a marked increase in fluorescence emission 

(i.e. activity) approximately 10 minutes after the assay was commenced.  This lag 

period was consistently present in assays utilising GST-hPLD1 activators.  The lag 

time was attributed to the time taken for assay contents to form a activation complex 

and the time taken for components to reach 37
o
C.  The results were recorded 

concurrently so that basal activity and activation response times of GST-hPLD1 

could be directly compared.   

 

Although activation was robust, the magnitude of response was dependent on the 

protein preparation used.  Small scale infections of Sf9 cells with GST-hPLD1-

expressing baculovirus produced numerous protein preparations which were then 

used in in vitro assays.  In each experiment, a lag time of between 10-20 minutes 

(dependent on GST-hPLD1 concentration) was present before changes in 

fluorescence were detected.   
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Figure 4.1: The effect of wildtype Arf1 and Rac1 on GST-hPLD1 activity using 

a fluorescent PtdCho substrate.  Assays included 50 µl of extruded fPtdCho 

containing vesicles, 50  µM GTPγS, 400  mM NaCl, 3  mM Mg
2+

, 2  mM Ca
2+

 and 2  

µg of each activator – Arf1 and Rac1 (wt).  All assay components (except vesicles) 

including activators and 10 µl GST-hPLD1 protein were added to each well and kept 

on ice.  Immediately before the assay was commenced, vesicles were added to begin 

the assay.  Fluorescence emissions were recorded using a fluorimeter (at 37 
o
C) for 

60 minutes. The hydrolysis of fPtdCho was detected using an excitation aperture at 

485nm and an emission filter of 535 nm.  Fluorescence emissions were accrued at 2 

second intervals and recorded concurrently.  The change in fluorescence due to GST-

hPLD1 (▼) was compared to vesicles incubated without lipase (▲).  Background 

fluorescence was monitored in a well containing water (■).  The response of GST-

hPLD1 protein to its wildtype Arf1 and Rac1 small G-protein activators (●) was 

compared to basal GST-hPLD1b activity (▼).  This real-time in vitro assay was 

repeated at least twice to ensure results were robust. 
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The activity of GST-hPLD1 was assessed in relative emitted fluorescence compared 

to the fluorescence of vesicles (containing the fPtdCho) alone.  The lipid had some 

residual basal fluorescence which remained consistent throughout all the experiments 

(see Fig. 4.2).  The blank (i.e. water) which controlled for background fluorescence 

also remained consistent throughout the experiment (data not shown).  GST-hPLD1 

activity increased dramatically as wildtype Arf1 and Rac1 activated the lipase (see 

Figs. 4.1 and 4.2).  However, the magnitude of activation of GST-hPLD1 by each 

small G-protein individually using this fluorescent in vitro assay was unknown.  

Tritiated assays using lysates from the HL60 cell line indicated that Arf1 enhanced 

GST-hPLD1 activity more effectively than Rac1 (Hodgkin et al., 1999).  In this 

fluorescent assay, wildtype Arf1 increased GST-hPLD1 activity more than wildtype 

Rac1 (see Fig. 4.2).  The fluorescence emitted was lower for GST-hPLD1 activated 

by individual small G-proteins, so indicated that wildtype Arf1 and Rac1 

synergistically activate GST-hPLD1 (Hammond et al., 1995). 

 

The presence of a lag time between the start of the assay and activation of GST-

hPLD1 by small G-proteins was a consistent feature.  The lag time of GST-hPLD1 

activated by single activators (either wildtype Arf1 or Rac1) was approximately 10 

minutes (see Fig. 4.2).  After the lag time, emitted fluorescence increased linearly so 

indicating that GST-hPLD1 had been activated.  The activation of GST-hPLD1 by 

the combined small G-proteins reduced the lag time to approximately 5 minutes.   
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Figure 4.2: Real-time in vitro activation of GST-hPLD1 by wildtype Arf1 or 

Rac1.  Assays contained 50 µM GTPγS, 400 mM NaCl, 3 mM Mg
2+

, 2 mM Ca
2+

 and 

2 µg of each (or both) activators – Arf1 or Rac1.  All assay components (except 50 

µl fluorescent vesicles) including activators and 15 µl GST-hPLD1 protein were 

added to each well and kept on ice.  Immediately before the assay began, vesicles 

were added to initiate the assay.  Fluorescence emissions were recorded using a 

fluorimeter (at 37
o
C) for 60 minutes. The hydrolysis of fPtdCho was detected using 

an excitation aperture at 485 nm and an emission filter of 535 nm.  Fluorescence 

emissions were accrued at 2 second intervals and recorded concurrently.  The change 

in fluorescence due to GST-hPLD1 (▼) was compared to vesicles incubated without 

lipase (▲).  Background fluorescence (water) was monitored but the data is not 

shown.  The response of GST-hPLD1 protein to its wildtype Arf1 and Rac1 small G-

protein activators (●) was compared to basal GST-hPLD1 activity (▼).  

Fluorescence emissions of reactions where GST-hPLD1 protein was activated by 

Arf1 (●) or Rac1 (▲) were also compared to basal GST-hPLD1 activity (▼).  This 

real-time in vitro assay was repeated to ensure the result was reproducible. 
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GST-hPLD1 has three main protein activators, i.e. Arf, Rho and protein kinase Cα 

(PKCα).  Previous studies using tritiated in vitro assays established that the 

combined effect of Arf1, Cdc42 and PKCα produced maximal GST-hPLD1 activity 

(Hodgkin et al., 1999).  PKCα activation of GST-hPLD1 should have produced 

similar levels of emitted fluorescence to Arf1 activation of GST-hPLD1.  However in 

this in vitro assay system, GST-hPLD1 could not be activated by PKCα (see Fig. 4.3).  

Activation of PKCα using 100 nM PMA also had no impact on GST-hPLD1 activity.    

Basal GST-hPLD1 activity steadily increased in the first 60 minutes of the assay and, 

between 60 and 120 minutes, the activity of activated PKCα, PKCα + 100 nM PMA 

and basal GST-hPLD1 were similar.  Activation of GST-hPLD1 protein using the 

wildtype small G-protein activators Arf1 and Rac1 were compared to the response 

resulting from PKCα activation.  Arf1 increased GST-hPLD1 activity and the 

combined activation of GST-hPLD1 by wildtype Arf1 and Rac1 showed a further 

increase in emitted fluorescence (see Fig. 4.3).  The response to small G-protein 

activators meant that the protein preparation was active but unresponsive to PKCα 

under these in vitro conditions.   
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Figure 4.3: Comparing GST-hPLD1 activation by small G-proteins and PKCα.  
Assays were constituted with 50 µM GTPγS, 400 mM NaCl, 3 mM Mg

2+
, 2 mM 

Ca
2+

, and 2 µg of small G-protein activators (wildtype Arf1 or Rac1) or 1 µg PKCα.  

All assay components (except 50 µl fluorescent vesicles) including activators and 20 

µl GST-hPLD1 protein were added to each well and kept on ice.  Immediately before 

the assay commenced, vesicles were added to begin the assay.  Fluorescence 

emissions were recorded using a fluorimeter (at 37
o
C) for 120 minutes. The 

hydrolysis of fPtdCho was detected using an excitation aperture at 485 nm and an 

emission filter of 535 nm.  Fluorescence emissions were accrued (approx.) every 2 

seconds and recorded concurrently.  The change in fluorescence due to GST-hPLD1 

(▼) was compared to vesicles incubated without lipase (▲).  Background 

fluorescence (water) was monitored but the data is not shown.  Fluorescence 

emission produced by GST-hPLD1 activation with PKCα (▼) or PKCα + 100 nM 

PMA (■) was compared to basal GST-hPLD1 activity (▼).  Fluorescence emission 

increase due to GST-hPLD1 activation by wildtype Arf1 and Rac1 (●) or Arf1 alone 

(●) were used to assess if the protein preparation was active.  This real-time in vitro 

assay was repeated twice. 
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4.3: Assessing the dependence of GST-hPLD1 activity on Mg
2+

 and Ca
2+ 

 

The conditions originally described for analysing PLD activity in vitro were 

modifications of those used in PLC and PLA2 assays (Smrcka et al., 1991; Murthy 

and Makhlouf, 1998).  As the conditions were designed for the Ca
2+

-dependent PLA2 

enzyme (Murthy and Makhlouf, 1998), Ca
2+

 was included in the assay.  The response 

of mammalian PLDs to Ca
2+

 concentration has yet to be elucidated, although PLD 

isolated from porcine lung microsomes showed stimulation by (but not dependence 

upon) Ca
2+

 and Mg
2+

 (Okamura and Yamashita, 1994; McDermott et al., 2004).  

Standard assay conditions for the fluorescent in vitro PLD assay included a 

combination of 3 mM Mg
2+

 and 2 mM Ca
2+

 ions.  The tritated assay was not 

sensitive enough to detect subtle changes in PLD activity dependent on ion 

concentrations.       

 

The effects of various concentrations of either Mg
2+

 or Ca
2+

 on GST-hPLD1 activity 

were assessed in real-time using the novel fPtdCho (see Fig. 4.4).  The stimulation 

effects of these divalent ions were assessed without small G-protein activators.  

Sufficient GST-hPLD1 was used in each assay to ensure that fluorescence rose 

consistently throughout the assay compared to the fluorescence of vesicles alone.  

Neither 3 mM nor 5 mM Mg
2+

 enhanced in vitro GST-hPLD1 activity; fluorescence 

reflected lower GST-hPLD1 activity compared with that in the presence of both 3 

mM Mg
2+

 and 2 mM Ca
2+

 ions.  These ions are important in small G-protein 

activation of GST-hPLD1 although, when small G-proteins are not used, Mg
2+

 ions 

alone had little impact on GST-hPLD1 activity (see Fig. 4.4).   

 

The addition of 2 mM Ca
2+

 caused a noticeable increase in fluorescence emission, so 

indicating that GST-hPLD1 activity was enhanced in the presence of Ca
2+

 ions.  

These results are further supported by the effects of 5 mM Ca
2+

 on GST-hPLD1 

activity as this concentration further enhanced GST-hPLD1 activity (see Fig. 4.4).  

The combined effect of 3 mM Mg
2+

 and 2 mM Ca
2+

 resulted in an increased basal 

GST-hPLD1 activity similar to that seen using 5 mM Ca
2+

 alone.  As the results 

show a clear increase in GST-hPLD1 activity in the presence of Ca
2+

 ions, increasing 

Ca
2+

 concentration may further optimize GST-hPLD1 in vitro activation.      
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Figure 4.4: The effects of Ca
2+

 and Mg
2+

 on basal GST-hPLD1 activity in vitro.     
Assays were constituted with 50 µM GTPγS, 400 mM NaCl, 50 µl fluorescent 

vesicles, 20 µl GST-hPLD1b, Mg
2+

 and Ca
2+

.  All assay components (except the 

vesicles) including the GST-hPLD1 protein were added to each well and kept on ice.  

Immediately before the assay commenced, vesicles were added to begin the assay.  

Fluorescence emissions were recorded using a fluorimeter (at 37
o
C) for 120 minutes. 

The hydrolysis of fPtdCho was detected using an excitation aperture at 485 nm and 

an emission filter of 535 nm.  Fluorescence emissions were accrued (approx.) every 2 

seconds and recorded concurrently.  The change in fluorescence due to GST-hPLD1 

in the presence of 3 mM Mg
2+

 and 2 mM Ca
2+

 (▼) was compared to vesicles 

incubated without lipase (▲).  Background fluorescence (water) was monitored but 

the data is not shown.  Fluorescence emissions produced by GST-hPLD1 in the 

presence of 3 mM Mg
2+

 (■), or 5 mM Mg
2+

 (▼) were compared to that of GST-

hPLD1 activity in the presence of combined ions (▼) or Ca
2+

 alone.  Fluorescence 

emissions resulting from GST-hPLD1 activity in the presence of 2 mM Ca
2+

 (■) or 5 

mM Ca
2+

 (▼) were also compared with the activity induced by a combination of 

Mg
2+

 and Ca
2+

 (▼) or Mg
2+ 

alone. This real-time in vitro assay was repeated twice.     
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4.4: Effects of GTPγS concentration on small molecular weight G-protein 

activated GST-hPLD1 in vitro 

 

Although GTP is needed for the activity of small G-proteins, the concentration at 

which GTPγS becomes effective has not been monitored in real-time in vitro.  The 

effect of GTPγS on small G-protein activation of GST-hPLD1 was determined using 

the fluorescent in vitro assay and varying GTPγS concentration between 1 µM and 

50 µM.  The standard fluorescent GST-hPLD1 assay included 50 µM GTPγS which 

enabled lipase activation by small G-proteins.  GST-hPLD1 was activated by either 

Arf1 (see Fig. 4.5) or Rac1 (see Fig. 4.6) using 50 µM, 10 µM or 1 µM GTPγS.  

Combined GST-hPLD1 activation by wildtype Arf1 and Rac1 using 50 µM GTPγS 

emitted the highest level of fluorescence, establishing that the protein was active and 

responding to small G-protein activators (see Fig. 4.5).  GST-hPLD1 activation by 

Arf1 was monitored in real-time over a period of 120 minutes.  Arf1 activation of 

GST-hPLD1 in the presence of 50 µM GTPγS was no more effective than 1 µM 

GTPγS.  The same lag time was present in all activated protein preparations in the 

first 10-20 minutes of the in vitro assay.  Data was recorded concurrently so that each 

reaction could be compared.  The fluorescence of vesicles alone did not fluctuate 

throughout the assay.  There was a slight increase in fluorescence of non-activated 

GST-hPLD1, demonstrating basal lipase activity and providing a control for Arf1 

activated protein.   

 

Similarly, Rac1 activation of GST-hPLD1 in the presence of 50 µM GTPγS was 

comparable to activation using 1 µM GTPγS (see Fig. 4.6).  GST-hPLD1 activity 

stimulated by Rac1 was enhanced most effectively using 1 µM GTPγS.  GST-hPLD1 

activation by Rac1 showed no difference using 10 µM or 50 µM GTPγS.  The 

emitted fluorescence of vesicles alone remained below 10,000 fluorescence units 

throughout the in vitro assay. 

 

As different protein preparations were used, the results produced using Arf1 or Rac1 

activation of GST-hPLD1 with varying GTPγS concentrations were not directly 

comparable.  However, there was a similar trend between the experiments, so 

indicating that 1 µM GTPγS was as successful in aiding G-protein activation of the 

lipase as 50 µM GTPγS.   
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Figure 4.5: The effects of GTPγS concentration on Arf1 activated GST-hPLD1 

in vitro. Assays were constituted with 400 mM NaCl, 50  µl fluorescent vesicles, 20  

µl GST-hPLD1b, Mg
2+

, and Ca
2+

 and varying concentrations of GTPγS (between 1 

µM-50 µM).  All assay components (except the vesicles) including the GST-hPLD1 

protein were added to each well and kept on ice.  Immediately before the assay 

commenced, vesicles were added to begin the assay.  Fluorescence emissions were 

recorded using a fluorimeter (at 37
o
C) for 120 minutes. The hydrolysis of fPtdCho 

was detected using an excitation aperture at 485 nm and an emission filter of 535 nm.  

Fluorescence emissions were accrued at 2 second intervals and recorded concurrently.  

The change in fluorescence due to GST-hPLD1 (▼) was compared to vesicles alone 

with no lipase (▲).  GST-hPLD1 activated by wildtype Arf1 and Rac1 in 

combination with 50 µM GTPγS (●) was compared to Arf1 activation GST-hPLD1.  

Arf1 activation of GST-hPLD1 was completed using 50 µM (●), 10 µM (■) and 1 

µM GTPγS (▲).  Background fluorescence emission was also measured but data is 

not shown.  Readings were collected concurrently in real-time and the in vitro assay 

was repeated twice. 
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Figure 4.6: The effects of GTPγS concentration on Rac1 (wt) activated GST-

hPLD1 in vitro.  Assays were constituted with 400 mM NaCl, 50 µl fluorescent 

vesicles, 20 µl GST-hPLD1b, Mg
2+

, and Ca
2+

 and varying concentrations of GTPγS 

(between 1 µM-50 µM).  All assay components (except the vesicles) including the 

GST-hPLD1 protein were added to each well and kept on ice.  Immediately before 

the assay commenced, vesicles were added to begin the assay.  Fluorescence 

emissions were recorded using a fluorimeter (at 37
o
C) for 120 minutes. The 

hydrolysis of fPtdCho was detected using an excitation aperture at 485 nm and an 

emission filter of 535 nm.  Fluorescence emissions were accrued (approx.) every 2 

seconds and recorded concurrently.  The change in fluorescence due to GST-hPLD1 

(data not shown) was compared to vesicles alone with no lipase (▲).  Rac1 

activation of GST-hPLD1 was completed using 50 µM (●), 10 µM (■) and 1 µM 

GTPγS (▲).  Background fluorescence emission was also measured (data not 

shown).  Recording of fluorescence emission was concurrent and measured in real-

time.  This in vitro assay was repeated twice. 
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4.5: Stimulation of GST-hPLD1 by wildtype and constitutively active Rac1 in 

vitro 

 

Activation of purified recombinant GST-hPLD1 using wildtype Arf1 or Rac1 has 

been detailed in previous sections (see Fig. 4.1 and 4.2).  Although activation of 

GST-hPLD1 by Arf1 was consistent and produced comparable results between 

different experiments and protein preparations, Rac1 activation was more variable.   

 

In some instances, neither wildtype Rac1 nor Rac1 (Q61L) protein could activate 

GST-hPLD1 even over 120 minutes of incubation.  However, in the presence of Arf1 

both wildtype Rac1 and Rac1 (Q61L) further enhanced PLD activity.  These results 

suggest a possible hierarchy for activation of PLD by small G-proteins that is 

accentuated by using small amounts of GST-hPLD1 and a sensitive assay.  GST-

hPLD1 activated by wildtype Arf1 and Rac1 produced comparable fluorescence 

emission to Arf1 and Rac1 (Q61L) activation (see Fig. 4.8).  The fluorescence 

emissions were highest in combined activation of GST-hPLD1, although Arf1 alone 

also activated the lipase.  There was a lag time of between 10 and 20 minutes, similar 

to previous fluorescence in vitro experiments. 

 

Due to experimental constraints associated with small scale protein expression and 

purification, further experiments comparing the two Rac1 proteins were not possible.  

Experiments would have attempted to identify the degree of dependence (if any) on 

GTPγS by Rac1 (Q61L) and assess its similarity to wildtype Rac1 activation of GST-

hPLD1 alone.  Further analysis of activation of GST-hPLD1 by Rac1 (Q61L) in vitro 

may indicate its in vivo role and ultimate effect on PLD1b localization (see Chapter 

5).         
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Figure 4.8: Activation of GST-hPLD1 by wildtype Rac1 and its constitutively 

active mutant Rac1 (Q61L).  Assays contained 50 µM GTPγS, 400 mM NaCl, 3 

mM Mg
2+

, 2 mM Ca
2+

 and 2 µg of each (or both) activator – Arf1, Rac1 wildtype or 

Rac1 constitutively active.  All assay components (except 50 µl fluorescent vesicles) 

including activators and 20 µl GST-hPLD1 protein were added to each well and kept 

on ice.  Immediately before the assay was started vesicles were added.  Fluorescence 

emissions were recorded using a fluorimeter (at 37
o
C) for 120 minutes. The 

hydrolysis of fPtdCho was detected using an excitation aperture at 485 nm and an 

emission aperture of 535 nm.  Fluorescence emissions were accrued (approx.) every 

2 seconds and recorded concurrently.  The change in fluorescence due to GST-

hPLD1 (▼) was compared to vesicles incubated without lipase (▲).  Background 

fluorescence (water) was also monitored (data not shown).  Activation of GST-

hPLD1 by wildtype Arf1 and Rac1 (●) was compared to activation by wildtype Arf1 

and Rac (Q61L – ●).  GST-hPLD1 was also activation by Arf1 (●), wildtype Rac1 

(▲) or Rac1 (Q61L – ▲) alone.  Assays were repeated (n=2) comparing different 

protein preparations to ensure the reproducibility and reliability of these results.   
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4.6: Discussion 

 

4.6.1: Activation of GST-hPLD1 by Arf1 and Rac1  

 

The novel fPtdCho enabled characterisation of in vitro GST-hPLD1 activity in real-

time.  These real-time assays generated a more comprehensive picture of GST-

hPLD1 activity in response to its activators than the previously established assay 

(Hodgkin et al., 1999; Farquhar et al., 2007).  [
3
H]-PtdCho assays contributed to our 

understanding about the interaction of PLD1 with known activators such as Arf1 (a 

Rho-family member) and PKCα (Ohguchi et al. 1997; Hodgkin et al., 1999).  

Although the fPtdCho assay has potential to provide new insight into PLD1 kinetics, 

it must be optimized and experimental constraints overcome to progress further.  

Generating sufficient quantities of GST-hPLD1 from Sf9 cells was a key restraint on 

the in vitro experiments as large scale expression and harvesting of protein was not 

possible.  This led to some variation in the level of activity of different GST-hPLD1 

purified recombinant protein preparations. 

 

In vitro data suggest that Arf1 and Rac1 activate GST-hPLD1 (activity) 

synergistically.  Similar results using an N-terminally truncated PLD1 protein have 

proposed Arf1 as a catalytic activator and Rac1 as a binding activator (IUPAC-

IUBM, 1982; Henage et al., 2006).  Catalytic activators such as Arf1 increase the 

PLD1 catalytic potential dependent on Arf1 concentration.  Binding activators such 

as Rac1 allostericaly regulate PLD1 catalysis by promoting binding activation 

(Henage et al., 2006).  The synergistic increase of Arf1 and Rac1 was 200% higher 

than expected if this combined activation was simply a sum of the effect of each 

separately (Henage et al., 2006). This corresponded to fluorescent in vitro data 

presented here which showed an increase in emitted fluorescence in the presence of 

two small G-protein activators.  Arf1 was found to increase PLD1 catalysis of the 

radiolabelled substrate when compared to the effect of Rac1 or Cdc42 (Hammond et 

al., 1995; Hammond et al., 1997; Hodgkin et al., 1999; Powner et al., 2002; Henage 

et al., 2006).  Our real-time data corroborate these results, which show Arf1 

consistently increases fluorescence emission (reflecting GST-hPLD1 activity) at a 

higher rate than Rac1.  Additional experiments activating GST-hPLD1 first with 

Rac1 (wt), then with Arf1, would provide a further indication of the impact of this 



 189 

Rho-family member compared against co-operative activation.  Similarly, activating 

GST-hPLD1 with Arf1 and then Rac1 (wt) would also provide a measure of how 

much Rac1 (wt) contributes to the activation of GST-hPLD1 in this type of co-

operative activation.  

 

A comparison of GST-hPLD1 activation using either wildtype Rac1 or constitutively 

active Rac1 (Q61L) co-operatively with Arf1 did not show a difference in lipase 

activation.  The consistency of GST-hPLD1 activation by Rac1 (wt) or Rac1 (Q61L) 

with no enhancement using Arf1 would enable further analysis of their individual 

effects on GST-hPLD activity.  For example, removal of GTPγS may halt activation 

by Rac1 (wt) but not Rac1 (Q61L).  Parallel experiments characterising in vivo 

localisation in HeLa cells transiently expressing Rac1 (Q61L) and PLD1b showed 

substantial changes in morphology and PLD1b localization (see Chapter 5). 

 

4.6.2: Activation of GST-hPLD1 by PKCα 

 

Radioactive in vitro assays indicated that the most potent stimulation of GST-hPLD1 

occurs in a combined reaction containing Arf1, a Rho-family member and PKCα in 

the absence of ATP or PMA (Hammond et al., 1995; Hammond et al., 1997; 

Hodgkin et al., 1999; Henage et al., 2006).  PKCα maintained some of its ability to 

activate an N-terminally truncated PLD1, even though the PKCα binding regions in 

the N-terminus and PH domains were deleted (Henage et al., 2006).  These results 

suggest that PKCα also interacts with the C-terminus of PLD1, although both C- and 

N-termini are needed for maximal PLD1 activation (Henage et al., 2006).  Although 

Arf1 and PKCα worked synergistically to activate PLD1, Rac1 and PKCα did not 

show the same magnitude of reaction (Henage et al., 2006).  The fluorescent assay 

did not provide further insight into synergistic activation of GST-hPLD1 by PKCα 

and small G-proteins as the lipase appeared unresponsive to PKCα in this assay.   

 

The lack of response may be attributed to the way the fluorescent substrate was 

synthesised.  Previously, assays used a relatively small proportion of 

[
3
H](Pam)2PtdCho in conjunction with a large proportion of native PtdCho (egg 

lecithin – Kupferberg et al., 1981).  The fluorescent lipid was constructed 

synthetically which may prove incompatible with PKCα.  It is possible that egg 
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lecithin isolated PtdCho could have been co-purified with small amounts of DAG.  

Similarly, lecithin PtdCho may contain the correct fatty acid arrangement for PKCα 

interaction in vitro, whilst the synthesis of the novel lipid may have altered this 

structure.  

 

4.6.3: The effect of Ca
2+

 and Mg
2+

 ions on GST-hPLD1 activity 

 

Examining PLD activity in real-time enabled the optimization of in vitro assay 

conditions, originally based on radioactive assays (Hodgkin et al., 1999; Farquhar et 

al., 2007).  Although calcium mobilization is necessary for PLD1 activation in vivo 

(Bae et al., 2000), its role in in vitro assays has not been fully characterized.  

Increasing the concentration of Ca
2+

 ions in vitro resulted in enhanced basal PLD1 

activity.  GST-hPLD1 modestly increased emitted fluorescence in response to 2 mM 

Ca
2+

 in vitro.  However, a further increase to 5 mM Ca
2+

 ion concentration resulted 

in a notably increased GST-hPLD1 protein activity.  This may indicate that Ca
2+

 

concentration influences PLD1 activators such as PKCα as well as the phospholipase 

itself, much like PLA2 (Lister et al., 1989).  

 

Although some plant PLDs can be stimulated by Ca
2+

 (in the 20-100 nM range) the 

response of mammalian PLDs to Ca
2+

 has not yet been fully elucidated (Wang et al., 

2002).  PLD isoforms isolated from fungal, bacterial, yeast and mammalian sources 

are all activated by divalent metal ions (Chalifa et al., 1990; Mayr et al., 1996; 

Madesh and Balasubramanian, 1997; Hong et al., 2003).  Ca
2+

 ions bind to lipids 

including PtdIns(4,5)P2 and PtdOH, both of which are closely associated with PLD 

(Faraudo and Travesset, 2007).  PLD binding to PtdCho-containing vesicles is Ca
2+

-

dependent, although in vitro PtdOH may have an inhibitory effect on PLD, raising 

the possibility that Ca
2+

 also relieves product inhibition (Yang and Roberts, 2003). 

 

Whilst GST-hPLD1 basal activity was enhanced when exposed to Ca
2+

 ions, Mg
2+

 

ions did not have the same effect.  Mg
2+

 concentrations of either 3 mM or 5 mM 

alone did not increase basal PLD1 activity.  However, a combination of 3 mM Mg
2+

 

and 2 mM Ca
2+

 resulted in a similar activation response as 5 mM Ca
2+

 alone.  

Previous studies identified Mg
2+

 as an activator of neutral PLD (isolated from rat 

brain) at a concentration of 2 mM (Chalifa et al., 1990).  The combined exposure of 
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PLD to Ca
2+

 (aiding vesicle binding) and Mg
2+

 at a final concentration of 5 mM, 

possibly constituted the optimal concentration of divalent ions for PLD catalysed 

hydrolysis.   

 

4.6.4: The effect of GTPγS concentration on small G-protein activated PLD 

 

Although Mg
2+

 ions alone do not appear to increase basal PLD1 activity, G-protein 

activators such as Arf1 need Mg
2+

 ions to adopt their „active‟ conformation via a 

coordination of the γ-phosphate group of GTPγS with the Mg
2+

 ions and amide group 

(Thr
48

) of Arf1 (Goldberg 1998; Kremer et al., 2004).  The Thr
48

 residue of Arf1 is 

responsible for the binding of Mg
2+

 ions (for stabilization) and adopting the correct 

conformation for effector recognition (Goldberg 1998; Kremer et al., 2004).  As 

these molecular details are highly conserved between small G-proteins, activation of 

PLD1 by Rac1 (wt) or Rac1 (Q61L) will also employ similar binding properties 

between the Mg
2+

 ions and GTPγS.  

 

GTPγS can be used for GST-hPLD1 protein activation in vitro, although its role has 

not been fully characterised.  Small G-proteins cycle between an inactive GDP-

bound and an active GTP-bound conformation.  This cycle, effectively a molecular 

switch, is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-

activating proteins (GAPs).  In vivo, GEFs release the bound GDP which is then 

substituted for GTP and GAPs supply a vital catalytic group which is required for 

GTP hydrolysis (Bos et al., 2007).  In vitro, small G-proteins bound to GTPγS are in 

the „active‟ state and are able to activate PLD1.  However, as there is no cycling 

between the GTP (active) and GDP (inactive) conformations, 50 µM GTPγS is 

probably in vast excess.  GST-hPLD1 activation by either Arf1 or Rac1 in the 

presence of 50 µM GTPγS was no more effective than using 1 µM GTPγS. There 

may be some inhibition by GTPγS as reducing its concentration led to slight 

increases in GST-hPLD1 activation by small G-proteins.  Future experiments could 

attempt to replace the non-hydrolysable GTPγS with GTP, although a higher 

concentration would be necessary to counter GTP hydrolysis.  GTP experiments 

would help identify whether the small G-proteins function as amplifiers of GST-

hPLD1 activity and would perhaps simulate in vivo conditions more faithfully. 
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4.6.5: Comparing the novel fluorescent assay with more established PLD assays 

 

Although the fluorescent PLD1 assay produced real-time results and measured 

reactions concurrently, the assay volume was double that of radioactive assays.  The 

larger volume was necessary to accommodate the wells of 96-well plates used for the 

fluorescent assays.  As a result of this volume increase, more reagents and protein 

were needed complete each assay.  In addition, due to the small volume of 

radioactive assays (typically 50 µl), a more concentrated GST-hPLD1 protein 

preparation was required.  Our protein yield was low and so it would not have been 

possible to complete these fluorescent assays under radioactive conditions.  Vesicles 

contained substantially more fPtdCho than [
3
H]-(Pam)2PtdCho and this may have 

caused a change in vesicle structure, therefore affecting hydrolysis.  The radioactive 

in vitro assay has proven invaluable in the characterisation of GST-hPLD1 and its 

activators (Henage et al., 2006).  The majority of PtdCho in radioactive assays is 

derived from egg lecithin and so may have the natural fatty-acid structure necessary 

to accommodate all GST-hPLD1 activators. These include PKCα which did not 

activate GST-hPLD1 in assays using the synthetic fluorescent PtdCho.  However, 

using an alternative substrate not isolated from lecithin produced a more sensitive 

assay which could be further optimised by future work. 

 

Fluorescent in vitro assays measured the emitted fluorescence in real-time and so the 

effect of Arf1 or Rac1 on GST-hPLD1 activity could be followed in real-time.  The 

rate of GST-hPLD1 could be directly compared between simultaneous assays. 

Varying assay conditions could be monitored to assess the rate of GST-hPLD1 

activity over a period of time rather than producing only a single data point.  Trends 

in GST-hPLD1 activation using the fluorescent in vitro assay could be facilitate the 

gathering of more information about how small G-protein activators affect lipase 

activity.  The fluorescent in vitro assay was also more sensitive than the previously 

established radioactive assay.  Fluorescent assays could be used to characterise subtle 

changes in assay conditions and track the hydrolysis of fluorescent PtdCho by GST-

hPLD1 in real-time. As well as analysing the effect of small G-proteins on GST-

hPLD1 activity the effect of divalent cations (Mg
2+

 or Ca
2+

 ions) could also be 

assessed in real-time.  As radiochemical assays were analysed using liquid 

scintillation counting (Hodgkin et al., 1999) the small affect of Ca
2+

 ions on GST-
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hPLD1 activity would not have been as apparent.  Radioactive assay data could be 

directly compared to parallel experiments as liquid scintillation counts related 

directly to the amount of [
3
H]-choline produced by a known concentration of GST-

hPLD1.  Although there was less variability in radioactive assays, the procedure to 

assess lipase activity was time consuming whilst fluorescent assay experiments were 

completed quickly.       

 

The original fluorescent PLD assay used fPtdCho as a PLD1 substrate and the 

products of this reaction were analysed using solvent extraction followed by thin 

layer chromatography and visualised using a long-wave UV lamp (Ella et al., 1994).  

The development of quenched fPtdCho enabled real-time assaying of PLA2 (Feng et 

al., 2002). The PLA2 fluorescent assay uses a similar synthetic substrate to monitor 

PLA2 and was further developed to analyse PLD1 kinetics.  The novel fluorescent 

PLD1 assay provides an opportunity to analyze further the stoichiometry between 

PLD and its small G-protein activators, perhaps eventually using PLD as an effector 

protein.  The use of previously established data (e.g. from radioactive assays) could 

help develop this real-time assay, thus providing more information about the kinetics 

displayed by GST-hPLD1, both at rest and upon stimulation with known activators.   
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Chapter 5:  The effects of small molecular weight G-

proteins on phospholipase D in HeLa cells 
 

5.1: Introduction 

 

Although the localisation and stimulation of PLD in the RBL-2H3 cell line is well 

characterised, reproducible genetic modification of these cells did not prove possible.  

Transient transfections with the eGFP- and Cherry-labelled PLD constructs resulted 

in efficiencies below 10% and high levels of toxicity in the RBL-2H3 cell line.  To 

overcome the limitations of the RBL-2H3 cell line, the HeLa cell line was chosen as 

an alternative in vivo system.   The HeLa cell line is an immortalised human 

epithelial lineage derived from a cervical malignancy, in which epidermal growth 

factor (EGF) stimulates PLD1-dependent PtdCho hydrolysis, endocytosis and 

degradation of the EGF receptors (EGFR) (Shen et al., 2001; J.S. Lee et al., 2009), 

cell migration (Kim et al., 2006) and mitogenesis (Fukami and Takenawa, 1992).  

Although PLD regulates different processes in RBL-2H3 and HeLa cell lines, both 

have PLD-dependent pathways which can be manipulated experimentally.  

Furthermore, HeLa cells grow reliably and are readily transfectable.  

 

The EGFR is structurally divided into an extracellular EGF binding domain, a single 

hydrophobic transmembrane anchor sequence (23 amino acids) and a cytoplasmic 

signalling domain (Ullrich et al., 1984).  Early studies characterised the cytoplasmic 

domain of EGFR as containing an EGF-regulated tyrosine kinase, homologous to a 

number of oncogene products, thus suggesting a role in regulating cell proliferation 

(Ushiro and Cohen, 1980; Carpenter and Cohen, 1990).  The necessity of a 

functional PKC for EGF stimulated accumulation has not yet been elucidated.  Initial 

studies suggest that functional PKC is necessary for at least part of EGF stimulation 

accumulation of PtdCho and DAG (in certain cell lines) which seemingly occur via 

separate pathways (Cook and Wakelam, 1992).  Whilst PtdCho hydrolysis takes 

place via a PLD-catalysed pathway, DAG accumulation does not (Cook and 

Wakelam, 1992).  Furthermore, EGF activation of EGFR results in elevated levels of 

PtdOH, a second messenger associated with a number of cellular processes including 

cell proliferation (English et al., 1996), endocytosis (Shen et al., 2001), exocytosis 

(Way et al., 2000) and cytoskeletal rearrangement (Ha and Exton, 1993). EGF 
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stimulation of human embryonic kidney 293 (HEK-293) cells showed that PLD2 

interacts with EGFR and is tyrosine-phosphorylated following EGFR activation 

(Slaaby et al., 1998).  The kinase activity of EGFR is crucial for PLD2 tyrosine 

phosphorylation (on tyrosine-11), however as only basal PLD2 activity is affected by 

mutations of tyrosine-11, this suggests tyrosine phosphorylation is important for 

interactions between PLD2 and SH2-containing proteins (Slaaby et al., 1998; Ahn et 

al., 2003).  EGF stimulation induced an interaction between the oncogene c-Src and 

PLD1 or PLD2 in epithelial cells that was synergistic and amplified cellular 

proliferation (Ahn et al., 2003).  In the A431 epithelial cell line, EGF-stimulated 

PLD activity has been linked to the activation of extracellular signal-regulated kinase 

(ERK – Shen et al., 2001).  It is suggested that the interaction between Src and PLD 

results in tyrosine phosphorylation of both PLD isofoms and that PLD in turn 

activates c-Src and ultimately ERK activation and cell proliferation (Ahn et al., 

2003).   

 

Previous studies in HEK-293 cells showed that PLD1 did not form a physiological 

complex with EGFR (Slaaby et al., 1998).  Although in COS7 cells transiently 

expressing PLD1, EGF induced activation of PLD1 and phosphorylation of the 

PLD1 threonine-147 residue (Han et al., 2002b).  After EGF stimulation, 

phosphorylated PLD1 localised to the plasma membrane, co-localised with EGFR 

and caveolin-1 and was also found in vesicular structures (Han et al., 2002b) 

possibly lysosomes or endosomes (Toda et al., 1999; Hughes and Parker, 2001).  The 

localisation of PLD1 to calveolin-enriched membrane (CEM) via palmitoylation is 

important for both activation and phosphorylation of PLD1 in response to EGF 

stimulation (Han et al., 2002b).      

 

HeLa cells are readily transfected and so facilitated analysis of localisation between 

PLD1 and known activators such as members of the Rho family of GTPases.  The 

ultimate aim was to observe where and when PLD comes together with its multiple 

activators and effectors to form a PtdCho hydrolysing complex in response to 

extracellular stimuli.  Key objectives were to demonstrate interaction between 

PLD1b or PLD2a and known small G-protein activators in vivo.  The use of specific 

G-protein mutants could reveal details of the activation of PLD1b via GTP 

hydrolysis.  Rac1 mutants included dominant negative Rac1 in which threonine (T) 
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was mutated to asparagine (N) (denoted Rac1-T17N) and constitutively active Rac1 

where glutamine (Q) was point mutated to leucine (L) (denoted Rac1-Q61L).  This 

provided the foundations for further investigation into Rac1 and its relationship with 

PLD both pre- and post-EGF stimulation. 

 

The novel fluorescent PtdCho (fPtdCho) characterised in RBL-2H3 cells and used to 

perform real-time in vitro PLD assays was also used to label HeLa cells.  The 

ultimate goal of the project to create a live in vivo PLD assay using the BODIPY 

labelled PtdCho and Cherry-PLD was ultimately achieved in the HeLa cell line.  

Analysis of co-localisation between the novel lipid and Cherry-PLD provided an 

insight into the interaction between PLD1 and its substrate in live cells.     
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5.2: Characterisation of GFP, Cherry-PLD and Rac1 in HeLa cells 

 

5.2.1: Transient transfections using eGFP-PLD and the effect of EGF 

stimulation of HeLa cells 

 

PLD localisation and response to EGF stimulation was characterised in HeLa cells 

by comparing localisation between the enhanced green fluorescent protein (eGFP) 

and Cherry-labelled PLD1b or PLD2a with and without EGF stimulation.  PLD2a 

expression was consistent and therefore used in subsequent experiments as a control 

for PLD1-dependent EGF response (see Fig. 5.1, panels e, f – Shen et al., 2001).  

Although PLD2 does not appear to have a role in the endocytosis of EGFR, co-

expression of PLD2 and EGFR has identified a pathway by which PLD2 can be 

regulated in HeLa cells (Watanabe and Kanaho, 2000). 

 

HeLa cells were fixed following transfection as fixing enabled clearer more distinct 

protein expression.  HeLa cells transiently transfected with eGFP alone, exhibited 

diffuse green fluorescence uniformly expressed throughout the cytosol, nucleus and 

nucleoplasm.  Expression of eGFP alone was routinely included in subsequent 

experiments as a control (see Fig. 5.1, panels a, b).  After stimulation with EGF (20 

nM EGF for 10 minutes at 37
o
C and 5% CO2), eGFP largely maintained its diffuse 

cytosolic and nuclear expression although there appeared to be a small increase in 

eGFP in the plasma membrane.  The modest change in overall localisation of eGFP 

in cells stimulated by EGF could be a result of the shape change associated with 

stimulation rather than a primary response to stimulation.  HeLa cells, transiently 

transfected with eGFP-PLD1b displayed punctate fluorescence consistent with 

endosomes, trans-Golgi or other structures in the perinuclear region (Toda et al., 

1999; Hughes and Parker, 2001; Hiroyama and Exton, 2005b).  Upon EGF 

stimulation, eGFP-PLD1b was clearly expressed at the plasma membrane (see Fig. 

5.1 panels c, d) although this was not confirmed using FM4-64 as the cells were 

fixed.  Although PLD1b appeared primarily on the plasma membrane (see arrows Fig. 

5.1, panel d), there was also a change in the localisation of the punctiform structures 

within the cells.  The punctate structures appeared to accumulate to a defined 

intracellular region (see circles Fig. 5.1, panel d) indicating that there may be a dual 

effect of EGF stimulation on PLD1 localisation.  Quantification of the amount of 
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PLD1b migrating to the plasma membrane compared to that maintained within the 

cell was not possible.  PLD1 localisation to calveolin-enriched membrane (CEM) is 

integral to both its activation and phosphorylation in EGF-stimulated cells (Han et al., 

2002b). Stimulation of HeLa cells using EGF moved PLD1 to the plasma membrane 

where the EGFRs are endocytosed.  Recent data suggests PtdOH plays an important 

role in the endocytosis of EGFRs, although the mechanism by which PtdOH acts and 

is regulated is as yet unknown (C.S. Lee et al., 2009).  PLD1 expression and 

localisation has been identified at the perinuclear site, the trans-Golgi apparatus, late 

endosomes, multivesicular endosomes and seldom in early endosomes (Hiroyama 

and Exton, 2005b). The discrepancy between PLD1 localisation may be attributed to 

the use of different cell lines and the variety of molecular markers chosen (Hiroyama 

and Exton, 2005b). 

 

Localisation of eGFP-PLD2a in transiently transfected HeLa cells was unlike PLD1b, 

indicating a difference in localisation, which has been characterised elsewhere 

(Slaaby et al., 1998).  eGFP-PLD2a exhibited diffuse cytosolic expression which was 

not membranous and excluded the nucleus (see Fig. 5.1, panels e, f).  No change in 

the localisation of eGFP-PLD2a was observed upon EGF stimulation.  Although 

eGFP-PLD2a expressed consistently in the cytosol, two phenotypes of expression 

were apparent.  The most common of these was diffuse (see Fig. 5.1, panels e, f) and 

the second of which was punctate but mostly located throughout the cytosol (see Fig. 

5.1, panels g, h).  Punctate localisation of eGFP-PLD2a occurred in approximately 

30% of transfections and within the population of these transfected cells at a 

frequency of approximately 40-50%.  Cytosolic localisation of PLD2 similar to that 

displayed in the HeLa cell line was also seen in the Chinese Hamster Ovary-T 

(CHO-T) cell line (Emoto et al., 2000).  Although plasma membrane localisation of 

PLD2 has been seen in numerous cell lines including HeLa cells, PLD2a was 

unaltered in cells stimulated by EGF under the transient transfection conditions used.  

The confocal settings used to detect green fluorescence were kept consistent 

(excitation using the argon laser at 488 nm and emission bandwidth 500 nm-608 nm) 

between constructs and experiments.  The unaltered cytosolic expression of eGFP-

PLD2a could therefore be considered an additional control for punctiform 

localisation of PLD1b and its response to EGF stimulation.   
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Figure 5.1:  The effect of EGF on eGFP-PLD localisation in HeLa cells.  HeLa 

cells grown on coverslips were transiently transfected with 3 µg of eGFP (panels a, 

b), eGFP-PLD1b (panels c, d) or eGFP-PLD2a (panels e, f, g, h) DNA for 24 hours.  

Cells were stimulated with EGF (panels b, d, f, h – 20 nM, for 10 minutes at 37
o
C), 

fixed in 4% paraformaldehyde and mounted on glass slides.  Green fluorescence was 

detected by confocal microscopy (SP5) by excitation at 488 nm and emission band 

width between 500 nm-608 nm using an argon laser (20%).  A scale bar calibrated to 

25 µm is shown in each panel.  The data presented are representative images for 1 

experiment repeated at least 3 times.  
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5.2.2: Localisation of a PLD Chimera in HeLa cells 

 

A PLD2a/PLD1b chimera was created by Dr Matthew Hodgkin (Coventry, UK) by 

fusing the first 283 N-terminal amino acid residues of PLD2a to the last 851 C-

terminal amino acid residues of PLD1b.  The strategy used to make this construct 

relied on locating an aspartate residue within PLD2a to enable blunt-end cloning at a 

side generated by the EcoRV restriction enzyme.  The N-terminal region of PLD2a 

was subject to PCR using a forward primer from the ATG at the start of PLD2a and 

reverse primer starting at aspartate (D) residue 283.  The PCR product was cloned 

directly into pcDNA3.1(-)-GFP restricted with EcoRV generating pcDNA3.1(-)-

GFP-PLD2a(N1-283).  The C-terminal region of PLD1b was subject to PCR using a 

forward primer from tyrosine residue 186 and reverse primer to the C-terminal 

sequence that included the stop codon.  The PCR product was cloned directly into 

pcDNA3.1(-)-GFP-PLD2aN and restricted with EcoRV.  The construct was 

sequenced and analysed using the SMART web-based bioinformatics tool which 

demonstrated the presence of one N-terminal PX- and one PH-domain (Schultz et al., 

1998) as well as 2 PLD domains.  In effect, the chimera was the N-terminus and PX 

domain of PLD2a fused to the PH domain and catalytic half of PLD1b.  Transiently 

transfected HeLa cells consistently expressed PLD1b and PLD2a in the same manner 

enabling comparison with the expression of the Chimera.  This data would indicate 

whether there was a region within these domains which influenced where PLD 

localised within the transiently transfected cells and whether this localisation was 

affected by EGF stimulation. 

 

Localisation of eGFP alone, eGFP-PLD1b, -PLD2a and -Chimera were assessed in 

resting and EGF-stimulated HeLa cells (see Fig. 5.2). The eGFP tag alone displayed 

nuclear and cytoplasmic localisation in non-stimulation cells (see Fig. 5.2, panel a).  

Upon EGF stimulation, eGFP was largely retained in the cytoplasm and nucleus (see 

Fig. 5.2, panel b).  eGFP-PLD1b localised predominantly in cytoplasmic punctiform 

structures and on the plasma membrane in resting cells (see Fig. 5.2, panel c).  

Plasma membrane localisation of PLD1b in resting cells varied in intensity from cell 

to cell.  Following EGF-stimulation, eGFP-PLD1b was expressed at the plasma 

membrane (see arrows Fig. 5.2, panel d) and the punctiform structures aggregated 
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within the cell (see circles Fig. 5.2, panel d).  eGFP-PLD2a was expressed in the 

cytoplasm but not the nucleus in resting and EGF-stimulated cells (see Fig. 5.2, 

panels e, f) and did not alter in response to EGF stimulation (see Section 5.2.1).  The 

expression of eGFP-Chimera in resting cells was diffuse and found in both the 

cytoplasm and the nucleus, unlike both PLD1b or PLD2a (see Fig. 5.2, panel g).  The 

localisation of eGFP-Chimera does not alter upon EGF stimulation (see Fig. 5.2, 

panel h).  The expression pattern of eGFP-Chimera within the nucleus 

(nucleoplasmic expression) was distinct from that of eGFP.  In particular, the 

Chimera appeared within the nuclear matrix but excluded the (presumed) nucleolus 

and smaller nuclear bodies.  The nuclear localisation of the Chimera construct was 

unlikely to be a result of the cloning methodology as both PLD1b and PLD2a 

expression was characteristic and distinct from the nucleus.  
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Figure 5.2:  The effect of EGF on eGFP-PLD and -Chimera localisation in HeLa 

cells.  HeLa cells grown on coverslips were transiently transfected with 3 µg of 

eGFP (panels a, b), eGFP-PLD1b (panels c, d) or eGFP-PLD2a (panels e, f) and 

eGFP-Chimera (panels g, h) DNA for 24 hours.  Cells were stimulated with EGF 

(panels b, d, f, h – 20 nM, for 10 minutes at 37
o
C), fixed in 4% paraformaldehyde 

and mounted on glass slides.  Green fluorescence was detected by confocal 

microscopy (SP5) by excitation at 488 nm and emission band width between 500 

nm-608 nm using an argon laser (20%).  A scale calibrated to 25 µm is shown in 

each panel.  The data presented are representative images for 1 experiment repeated 

at least 3 times.  
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5.2.3: The effect of EGF on HeLa cells co-expressing Cherry-PLD and eGFP-

Chimera 

 

Red fluorescent versions of PLD1b and PLD2a were generated in the pcDNA3.1(-) 

plasmid.  This process involved generating pcDNA3.1(-)-Cherry then fusing the PLD 

open reading frames (ORFs) to the C-terminus via a minimal linker sequence to 

better facilitate ligation.  This approach provided a similar plasmid organisation to 

that of eGFP-labelled PLDs.  The predecessor of the Cherry label was the less 

efficient monomeric red fluorescent protein (mRFP) which had a low yield of 

fluorescence and exhibited considerable toxicity when expressed in the RBL-2H3 

cell line.  As the use of the eGFP tag was characterised previously (Wright et al., 

2008), it provided an appropriate control against which the new Cherry tag could be 

compared.  HeLa cells were transiently transfected with Cherry-labelled PLD1b or 

2a in the same way as their eGFP labelled counterparts.  HeLa cells were stimulated 

24 hours post-transfection with EGF (20 nM for 10 minutes at 37
o
C) and fixed with 

4% paraformaldehyde.  Fixing the cells produced clearer more defined localisation of 

the proteins. 

 

HeLa cells co-transfected using Cherry-PLD and eGFP-Chimera highlighted the 

differences in expression patterns between these constructs (see Fig. 5.3, panels a-c).  

In unstimulated cells, Cherry-PLD1b was consistently punctate and localised to the 

cytoplasm; whereas Chimera expression was both nuclear and cytoplasmic (see Fig. 

5.3, panel d).  In response to EGF stimulation Cherry-PLD1b was also expressed at 

the plasma membrane (see arrows, Fig. 5.3, panel d), and aggregated to a region in 

the cytoplasm (see circles Fig. 5.3, panel d) as seen with eGFP-PLD.  The Chimera 

may have exited the nucleus following EGF stimulation but largely maintained both 

cytoplasmic and nuclear localisation, and there is no similarity in PLD1b and 

Chimera expression.   

 

However, in cells which express Cherry-PLD1b in the nucleus there is co-

localisation between PLD1b and the Chimera in the nucleus but excluding the 

nucleoli (see Fig. 5.3, panel g).  This may indicate that the N-terminus of PLD1b 

controls its localisation and that PLD1b contains a nuclear localisation sequence 

(Nakai et al., 1999).  The PLD1b, PLD2a, and Chimera sequences were analysed 
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using a variety of software algorithms that can identify nuclear localisation signals 

(NLS).  Although PSORT II, ROSTLAB and NLStradamus software were used for 

this analysis (see Table 5.1), only PSORT II identified a potential NLS in PLD1b and 

the Chimera but not PLD2a (Nakai and Horton, 1999; Cokol et al., 2000; Nguyen Ba 

et al., 2009).  All the algorithms identified the NLS in SV40 large T proteins.  The 

NLS identified in hPLD1b and the Chimera was composed of four residues: lysine, 

proline, arginine and lysine (KPRK) residues.  Although POSTLAB II is a useful 

tool for identifying NLS, its predictions about where proteins should localise were 

not always accurate.  This program predicted that hPLD1b expression would be 

cytoplasmic, but instead hPLD1b was clearly expressed in vesicles of the secretory 

system (see Table 5.2). 

 

HeLa cells co-transfected using Cherry-PLD2a and eGFP-Chimera localised to the 

cytoplasm and not the nucleus.  Although the two constructs consistently localised to 

the cytoplasm (see Fig. 5.4, panels a-c), there was no co-localisation within the 

nuclear region, which only expressed eGFP-Chimera.  Both the Chimera and Cherry-

PLD2a did not alter their localisation following EGF stimulation (see Fig. 5.4, panels 

d-f).  This indicates that the N-terminus of PLD1b may be responsible for EGFR 

endocytotsis upon EGF stimulation and that diffuse cytoplasmic expression is 

encoded by the N-terminus of PLD2a, hence its retention by the Chimera construct. 

 

The eGFP-Chimera and Cherry-PLD constructs are close in excitation/emission 

spectra.  To minimise cross-channel fluorescence detection, samples were scanned 

sequentially (which scans each channel individually) using confocal microscopy.  

Excitation/emission settings for both fluorophores were restricted and kept consistent 

throughout all experiments. 

 

 

 

 

 

 

 

 



 207 

Table 5.1: Identifying NLS in hPLD1b, hPLD2a, Chimera and SV40 T 

sequences using various database searching programs.  The sequences of 

hPLD1b, hPLD2a, Chimera and SV40 T were analysed using the following software:  

1) PSORTII (Nakai and Horton, 1999; ROSTLAB http://psort.ims.u-

tokyo.ac.jp/), 

2) NLStradamus (Nguyen Ba et al., 2009;  

http://www.bar.utoronto.ca/~anguyenba/) and  

3) ROSTLAB (Cokol et al., 2000; 

http://rostlab.org/old_before2008/services/predict/NLS)  

 

 

 PSORT II 

Sequence/position 

POSTLAB 

Sequence/position 

NLStradamus 

Sequence/position 

hPLD1b KPRK 553 None None 

hPLD2a None None None 

Chimera KPRK 651 None None 

SV40 T PPKKKRK 125 

PKKRYWL 417 

PPKKKRK125 KKKRK 

 

 

Table 5.2:  Analysing hPLD1b, hPLD2a, Chimera and SV40 T sequences using 

POSTLAB II software.  The sequences for hPLD1b, hPLD2a, Chimera and SV40 T 

were analysed using the PSORT II, (Nakai and Horton, 1999; http://psort.ims.u-

tokyo.ac.jp/).  The database search then suggested the most likely localisation of 

these sequences (expressed in percentage) in various organelles.  

 

 

 hPLD1b hPLD2a Chimera SV40 T 

Cytoplasmic 56.5% 22.2% 60.9% 52.2% 

Cytoskeletal    4.3% 

Endoplasmic reticulum  44.4%   

Golgi  11.1% 34.8%  

Mitochondrial 4.3% 11.1%  8.7% 

Nuclear 34.8% 11.1%  34.8% 

Vesicles of secretory system 4.3%  4.3%  
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Figure 5.3: The effect of EGF on co-localisation between eGFP-Chimera and 

Cherry-PLD1b in HeLa cells.  HeLa cells were grown on coverslips and transiently 

co-transfected with 3 µg eGFP-Chimera (panels b, e) DNA, and 3 µg Cherry-PLD1b 

(panels a, d) DNA for 24 hours.  Cells were stimulated with EGF (panels d-i– 20 nM 

EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and mounted onto glass 

slides.  Fluorescence was detected using sequential scanning confocal microscopy 

(SP5) in which parameters were narrowed for emission band width.  Green 

fluorescence was detected with excitation at 488 nm using the argon laser (20%) with 

emission band width between 500 nm-565 nm. Red fluorescence was detected using 

the DPSS 561 laser and excited at 561 nm with an emission band width between 607 

nm-790 nm.  A scale calibrated to 25 µm is shown in each panel.  The data presented 

are representative images for 1 experiment repeated twice.  
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Figure 5.4: The effect of EGF on co-localisation between eGFP-Chimera and 

Cherry-PLD2a in HeLa cells.  HeLa cells were grown on coverslips and transiently 

co-transfected with 3 µg eGFP-Chimera (panels b, e) DNA, and 3 µg Cherry-PLD2a 

(panels a, d) DNA for 24 hours.  Cells were stimulated with EGF (panels d-f – 20 

nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and mounted onto 

glass slides.  Fluorescence was detected using sequential scanning confocal 

microscopy (SP5) where parameters were narrowed as detailed in Figure 6.3.  A 

scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment repeated twice.  
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5.2.4: Transient transfections using Cherry-PLD and the effect of EGF 

stimulation on HeLa cells 

 

The expression of Cherry-labelled PLD in transiently transfected HeLa cells was 

observed with and without EGF stimulation (see Fig. 5.5).  Expression of Cherry 

alone was diffuse, present in the cytosol and nuclear compartment, and unaffected by 

EGF stimulation (see Fig. 5.5, panels a, b).  Cherry-PLD1b exhibited punctate 

localisation similar to its eGFP-labelled counterpart, being concentrated in 

perinuclear structures which possibly represented lysosomes or endosomes (Toda et 

al., 1999; Hughes and Parker, 2001; Hiroyama and Exton, 2005b) and on the plasma 

membrane (see Fig. 5.5, panels c, d).  EGF stimulation resulted in clear translocation 

of Cherry-PLD1b from the cytoplasmic punctiform structures to the plasma 

membrane (see arrows, Fig. 5.5, panel d), although a small pool maintained 

punctiform structures and appeared to concentrate at an intracellular site (see circles, 

Fig. 5.5, panel d).   Over-expression of Cherry-PLD2a displayed 2 phenotypes of 

expression similar to that seen in eGFP-labelled PLD2a.  Cherry-PLD2a is expressed 

in the cytosol of HeLa cells (see Fig. 5.5, panels e, f) and excludes the nuclear 

compartment.  As with the eGFP-PLD2a, Cherry-PLD2a exhibited a second punctate 

localisation which occurs with less frequency (see Fig. 5.5, panels g, h).  Punctate 

PLD2a localisation occurred in approximately 10% of transfections with a frequency 

of 20% amongst transfected cells.  Cherry-PLD2a localisation remained unaltered 

upon EGF stimulation (see Fig. 5.5, panels f, h).  The localisation of PLD2 has been 

observed on the plasma membrane (Han et al., 2002b), however the cytoslic 

expression seen consistently in both eGFP- and Cherry-labelled PLD2a has also been 

documented (Emoto et al., 2000).  Establishing that the expression of Cherry-PLD2a 

remains unaltered upon EGF stimulation and is distinct from Cherry-PLD1b 

localisation facilitates its use as an important control.      
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Figure 5.5:  The effect of EGF on Cherry-PLD localisation in HeLa cells.  HeLa 

cells grown on coverslips were transiently transfected with 3 µg Cherry (panels a, b), 

Cherry-PLD1b (panels c, d) or Cherry-PLD2a (panels e, f, g, h) DNA for 24 hours.  

Cells were stimulated with EGF (panels b, d, f, h – 20 nM, for 10 minutes at 37
o
C), 

fixed in 4% paraformaldehyde and mounted on glass slides.  Red fluorescence was 

detected by confocal microscopy (SP5) by excitation at 561 nm and emission band 

width between 610 nm-790 nm using the DPSS 561 laser.  A scale calibrated to 25 

µm is shown in each panel.  The data presented are representative images for 1 

experiment repeated at least 3 times.  
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Western blotting was used to demonstrate that the full length Cherry-PLD1b and 

Cherry-PLD2a proteins were being expressed in transiently transfected HeLa cells.  

The detection of fluorescence (see Fig. 5.5) indicates that the N-termini of both 

PLD1b and PLD2a is intact.  Western blotting using rabbit polyclonal antibodies 

raised to PLD1b (see Fig. 5.6, lanes 1-4) and PLD2a (see Fig. 5.6, lanes 5-8) indicate 

that both proteins were expressed to their full-length (150kDa and 136kDa 

respectively).  The signal for PLD2a was significantly stronger than PLD1b, 

probably due to variation in the affinity of the different antibodies.  A doublet was 

detected in the PLD2a samples, possibly due to post-translational modification (see 

Fig. 5.6, lanes 7 and 8 - Manifava et al., 1999 Xie et al., 2001 Sugars et al., 2002). 
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Figure 5.6: Western blotting analysis of Cherry-PLD1b or PLD2a harvested 

from transiently transfected HeLa cells.  HeLa cells were grown in 6-well plates 

overnight and transiently transfected with 3 µg of Cherry-PLD1b (lanes 1,2,5,6) or 

Cherry-PLD2a (lanes 3,4,7,8) DNA for 24 hours.  The cells were then washed with 1 

ml PBS and 3 wells were scrapped into a total of 50 µl x2 NuPAGE Sample 

Reducing Buffer to produce usable protein lysates.  Samples were collected in 

duplicate and analysed using gel electrophoresis and immunoblotting.  Samples 

analysed in lanes 1-4 were probed with a polyclonal anti-rabbit PLD1b antibody 

overnight, whilst samples in lanes 5-8 were probed with a polyclonal anti-rabbit 

PLD2a antibody overnight.  The blots were then probed with anti-rabbit HRP 

secondary antibody and developed for 3 minutes in ECL.  Cherry-PLD1b (lanes 

1,2,5,6) and Cherry-PLD2a (lanes 3,4,7,8) lysates were analysed as shown below. 
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5.2.5: Co-localisation between Cherry- and eGFP-labelled PLD isoforms in 

HeLa cells and the effect of EGF stimulation 

 

Transiently transfected HeLa cells expressing Cherry-PLD and eGFP-PLD display 

similar phenotypes (see Fig. 5.1 and 5.5).  HeLa cells transiently co-transfected using 

the Cherry-PLD1b (see Fig. 5.7, panels a, d) and eGFP-PLD1b (see Fig. 5.7, panels b, 

e) constructs exhibited some co-localisation.  Both PLD1b constructs showed the 

characteristic punctiform and (partial) plasma membrane localisations (see Fig. 5.7, 

panels a-c).  eGFP-PLD1b and Cherry-PLD1b were expressed at the plasma 

membrane (see arrows, Fig. 5.7, panel f) in response to EGF stimulation, resulting in 

extensive co-localisation (see Fig. 5.7, panels d-f).  The characteristic pool of PLD1b 

which concentrates within the cell (see circles Fig. 5.7, f) also displayed strong co-

localisation between eGFP-PLD1b and Cherry-PLD1b.  Co-transfected cells were 

imaged using sequential scanning confocal microscopy with the separate 

fluorescence channels overlayed.  Excitation/emission parameters for both 

fluorphores were maintained throughout co-localisation analysis. Although co-

localisation was evident, the GFP fluorescence yield was much higher than for 

Cherry constructs. 

 

HeLa cells were also transiently co-transfected with Cherry-PLD2a (see Fig. 5.8, 

panels a, d) and eGFP-PLD2a (see Fig. 5.8, panels b, e) both of which displayed the 

same characteristic diffuse cytoplasmic expression (excluding the nucleus – see Fig. 

5.8, panel c).  PLD2a expression remained unaffected by EGF stimulation (see Fig. 

5.8, panels d-f) and co-localisation between eGFP- and Cherry-PLD2a was retained.  

Although localisation between the 2 constructs was evident, the levels of expression, 

fluorescence yield and transfection efficiency varied and so overlays appeared more 

green than yellow.   
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Figure 5.7:  The effect of EGF on the localisation of eGFP-PLD1b and Cherry-

PLD1b in co-transfected HeLa cells.  HeLa cells were grown on coverslips and 

transiently co-transfected with 3 µg eGFP-PLD1b (panels b, e) DNA, and 3 µg 

Cherry-PLD1b (panels a, d) DNA for 24 hours.  Cells were stimulated with EGF 

(panels d-f – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and 

mounted onto glass slides.  Fluorescence was detected using sequential scanning 

confocal microscopy (SP5) where parameters were narrowed for emission band 

width.  Green fluorescence was detected by confocal microscopy (SP5) with 

excitation at 488 nm and emission band width between 500 nm-565 nm using an 

argon laser (20%). Red fluorescence was detected using the DPSS 561 laser and 

excited at 561 nm with an emission band width between 607 nm-790 nm.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment repeated twice.  
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Figure 5.8:  The effect of EGF on the localisation of eGFP-PLD2a and Cherry-

PLD2a in co-transfected HeLa cells.  HeLa cells were grown on coverslips and 

transiently co-transfected with 3 µg eGFP-PLD2a (panels b, e) DNA, and 3 µg 

Cherry-PLD2a (panels a, d) DNA for 24 hours.  Cells were stimulated with EGF 

(panels d-f – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and 

mounted onto glass slides.  Fluorescence was detected using sequential scanning 

confocal microscopy (SP5) where parameters were narrowed as detailed in Figure 

6.7.  A scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment repeated twice.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 222 

 

 

 

eGFP- 

PLD2a 

Control 

c 

a b 

Overlay 

Cherry- 

PLD2a 

eGFP- 

PLD2a 

+ EGF stimulation 

f 

d e 

Overlay 

Cherry- 

PLD2a 



 223 

HeLa cells transiently co-transfected with Cherry-PLD1b (see Fig. 5.9, panels a, d) 

and eGFP-PLD2a (see Fig. 5.9, panels b, e) did not alter the localisation of either 

PLD isoform (see Fig. 5.1 and 5.5).  This consistently distinct localisation suggests 

that their functions and activators are discrete within the cell system and that 

dimerisation between the 2 is unlikely.  PLD1b localises primarily to punctiform 

structures within the cytoplasm in resting cells and so some co-localisation occurred 

between PLD1b and PLD2a within the cytoplasm (see Fig. 5.9, panel c).  Upon EGF 

stimulation, PLD1b was expressed at the plasma membrane (see Fig. 5.9, panel d) as 

expected, whilst PLD2a expression remained diffuse and unaltered (see Fig. 5.9, 

panel e).  Cytoplasmic co-localisation between the 2 isoforms was retained (see Fig. 

5.9, panel f); however there was also weak expression of PLD1b in the nucleus of 

stimulated cells whilst PLD2a expression was absent.  The over-expression of both 

PLD isoforms may have contributed to the expression of PLD1b in the nucleus of the 

co-transfected HeLa cells as endogenous PLD expression is normally relatively low.  

To confirm that the localisation of PLD2a and PLD1b were not affected by co-

transfection in HeLa cells, a similar experiment using Cherry-PLD2a and eGFP-

PLD1b was completed.   

 

Transiently co-transfected HeLa cells expressing Cherry-PLD2a maintained the 

characteristic diffuse expression (see Fig. 5.10, panels a, d).  eGFP-PLD1b localised 

in punctiform structures within the cytoplasm (see Fig. 5.10, panel b) in resting cells.  

Although the expression of Cherry-PLD2a remained unaffected by EGF stimulation 

(see Fig. 5.10, panel d), eGFP-PLD1b was expressed at the plasma membrane (see 

arrows, Fig. 5.10, panel f).  The aggregated pool of PLD1b within the cytoplasm 

upon EGF stimulation was also noted (see circles Fig. 5.10, panel f).  This confirmed 

that localisation of PLD1b and PLD2a was unaffected by labelling with either the 

eGFP or Cherry fluorescent tags. 
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Figure 5.9:  The effect of EGF on the localisation of eGFP-PLD2a and Cherry-

PLD1b in co-transfected HeLa cells.  HeLa cells were grown on coverslips and 

transiently co-transfected with 3 µg eGFP-PLD2a (panels b, e) DNA, and 3 µg 

Cherry-PLD1b (panels a, d) DNA for 24 hours.  Cells were stimulated with EGF 

(panels d-f – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and 

mounted onto glass slides.  Fluorescence was detected using sequential scanning 

confocal microscopy (SP5) where parameters were narrowed as detailed in Figure 

6.7.  A scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment repeated twice.  
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Figure 5.10:  The effect of EGF on the localisation of eGFP-PLD1b and Cherry-

PLD2a in co-transfected HeLa cells.  HeLa cells were grown on coverslips and 

were transiently co-transfected with 3 µg eGFP-PLD1b (panels b, e) DNA, and 3 µg 

Cherry-PLD2a (panels a, d) DNA for 24 hours.  Cells were stimulated with EGF 

(panels d-f – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and 

mounted onto glass slides.  Fluorescence was detected using sequential scanning 

confocal microscopy (SP5) where parameters were narrowed as detailed in Figure 

6.7.  A scale calibrated to 25 µm is shown in each panel.  The data presented are 

representative images for 1 experiment repeated twice.  
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5.2.6: Transiently transfected HeLa cells expressing eGFP-Rac1 and their 

response to EGF stimulation 

 

Characterisation of Cherry-PLD provided the opportunity to observe PLD 

localisation with the PLD1 activator, Rac1.  Although the localisation of PLD1 with 

another small G-protein activator Arf-6, has been characterised in a similar manner 

(Hiroyama and Exton, 2005b), PLD1 co-expression with Rac1 in HeLa cells has yet 

to be demonstrated.  eGFP-Rac1 wild type (wt) and its mutants were characterised in 

transiently transfected HeLa cells before co-expressing with Cherry-PLD constructs. 

 

In HeLa cells, eGFP-Rac1 (wt) exhibited prominent membranous localisation as well 

as being expressed in punctiform structures within the cytosol (see Fig. 5.11, panels a, 

b).  In response to EGF stimulation, eGFP-Rac1 (wt) appeared to be expressed more 

prominently at the plasma membrane, particularly at cell junctions.    A dominant 

negative mutant of Rac1 (T17N) in which threonine (T) 17 was substituted for an 

asparagine (N) residue displayed similar localisation to Rac1 (wt).  Rac1 (T17N) 

showed punctate and membrane localisation prior to EGF stimulation and 

localisation on the plasma membrane and associated processes generated after EGF 

stimulation.  In Swiss 3T3 cells, the dominant negative Rac1 (T17N) mutant 

inhibited the stimulation of cells to EGF (Ridley et al., 1992).   

 

Expression of a constitutively active GTP-bound eGFP-Rac1 in which glutamine (Q) 

61 was substituted with leucine (L) (eGFP-Rac1 (Q61L)) resulted in a dramatic 

shape change, with transfected cells displaying membrane ruffling and large vacuole 

formation within the cell structure (see Fig. 5.11, panels e, f, g, h).  Stimulation of 

Rac1 (Q61L) transfected cells with EGF did not alter the localisation or affect the 

cell morphology seen prior to stimulation (see Fig. 5.11, panels f, h).  The most 

commonly observed morphology of cells expressing Rac1 (Q61L) showed 

membrane ruffling, changes in cell shape and increased size (see Fig. 5.11, panels e, 

f).  There was a second morphology seen in Rac1 (Q61L) expressing HeLa cells 

which appeared in approximately 30% of transfected cells and is notably brighter 

(see Fig. 5.11, panels g, h).  The less frequent morphology was characterised by 

numerous intracellular vacuoles located within the cytosol appearing to form one 

large structure (see arrows Fig. 5.11, panels g, h).   
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Figure 5.11:  The effect of EGF on eGFP-Rac1 (wt and mutants) localisation in 

HeLa cells.  HeLa cells were grown on coverslips and transiently transfected with 3 

µg eGFP-Rac (wt – panels a, b), eGFP-Rac (T17N – panels c, d) and eGFP-Rac 

(Q61L – panels e, f, g, h) DNA for 24 hours.  HeLa cells were stimulated with EGF 

(panels b, d, f, h – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde 

and mounted onto glass slides.  Green fluorescence was detected by confocal 

microscopy (SP5) with excitation at 488 nm and emission band width between 500 

nm-608 nm using an argon laser (20%).  A scale calibrated to 25 µm is shown in 

each panel.  The data presented are representative images for 1 experiment repeated 

at least 3 times.  
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5.2.7: Characterising Cherry-PLD1b and eGFP-Rac1 co-localisation in HeLa 

cells with EGF stimulation 

 

Figure 5.12 shows HeLa cells co-transfected with Cherry-PLD1b and eGFP-Rac1 

(wt) and the change in localisation in response to EGF stimulation.  Cherry-PLD1b 

and eGFP-Rac1 (wt) did not co-localise in unstimulated HeLa cells.  PLD1b was 

concentrated predominantly in punctiform structures within the cell and Rac1 was on 

the membrane and also present in punctiform structures, which were distinct from 

and did not co-localise with PLD1b (see Fig. 5.12, panels a-c).  Results indicate that 

transient transfections of HeLa cells with DNA constructs did not result in artificial 

punctate localisation simply because of plasmid over-expression.   

 

EGF stimulation caused Cherry-PLD1b expression at the plasma membrane which 

co-localised with Rac1 (wt) – (Fig. 5.12, panels d, f).  However, there was a smaller 

pool of PLD1b which concentrated within the cell and did not co-localise with Rac1 

(see circles Fig. 5.12, panels d, f).  These phenotypes are independent of possible 

interactions and are possibly only relevant to one another following EGF stimulation.  

eGFP-Rac1 mutants Q61L and T17N were also co-transfected with Cherry-PLD1b 

(see Fig. 5.13 and 5.14).  Co-expression of Cherry-PLD1b and eGFP-Rac1 (Q61L) 

showed localisation of Cherry-PLD1b was severely affected by Rac1 (Q61L – see 

Fig. 5.13, panels a-c).  Upon EGF stimulation, PLD1b was not expressed at the 

plasma membrane and was not localised in punctiform structures (see Fig. 5.13, 

panels d-f).  Instead, PLD1b co-localised partly with the small vacuoles caused by 

Rac1 (Q61L – see arrows Fig. 5.13, panel f).   

 

Unstimulated HeLa cells co-transfected with eGFP-Rac1 (T17N) and Cherry-PLD1b 

showed no co-localisation between the 2 constructs (see Fig. 5.14, panels a-d).  

PLD1b and Rac1 (T17N) were predominantly expressed in distinct punctiform 

structures within the cells that did not co-localise.  Rac1 (T17N) also localised to the 

plasma membrane prior to EGF stimulation.  Upon EGF stimulation, PLD1b was 

expressed at the plasma membrane and co-localised with Rac1 (T17N – see Fig. 5.14, 

panels e-h).  A proportion of PLD1b remained in punctiform structures within the 

cytosol aggregating towards a confined region (see arrow Fig. 5.14, panel h).  
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Expression of Rac1 (T17N) in punctiform structures within the cell reduced 

substantially upon EGF stimulation.   

 

 

Figure 5.12:  The effect of EGF on localisation of eGFP-Rac1 (wt) and Cherry-

PLD1b in co-transfected HeLa cells.  HeLa cells were grown on coverslips and 

transiently co-transfected with 3 µg eGFP-Rac1 (wt – panels b, e) DNA, and 3 µg 

Cherry-PLD1b (panels a, d) DNA for 24 hours.  Cells were stimulated with EGF 

(panels d-f – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and 

mounted onto glass slides.  Fluorescence was detected using sequential scanning 

confocal microscopy (SP5) where parameters were narrowed for emission band 

width.  Green fluorescence was detected by confocal microscopy (SP5) with 

excitation at 488 nm and emission band width between 500 nm-565 nm using an 

argon laser (20%). Red fluorescence was detected using the DPSS 561 laser and 

excited at 561 nm with an emission band width between 607 nm-790 nm.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment repeated at least 3 times.  
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Figure 5.13:  The effect of EGF on localisation of eGFP-Rac1 (Q61L) and 

Cherry-PLD1b in co-transfected HeLa cells.  HeLa cells were grown on coverslips 

and transiently co-transfected with 3 µg eGFP-Rac1 (Q61L– panels b, e) DNA, and 

3 µg Cherry-PLD1b (panels a, d) DNA for 24 hours.  Cells were stimulated with 

EGF (panels d, e, f – 20 nM EGF, 10 minutes at 37
o
C) then fixed in 4% 

paraformaldehyde and mounted onto glass slides.  Fluorescence was detected using 

sequential scanning confocal microscopy (SP5) where parameters were narrowed as 

detailed in Figure 6.12.  Briefly green fluorescence was detected with the argon laser 

(20%) excited at 488 nm with an emission band width of 500 nm-565 nm.  Red 

fluorescence was detected with the DPSS 561 laser at 561 nm with an emission band 

width of 607 nm-790 nm.  A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment repeated at least 3 times.  
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Figure 5.14:  The effect of EGF on localisation of eGFP-Rac1 (T17N) and 

Cherry-PLD1b in co-transfected HeLa cells.  HeLa cells were grown on coverslips 

and transiently co-transfected with 3 µg eGFP-Rac1 (T17N – panels b, f) DNA, and 

3 µg Cherry-PLD1b (panels a, e) DNA for 24 hours.  Cells were stimulated with 

EGF (panels e-h – 20 nM EGF, 10 minutes at 37
o
C) then fixed in 4% 

paraformaldehyde and mounted onto glass slides.  Fluorescence was detected using 

sequential scanning confocal microscopy (SP5) where parameters were narrowed as 

detailed in Figure 6.12.  A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment repeated at least 3 times.  
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5.2.8: Characterising Cherry-PLD2a and eGFP-Rac1 co-localisation in HeLa 

cells with EGF stimulation 

 

Cherry-PLD2a localisation was reproducible and distinct to that of Cherry-PLD1b 

localisation in HeLa cells.  HeLa cells co-transfected using Cherry-PLD2a and 

eGFP-Rac1 could therefore be used as a control to compare with Cherry-PLD1b and 

eGFP-Rac1 co-transfections.  HeLa cells transiently transfected with Cherry-PLD2a 

and eGFP-Rac1 (wt) were imaged using the same confocal parameters as previous 

co-localisation experiments (see Fig. 5.15).  Cherry-PLD2a was diffusely expressed 

in the cytosol but not the nucleus (see Fig. 5.15, panels a, e) in both unstimulated and 

EGF-stimulated cells.  eGFP-Rac1 (wt) localised to the plasma membrane and the 

nucleus (see Fig. 5.15, panel b).  eGFP-Rac1 (wt) expression in the nucleus of HeLa 

cells was more commonly seen as a result of double transfections when compared to 

the phenotype of single transfections.  EGF stimulation did not alter PLD2a which 

retained its diffuse cytosolic expression whilst Rac1 aggregated to the plasma 

membrane (see Fig. 5.15, panels e-h).  EGF stimulation did not induce co-

localisation between PLD2a and Rac1 (wt). 

 

Cherry-PLD2a co-transfected with Rac1 mutants also provided controls for the small 

degree of co-localisation seen using the Cherry-PLD1b construct.  Cherry-PLD2a 

retained its characteristic diffuse expression (see Fig. 5.16, panel a) despite the 

dramatic change in cell morphology induced by over-expression of Rac1 (Q61L – 

see Fig. 5.15, panel b).  EGF stimulation did not alter the expression of PLD2a or 

Rac1 (Q61L) and did not cause co-localisation between the 2 constructs (see Fig. 

5.15, panels e-h).  Cherry-PLD2a and Rac1 (T17N) did not co-localise in transiently 

transfected HeLa cells (see Fig. 5.17, panels a-d).  Rac1 (T17N) localised to the 

plasma membrane and in punctiform structures within the cytoplasm (see Fig. 5.17, 

panel b) whilst Cherry-PLD2a retained its characteristic diffuse cytoplasmic 

expression (see Fig. 5.17, panel a).  Cherry-PLD2a expression did not change after 

EGF stimulation (see Fig. 5.17, panel e) but Rac1 (T17N) was expressed primarily 

on the plasma membrane (see Fig. 5.17, panel f).  Although there appeared to be 

some co-localisation between the Rac1 (T17N) cytoplasmic structures and PLD2a 

(see Fig. 5.17, panel h), this was probably due to uniform expression of PLD2a 
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throughout the cytoplasm.  Expression and morphology of all constructs was 

reproducible between experiments (see Figs. 5.5, 5.11, 5.12-14 and 5.15-17). 

 

 

Figure 5.15:  The effect of EGF on localisation of eGFP-Rac1 (wt) and Cherry-

PLD2a in co-transfected HeLa cells.  HeLa cells were grown on coverslips and 

transiently co-transfected with 3 µg eGFP-Rac1 (wt – panels b, f) DNA, and 3 µg 

Cherry-PLD2a (panels a, e) DNA for 24 hours.  Cells were stimulated with EGF 

(panels e-h – 20 nM EGF, 10 minutes at 37
o
C), fixed in 4% paraformaldehyde and 

mounted onto glass slides.  Confocal microscopy (SP5) was used to image co-

transfected HeLa cells using sequential scanning.  The parameters used for sequential 

scanning were detailed in Figure 6.12.  Briefly green fluorescence was detected with 

the argon laser (20%) excited at 488 nm with an emission band width of 500 nm-565 

nm.  Red fluorescence was detected with the DPSS 561 laser at 561 nm with an 

emission band width of 607 nm-790 nm.  A scale calibrated to 25 µm is shown in 

each panel.  The data presented are representative images for 1 experiment of at least 

3. 
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Figure 5.16:  The effect of EGF on localisation of eGFP-Rac1 (Q61L) and 

Cherry-PLD2a in co-transfected HeLa cells.  HeLa cells were grown on coverslips 

and transiently co-transfected with 3 µg eGFP-Rac1 (Q61L – panels b, f) DNA, and 

3 µg Cherry-PLD1b (panels a, e) DNA for 24 hours.  Cells were stimulated with 

EGF (panels e-h – 20 nM EGF, 10 minutes at 37
o
C) then fixed in 4% 

paraformaldehyde and mounted onto glass slides.  Fluorescence was detected using 

sequential scanning confocal microscopy (SP5) where parameters were narrowed as 

detailed in Figure 6.12.  A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment with at least an n=3.  
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Figure 5.17:  The effect of EGF on localisation of eGFP-Rac1 (T17N) and 

Cherry-PLD2a in co-transfected HeLa cells.  HeLa cells were grown on coverslips 

and transiently co-transfected with 3 µg eGFP-Rac1 (T17N – panels b, f) DNA, and 

3 µg Cherry-PLD1b (panels a, e) DNA for 24 hours.  Cells were stimulated with 

EGF (panels e-h – 20 nM EGF, 10 minutes at 37
o
C) then fixed in 4% 

paraformaldehyde and mounted onto glass slides.  Fluorescence was detected using 

sequential scanning confocal microscopy (SP5) where parameters were narrowed as 

detailed in Figure 6.12.  A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment with at least an n=3.  
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5.3: Characterising Cherry-PLD and the novel substrate in HeLa cells in real-

time 

 

5.3.1: The localisation of the novel fluorescent PtdCho and LysoTracker Red in 

the HeLa cell line 

 

Although HeLa cells were more readily transfected than RBL-2H3 cells, their 

staining with the novel fPtdCho was untested.  HeLa cells treated with the 

fluorescent lipid for 2 hours exhibited punctiform staining throughout the cytoplasm 

with marked exclusion of the nucleus (see Fig. 5.18, panels a-c).  In RBL-2H3 cells, 

the lysosomal marker LysoTracker Red exhibited similar staining to that of the 

fluorescent lipid in vivo with up to 50% co-localisation.  In HeLa cells, LysoTracker 

Red also localised in cytoplasmic punctiform structures.  However, these structures 

are more densely concentrated in their distribution and were located in the outer 

region of cells which is also distinct from the nucleus (see Fig. 5.18, panels d-f).  As 

the labelling of HeLa cells by fPtdCho and LysoTracker Red were notably different 

co-staining experiments were not performed. 
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Figure 5.18: Staining of HeLa cells with LysoTracker Red or the novel 

fluorescent PtdCho.  HeLa cells grown in glass bottomed fluorodishes (approx. 

50% confluencey) overnight were stained with 1 µg fPtdCho for 2 hrs in HBSS + 1 

mM Ca
2+

.  The fluorescent lipid stained 100% of cells and localised to punctiform 

structures which were localised in the cytoplasm (see panels a-c) excluding the 

nucleus.  Live confocal microscopy on a heated stage (37
o
C) was used to detect 

fluorescence.  Green fluorescent was excited by the 488 nm argon laser with an 

emission bandwidth of 500 nm-608 nm.  HeLa cells were also stained using 

LysoTracker Red (100 nM) for 1 minute in HBSS + Ca
2+

 and then washed twice 

prior to live confocal imaging (see panels d-f).  LysoTracker Red was excited using 

the HeNe 594 nm laser with an emission bandwidth of 658 nm-794 nm. A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment with at least an n=3 for the novel fluorescent lipid and n=2 

at least for LysoTracker Red.       
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5.3.2: Novel fluorescent PdtCho treatment of living HeLa cells and the effect on 

EGF 

 

Characterising the localisation and movement of the novel fPtdCho in living HeLa 

cells, provided an opportunity to compare the localisation to that of Cherry-PLD1b 

(see Section 5.3.3).  HeLa cells were quiesced for 2 hours prior to labelling with 0.5 

µg fPtdCho in HBSS + Ca
2+

 for 3 hours at 37
o
C/5% CO2.  Still images were taken of 

the live labelled cells prior to stimulation with 20 nM EGF.  Localisation of the 

fPtdCho was consistently in punctiform structures located in the cytoplasm of 

unstimulated HeLa cells (see Fig. 5.19, panels a-c) and upon EGF stimulation, the 

fluorescent PtdCho was not expressed at the plasma membrane, but assembled to a 

confined intracellular site (see arrows Fig 5.19, panel f) whilst remaining in 

punctiform structures despite notable cell shape change(see Fig. 5.19, panels d-f).   

 

Real-time imaging of HeLa cells labelled with fPtdCho supported data indicating an 

aggregation of fPtdCho in the cell cytoplasm after EGF stimulation (see Fig. 5.19).  

Still images from the 15 minutes of recording fPtdCho-labelled, EGF-stimulated 

HeLa cells showed the same concentration of punctiform structures (see Fig. 5.20a 

for still images and 5.20b for the recording).  Movement of the punctiform structures 

was recorded over 15 minutes, where 1 frame was recorded every 10 seconds.  Real-

time recordings such as Fig. 5.20b have been accelerated to show 15 minutes of 

imaging in 18 seconds.  
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Figure 5.19: The effect of EGF stimulation on HeLa cells labelled with the novel 

fluorescent PtdCho.  HeLa cells were grown in glass bottomed fluorodishes (approx. 

50% confluencey) overnight.  Cells were labelled for 3-4 hours using 0.5 µg fPtdCho 

in HBSS + 1 mM Ca
2+

 and imaged live at 37
o
C by confocal microscopy.  Labelled 

HeLa cells quiesced for 5 hours and imaged prior to stimulation (panels a-c).  Cells 

were then stimulated with 20 nM EGF and imaged immediately (panels d-f). Real-

time imaging was recorded over 15 minutes (1 frame/10 seconds) using the   argon 

laser at 488 nm with an emission band width of 500 nm-608 nm.  A scale calibrated 

to 25 µm is shown in each panel.  The data presented are representative images for 1 

experiment of at least 2. 
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Figure 5.20a: Live imaging of fluorescent PtdCho labelled HeLa cells stimulated 

by EGF.  HeLa cells were grown in glass bottomed fluorodishes overnight and 

quiesced for 2 hours.  Cells were then labelled with 0.5 µg fPtdCho for 3 hours in 

HBSS + 1 mM Ca
2+

, EGF stimulated on a heated stage (37
o
C) and imaged over 15 

minutes using confocal microscopy.  Real-time recording was over 15 minutes (1 

frame/10 seconds) using the argon laser at 488 nm with an emission band width of 

500 nm-608 nm. A scale calibrated to 25 µm is shown in each panel.  The data 

presented are representative images for 1 experiment of at least 2.  Still images of the 

real-time recording are represented in Fig. 5.20 whilst the full length film is shown in 

Fig. 5.20b.  

 

 

 

 

 

 

 

 

 

 

 

 

5 minutes 0 minutes 

15 minutes 10 minutes 



 252 

5.3.3: Characterising Cherry-PLD1b in live transiently transfected HeLa cells 

and the response to EGF stimulation 

 

Although movement of PLD1b to the plasma membrane of HeLa cells has been 

documented in fixed cells, migration has never previously been recorded in real-time.  

HeLa cells transiently transfected with Cherry-PLD1b were incubated in a buffered 

salt solution prior to live confocal imaging in glass bottomed fluorodishes (on a 

heated stage at 37
o
C).  The movement of Cherry-PLD1b was first recorded in resting 

cells (see Fig 5.21a and Fig. 5.21b showing recording).  The movement of Cherry-

PLD1b containing structures was recorded over 15 minutes where 1 frame was 

recorded every 10 seconds.  Real-time recordings such as Fig. 5.21b have been 

accelerated to show 15 minutes of imaging in 18 seconds.  Characterising the 

movement and localisation of Cherry-PLD1b in real-time facilitated a comparison 

with the localisation of its fluorescent substrate.   
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Figure 5.21a: Live recording of Cherry-PLD1b movement in resting HeLa cells.  
HeLa cells grown in glass bottomed fluorodishes (approx. 50% confluencey) were 

transiently transfected using 3 µg of Cherry-PLD1b DNA for 24 hours.  Cells were 

then washed and incubated in 1 ml HBSS + 1 mM Ca
2+

 ready for confocal imaging.  

Real-time imaging was recorded over 15 minutes (1 frame/10 seconds) using the   

DPSS 561 laser at 561 nm with an emission band width of 607 nm-790 nm.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment of 2.  Still images of the real-time recording are represented 

in Fig. 6.21 whilst the recording is shown in Fig. 5.21b. 
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Cherry-PLD1b moved throughout resting cells and did not aggregate to a particular 

intracellular region.  HeLa cells were stimulated with EGF and immediately live 

imaged.  The effects of EGF were seen within only 5 minutes of recording (see Fig. 

5.5).  Transiently transfected HeLa cells expressing Cherry-PLD1b and stimulated 

with 20 nM EGF were recorded over 15 minutes (see Fig. 5.22a for still images and 

Fig. 5.22b for the recording).  The real-time recording shows the PLD1b vesicles 

migrating primarily to the plasma membrane. Although there was a directional 

movement towards the plasma membrane (see black arrow Fig 5.22a), the vesicles 

also concentrated to a region in the cell cytoplasm (see white arrow Fig. 5.22a).  

Although there was movement towards the plasma membrane (see black arrow Fig. 

5.22a), there was a lack of definition when compared against fixed (i.e. dehydrated) 

samples (see Fig. 5.5).  
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Figure 5.22a: Live recording of Cherry-PLD1b movement in EGF stimulated 

HeLa cells.  HeLa cells grown in glass bottomed fluorodishes (approx. 50% 

confluencey) were transiently transfected using 3 µg of Cherry-PLD1b DNA for 24 

hours.  Cells were then washed and incubated in 1 ml HBSS + 1 mM Ca
2+

 ready for 

confocal imaging.  HeLa cells were stimulated with 20 nM EGF immediately prior to 

imaging.  Real-time recording was over 15 minutes (1 frame/10 seconds) using the 

DPSS 561 laser at 561 nm with an emission band width of 607 nm-790 nm.  The 

nucleus is outlined in black in the 15 minutes frame.  A scale calibrated to 25 µm is 

shown in each panel.  The data presented are representative images for 1 experiment 

of at least 2.  Still images of the real-time recording are represented in Fig. 5.22 

whilst the full length film is shown in Fig. 5.22b. 
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5.3.4: The effect of Cytochalasin D on fluorescent PtdCho localisation and 

response to EGF in HeLa cells 

 

Cytochalasin D (CD) was used to determine the role of the cytoskeleton in the 

localisation and movement of fPtdCho in resting and EGF stimulation HeLa cells.  

HeLa cells were labelled with the novel fluorescent lipid prior to treatment with 1 

µM CD (see Fig. 5.23, panels a-c – see Section 5.3.5).  CD-treated cells were then 

imaged in real-time following EGF stimulation.  Cells treated with 1 µM CD 

exhibited blebbing and formation of numerous processes, indicating possible stress.  

The cells maintained their ability to respond to EGF stimulation and demonstrated 

the same aggregation of the punctiform structures when compared with the controls 

(see Fig. 5.23, panels d-f).  
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Figure 5.23: The effect of CD on fluorescent PtdCho localisation and response to 

EGF stimulation in HeLa cells.  HeLa cells grown in glass bottomed fluorodishes 

were quiesced for 1 hour and then labelled with 0.5 µg fPtdCho for 3 hours in HBSS 

+ 1 mM Ca
2+

 and imaged (panels a-c).  HeLa cells were then treated with 1 µM CD 

for 1 hour 37
o
C/5% CO2 and imaged again (panels d-f).  Confocal microscopy was 

used to image the cells using the argon laser at 488 nm with an emission bandwidth 

of 500 nm-608 nm.  A scale calibrated to 25 µm is shown in each panel.  The data 

presented are representative images for 1 experiment of 2. 
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Real-time imaging of cells prior to CD treatment (see Fig. 5.24a, panels a, b) and 

following CD treatment with EGF stimulation (see Fig. 5.24a, panels c, d) were also 

recorded.  The fPtdCho moved both within and between focal planes prior to CD 

treatment (see Fig. 5.24b for real-time recording).   The response of fPtdCho labelled 

cells treated with 1 µM CD and stimulated with 20 nM EGF was also recorded 

immediately following EGF stimulation.  The punctiform structures containing 

fPtdCho concentrated within the cytoplasm (see arrows Fig. 5.24a, panel d).  The 

migration of fPtdCho suggests that CD did not render the cells unable to respond to 

EGF stimulation (see Fig. 5.24c for real-time recording).  Real-time imaging was 

recorded over 15 minutes (1 frame/10 seconds) and condensed into 18 seconds in 

Figs 5.24b and 5.24c.  
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Figure 5.24a: The effect of CD on fluorescent PtdCho localisation and response 

to EGF stimulation.  HeLa cells grown in glass bottomed fluorodishes were 

quiesced for 1 hour and labelled with 0.5 µg fPtdCho for 3 hours in HBSS + 1 mM 

Ca
2+

.  Cells were imaged in real-time prior to CD treatment (panels a, b) – the 

corresponding recording is Fig. 5.24b.  HeLa cells were then treated with 1 µM CD 

for 1 hour 37
o
C/5% CO2 and imaged immediately after EGF stimulation (panels c, d) 

– the corresponding recording is Fig. 5.24c.  Real-time recording was over 15 

minutes (1 frame/10 seconds) using the argon laser at 488 nm with an emission band 

width of 500 nm-608 nm.  A scale calibrated to 25 µm is shown in each panel.  The 

data presented are representative images for 1 experiment of 2.   
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5.3.5: The effects of Cytochalasin D on Cherry-PLD1b localisation and response 

to EGF in HeLa cells 

 

The movement of fPtdCho was unaffected by cytochalasin D (CD) treatment, but the 

cytoskeleton was a potential framework by which Cherry-PLD1b could move out 

around the cell (see Section 5.3.3). HeLa cells transiently transfected with Cherry-

PLD1b were treated with 1 µM CD 24 hours post-transfection and imaged live 

following EGF stimulation (see Fig. 5.25). 

 

Cells treated with CD exhibited signs of stress and activation in the form of 

membrane blebbing and multiple processes, although this did not affect their ability 

to respond to EGF.  Living cells imaged prior to CD treatment (see Fig. 5.25, panel a) 

showed the punctate cytoplasmic localisation of PLD1b.  The localisation of Cherry-

PLD1b did not change upon CD treatment (see Fig. 5.25, panel b), however 

approximately 5% of cells exhibited an altered localisation pattern (see Fig. 5.25, 

panel d).  The less common phenotype was not punctate and instead appeared to be 

aggregated along intracellular structures which could be identified by further 

investigation with molecular markers.  Cells treated with CD maintained their ability 

to respond to EGF stimulation (see Fig. 5.25, panel c). Cells responded with PLD1b 

expression at the plasma membrane and also localising in a pool within the cell (see 

arrow Fig. 5.25, panel c).  
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Figure 5.25: The effect of CD on Cherry-PLD1b localisation and response to 

EGF stimulation.  HeLa cells grown in glass bottomed fluorodishes (approx. 50% 

confluencey) were transiently transfected using 3 µg of Cherry-PLD1b DNA for 24 

hours.  Transfected cells were quiesced for 4 hours in no additions DMEM, then 

washed and incubated in 1 ml HBSS + 1 mM Ca
2+

 prior to CD or EGF treatment 

(panel a).    Cells were washed once and treated with 1 µM CD for 1 hour in HBSS + 

Ca
2+

 at 37
o
C/5% CO2 (panels b, d).  Following CD treatment cells were stimulated 

with 20 nM EGF for 15 minutes prior to imaging (panel c).  Confocal microscopy 

was used to image the transfected cells using the DPSS 561 laser at 561 nm with an 

emission bandwidth of 607 nm-790 nm.  A scale calibrated to 25 µm is shown in 

each panel.  The data presented are representative images for 1 experiment of 2. 
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5.3.6: Co-localisation between LysoTracker Red and eGFP-PLD in living cells 

 

PLD1 localisation varies in different cell lines but often localises to lysosomes (Toda 

et al., 1999).  As HeLa cells were easily stained with the lysosomal marker 

LysoTracker Red, cells were transiently transfected with eGFP-PLD1b or -PLD2a 

for 24 hours and labelled with 100 nM LysoTracker Red.  eGFP-PLD2a was used as 

a control in the analysis of co-localisation between eGFP-PLD and LysoTracker Red 

because of its diffuse cytosolic expression. 

 

Image J was used to analyse the co-localisation between transiently transfected HeLa 

cells overexpressing eGFP-PLD (green) and the lysosomal marker LysoTracker Red 

(red).  To reduce fluorescence bleed-through, the emission bandwidths of the photo 

multiplier tubes (PMTs) were narrowed as detailed above.  Background fluorescence 

was minimised to limit non-fluorescent pixels from influencing co-localisation 

results.  Image J was used to isolate individual cells in each field and identify the 

degree of co-localisation using a Pearson‟s correlation coefficient (Pearson‟s R).  

Pearson‟s R expresses the relationship between 2 variables, in this case 2 

fluorophores and their relationship mapped using a gradient of +1 to -1.  The closer 

the values are to the slope, the more likely they are to be dependent upon one another.  

 

Separate experiments were used to compare the differences in co-localisation 

between eGFP-PLD and LysoTracker red (data not shown).  Co-localisation is not 

substantial in cells overexpressing eGFP-PLD1b and stained with LysoTracker Red; 

the mean Pearson‟s R is 0.33 (n=1) and 0.26 (n=2) in 2 separate experiments (data 

not shown).   
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5.3.7: Co-localisation between fluorescent PtdCho and Cherry-PLD in living 

cells 

 

As the HeLa cells were readily stained with the novel fluorescent lipid, a key aim 

was to stain cells transiently transfected with Cherry-PLD.  Information about the 

stability of the lipid in Swiss 3T3 cells and RBL-2H3 cells was used to overcome 

experimental constraints.  HeLa cells seeded in fluorodishes were exposed to 0.5 µg 

of fPtdCho in 1 ml HBSS + Ca
2+

 for 3 hours prior to transfection.  The stability of 

the fPtdCho stain within the cells enabled an assessment of the localisation between 

Cherry-PLD and its fluorescent substrate (see Fig. 5.26). 

  

Prior to confocal microscopy, cells were washed with HBSS + Ca
2+

, incubated in a 

final volume of 1 ml and imaged live at 37
o
C.  Living HeLa cells overexpressing 

Cherry-PLD1b displayed co-localisation with the green fluorescent substrate (see Fig. 

5.26, panels a-c).  The reliability of the results was augmented via direct comparison 

between PLD1b and PLD2a co-localisation with fPtdCho can be made using the 

same settings (see Fig. 5.26, panels d-f).  Co-localisation between Cherry-PLD2a and 

the fluorescent lipid was analysed using Image J. 
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Figure 5.26: Co-localisation between Cherry-PLD and the novel fluorescent 

PtdCho in HeLa cells.  HeLa cells were grown in fluorodishes overnight and 

labelled with 0.5 µg of fPtdCho in 1 ml HBSS + Ca
2+

 for 3 hours.  Cells were 

transiently transfected with 3 µg Cherry-PLD1b (panels a-c) or Cherry-PLD2a (panel 

d-f) DNA for 24 hours.  Cells were then imaged live using sequential scanning 

confocal microscopy (SP5) on a heated stage at 37
o
C.  Green fluorescence was 

excitation at 488 nm with an emission band width between 496 nm-593 nm using an 

argon laser (20%). Red fluorescence was detected using the DPSS 561 laser and 

excited at 561 nm with an emission band width between 607 nm-790 nm.  A scale 

calibrated to 25 µm is shown in each panel.  The data presented are representative 

images for 1 experiment of at least 3.   
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Image J was used to analyse the co-localisation between transiently transfected HeLa 

cells overexpressing Cherry-PLD (red) and the novel fluorescent lipid (green).  

Transiently transfected HeLa cells were first labelled with the fluorescent lipid and 

transfected using either Cherry-PLD1b or Cherry-PLD2a for 24 hours prior to 

imaging live using confocal microscopy.  To reduce the identification of co-

localisation due to fluorescence bleed-through, the detection parameters of the photo 

multiplier tubes (PMTs) were narrowed.  Image J was then used to analyse co-

localisation as previously described (see Section 5.3.1). 

  

The relationship between Cherry-PLD1b and fPtdCho in 2 experiments showed 

substantial co-localisation with an average Pearson‟s R of 0.81 and 0.84 (n=1 and 

n=2 respectively – data not shown).  The first experiment compared 15 cells from 8 

fields whereas the second experiment compared 22 cells from 12 fields.  Analysis 

using an unpaired 2-tailed t-test revealed that there was no significant difference 

between the means of these data sets.   
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The spatial proximity with which Cherry-PLD1b and its fluorescent substrate co-

localise was investigated using fluorescence recovery after photobleaching (FRAP) – 

Förster (or fluorescence) resonance energy transfer (FRET) confocal microscopy.  

The BODIPY label of fPtdCho (donor) was detected using the FRAP AB setting on 

the (SP5) confocal microscope and excited using the argon laser (488 nm), with an 

emission bandwidth between 495 nm-570 nm.  The acceptor parameters were set in 

the Cherry spectrum using the DPSS 561 laser (561 nm) with an emission bandwidth 

between 622 nm-790 nm.  The same settings were used to photobleach selected areas 

of co-localisation (see Fig. 5.27, panel b).  The proximity of PLD1b to its fluorescent 

substrate was determined by photobleaching the Cherry-PLD1b and then detecting 

changes in donor fluorescence (FRAP).  If the substrate and lipase were in close 

proximity, the photobleaching of Cherry-PLD1b would result in increased novel 

fPtdCho fluorescence.  This technique of FRET by FRAP identifies energy transfer 

between Cherry-PLD1b and fPtdCho, indicating whether the 2 are within 10 nm.  To 

maximise the accuracy of FRAP, small areas of co-localisation were chosen for 

photobleaching. 

 

Each experiment was analysed using 3 parameters, namely the increase of the donor, 

decrease of the acceptor and the efficiency, all of which were expressed as a  

percentage.  The mean percentages of each parameter in 3 separate experiments were 

compared (see Fig. 5.27, panel a).  The mean increase in donor fluorescence ranged 

from 12-30% whilst the acceptor photobleaching ranged from 56-69% decrease and 

efficiency (defined as the efficiency of energy transfer from donor to acceptor 

following bleaching) ranged from 10-19%.  A sample of the FRAP data accumulated 

over the 3 experiments provides an indication of the energy transfer once Cherry-

PLD1b was photobleached (see Table 5.3).  Although there were technical 

difficulties associated with FRAP analysis (detailed later) data was reproducible and 

a close association between lipase and substrate was established. 

 

 

 

  

 

 

2 

2 
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Table 5.3: Sample data of FRET analysis using FRAP detecting co-localisation 

between Cherry-PLD1b (acceptor) and its fluorescent substrate (donor).  

Confocal microscopy was used to complete FRET-FRAP analysis between Cherry-

PLD1b (acceptor) and the fluorescently labelled PtdCho (donor).  The FRAP AB 

confocal software was used to set sequential scanning parameters using the argon 

laser (488 nm) and DPSS 561 laser (561 nm).  The BODIPY (donor) fluorescent tag 

was excited by the argon laser and the emission bandwidth was between 495 nm-579 

nm.  The Cherry-PLD1b (acceptor) fluorescent tag was excited by 561 nm with an 

emission bandwidth between 622 nm-790 nm.  The acceptor was photobleached and 

then the efficiency and donor fluorescence was recorded. 

 

 

Experiment 

Number 

Donor Pre 

Bleaching 

Donor 

Post 

Bleaching 

Acceptor 

Pre 

Bleaching 

Acceptor 

Post 

Bleaching 

Efficiency 

(%) 

1 27.67 53.17 40.59 8.77 50.74 

2 56.34 64.75 103.28 24.32 12.98 

3 57.87 139.76 50.87 19.14 58.59 

3 141.98 186.68 213.42 52.9 23.95 

3 78.64 90.85 131.71 9.52 13.45 

 

 

Although FRET-FRAP analysis was performed on numerous „vesicles‟ which 

appeared to exhibit co-localisation, few exhibited a large increase in donor 

fluorescence and approximately 70% showed a decline in donor fluorescence post-

photobleaching.  Limitations to these FRAP experiments included the movement of 

vesicles out of the region isolated as they were mobile within the cell, movement of 

the cell, and transfection/labelling efficiency.  Weakly transfected cells could not be 

photobleached as effectively as cells expressing a high yield of fluorescence.  

Technical difficulties associated with the SP5 confocal microscope upon FRAP 

analysis of vesicles typically 1 µm in diameter also affected the number of data 

points that could be collected.  Although the data reflected these limitations, 

approximately 30% of data points from each experiment showed the efficiency and 

donor fluorescence increase required. 

  

Although these experimental limitations hindered the amount of data collected, the 

experiments (see Fig. 5.27, panel a) compiled 6, 12 and 16 data points for 

experiments n=1, 2 and 3 respectively.  An example of FRET-FRAP analysis (see 

Fig. 5.27, panel b) shows where regions of suspected co-localisation were isolated 
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and photobleached before the donor fluorescence was re-recorded.  The intensity of 

the fPtdCho labelling of the cells was also integral to FRET-FRAP analysis as high 

laser strength could bleach a weakly labelled cell, thus ultimately affecting the data.   

 

 

Figure 5.27:  FRET-FRAP analysis of co-localisation between Cherry-PLD and 

fluorescent PtdCho.  HeLa cells were grown in fluorodishes overnight and labelled 

with 0.5 µg of fPtdCho in 1 ml HBSS + Ca
2+

 for 3 hours.  Cells were transfected 

with 3 µg Cherry-PLD1b DNA for 24 hours, then sequentially scanned using live 

confocal microscopy (SP5) on a heated stage at 37
o
C using the FRAP AB Leica 

software (see panel b, 1-3).  Green fluorescence was excitation at 488 nm with an 

emission band width between 496 nm-593 nm using an argon laser (20%). Red 

fluorescence was detected using the DPSS 561 laser and excited at 561 nm with an 

emission band width between 607 nm-790 nm.  Regions of co-localisation were 

isolated (panel b, 1) and bleached using the DBPSS 561 laser (panel b, 2).  

Fluorescence readings were then taken after bleaching (panel b, 3).  Collated results 

for acceptor and donor fluorescence and efficiency for 3 separate experiments are 

compared (panel a).   
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5.4 Discussion 

 

5.4.1: Transient expression of Cherry- or eGFP-PLD in HeLa cells and the 

effect of EGF stimulation 

 

The HeLa cell line was robust and readily transfected with either Cherry- or eGFP-

PLD.  The localisation and response to EGF stimulation of PLD1b and PLD2a was 

unaffected by either of the fluorescent labels.  PLD1b localised to punctiform 

structures within the HeLa cell cytoplasm, perhaps multivesicular endosomes, late 

endosomes, the trans-Golgi apparatus or early endosomes (Hiroyama and Exton, 

2005b).  In response to EGF stimulation, phosphorylated PLD1b migrated to the 

plasma membrane and has been previously documented to co-localise with EGFR 

and calveolin-1 (Han et al., 2002b).  PLD1b also appeared to concentrate at a distinct 

region within the cytoplasm of the cells following EGF stimulation.  PLD2a often 

displayed diffuse cytosolic expression and marked sparing of the nucleus.  In many 

cell lines, including HeLa cells, PLD2a localises to the plasma membrane (Hiroyama 

and Exton, 2005b).  However, cytosolic localisation of PLD2 similar to that shown in 

HeLa cells (see Fig. 6.1) has also been documented in CHO-T cells (Emoto et al., 

2000).  PLD2 expression and localisation remained unaltered following EGF 

stimulation.  Previous work in the HEK-293 cells indicated that PLD2 is 

constitutively associated with EGFR and is therefore unaffected by EGF stimulation 

(Slaaby et al., 1998). 

 

5.4.2: Co-expression of Cherry- and eGFP-PLD in HeLa cells and the effect of 

EGF stimulation  

 

Both expression and EGF stimulation of PLD were unaffected by the Cherry or 

eGFP fluorescent protein labels.  Co-transfection experiments between Cherry-PLD 

and eGFP-PLD constructs indicated co-localisation between the same PLD isoforms.  

Although there is co-localisation, this cannot be used to infer formation of 

homodimers (between HKD motifs of 1 PLD) or heterodimers (between HKD motifs 

of 2 PLDs).  Cherry-PLD1b and eGFP-PLD1b co-localised in cytoplasmic 

punctiform structures in unstimulated cells and was also expressed at the plasma 

membrane upon EGF stimulation.  Cherry-PLD2a and eGFP-PLD2a exhibited the 
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same diffuse expression and did not respond to EGF stimulation.  Co-localisation 

between PLD1b and PLD2a was observed in the cytoplasm, however the expression 

pattern was different with PLD1b displaying punctate localisation and PLD2a diffuse 

cytosolic expression.   

 

Members of the PLD superfamily have conserved HKD motifs which reportedly 

dimerise to form the active site (Stuckey and Dixon, 1999).  Although the HKD 

motifs are known to dimerise, whether this happens intramolecularly or 

intermolecularly is still controversial.  The bacterial endonuclease Nuc, a member of 

the PLD superfamily containing only one HKD motif crystallises as a dimer 

(Stuckey and Dixon, 1999).  However, most members of the PLD superfamily 

contain two HKD motifs and the mechanism by which the active site is formed is not 

well understood.  Recent studies using the two mammalian PLD isoforms PLD1 and 

PLD2, proposed that rPLD1 and rPLD2 have the potential to exist in homodimers 

but also form heterodimers (Kam and Exton, 2002).  Further experiments co-

immunopreciptating Cherry- and eGFP-PLD would provide more information about 

the association between overexpressed PLD isoforms in HeLa cells.       

 

5.4.3: Co-expression of Cherry-PLD with eGFP-Chimera and the effect of EGF 

stimulation in HeLa cells  

 

The eGFP-Chimera construct was characterised by its diffuse cytoplasmic and 

nuclear expression which excluded the nucleoli or nuclear bodies.  The Chimera, like 

PLD2a, did not respond to EGF stimulation.  Preliminary data suggests that the 

terminal 851 residues of PLD1b may contain a nuclear localisation signal (NLS).  

There are a variety of NLS motifs, however a monopartite motif (KPRK) was 

identified in both hPLD1b and the Chimera.  A monopartite motif is characterised by 

a cluster of basic residues (e.g. arginine or lysine) followed by a helix-disrupting 

residue (e.g. proline – Cokol et al., 2000).  PLD1b localises to the nucleus (although 

infrequently) and so the C-terminal NLS of PLD1b may be responsible for the 

nuclear localisation of the Chimera construct.  Although these results are at an early 

stage, further experiments mutating the identified NLS region may confirm that 

PLD1b has an encrypted NLS motif.  Furthermore, data presented here suggests that 
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the first 283 base pairs of the PLD2a N-terminus are responsible for the diffuse 

expression of PLD2a and the lack of responsivity to EGF.   

 

5.4.4: Co-localisation of Cherry-PLD with Rac1 and the effect of EGF 

stimulation in HeLa cells  

 

Cherry-PLD1b and eGFP-Rac1 (wt) did not co-localise in resting HeLa cells, 

although both localised to distinct punctiform structures within the cytoplasm.  

However, upon EGF stimulation, there was co-localisation between eGFP-Rac1 (wt) 

and Cherry-PLD1b on the plasma membrane, as expected.  Rac1 (wt) overexpression 

was characterised by its punctiform localisation and multiple processes of transfected 

cells.  Previous studies have suggested that Rac1 (wt) has a role in cytoskeletal 

rearrangement and the formation of lamellipodia (Ridley et al., 1992; Machesky and 

Hall, 1997; Hiroyama and Exton, 2005a), although the signalling pathway(s) 

involved are still elusive.  Cherry-PLD2a did not co-localise with eGFP-Rac1 (wt) in 

HeLa cells and co-transfection did not affect PLD2a expression following EGF 

stimulation. 

 

Cherry-PLD1b and eGFP-Rac1 (T17N) did not co-localise in unstimulated HeLa 

cells.  Co-localisation between PLD1b and Rac1 (T17N) occurred on the plasma 

membrane following EGF stimulation.  The migration of PLD1b to the plasma 

membrane indicated that the dominant negative mutant does not affect EGF 

stimulation.  Other studies found that overexpressing dominant negative or Rac1 (wt) 

did not affect the ability to activate PLD using PMA stimulation in HeLa cells 

(Hiroyama and Exton, 2005a).  Cherry-PLD2a co-transfected with eGFP-Rac1 

(T17N) did not alter in its diffuse cytosolic expression and nor co-localise with Rac1 

(T17N).  Rac1 (T17N) did not affect the lack of PLD2a response to EGF stimulation.     

 

The co-tranfection of Cherry-PLD1b with constitutively active Rac1 (Q61L) resulted 

in a significant change in cell shape and localisation of PLD1b.  Rac1 is thought to 

be involved in membrane ruffling and cytoskeletal rearrangement (Ridley et al., 1992; 

Machesky and Hall, 1997; Hiroyama and Exton, 2005a), although previous studies 

overexpressing constitutively active Rac1 in HeLa cells did not exhibit such a 

dramatic change in cell morphology (Hiroyama and Exton, 2005a). Experiments 
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using constitutively active Arf6, another known PLD1 activator, have also shown 

altered localisation similar to that seen using Rac1 (Q61L) (Hiroyama and Exton, 

2005b).  The two small G-proteins are both PLD1 activators and Rac1 is probably 

involved downstream of Arf6 to induce membrane ruffling (Hiroyama and Exton, 

2005a).  Although the cell morphology was dramatically changed by Rac1 (Q61L), 

expression of PLD2a was unaffected as was the inability to respond to EGF 

stimulation. 

 

5.4.5: Characterising the novel fluorescent PtdCho and Cherry-PLD1b in HeLa 

cells using live confocal microscopy 

 

The novel fluorescent PtdCho (fPtdCho) localised in motile punctiform structures in 

the cytoplasm of HeLa cells.  Upon EGF stimulation, the fPtdCho would concentrate 

in one place within the cell.  The fPtdCho localised with the lysosomal marker 

LysoTracker Red in RBL-2H3 cells but not in HeLa cells.  In an attempt to inhibit 

the movement of the novel fPtdCho, labelled cells were treated with cytochalasin D 

(CD) which caps actin filaments and competitively inhibits capping proteins that 

stabilise the cytoskeleton (Wakatsuki et al., 2000).  The net effect is that CD 

destabilises the cytoskeleton.  CD treatment of HeLa cells labelled with the novel 

fPtdCho did not alter its localisation nor affect its ability to migrate upon EGF 

stimulation.  This indicates that the movement exhibited by the novel fPtdCho is not 

linked to the cytoskeleton.  Similarly, CD treatment of Cherry-PLD1b expressing 

HeLa cells does not affect the localisation of PLD1b. CD also has no impact on the 

ability of PLD1b expression at the plasma membrane upon EGF stimulation.  

 

The aim of this project was to establish a live in vivo PLD assay which was achieved 

using HeLa cells expressing Cherry-PLD and labelled with the novel fluorescent 

lipid.  Co-localisation between Cherry-PLD1b or -PLD2a and the fPtdCho was first 

analysed using Image J.  Using the Image J Colocalisation Finder plugin, co-

localisation between Cherry-PLD1b and its fluorescent substrate was calculated to be 

up to 84%.  Despite technical difficulties, FRET-FRAP analysis of fPtdCho and 

Cherry-PLD1b showed a close association between the lipase and substrate, finally 

validating this live in vivo PLD assay. 
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Chapter 6: General Discussion 

 

6.1: Real-time in vitro assay 

 

The kinetics of phospholipase D (PLD)-mediated phosphatidylcholine (PtdCho) 

hydrolysis have previously been studied using radio-chemical end-point assays 

(Ohguchi et al., 1997; Hodgkin et al., 1999; Henage et al., 2006).  Although these 

studies contributed to our current understanding of PLD activity and its response to 

various activators, none were capable of characterising PLD activation in real-time.  

Monitoring the activity of GST-hPLD1 in real-time using a fluorescent in vitro assay 

identified the existence of a lag period (of up to 20 minutes) before GST-hPLD1 

activity increased in response to small G-protein activators.  This lag period was 

consistent between assays and may indicate that the dynamics between lipase, 

substrate, activators and other co-factors (such as Mg
2+

 and Ca
2+

) are more complex 

than previously identified.  This lag period may indicate that there is no change (i.e. 

increase) in basal GST-hPLD1 activity until a multi-component complex (proteins 

and lipid) is formed.   

 

PLD1 activation by small G-proteins such as Rac1 and Arf1, have been well 

characterised using end-point assays and the fluorescent real-time data presented 

here corroborates previous observations (Henage et al., 2006).  Although both 

methods established that PLD1 activity increases notably upon small G-protein 

activation, none  identified how small G-proteins interact with PLD to dramatically 

change its PtdCho hydrolysing ability.  Small G-proteins are known to cycle between 

two conformational states, an active GTP-bound state and an inactive GDP-bound 

state.  Cycling between GTP- and GDP-bound states is controlled in cells by many 

regulators such as GTPase activating proteins (GAPs), guanine nucleotide exchange 

factors (GEFs) and GDP dissociation inhibitors (GDIs – Hakoshima et al., 2003; Dai 

et al., 2008).  Furthermore, small G-protein structure is dependent upon GTP/GDP 

cycling (Hakoshima et al., 2003).  Small G-protein activation of PLD1 may also 

impact on the structure of the lipase, possibly altering PLD1 from a weakly active to 

a more active conformation.  The novel fluorescent PtdCho (fPtdCho) could be used 

to characterise the coupled molecular relationship between G-proteins and their 
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effectors (in this case GST-hPLD1).  As there is now a real-time model to measure 

fluorescent PtdCho hydrolysis, the assay could be modified to quantify GTP 

hydrolysis or possibly G-protein loading status in relation to effector output which, in 

this case, could be PLD1-catalysed fPtdCho hydrolysis.  The fluorescent assay would 

require further development, possibly using a labelled GTP construct.  The 

hydrolysis of fPtdCho could therefore be quantified with increase in green 

fluorescence whilst a decrease in another (e.g. red fluorescence) could be used to 

identify GTP hydrolysis in real-time.  Elucidating the molecular interaction between 

GST-hPLD1 and its small G-protein activators would indicate whether small G-

proteins are amplifiers of PLD1 activity or merely transducers.  In vitro interactions 

between small G-proteins and the non-hydrolysable GTP analogue GTPγS indicate 

that cycling between GTP/GDP bound states may have little influence on GST-

hPLD1 activation.  It is therefore possible that binding of the small G-protein 

activators to the lipase alone changes the conformation of PLD and encourages 

substrate binding.  Further experiments using GTP instead of GTPγS in vitro might 

clarify the role of small G-proteins in GST-hPLD1 activation. 

 

6.2: Lipid versus LysoTracker Red localisation in RBL-2H3 cells 

 

Both the novel fluorescent PtdCho (fPtdCho) and lysosomal marker LysoTracker 

Red label localise in a punctate manner within the RBL-2H3 mast cell line with 

approximately 50% co-localisation.  However, stimulation (e.g. antigenic, PMA or 

A23187) of these cells has different effects on the two labels, with the lipid 

remaining punctate but the LysoTracker Red rapidly fading (and becoming more 

diffuse).   

 

PMA is a non-hydrolysable DAG mimetic used to activate Ca
2+

-dependent PKCα, a 

known PLD1 activator (Takai et al., 1979; Castagna et al., 1982).  PMA stimulation 

of RBL-2H3 cells causes dramatic change in cell morphology resulting in membrane 

ruffling, blebbing, and the retraction of cellular processes.  During these rapid 

changes in cell morphology, the novel fPtdCho maintained its punctiform labelling 

of intracellular structures.  Similarly the lysosomal marker LysoTracker Red 

maintained punctate labelling in PMA-stimulated RBL-2H3 cells, although some 

marker was lost over a 15 minute period.  PMA, calcium ionophore A23187 and 
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antigenic stimulation of RBL-2H3 cells were all quantified using a previously 

validated β-hexosaminidase assay.  Although PMA stimulation of RBL-2H3 cells 

resulted in dramatic cell membrane ruffling, β-hexosaminidase was not secreted.  

Previous studies have also recorded the absence of β-hexosaminidase secretion in 

response to PMA-stimulation of RBL-2H3 cells (Brown et al., 1998).   

 

Stimulation of RBL-2H3 cells using the calcium ionophore A23187 resulted in 

similar morphological changes to those previously seen in response to PMA 

stimulation.  However, A23187 (0.1 µM) resulted in approximately 50% β-

hexosaminidase secretion compared with approximately 15% secreted in response to 

PMA.  The calcium ionophore is an established inducer of β-hexosaminidase 

secretion in RBL-2H3 cells (Mitsutake et al., 2004).  A23187 stimulation of RBL-

2H3 cells did not alter the characteristic labelling of the novel fluorescent lipid.  

However, in response to A23187 stimulation, LysoTracker Red labelling of RBL-

2H3 cells disappeared rapidly, i.e. within 5 minutes of real-time confocal recording.  

Similarly, LysoTracker Red labelling of RBL-2H3 cells was notably reduced 

following antigenic stimulation of cells, whereas fPtdCho-labelling appeared 

unaffected.  This suggests that, although the lipid and lysosomal marker appear to 

label common structures (50%), the two labels behave differently in RBL-2H3 cells 

in response to stimulation.   

 

PtdCho is a substantial component of the plasma membrane (Taylor et al., 2007), 

however none of the cell lines treated with the novel PtdCho exhibited labelling of 

the plasma membrane.  The plasma membrane was not labelled possibly because the 

fluorescent PtdCho was exogenously added and was not compatible with plasma 

membrane-labelling. Our hypothesis is that the novel lipid may have labelled vesicle 

membranes and hence fluorescence appeared punctiform.  The acidotropic and 

soluble lysosomal marker possibly labels vesicular contents and the two markers may 

therefore label different regions of the same organelle.  Loss of LysoTracker Red 

labelling (e.g. in response to A23187 treatment) could be attributed to the secretion 

of secretory granule contents, including the red marker, but fPtdCho staining could 

be maintained if it is in the granule membrane.  Previous studies have shown that, 

although secretory granules are acidic, the lysosomal membrane is ruptured upon 

degranulation and the pH is no longer maintained (Dragonetti et al., 2000).  It is 
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therefore also possible that LysoTracker Red, an acidotropic molecular marker, 

undergoes loss of fluorescence as a result of the change in vesicle pH associated with 

secretion.   

 

Analysis of mastoparan (MP) analogue treatment of RBL-2H3 cells indicated that 

two pools of secretory vesicles were responsible for the exocytosis of different 

secretory markers. These appear to be regulated by different molecular mechanisms 

(Farquhar et al., 2002).  Peptide-induced stimulation of PLD resulted in exocytosis of 

β-hexosaminidase but not 5-hydroxytryptamine (5-HT – Farquhar et al., 2002).  

LysoTracker Red was more likely to label both pools of vesicles as this molecular 

marker labels all acidic organelles, including secretory vesicles.  It is therefore 

plausible that the novel fluorescent lipid may label only one of the pools of secretory 

vesicles.  This distinction between the two pools would correspond to data indicating 

only 50% co-localisation between the lysosomal marker and novel lipid in RBL-2H3 

cells.  The novel lipid may therefore only label vesicles responsible for PLD-

dependent β-hexosaminidase secretion as treatment with primary alcohol 

demonstrates that the integrity of vesicle labelling is dependent on basal PLD activity 

(see Fig. 3.36).    

 

Functional inhibition of PLD and the accumulation of Ptd-alcohol have previously 

demonstrated a role for PLD in intracellular processes as well as providing a 

convenient PLD assay in vivo (Wakelam et al., 1995; Frohman et al., 1999).  RBL-

2H3 cells treated with butan-1-ol (0.3%) rapidly lost the characteristic punctate 

localisation of the novel fPtdCho.  Importantly, treatment with butan-2-ol (0.3%) did 

not change the intracellular labelling by the novel fPtdCho.  Furthermore, levels of 

primary alcohol used to inhibit basal PLD activity are consistent with those 

optimised in previous studies (Brown et al., 1998).  The dramatic effect of butan-1-ol 

treatment on PtdCho-labelled cells strongly suggests that basal PLD-catalysed 

PtdCho turnover and generation of PtdOH is required for the punctate localisation 

and integrity of fluorescent PtdCho in RBL-2H3 cells.   

 

Basal PLD activity (as determined using Ptd-alcohol accumulation) is generally 

regarded low relative to PLD activity measured after PMA or agonist stimulation 

(Gruchalla et al., 1990; Edwards and Murray, 1995).  However, as measurement of 
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Ptd-alcohol accumulation has been used comparatively, the role of low basal PLD 

activity has not been extensively investigated (Colley et al., 1997; Slaaby et al., 1998; 

Kim et al., 1999; O‟Luanaigh et al., 2002).   

 

Mammalian PLD2 over-expression has indicated a high level of constitutive activity 

relative to PLD1 activity (Colley et al., 1997; Slaaby et al., 1998; Kim et al., 1999).  

The turnover of PtdOH generated in vivo by basal PLD2 activity is possibly a 

requirement for the integrity of vesicle membranes and ultimately punctate 

localisation of the novel fPtdCho.  Antigenic stimulation of RBL-2H3 cells in the 

context of IgE resulted in membrane ruffling and β-hexosaminidase secretion, and 

PLD2 is reportedly responsible for membrane ruffling during both antigenic and 

PMA stimulation of RBL-2H3 cells (O‟Luanaigh et al., 2002; Sarri et al., 2003).  

RBL-2H3 cells labelled with fPtdCho, treated with butan-1-ol and antigenically 

stimulated using IgE did not display obvious membrane ruffling.  PLD-dependent 

membrane ruffling in response to antigenic stimulation could therefore be 

functionally inhibited using primary alcohol (O‟Luanaigh et al., 2002).  Functional 

inhibition of PLD2 with butan-1-ol would also inhibit PtdOH turnover changing 

native membrane constitution and potentially resulting in the loss of punctate 

fPtdCho-labelling.     

  

Analysis of human PLD1b and PLD2a in epithelial, endothelial and fibroblast cell 

lines indicated that both PLD isoforms utilise a structurally similar PtdCho pool in 

vivo and generate an identical PtdOH product enriched in mono- and di-unsaturated 

fatty acids (Pettitt et al., 2001).  Although PLD2 has higher basal activity than PLD1, 

transient expression of GFP-PLD2 in RBL-2H3 cells localised this protein to the 

plasma membrane (Sarri et al., 2003).  RBL-2H3 cells transiently expressing eGFP-

PLD1b showed co-localisation between the lipase and markers for secretory granules 

and lysosomes (Brown et al., 1998).  The fPtdCho has 50% localisation with the 

lysosomal marker LysoTracker Red, which corresponds to previously characterised 

PLD1 expression in RBL-2H3 cells.  This indicates that low basal PLD1 activity 

(and consequent PtdOH production) could be responsible for maintaining vesicle 

membrane integrity, thus providing some explanation for punctate PtdCho-labelling.   
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The structure of PtdCho may also contribute to function and intracellular localisation 

and contribute to punctiform fPtdCho-labelling seen in RBL-2H3 cells.  PtdCho 

constitutes approximately 30-50% of total mammalian cell phospholipid content and 

is a cylindrical lipid (Hodgkin et al., 1998; van Meer and Sprong, 2004).  PLD 

catalysed hydrolysis of PtdCho produces mono-unsaturated PtdOH, which is a cone 

shaped lipid (Hodgkin et al., 1998).  A patch of cone shaped lipids within a 

monolayer should adopt a negative curvature as the lipid heads are able to pack more 

closely together than their tail (van Meer and Sprong, 2004).  Furthermore, cone 

shaped lipids (such as PtdOH) contribute to membrane fusion and fission, whereas 

cylindrical lipids (such as PtdCho) resist bending and fusion (Chernomordik and 

Kozlov, 2003; Koojiman et al., 2003; van Meer and Sprong, 2004). The curved cone 

shape of PtdOH generated by PLD-mediated catalysis may therefore be required for 

the stability and integrity of the novel fluorescent lipid in punctiform structures. 

  

PtdOH is also an established second messenger and mediates a variety of cellular 

processes ranging from targeting effectors responsible for promoting cell growth to 

translational control (Fang et al., 2003; Stahelin et al., 2005).  Inhibition of PLD-

catalysed generation of PtdOH creates deficiencies in a range of processes, including 

actin stress fibre formation, vesicle fusion and secretion. PLD-catalysed production 

of mono- or di-unsaturated PtdOH is thought to raise intracellular levels of PtdOH 

(possibly above a threshold), triggering their roles as cell signalling molecules 

(Pettitt et al., 2001).  As PtdOH is a signalling molecule, the integrity of fPtdCho-

labelling of RBL-2H3 cells may depend on that activity on one of its range of 

effectors.   

 

PtdOH produced by PLD-mediated hydrolysis of PtdCho is an activator of 

phosphatidylinositol 4-phosphate 5-kinase (PtdIns 4-P 5-kinase), which is in turn 

responsible for production of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 – 

Mortiz et al., 1992).  Although PtdIns(4,5)P2 is a known activator of both PLD1 and 

PLD2, it comprises only a small part of the lipid environment and is therefore 

unlikely to contribute greatly to membrane integrity.  PtdOH is also an effector of 

another lipid kinase, sphingosine kinase-1, which phosphorylates sphingosine to 

produce sphingosine 1-phosphate (Stahelin et al., 2005).  Sphingosine 1-phosphate is 

known as a bioactive lipid which promotes cell growth and inhibits programmed cell 
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death (Stahelin et al., 2005).  Furthermore, sphingosine 1-phosphate generation 

increases in immune cells (such as monocytes and marcophages) upon receptor 

cross-linking and PLD activation (Melendez and Allen, 2002; Stace and Ktistakis, 

2006).  As PtdOH is an activator of sphingosine 1-kinase and PLD activation 

correlates with levels of sphingosine 1-phosphate, the levels of this lipid may also aid 

maintenance of punctate fPtdCho labelling.   

 

The Raf-1 kinase is an important component of the MAP signalling cascade (as it is a 

MAP kinase kinase kinase) and binding PtdOH may facilitate translocation to the 

plasma membrane (Ghosh et al., 1996; Hodgkin et al., 1998; Anderson et al., 2002).  

The translocation of Raf-1 to the plasma membrane in Madin-Derby canine kidney 

(MDCK) cells was PLD-dependent as translocation was inhibited following 

treatment with primary alcohol (Ghosh et al., 1996; Hodgkin et al., 1998).  

Treatment of RBL-2H3 cells with butan-1-ol also potentially inhibited Raf-1 with 

downstream implications on the MAP kinase signalling cascade, which may also 

have influenced labelling with the novel PtdCho.  PtdOH is also an effector of 

protein kinase Cε (PKCε), a novel PKC with an N-terminal C2 domain (Corbalán-

Garcia et al, 2003).   PLD-generated PtdOH is an essential activator of PKCε 

(through its C2 domain) and both PtdOH and PLC-generated diacylglycerol (DAG) 

regulate plasma membrane localisation in RBL-2H3 cells (Jose Lopez-Andreo et al., 

2003).  Although the events downstream of PKCε are not well characterised, PKCε is 

another possible effector of PLD-generated PtdOH, which could impact on labelling 

of the novel PtdCho in RBL-2H3 cells.  Finally, the mammalian target of rapamycin 

(mTOR) is another known PtdOH target in vivo (Fang et al., 2003).  PLD-generated 

PtdOH possibly activates mTOR which then goes on to phosphorylate downstream 

targets involved in translational control (Fang et al., 2003; Stace and Ktistakis, 2006). 

 

Of the five PtdOH targets identified above (phosphatidylinositol 4,5-bisphosphate, 

sphingosine 1-phosphate, Raf-1, protein kinase Cε and the mammalian target for 

rapamycin) there is little evidence to suggest that sphingosine 1-phosphate 

production as a novel extracellular signal has an impact on intracellular vesicle 

integrity and/or movement.  Similarly, Raf-1 is involved in regulating mitogenic 

signalling via activation of the MAP kinase cascade, although there is little evidence 

to support its role in maintaining intracellular vesicles.  Whilst PKCε is involved in a 
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number of important processes by regulating factors and phosphorylating or 

interacting with a multitude of substrates (including the cytoskeleton), there is little 

direct evidence of its role in maintenance vesicles (Das et al., 2009).  Similarly, 

mTOR is involved in translational control by phosphorylating downstream targets 

(such as those responsible for the recruitment of ribosomes to mRNA – Fang et al., 

2003; Stace and Ktistakis, 2006) and so membrane integrity is unlikely to be 

dependent on the mTOR-PtdOH interaction.   The production of PtdIns(4,5)P2 from 

PtdIns(4)P is known to play a significant role in signalling and may have a function 

in vesicle organisation and integrity (Hammond et al., 2009).  A recent report 

suggests a role for PtdIns(4)P in regulating the Golgi apparatus and highlights the 

possibility that there are distinct pools of PtdIns(4)P and PtdIns(4,5)P2 in the Golgi 

apparatus and plasma membrane (Hammond et al., 2009).  Regulation of the 

conversion of PtdIns(4)P to PtdIns(4,5)P2 via PLD may therefore have a distinct role 

to play in regulating Golgi-plasma membrane vesicular traffic.   

 

6.3:  The association between Cherry-PLD1b and its novel substrate in HeLa 

cells 

 

Transiently expressed Cherry-labelled PLD1b showed co-localisation with a 

hydrophobic fluorescently dequenched PtdCho analogue (fPtdCho) in resting HeLa 

cells.  The degree of proximity of lipase and substrate could be inferred from 

experiments using Förster (or fluorescence) resonance energy transfer (FRET) 

detected via fluorescence recovery after photobleaching (FRAP).  FRET refers to a 

dipole-dipole interaction between two suitable fluorophores (i.e. a donor and 

acceptor) that can occur when fluorophores are within approximately 10 nm of each 

other (Festy et al., 2007).  The suitability of FRET for the fluorophores is dependent 

on the donor‟s fluorescence emission spectrum overlapping with the acceptor‟s 

absorption spectrum when the two are in the correct orientation. In this case, the 

wide emission spectrum of the fPtdCho BODIPY group ensures it is a suitable donor 

for the Cherry label of PLD1b to act as an acceptor (Festy et al., 2007). Experiments 

using FRET technology increased the resolution of images showing co-localisation 

between substrate and lipase beyond that achieved by methods offering only co-

localisation or simply overlaying of pixels.  The spatiotemporal interaction of 

fPtdCho and Cherry-PLD1b was analysed using FRET by FRAP.  Acceptor 
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fluorescence (Cherry-PLD1b) was bleached and the levels of donor (fPtdCho) 

fluorescence recovery measured using confocal software.  Our preliminary FRET 

efficiency and mean photobleaching (i.e. of the donor) were comparable with other 

studies using similar techniques to analyse dynamic intracellular protein-protein 

interactions (Gu et al., 2004; van Munster et al., 2005).  FRET-FRAP technology 

enabled the visualisation and analysis of proximity between lipase and substrate in 

living cells.  This work lays the foundations for further work to isolate the sites and 

orientation of interactions between substrate and lipase in vivo.       

 

Analysis of the novel fPtdCho and Cherry-PLD1b in vivo provided valuable insight 

into their spatiotemporal interactions.  Although the novel lipid was useful in 

preliminary characterisation of interactions between Cherry-PLD1b and a PtdCho 

analogue in living cells, fPtdCho may not be suitable for further development of a 

live in vivo PLD assay.  When the novel fPtdCho is hydrolysed by PLD in vivo, its 

fluorescent BODIPY label attached to the soluble choline head group is cleaved from 

the lipid, however we were unable to detect an increase in fluorescence.  A number 

of factors may have contributed to our inability to detect changes in fluorescence of 

the novel fluorescent PtdCho in living cells.  First, the high basal fluorescence of the 

intact lipid, which is derived from incomplete quenching, makes determining 

subsequent changes in fluorescence difficult.  This is compounded by the fact that 

vesicles can move in and out of the focal plane.  In addition, our in vitro data shows 

that extensive metabolism of microgram quantities of the lipid by purified 

recombinant PLD only results in doubling of fluorescence.  Thus the signal-to-noise 

ratio for the lipid in terms of it being intact or metabolised to a fluorescent choline is 

sub-optimal.  Finally, it is plausible that the lipid, when added to cells, cannot be 

metabolised, although in vitro data presented here suggests that it is a suitable PLD 

substrate.  Detectable increases in fluorescence may be achieved by attaching the 

fluorophore label to the lipid end of PtdCho and quenching groups to the soluble 

choline headgroup.  However, this new substrate would have to be re-established as a 

PLD substrate in vitro.  Furthermore, the fluorescent PtdOH produced by PLD-

mediated hydrolysis of this new PtdCho substrate could be as metabolically labile as 

native PtdOH.  The rapid dephosphorylation of PtdOH to DAG by PtdOH 

phosphatase would make it difficult to detect increases in fluorescence and ensure 

that the fluorescence being detected is in fact PtdOH and not DAG.  Although 
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obstacles would need to be overcome using a new PLD substrate analogue, the 

foundations of a real-time in vivo PLD assay have been established using FRET by 

FRAP technology.  

 

6.4: Identifying the intracellular clusters formed by PLD1b and its novel 

substrate 

   

Whilst PLD1 co-localises with calveolin-1 and the EGF receptor (EGFR) on the 

plasma membrane in response to EGF (Han et al., 2002), our data suggests that there 

is also a secondary phenotype.  Our data confirms that Cherry-PLD1b translocates to 

the plasma membrane but also clusters in a distinct intracellular region within the 

cytoplasm of HeLa cells following EGF stimulation.  The cellular response is 

consistent and reliable, although previous studies have not characterised this 

cytoplasmic aggregation of PLD1b upon stimulation. 

 

PLD activity is necessary for the endocytosis of EGFR which can be functionally 

inhibited using primary alcohol (Shen et al., 2001).  Treatment of cells using primary 

alcohol also inhibited the budding of nascent vesicles from the trans-Golgi network 

(TGN), suggesting a dependence on PLD-generated PtdOH (Chen et al., 1997).  

Endocytosed EGFR is eventually targeted for degradation after EGF stimulation; 

however in fibroblasts over-expressing EGFR there is a lag period of up to 4 hours 

between receptor endocytosis and degradation (Shen et al., 2001).  The early 

endosomes which are responsible for EGFR endocytosis cycle between the plasma 

membrane and TGN (Gu et al., 2001).  Cherry-PLD1b may co-localise with EGFR 

on the plasma membrane and with the intracellular membranes of the TGN or early 

endosomes as there is evidence of cycling between these structures.  Arf1, a known 

PLD1 activator, also localises to the TGN where it could stimulate the PLD-mediated 

PtdOH required for budding of nascent secretory vesicles shown in endocrine cells 

(Chen et al., 1997).  Importantly, over-expression of wildtype PLD accelerated EGF-

induced EGFR endocytosis whereas the catalytically inactive PLD delayed 

endocytosis (Shen et al., 2001). 

 

The complete contribution of endocytic trafficking to EGFR physiology remains 

unclear.  However, the small molecular weight (25kDa) GTP binding protein Rab5 is 
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a possible candidate for the regulation of EGFR trafficking (Dinneen and Ceresa, 

2004).  Rab5 localises to the cytoplasmic side of the plasma membrane and the early 

endosomes (Chavrier et al., 1990). Rab5 is geranylgeranylated on the carboxyl 

terminus which facilitates its association with the plasma membrane (Sanford et al., 

1995; Dinneen and Ceresa, 2004).  Over-expression of dominant negative Rab5 

delays EGFR degradation in response to EGF stimulation, suggesting that Rab5 may 

mediate EGFR endocytic trafficking distal from the plasma membrane and is a 

regulator of vesicle fusion (Dinneen and Ceresa, 2004).  EGFR is known to cycle 

between early endosomes and the plasma membrane and so the characteristic change 

in intracellular Cherry-PLD1b expression in response to EGF stimulation is possibly 

co-localisation with the EGFR. 

 

Section 6.5: Future work and experimental strategies  

 

In RBL-2H3 cells, PLD-generated PtdOH was identified as essential to maintenance 

of the integrity of punctate fPtdCho-labelling.  This project was unable to confirm 

which PLD isoform was essential for basal PtdOH generation in RBL-2H3 cells.  

Depleting endogenous PLD expression using PLD1 or PLD2 small interfering RNA 

(siRNA – Lehman et al., 2006)) would identify the isoform required for PtdOH 

turnover which is essential for punctate fPtdCho-labelling of RBL-2H3 cells.  RBL-

2H3 cells transiently expressing dominant negative PLD1b or PLD2a mutants would 

also identify which PLD isoform is responsible to the punctate labelling of fPtdCho 

labelled RBL-2H3 cells.  The levels of protein expression associated with both 

siRNA knockdown and over-expression of PLD1 or PLD2 could be quantified using 

established Western blotting techniques.    

 

Localisation between Cherry-PLD1b and Rac1 in EGF stimulated HeLa cells has 

been characterised in fixed cells.  Mutagenesis of the N-terminal PLD1b region 

which interacts with Rho family members (McDermott et al., 2004) may alter the co-

localisation in response to ligand stimulation.  In addition, co-localisation between 

Cherry-PLD1b and eGFP-Rac1 in EGF stimulated HeLa cells would be supported by 

live analysis of co-localisation using FRAP by FRET analysis. 
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HeLa cells labelled with the novel fluorescent PtdCho (fPtdCho) and stimulated with 

EGF showed the same intracellular clustering as Cherry-PLD1b.  Localisation has 

been established between the novel fluorescent PtdCho (fPtdCho) and Cherry-PLD1b 

in resting HeLa cells.  Further experiments using FRET by FRAP technology would 

establish if there is co-localisation between Cherry-PLD1b and clustering of fPtdCho 

in response to EGF stimulation.  In addition, HeLa cells transiently expressing 

Cherry-labelled galactosyltransferase could identify if there is co-localisation 

between the novel fPtdCho and the TGN in response to EGF-stimulation (Roth and 

Berger, 1982; Liopis et al., 1998).  Antibody markers (such as TGN38 or TGN46) 

could also be used to further investigate possible localisation between Cherry-PLD1b 

and TGN upon EGF stimulation in fixed cells (Nokes et al., 2008).  Alternatively, 

transient co-expression of Cherry-PLD1b with an eGFP labelled trans-Golgi 

cisternae marker, such as the type II membrane anchored protein 

galactosyltransferase, could be used to detect co-localisation in response to ligand 

stimulation (Roth and Berger, 1982; Liopis et al., 1998). Intracellular clustering of 

both Cherry-PLD1b and fPtdCho in EGF-stimulated HeLa cells may correspond to 

the endosome.  Similarly, FRET by FRAP technology could identify potential 

localisation between PLD1b or fPtdCho with early endosome markers, such as early 

endosome-associated antigen 1 (EEA1 – Mu et al., 1995), labelled with either green 

or cherry fluorescent protein.  

 

Localisation between Cherry-PLD1b and the novel fPtdCho substrate has been 

characterised utilising FRET by FRAP confocal microscopy.  Further confirmation 

of the region of PLD1b which is associated with the substrate in vivo could be 

characterised by mutagenesis of key residues.  Modification of the HKD motif 

associated with PLD1b catalytic activity may impact on the co-localisation observed 

between lipase and substrate in resting HeLa cells.  Although this project has 

established the foundations of a real-time in vivo PLD assay, further experiments are 

required to accomplish a truly quantitative assay.     
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Appendix I: Primer names, sequences and orientations used for cloning 

 

Primer Name Primer Sequence Forward or Reverse 

1491  5' - TA GAA GGC ACA GTC 

GAG G - 3' 

Reverse primer for the 

plasmid pcDNA3.1(-) 

T7  5' - AAT ACG ACT CAC 

TAT AG - 3' 

Forward primer upstream 

of multiple cloning site of 

pcDNA3.1(-) 

PLD1b Xho Reverse 5' - TCT GTT GTG GCA 

TGA TAG - 3' 

Reverse primer for the 

sequence between XhoI 

and PvulI of PLD1b 

Forward Xho PLD2 5' - TGG CTG GTG GTG 

AAG GAC T - 3' 

Forward primer from the 

XhoI site of PLD2 

ApaI PLD2 5' - ACT TCC TCT ACA 

TTG AGA - 3' 

Forward primer from the 

ApaI site of PLD2 (3036) 

Inside Xho PLD2 5' - ATG TAC AGC AGG 

AAG GAG T - 3' 

Reverse primer beginning 

in the XhoI restriction site 

of PLD2a 

XmnR PLD2 5' - TCC GCC CAT CTG 

AGC AGC TAA T - 3' 

Reverse primer for XmnI 

of PLD2 (3040) 

dsRed Sequencing 5' - TAC ACC GTG GTG 

GAG CAG TA - 3' 

Forward primer used to 

sequence monomeric 

dsRed after insertion into 

pcDNA3.1(-) plasmid 

PLD2a Inside XhoI 

Reverse 

5' - TGT ACA GCA GGA 

AGG AGT CCT - 3' 

Reverse primer beginning 

inside the XhoI restriction 

site of PLD2a 

PLD1b YLTK F 5' - TAC TTG ACA AAG 

ATA CTA A -3' 

Forward primer covering 

the YLTK sequence of 

PLD1b 

EcoRV Forward 5' -  TAT CGG TCC CTT 

TCT TAT CC - 3' 

Forward primer upstream 

of the EcoRV (3760) 

restriction site of PLD1b  

295PheS Forward 5' - TGG AAT CCG AAT 

TGA TAA - 3' 

Forward primer covering 

Phe (295) of PLD1b 

MHD542A-S Forward 5' - TTC AAA ACT GAA 

AGG AAT AGG A -3' 

Forward primer for 

sequence between HindIII 

(3078) and Pst (3616) 

ERV-PLD1b-F 5' - CAA ACA ACA GCC 

CAT GAG TT - 3' 

Forward primer starting 

prior to EcoRV site of 

PLD1b (815) 

dsRed sequencing R 5' - TGG TAT GGC TGA 

TTA TGA TCA - 3' 

Reverse primer of 

monomeric dsRed used for 

sequencing after insertion 

into pcDNA3.1(-) 

Pst Reverse 5' - AGC GCT GGA TGA 

AGT GA -3' 

Reverse primer of PLD1b 

downstream of Pst1 

(3616) 

PLD1b (start) F 5' - ATG TCA CTG AAA Forward primer starting at 
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AAC GAG CCA - 3' ATG of PLD1b 

PLD1b Reverse 5' - TTA AGT CCA AAC 

CTC CAT GGG CA - 3' 

Reverse primer of PLD1b 

PLD2a (start) F 5' - ATG ACG CGC ACC 

CCT GAG A - 3' 

Forward primer starting at 

ATG of PLD2a 

PLD2a Reverse 5' - CTA TGT CCA CAC 

TTC TAG GGG GAT - 3' 

Reverse primer which 

binds to the PLD2a stop 

codon 

Move dsRed F XbaI 5' - GGG TCT AGA ATG 

GAC AAC ACC GAG GAC 

GTC A - 3' 

Forward primer used to 

clone monomeric dsRed 

into pcDNA3.1(-) and 

insert an XbaI restriction 

site at the N-terminus 

Move dsRed R 5' - TAC CGT CGA CTG 

CAG AAT TCG A - 3' 

Reverse primer used to 

insert monomeric dsRed 

into pcDNA3.1(-) 

XmnI PLD2a 5' - ACT TCC TCT ACA 

TTG AGA - 3' 

Forward primer which 

binds to XmnI (3640) of 

PLD2a 

PLD1b Inside Xho I 5' - AGG CTC CTC TCT 

GAC GTT - 3' 

Reverse primer to detect 

the correct orientation of 

XhoI (2152) 

Cherry Forward 5' - GGG GTC AAT GGT 

GAG CAA GGG CGA GGA - 

3' 

Forward primer used to 

insert the Cherry sequence 

into pcDNA3.1(-) 

Cherry Reverse 5' - ATC CTT GTA CAG 

CTC GTC CAT - 3' 

Reverse primer used to 

insert the Cherry sequence 

into pcDNA3.1(-) 
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Appendix II: Cherry-PLD1b DNA sequence 

 

ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCG

CCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCG

CCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAG

TTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAA

GGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGT

TGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGgatATGTCACTGAAAAACGAGCCA

CGGGTAAATACCTCTGCACTGCAGAAAATTGCTGCTGACATGAGTAATATCATAGAAAATCTGGACACGCGGGAACTCCACTTTGAGGGAGAGGAGGTAGACTACGACGTGTCTCCCAGCGA

TCCCAAGATACAAGAAGTGTATATCCCTTTCTCTGCTATTTATAACACTCAAGGATTTAAGGAGCCTAATATACAGACGTATCTCTCCGGCTGTCCAATAAAAGCACAAGTTCTGGAAGTGG

AACGCTTCACATCTACAACAAGGGTACCAAGTATTAATCTTTACACTATTGAATTAACACATGGGGAATTTAAATGGCAAGTTAAGAGGAAATTCAAGCATTTTCAAGAATTTCACAGAGAG

CTGCTCAAGTACAAAGCCTTTATCCGCATCCCCATTCCCACTAGAAGACACACGTTTAGGAGGCAAAACGTCAGAGAGGAGCCTCGAGAGATGCCCAGTTTGCCCCGTTCATCTGAAAACAT

GATAAGAGAAGAACAATTCCTTGGTAGAAGAAAACAACTGGAAGATTACTTGACAAAGATACTAAAAATGCCCATGTATAGAAACTATCATGCCACAACAGAGTTTCTTGATATAAGCCAGC

TGTCTTTCATCCATGATTTGGGACCAAAGGGCATAGAAGGTATGATAATGAAAAGATCTGGAGGACACAGAATACCAGGCTTGAATTGCTGTGGTCAGGGAAGAGCCTGCTACAGATGGTCA

AAAAGATGGTTAATAGTGAAAGATTCCTTTTTATTGTATATGAAACCAGACAGCGGTGCCATTGCCTTCGTCCTGCTGGTAGACAAAGAATTCAAAATTAAGGTGGGGAAGAAGGAGACAGA

AACGAAATATGGAATCCGAATTGATAATCTTTCAAGGACACTTATTTTAAAATGCAACAGCTATAGACATGCTCGGTGGTGGGGAGGGGCTATAGAAGAATTCATCCAGAAACATGGCACCA

ACTTTCTCAAAGATCATCGATTTGGGTCATATGCTGCTATCCAAGAGAATGCTTTAGCTAAATGGTATGTTAATGCCAAAGGATATTTTGAAGATGTGGCAAATGCAATGGAAGAGGCAAAT

GAAGAGATTTTTATCACAGACTGGTGGCTGAGTCCAGAAATCTTCCTGAAACGCCCAGTGGTTGAGGGAAATCGTTGGAGGTTGGACTGCATTCTTAAACGAAAAGCACAACAAGGAGTGAG

GATCTTCATAATGCTCTACAAAGAGGTGGAACTCGCTCTTGGCATCAATAGTGAATACACCAAGAGGACTTTGATGCGTCTACATCCCAACATAAAGGTGATGAGACACCCGGATCATGTGT

CATCCACCGTCTATTTGTGGGCTCACCATGAGAAGCTTGTCATCATTGACCAATCGGTGGCCTTTGTGGGAGGGATTGACCTGGCCTATGGAAGGTGGGACGACAATGAGCACAGACTCACA

GACGTGGGCAGTGTGAAGCGGGTCACTTCAGGACCGTCTCTGGGTTCCCTCCCACCTGCCGCAATGGAGTCTATGGAATCCTTAAGACTCAAAGATAAAAATGAGCCTGTTCAAAACCTACC

CATCCAGAAGAGTATTGATGATGTGGATTCAAAACTGAAAGGAATAGGAAAGCCAAGAAAGTTCTCCAAATTTAGTCTCTACAAGCAGCTCCACAGGCACCACCTGCACGACGCAGATAGCA

TCAGCAGCATTGACAGCACCTCCAATACCGGGTCCATCCGTAGTTTACAGACAGGTGTGGGAGAGCTGCATGGGGAAACCAGATTCTGGCATGGAAAGGACTACTGCAATTTCGTCTTCAAA

GACTGGGTTCAACTTGATAAACCTTTTGCTGATTTCATTGACAGGTACTCCACGCCCCGGATGCCCTGGCATGACATTGCCTCTGCAGTCCACGGGAAGGCGGCTCGTGATGTGGCACGTCA

CTTCATCCAGCGCTGGAACTTCACAAAAATTATGAAATCAAAATATCGGTCCCTTTCTTATCCTTTTCTGCTTCCAAAGTCTCAAACAACAGCCCATGAGTTGAGATATCAAGTGCCTGGGT

CTGTCCATGCTAACGTACAGTTGCTCCGCTCTGCTGCTGATTGGTCTGCTGGTATAAAGTACCATGAAGAGTCCATCCACGCCGCTTACGTCCATGTGATAGAGAACAGCAGGCACTATATC

TATATCGAAAACCAGTTTTTCATAAGCTGTGCTGATGACAAAGTTGTGTTCAACAAGATAGGCGATGCCATTGCCCAGAGGATCCTGAAAGCTCACAGGGAAAACCAGAAATACCGGGTATA

TGTCGTGATACCACTTCTGCCAGGGTTCGAAGGAGACATTTCAACCGGCGGAGGAAATGCTCTACAGGCAATCATGCACTTCAACTACAGAACCATGTGCAGAGGAGAAAATTCCATCCTTG

GACAGTTAAAAGCAGAGCTTGGTAATCAGTGGATAAATTACATATCATTCTGTGGTCTTAGAACACATGCAGAGCTCGAAGGAAACCTAGTAACTGAGCTTATCTATGTCCACAGCAAGTTG

TTAATTGCTGATGATAACACTGTTATTATTGGCTCTGCCAACATAAATGACCGCAGCATGCTGGGAAAGCGTGACAGTGAAATGGCTGTCATTGTGCAAGATACAGAGACTGTTCCTTCAGT

AATGGATGGAAAAGAGTACCAAGCTGGCCGGTTTGCCCGAGGACTTCGGCTACAGTGCTTTAGGGTTGTCCTTGGCTATCTTGATGACCCAAGTGAGGACATTCAGGATCCAGTGAGTGACA

AATTCTTCAAGGAGGTGTGGGTTTCAACAGCAGCTCGAAATGCTACAATTTATGACAAGGTTTTCCGGTGCCTTCCCAATGATGAAGTACACAATTTAATTCAGCTGAGAGACTTTATAAAC

AAGCCCGTATTAGCTAAGGAAGATCCCATTCGAGCTGAGGAGGAACTGAAGAAGATCCGTGGATTTTTGGTGCAATTCCCCTTTTATTTCTTGTCTGAAGAAAGCCTACTGCCTTCTGTTGG

GACCAAAGAGGCCGTCGTGCCCATGGAGGTTTGGACTTAA 

 

 



323 

 

Appendix III: Cherry-PLD1b protein sequence 

 

M  V  S  K  G  E  E  D  N  M  A  I  I  K  E  F  M  R  F  K  V  H  M  E  G  S  V  N  G  H  E  F  E  I  E  G  E  G  E  G  R  

P  Y  E  G  T  Q  T  A  K  L  K  V  T  K  G  G  P  L  P  F  A  W  D  I  L  S  P  Q  F  M  Y  G  S  K  A  Y  V  K  H  P  A  

D  I  P  D  Y  L  K  L  S  F  P  E  G  F  K  W  E  R  V  M  N  F  E  D  G  G  V  V  T  V  T  Q  D  S  S  L  Q  D  G  E  F  

I  Y  K  V  K  L  R  G  T  N  F  P  S  D  G  P  V  M  Q  K  K  T  M  G  W  E  A  S  S  E  R  M  Y  P  E  D  G  A  L  K  G  

E  I  K  Q  R  L  K  L  K  D  G  G  H  Y  D  A  E  V  K  T  T  Y  K  A  K  K  P  V  Q  L  P  G  A  Y  N  V  N  I  K  L  D  

I  T  S  H  N  E  D  Y  T  I  V  E  Q  Y  E  R  A  E  G  R  H  S  T  G  G  M  D  E  L  Y  K  D  M  S  L  K  N  E  P  R  V  

N  T  S  A  L  Q  K  I  A  A  D  M  S  N  I  I  E  N  L  D  T  R  E  L  H  F  E  G  E  E  V  D  Y  D  V  S  P  S  D  P  K  

I  Q  E  V  Y  I  P  F  S  A  I  Y  N  T  Q  G  F  K  E  P  N  I  Q  T  Y  L  S  G  C  P  I  K  A  Q  V  L  E  V  E  R  F  

T  S  T  T  R  V  P  S  I  N  L  Y  T  I  E  L  T  H  G  E  F  K  W  Q  V  K  R  K  F  K  H  F  Q  E  F  H  R  E  L  L  K  

Y  K  A  F  I  R  I  P  I  P  T  R  R  H  T  F  R  R  Q  N  V  R  E  E  P  R  E  M  P  S  L  P  R  S  S  E  N  M  I  R  E  

E  Q  F  L  G  R  R  K  Q  L  E  D  Y  L  T  K  I  L  K  M  P  M  Y  R  N  Y  H  A  T  T  E  F  L  D  I  S  Q  L  S  F  I  

H  D  L  G  P  K  G  I  E  G  M  I  M  K  R  S  G  G  H  R  I  P  G  L  N  C  C  G  Q  G  R  A  C  Y  R  W  S  K  R  W  L  

I  V  K  D  S  F  L  L  Y  M  K  P  D  S  G  A  I  A  F  V  L  L  V  D  K  E  F  K  I  K  V  G  K  K  E  T  E  T  K  Y  G  

I  R  I  D  N  L  S  R  T  L  I  L  K  C  N  S  Y  R  H  A  R  W  W  G  G  A  I  E  E  F  I  Q  K  H  G  T  N  F  L  K  D  

H  R  F  G  S  Y  A  A  I  Q  E  N  A  L  A  K  W  Y  V  N  A  K  G  Y  F  E  D  V  A  N  A  M  E  E  A  N  E  E  I  F  I  

T  D  W  W  L  S  P  E  I  F  L  K  R  P  V  V  E  G  N  R  W  R  L  D  C  I  L  K  R  K  A  Q  Q  G  V  R  I  F  I  M  L  

Y  K  E  V  E  L  A  L  G  I  N  S  E  Y  T  K  R  T  L  M  R  L  H  P  N  I  K  V  M  R  H  P  D  H  V  S  S  T  V  Y  L  

W  A  H  H  E  K  L  V  I  I  D  Q  S  V  A  F  V  G  G  I  D  L  A  Y  G  R  W  D  D  N  E  H  R  L  T  D  V  G  S  V  K  

R  V  T  S  G  P  S  L  G  S  L  P  P  A  A  M  E  S  M  E  S  L  R  L  K  D  K  N  E  P  V  Q  N  L  P  I  Q  K  S  I  D  

D  V  D  S  K  L  K  G  I  G  K  P  R  K  F  S  K  F  S  L  Y  K  Q  L  H  R  H  H  L  H  D  A  D  S  I  S  S  I  D  S  T  

S  N  T  G  S  I  R  S  L  Q  T  G  V  G  E  L  H  G  E  T  R  F  W  H  G  K  D  Y  C  N  F  V  F  K  D  W  V  Q  L  D  K  

P  F  A  D  F  I  D  R  Y  S  T  P  R  M  P  W  H  D  I  A  S  A  V  H  G  K  A  A  R  D  V  A  R  H  F  I  Q  R  W  N  F  

T  K  I  M  K  S  K  Y  R  S  L  S  Y  P  F  L  L  P  K  S  Q  T  T  A  H  E  L  R  Y  Q  V  P  G  S  V  H  A  N  V  Q  L  

L  R  S  A  A  D  W  S  A  G  I  K  Y  H  E  E  S  I  H  A  A  Y  V  H  V  I  E  N  S  R  H  Y  I  Y  I  E  N  Q  F  F  I  

S  C  A  D  D  K  V  V  F  N  K  I  G  D  A  I  A  Q  R  I  L  K  A  H  R  E  N  Q  K  Y  R  V  Y  V  V  I  P  L  L  P  G  

F  E  G  D  I  S  T  G  G  G  N  A  L  Q  A  I  M  H  F  N  Y  R  T  M  C  R  G  E  N  S  I  L  G  Q  L  K  A  E  L  G  N  

Q  W  I  N  Y  I  S  F  C  G  L  R  T  H  A  E  L  E  G  N  L  V  T  E  L  I  Y  V  H  S  K  L  L  I  A  D  D  N  T  V  I  

I  G  S  A  N  I  N  D  R  S  M  L  G  K  R  D  S  E  M  A  V  I  V  Q  D  T  E  T  V  P  S  V  M  D  G  K  E  Y  Q  A  G  

R  F  A  R  G  L  R  L  Q  C  F  R  V  V  L  G  Y  L  D  D  P  S  E  D  I  Q  D  P  V  S  D  K  F  F  K  E  V  W  V  S  T  

A  A  R  N  A  T  I  Y  D  K  V  F  R  C  L  P  N  D  E  V  H  N  L  I  Q  L  R  D  F  I  N  K  P  V  L  A  K  E  D  P  I  

R  A  E  E  E  L  K  K  I  R  G  F  L  V  Q  F  P  F  Y  F  L  S  E  E  S  L  L  P  S  V  G  T  K  E  A  V  V  P  M  E  V  

W  T  
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Appendix IV: Cherry-PLD1b plasmid map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pcDNA31(-) cherry-PLD1b 
(9223 basepairs) 

BglII 

(11) 
NdeI 

(482) 
ApaI 

(908) XbaI 

(914) 

PstI 
NcoI 
PvuII 

junction marker 
(1630) PstI 
(1670) 
KpnI 
(1918) 
XhoI 
(2100) 
PvuII 
(2258) BglII 
(2315) 
EcoRI 
(2471) EcoRI 

(2603) 
ClaI 
(2643) NdeI 

(2655) HindIII 
(3026) 

PstI 
(3564) 
EcoRV 
(3708) 
BamHI 
(3927) 

SacI 
(4163) SstI 
(4163) BamHI 
(4441) PvuII 
(4559) 

NcoI 
(4722) 
PstI 

(4744) 
EcoRI 

(4749) 
BstXI 

(4754) 
SpeI 

(4766) 
BamHI 

(4772) 
KpnI 

(4784) 
HindIII 

(4790) 
PvuII 

(5066) 

XmnI 

(5516) 

NcoI 

(5755) 
SmaI 

(5869) 

PstI 

(6107) 

NcoI 

(6490) 

PvuII 

(7231) 

PvuI 
(8666) 
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Appendix V: Cherry-PLD2a DNA sequence 

 

ATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCG

CCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCG

CCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAG

TTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCCTGAA

GGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGT

TGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGgatATGACGGCGACCCCTGAGAGC

CTCTTCCCCACTGGGGACGAACTGGACTCCAGCCAGCTCCAGATGGAGTCCGATGAGGTGGACACCCTGAAGGAGGGAGAGGACCCAGCCGACCGGATGCACCCGTTTCTGGCCATCTATGA

GCTTCAGTCTCTGAAAGTGCACCCCTTGGTGTTCGCACCTGGGGTCCCTGTCACAGCCCAGGTGGTGGGCACCGAAAGATATACCAGCGGATCCAAGGTGGGAACCTGCACTCTGTATTCTG

TCCGCTTGACTCACGGCGACTTTTCCTGGACAACCAAGAAGAAATACCGTCATTTTCAGGAGCTGCATCGGGACCTCCTGAGACACAAAGTCTTGATGAGTCTGCTCCCTCTGGCTCGTTTT

GCCGTTGCCTATTCTCCAGCCCGAGATGCAGGCAACAGAGAGATGCCCTCTCTACCCCGGGCAGGTCCTGAGGGCTCCACCAGACATGCAGCCAGCAAACAGAAATACCTGGAGAATTACCT

CAACCGTCTCTTGACCATGTCTTTCTATCGCAACTACCATGCCATGACAGAGTTCCTGGAAGTCAGTCAGCTGTCCTTTATCCCGGACTTGGGCCGCAAAGGACTGGAGGGGATGATCCGGA

AGCGCTCAGGTGGCCACCGTGTTCCTGGCCTCACCTGCTGTGGCCGAGACCAAGTTTGTTATCGCTGGTCCAAGAGGTGGCTGGTGGTGAAGGACTCCTTCCTGCTGTACATGTGCCTCGAG

ACAGGTGCCATCTCATTTGTTCAGCTCTTTGACCCTGGCTTTGAGGTGCGAGTGGGGAAAAGGAGCACGGAGGCACGGCACGGCGTGCGGATCGATACCTCCCACAGGTCCTTGATTCTCAA

GTGCAGCAGCTACCGGCAGGCACGGTGGTGGGCCCAAGAGATCACTGAGCTGGCACAGGGCCCAGGCAGAGACTTCCTACAGCTGCACCGGCATGACAGCTACGCCCCACCCCGGCCTGGGA

CCTTGGCCCGGTGGTTTGTGAATGGGGCAGGTTACTTTGCTGCTGTGGCAGATGCCATCCTTCGAGCTCAAGAGGAGATTTTCATCACAGACTGGTGGTTGAGTCCTGAGGTTTACCTGAAG

CGTCCGGCCCATTCAGATGACTGGAGACTGGACATTATGCTCAAGAGGAAGGCGGAGGAGGGTGTCCGTGTGTCTATTCTGCTGTTTAAAGAAGTGGAATTGGCCTTGGGCATCAACAGTGG

CTATAGCAAGAGGGCGCTGATGCTGCTGCACCCCAACATAAAGGTGATGCGTCACCCAGACCAAGTGACGTTGTGGGCCCATCATGAGAAGCTCCTGGTGGTGGACCAAGTGGTAGCATTCC

TGGGGGGACTGGACCTTGCCTATGGCCGCTGGGATGACCTGCACTACCGACTGACTGACCTTGGAGACTCCTCTGAATCAGCTGCCTCCCAGCCTCCCACCCCGCGCCCAGACTCACCAGCC

ACCCCAGACCTCTCTCACAACCAATTCTTCTGGCTGGGCAAGGACTACAGCAATCTTATCACCAAGGACTGGGTGCAGCTGGACCGGCCTTTCGAAGATTTCATTGACAGGGAGACGACCCC

TCGGATGCCATGGCGGGACGTTGGGGTGGTCGTCCATGGCCTACCGGCCCGGGACCTTGCCCGGCACTTCATCCAGCGCTGGAACTTCATCAAGACCACCAAGGCCAAGTACAAGACTCCCA

CATACCCCTACCTGCTTCCCAAGTCTACCAGCACGGCCAATCAGCTCCCCTTCACACTTCCAGGAGGGCAGTGCACCACCGTACAGGTCTTGCGATCAGTGGACCGCTGGTCAGCAGGGACT

CTGGAGAACTCTATCCTCAATGCCTACCTGCACACCATCAGGGAGAGCCAGCACTTCCTCTACATTGAGAATCAGTTCTTCATTAGCTGCTCAGATGGGCGGACGGTTCTGAACAAGGTGGG

CGATGAGATTGTGGACAGAATCCGGAAGGCCCACAAACAGGGGTGGTGTTACCGAGTCTACGTGCTTTTGCCCTTACTCCCTGGCTTCGAGGGTGACATCTCCACGGGCGGTGGCAACTCCA

TCCAGGCCATTCTGCACTTTACTTACAGGACCCTGTGTCGTGGGGAGTATTCAATCCTGCATCGCCTTAAAGCAGCCATGGGGACAGCATGGCGGGACTATATTTCCATCTGCGGGCTTCGT

ACACACGGAGAGCTGGGCGGGCACCCCGTCTCGGAGCTCATCTACATCCACAGCAAGGTGCTCATCGCAGATGACCGGACAGTCATCATTGGTTCTGCAAACATCAATGACCGGAGCTTGCT

GGGGAAGCGGGACAGTGAGCTGGCCGTGCTAATCGAGGACACAGAGACGGAACCATCCCTCATGAATGGGGCAGAGTATCAGGCGGGCAGGTTTGCCTTGAGTCTGCGGAAGCACTGCTTCA

GTGTGATTCTTGGAGCAAATACCCGGCCAGACTTGGATCTCCGAGACCCCATCTGTGATGACTTCTTCCAGTTGTGGCAAGACATGGCTGAGAGCAACGCCAATATCTATGAGCAGATCTTC

CGCTGCCTGCCATCCAATGCCACGCGTTCCCTGCGGACTCTCCGGGAGTACGTGGCCGTGGAGCCCTTGGCCACGGTCAGTCCCCCCTTGGCTCGGTCTGAGCTCACCCAGGTCCAGGGCCA

CCTGGTCCACTTCCCCCTCAAGTTCCTAGAGGATGAGTCTTTGCTGCCCCCGCTGGGTAGCAAGGAGGGCATGATCCCCCTAGAAGTGTGGACATAG 
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Appendix VI: Cherry-PLD2a protein sequence 
 
 

M  V  S  K  G  E  E  D  N  M  A  I  I  K  E  F  M  R  F  K  V  H  M  E  G  S  V  N  G  H  E  F  E  I  E  G  E  G  E  G  R  

P  Y  E  G  T  Q  T  A  K  L  K  V  T  K  G  G  P  L  P  F  A  W  D  I  L  S  P  Q  F  M  Y  G  S  K  A  Y  V  K  H  P  A  

D  I  P  D  Y  L  K  L  S  F  P  E  G  F  K  W  E  R  V  M  N  F  E  D  G  G  V  V  T  V  T  Q  D  S  S  L  Q  D  G  E  F  

I  Y  K  V  K  L  R  G  T  N  F  P  S  D  G  P  V  M  Q  K  K  T  M  G  W  E  A  S  S  E  R  M  Y  P  E  D  G  A  L  K  G  

E  I  K  Q  R  L  K  L  K  D  G  G  H  Y  D  A  E  V  K  T  T  Y  K  A  K  K  P  V  Q  L  P  G  A  Y  N  V  N  I  K  L  D  

I  T  S  H  N  E  D  Y  T  I  V  E  Q  Y  E  R  A  E  G  R  H  S  T  G  G  M  D  E  L  Y  K  D  M  T  A  T  P  E  S  L  F  

P  T  G  D  E  L  D  S  S  Q  L  Q  M  E  S  D  E  V  D  T  L  K  E  G  E  D  P  A  D  R  M  H  P  F  L  A  I  Y  E  L  Q  

S  L  K  V  H  P  L  V  F  A  P  G  V  P  V  T  A  Q  V  V  G  T  E  R  Y  T  S  G  S  K  V  G  T  C  T  L  Y  S  V  R  L  

T  H  G  D  F  S  W  T  T  K  K  K  Y  R  H  F  Q  E  L  H  R  D  L  L  R  H  K  V  L  M  S  L  L  P  L  A  R  F  A  V  A  

Y  S  P  A  R  D  A  G  N  R  E  M  P  S  L  P  R  A  G  P  E  G  S  T  R  H  A  A  S  K  Q  K  Y  L  E  N  Y  L  N  R  L  

L  T  M  S  F  Y  R  N  Y  H  A  M  T  E  F  L  E  V  S  Q  L  S  F  I  P  D  L  G  R  K  G  L  E  G  M  I  R  K  R  S  G  

G  H  R  V  P  G  L  T  C  C  G  R  D  Q  V  C  Y  R  W  S  K  R  W  L  V  V  K  D  S  F  L  L  Y  M  C  L  E  T  G  A  I  

S  F  V  Q  L  F  D  P  G  F  E  V  R  V  G  K  R  S  T  E  A  R  H  G  V  R  I  D  T  S  H  R  S  L  I  L  K  C  S  S  Y  

R  Q  A  R  W  W  A  Q  E  I  T  E  L  A  Q  G  P  G  R  D  F  L  Q  L  H  R  H  D  S  Y  A  P  P  R  P  G  T  L  A  R  W  

F  V  N  G  A  G  Y  F  A  A  V  A  D  A  I  L  R  A  Q  E  E  I  F  I  T  D  W  W  L  S  P  E  V  Y  L  K  R  P  A  H  S  

D  D  W  R  L  D  I  M  L  K  R  K  A  E  E  G  V  R  V  S  I  L  L  F  K  E  V  E  L  A  L  G  I  N  S  G  Y  S  K  R  A  

L  M  L  L  H  P  N  I  K  V  M  R  H  P  D  Q  V  T  L  W  A  H  H  E  K  L  L  V  V  D  Q  V  V  A  F  L  G  G  L  D  L  

A  Y  G  R  W  D  D  L  H  Y  R  L  T  D  L  G  D  S  S  E  S  A  A  S  Q  P  P  T  P  R  P  D  S  P  A  T  P  D  L  S  H  

N  Q  F  F  W  L  G  K  D  Y  S  N  L  I  T  K  D  W  V  Q  L  D  R  P  F  E  D  F  I  D  R  E  T  T  P  R  M  P  W  R  D  

V  G  V  V  V  H  G  L  P  A  R  D  L  A  R  H  F  I  Q  R  W  N  F  I  K  T  T  K  A  K  Y  K  T  P  T  Y  P  Y  L  L  P  

K  S  T  S  T  A  N  Q  L  P  F  T  L  P  G  G  Q  C  T  T  V  Q  V  L  R  S  V  D  R  W  S  A  G  T  L  E  N  S  I  L  N  

A  Y  L  H  T  I  R  E  S  Q  H  F  L  Y  I  E  N  Q  F  F  I  S  C  S  D  G  R  T  V  L  N  K  V  G  D  E  I  V  D  R  I  

R  K  A  H  K  Q  G  W  C  Y  R  V  Y  V  L  L  P  L  L  P  G  F  E  G  D  I  S  T  G  G  G  N  S  I  Q  A  I  L  H  F  T  

Y  R  T  L  C  R  G  E  Y  S  I  L  H  R  L  K  A  A  M  G  T  A  W  R  D  Y  I  S  I  C  G  L  R  T  H  G  E  L  G  G  H  

P  V  S  E  L  I  Y  I  H  S  K  V  L  I  A  D  D  R  T  V  I  I  G  S  A  N  I  N  D  R  S  L  L  G  K  R  D  S  E  L  A  

V  L  I  E  D  T  E  T  E  P  S  L  M  N  G  A  E  Y  Q  A  G  R  F  A  L  S  L  R  K  H  C  F  S  V  I  L  G  A  N  T  R  

P  D  L  D  L  R  D  P  I  C  D  D  F  F  Q  L  W  Q  D  M  A  E  S  N  A  N  I  Y  E  Q  I  F  R  C  L  P  S  N  A  T  R  

S  L  R  T  L  R  E  Y  V  A  V  E  P  L  A  T  V  S  P  P  L  A  R  S  E  L  T  Q  V  Q  G  H  L  V  H  F  P  L  K  F  L  

E  D  E  S  L  L  P  P  L  G  S  K  E  G  M  I  P  L  E  V  W  T  
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Appendix VII: Cherry-PLD1b plasmid map 

 

 

pcDNA31-Cherry-PLD2a.gcc 
(8907 bp) 

BglII 

(11) 
NdeI 

(482) 
ApaI 

(908) XbaI 

(914) 

PstI 
NcoI 
PvuI

I 

BamHI 

(1862) 
SmaI 

(2073) PvuII 

(2207) 
XhoI 

(2378) ClaI 

(2474) ApaI 

(2535) ApaI 

(2563) PvuII 

(2585) SacI 

(2691) SstI 

(2691) ApaI 

(2946) PvuII 

(3072) PvuII 

(3191) NcoI 

(3245) NcoI 

(3271) SmaI 

(3285) 
XmnI 

(3550) 
NcoI 

(3801) SacI 

(3881) SstI 

(3881) 

BglII 

(4206) MluI 

(4235) SacI 

(4313) SstI 

(4313) EcoRI 

(4433) BstXI 

(4438) SpeI 

(4450) 
BamHI 

(4456) 
KpnI 

(4468) 
HindIII 

(4474) 
PvuII 

(4750) XmnI 

(5200) 

NcoI 

(5439) 

SmaI 

(5553) 

PstI 

(5791) 

NcoI 

(6174) 

PvuII 

(6915) 

PvuI 
(8350) 


