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Abstract: We study n-point tree amplitudes of N = 4 super Yang-Mills theory and

N = 8 supergravity for general configurations of external particles of the two theories. We

construct generating functions for n-point MHV and NMHV amplitudes with general exter-

nal states. Amplitudes derived from them obey SUSY Ward identities, and the generating

functions characterize and count amplitudes in the MHV and NMHV sectors. The MHV

generating function provides an efficient way to perform the intermediate state helicity

sums required to obtain loop amplitudes from trees. The NMHV generating functions rely

on the MHV-vertex expansion obtained from recursion relations associated with a 3-line

shift of external momenta involving a reference spinor |X]. When the shifted amplitude

vanishes for large z for all |X], the sum of MHV-vertex diagrams is independent of |X] and

gives the correct amplitude. If the shifted amplitude does not vanish for large z, Cauchy’s

theorem includes a term at infinity. Examples show that special choices of |X] eliminate

this term and the MHV vertex expansion becomes valid at these values. We show that

the MHV-vertex expansion of the n-graviton NMHV amplitude for n = 5, 6, . . . , 11 is in-

dependent of |X] and exhibits the asymptotic behavior zn−12. Generating functions show

how the symmetries of supergravity can be implemented in the quadratic map between

supergravity and gauge theory embodied in the KLT and other similar relations between

amplitudes in the two theories.
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1. Introduction

Recent calculations and conjectures [1, 2] on the possible ultraviolet finiteness of N = 8

supergravity theory motivate a search for simplifications of the difficult perturbative calcu-

lations needed for further progress.1 Three important techniques used in those calculations

are the following:

i. The integrands of loop diagrams are constructed from tree amplitudes using general-

ized unitarity cuts. Even when external lines are gravitons, the unitarity sum includes

processes involving all possible states of the supergravity theory. New information

on these tree amplitudes can be helpful at the loop level.

ii. On-shell tree amplitudes in gauge theory and gravity are best expressed using the

spinor helicity formalism and are most easily obtained from the modern form of recur-

sion relations [9 – 12] which relate n-point amplitudes to those for smaller values of n.

The simplest expressions appear in the MHV sectors of each theory, but perturbative

calculations have reached the point where NMHV amplitudes are required. These

have been studied for external gluons and gravitons, but there is less information on

amplitudes involving other particles of the theory.

iii. Relatively complicated supergravity trees are constructed from the simpler tree am-

plitudes of N = 4 super-Yang-Mills theory using the quadratic relation between

gravity and gauge theory embodied in the KLT relations [13]. Implicit in this re-

lation is a map between two copies of the gauge theory and supergravity which we

denote by

[N = 4 SYM]L ⊗ [N = 4 SYM]R ↔ [N = 8 SG] . (1.1)

There are 16 distinct particle states in each N = 4 SYM factor and 256 states in

N = 8 SG.

This paper is motivated by all three issues above. We focus on the construction of

n-point MHV and NMHV tree amplitudes in N = 4 SYM and N = 8 supergravity with

general external states. Toward this end we develop and generalize to supergravity the

generating function for MHV amplitudes in gauge theory discovered in [14] and further

developed and extended to NMHV amplitudes in [15]. The generating functions encode

the external state dependence in a compact way and furnish precise characterizations of

the MHV and NMHV sectors. To entice the reader we pose three questions to which the

1There are also earlier relevant calculations [3] as well as more recent work [4, 8]. Additional references

are given in [1, 2, 4]. The reader is also referred to the reviews [5 – 7].
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formalism gives simple answers. The MHV sector of N = 4 SYM consists of the n-gluon

amplitude An(−−+ + . . .+) with two negative helicity gluons plus all amplitudes related

by SUSY transformations. Would the reader have guessed that this sector contains the

8-point amplitude with 8 positive helicity gluini? In supergravity the MHV sector consists

of all amplitudes related by SUSY to the n-graviton amplitude Mn(− − + + . . .+) with

two negative helicity gravitons. Would the reader have guessed that there are 186 distinct

processes,2 each with a different set of particles, in this sector? And would the reader have

anticipated the external state dependence of n-point MHV amplitudes has a simple direct

relationship to the properties of n-point CFT correlators?

Generating functions provide useful answers to a number of questions, and they appear

to have practical applications. For example, the unitarity sums over intermediate states

required to obtain 1-loop Feynman integrands from the product of tree amplitudes in both

gauge theory and supergravity can be done quite efficiently using the generating function.

The generating function for n-point amplitudes in gauge theory is an SU(4) invariant

function Fn(pi, ηia) of the momenta and of 4n Grassmann variables ηia. Here i = 1, . . . , n

refers to the momentum pi of each external particle and a = 1, 2, 3, 4 is the SU(4) flavor

index. The generalization to gravity is straightforward in the MHV sector, in which the

generating function is an SU(8) invariant function Ω(pi, ηiA) of 8n Grassmann variables ηiA

where A = 1, . . . , 8 is an SU(8) index. It is very simple to calculate any MHV amplitude

from the generating function by applying Grassmann derivatives specific to the external

states. All symmetry transformations can be implemented at the level of the generating

function as operations involving the ηia and ηiA variables, and one can show that all

amplitudes automatically satisfy SUSY Ward identities.

The NMHV sector of gauge theory (or respectively, supergravity) consists of all am-

plitudes linked by SUSY Ward identities to the n-gluon amplitude An(− − − + + . . .+)

(or respectively, the n-graviton Mn(−−−+ . . .+)) with 3 negative helicity particles. The

construction of a generating function is formally straightforward in the NMHV sector, but

its justification is more subtle. There is a different generating function for each diagram in

the MHV-vertex expansion of an amplitude. The MHV-vertex expansion was first obtained

in (N = 0) gauge theory in [16] and extended to gravity in [17]. The contribution of each

diagram depends on the choice of an arbitrary reference spinor |X], but the full amplitude,

which is the sum of all diagrams, should be independent of |X].

The simplest justification of the expansion comes from the recursion relation associated

with a complex shift of the spinors |1], |2], |3] of the negative helicity lines [18]. The required

shift is

|mi] → |m̂i] = |mi] + z〈mj mk〉|X] , (1.2)

wheremi,mj ,mk are the cyclic permutations of the momentum labels for a choice of three of

the external lines. For pure gluon or graviton amplitudes, these will be the three negative

helicity particles. The recursion relation, and therefore the diagrammatic expansion, is

valid if the continued amplitude vanishes as z → ∞. This desired property was proven for

gluon amplitudes An(−−−++ . . .+) in [16, 18], but was observed in numerical calculation

2For n < 16 the number of processes is smaller.
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of the graviton amplitudes Mn(−−−+ . . .+) only for n = 6, 7 in [17]. It is also known for

simpler shifts of two external momenta that the large z falloff is slower for amplitudes in

which some gluons, or gravitons, are replaced by lower spin particles of the supermultiplet.

For these reasons we must be cautious in our applications of the MHV-vertex expansion.

If an amplitude vanishes as z → ∞ for all choices of |X], Cauchy’s theorem ensures

that the sum of MHV-vertex diagrams is independent of |X]. For all NMHV amplitudes

in N = 4 SYM we show that there is always a choice of 3 lines to shift such that the

contribution of each diagram falls at least as fast as 1/z. We have verified |X]-independence

of the expansion numerically for a large number of 6-point NMHV amplitudes. Thus we

detect no problems, and the generating function appears to be valid for the whole NMHV

sector of the N = 4 theory.3

In gravity the situation is more problematic. For graviton amplitudesMn(−−−+. . .+)

we show that the falloff as z → ∞ depends on the number of external legs n. Specifically,

we have verified numerically for n = 5, . . . , 11 that

Mn(1̂− 2̂− 3̂− 4+ . . . n+) → 1

z12−n
as z → ∞ . (1.3)

This means that for n ≥ 12, the MHV-vertex decomposition of the n-graviton NHMV

amplitude will include a contribution from the residue of the pole at z = ∞. Without

it, the sum of MHV-vertex diagrams need not be independent of |X]. Indeed for n = 12,

there are 1533 diagrams and we find numerically that their sum does depend on |X]. As

we discuss in other examples below, we expect that it is possible to fix the value of |X]

such that the term at infinity vanishes and the MHV-vertex expansion is valid.

The evaluation and summation of diagrams is more complicated for general external

states in supergravity so our analysis is limited to 6-point NMHV processes. There are

151 such processes, each with several functionally independent amplitudes obtained by

inequivalent assignments of SU(8) indices to the external particles. For each amplitude

there are up to 21 non-vanishing diagrams. Most 6-point amplitudes have the same good

properties as those of gauge theory; they vanish under large shifts, and they are constructed

correctly using the MHV-vertex expansion with diagrams obtained from the generating

function.

The large z behavior of individual diagrams for any amplitude can be determined

analytically. The result depends on which set of 3 lines are shifted. Our analysis shows

that there are processes for which even the best shift contains diagrams with either O(1) or

O(z) behavior at large z. Numerical evaluation can then test whether the sum of diagrams

depends of |X]. This would indicate that the undesired large z behavior persists in the

full amplitude, and we have found that it does for a number4 of examples. In these cases

we recalculate the amplitude using the KLT formula which provides a correct evaluation

of any N = 8 amplitude as a sum of products of N = 4 SYM amplitudes. The result from

KLT can be continued to complex momenta by shifting spinors and the large z behavior

3This is proven in [19].
4Of the total of 151 6-point NMHV processes, we estimate that about half will include amplitudes with

asymptotic O(1) behavior.
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is then extracted. By this method5 we have explored about 20 amplitudes whose best

shifts give asymptotic O(1) behavior. We call these cases “bad” amplitudes, as opposed

to “good” amplitudes which vanish asymptotically for one or more 3-line shifts. The large

z limit of these “bad” amplitudes is a ratio of polynomials in the reference spinor |X].

The amplitude does not vanish asymptotically for all |X], but it does vanish when |X] is

chosen to be a root of the numerator polynomial. The recursion relation becomes valid

for these special values of |X], and the sum of MHV-vertex diagrams then agrees with the

KLT evaluation. In this way we have developed a good interpretation, and justification, of

the generating function even for “bad” amplitudes.

Our analysis also locates two “very bad” 6-point NMHV amplitudes whose KLT eval-

uations show linear growth in z as z → ∞. Since Cauchy’s theorem only picks up the

O(1)-term at infinity, linear (or faster) growth is not a problem. As above |X] can be cho-

sen to make the O(1)-term vanish, and we have checked numerically that the MHV-vertex

expansion then agrees with the KLT result.

The need to fix |X] to eliminate a pole at infinity suggests that it may be difficult to

apply the generating function to intermediate state helicity sums involving NMHV ampli-

tudes in supergravity. It is important to explore this question, but it is beyond the scope

of the present paper.

Let’s return to the map (1.1) because another focus of this paper concerns how the

N = 8 supersymmetry and global SU(8) symmetry of supergravity are implemented in the

tensor product of gauge theory states. One question of concern is how the SU(4)L⊗SU(4)R
flavor symmetry of the product of gauge theory factors is promoted to the SU(8) global

symmetry of supergravity. The derivation of the KLT relations from string theory does

not really settle this question, since SU(8) only emerges as an accidental symmetry in the

α′ → 0 limit.

To investigate such questions we write the detailed algebra of the SUSY charges and

the annihilation and creation operators of the gauge and supergravity theories and pro-

vide a detailed version of the map (1.1) which is compatible with these symmetry oper-

ations. In the map, any SU(8) index A,B, . . . ∈ 1, . . . , 8 on the supergravity side splits

into a, b . . . ∈ 1, . . . , 4 in the left (L) factor of the gauge theory and r, s . . . ∈ 5, . . . , 8 in

the right (R) factor. Although not manifested in this split, SU(8) transformations can be

formally implemented on the gauge theory side of the map of states. We take the attitude

that the implementation of SU(8) is better tested on amplitudes, for example through the

KLT relations, which read for n = 4,

M4(1, 2, 3, 4) = −s12A4(1, 2, 3, 4)L A4(1, 2, 4, 3)R . (1.4)

To apply these to a supergravity process, one places the images of the supergravity

operators under the map (1.1) into the gauge factors on the right side of the relations.

We will discuss one example, although the notation is not fully described until section 2.

Consider the scattering amplitude 〈b−(1) b−AB(2) bCD
+ (3) b+(4)〉 of two gravitons, b− and b+,

5We have automated the process by writing a Mathematica code which evaluates the KLT expansion as

well as the MHV-vertex decomposition for any 6-point NMHV amplitude of the N = 8 theory.
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and two graviphotons, b−AB and bCD
+ , with helicities as indicated. The gauge theory images

of these operators involve gluons B−, gluinos F−
a , and scalars Bab, and the images of the

graviphotons depend on whether the SU(8) indices lie in the range a, b, . . . ∈ 1, . . . , 4 or

r, s, . . . ∈ 5, . . . , 8. In other words, the helicity-1 particles can decompose either as 0⊗ 1 or

as 1
2 ⊗ 1

2 . Using the KLT result (1.4) leads to the formulas

〈

b−(1) b−ab(2) b
cd
+ (3) b+(4)

〉

= −s12 〈B−(1)B−
ab(2)B

cd(3)B+(4)
〉

L

×
〈

B−(1)B−(2)B+(4)B+(3)〉R , (1.5)
〈

b−(1) b−ar(2) b
cs
+ (3) b+(4)

〉

= s12 〈B−(1)F−
a (2)F c

+(3)B+(4)
〉

L

×
〈

B−(1)F−
r (2)B+(4)F s

+(3)〉R . (1.6)

The supergravity amplitude is proportional to the antisymmetric SU(8) tensor δCD
AB , so the

product of two bosonic amplitudes in the first expression must equal (to within a sign)

the product of fermion amplitudes in the second. This agreement is not a miracle. It

must work because the KLT relations are derived from the low energy limit of superstring

theory. Nevertheless we are happy to see the sometimes intricate way it does work in this

and several other examples we have studied.

The generating function enables us to go beyond examples and give a simple argument

that all supergravity symmetries are consistent with the map (1.1). In the MHV sector

the supergravity generating function factors into the product of gauge theory generating

functions as

Ωn(pi, ηiA) ∝ Fn(pi, ηia)L Fn(pi, ηir)R . (1.7)

Symmetry transformations of supergravity, written in terms of the ηiA variables, automat-

ically work correctly when the ηiA split into ηia and ηir, and the transformations applied to

the product of gauge theory generating functions on the right side of (1.7). The situation

is somewhat more complicated, but very similar in the NMHV sector, where factorization

occurs at the level of diagrams.

The plan of the paper is as follows. In section 2 we discuss the algebra of supercharges

and the annihilation operators in gauge theory and supergravity and then the operator

map. We also discuss the derivation of SUSY Ward identities and their application in

the MHV sector. In section 3 we derive the generating functions for the MHV sectors

of gauge theory and gravity. An application to the intermediate state helicity sums is

presented in section 4. The connection between state dependence of MHV amplitudes and

CFT correlators is discussed in section 5. We turn our attention to NMHV amplitudes in

section 6. We first discuss recursion relations, especially those derived from (1.2) which

lead to the MHV-vertex expansion. Using this we derive the NMHV generating function for

gauge theory and discuss its properties. Then we define the NMHV generating function for

gravity and discuss the key properties of independence of |X] and behavior as z → ∞. A

discussion section concludes the main text. Our conventions are summarized in appendix A.

In appendix B, we derive the solution of the SUSY Ward identities for 6-point NMHV

N = 1 amplitudes.

– 6 –
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2. SUSY Ward identities and the operator map

In section 2.1 we set up our notation and present the N = 4 and N = 8 SUSY trans-

formation rules for annihilation operators of the bosons and fermions of the gauge and

supergravity theories we are concerned with. Further information about our conventions

is given in appendix A. In section 2.2 we present the detailed correspondence between the

16×16 products of pairs of gauge theory annihilators and the 256 annihilation operators in

supergravity, and in section 2.3 we show how SU(8) transformations can be implemented

formally in the product space. We discuss SUSY Ward identities for on-shell amplitudes

in N = 4 SYM and N = 8 supergravity in section 2.4. We show by example how to solve

the Ward identities in the MHV sectors of the two theories.

2.1 Transformation rules of annihilation operators

We focus on annihilation operators because we adopt the common convention that all

particle momenta in an n-point process are viewed as outgoing. An amplitude, such as

the n-gluon MHV amplitude, can therefore be viewed as a string of annihilation operators

acting to the left on the “out” vacuum. Thus if B+(i) and B−(i) are annihilation operators

for gluons of energy-momentum pµ
i and helicity ±, we can represent the color-ordered

amplitude as

An(1−, 2−, 3+, . . . , n+) =
〈

B−(1)B−(2)B+(3), . . . , B+(n)
〉

. (2.1)

In general the amplitudes are regarded as functions of complex null energy-momentum

vectors pµ
i which may be continued to the physical region. If the energy-momentum pµ

is physical, i.e. a positive real null vector, then the operator B+(i) (or B−(i)) describes

a particle in the final state of a physical process. If pµ is real, but negative null, then

the operator corresponds to the anti-particle of opposite helicity in the initial state, which

carries physical momentum −pµ.

The bosons and fermions of N = 4 SYM theory are described by the following annihi-

lators, which are listed in order of descending helicity:

B+(p) , F a
+(p) , Bab(p) =

1

2
α4 ǫ

abcdBcd(p) , F−
a (p) , B−(p) . (2.2)

The scalar particles are complex, and satisfy the indicated SU(4) self-duality condition

with α4 = ±1. The gauge group of the theory is SU(N) with all particles in the adjoint

representation. Notation for the “color” degree of freedom is omitted, and we consider only

“color-ordered” amplitudes.

The global symmetry group is SU(4), and we use upper and lower indices a, b,= 1, 2, 3, 4

to distinguish the two inequivalent conjugate four-dimensional representations. To achieve

an SU(4) covariant notation, we separate the left and right chiral components of the N = 4

supercharges and write them as Qa
α and Q̃α̇

a respectively. We then define Qa ≡ −ǫαQa
α and

Q̃a = ǫ̃α̇Q̃
α̇
a , where ǫα, ǫ̃α̇ is the anti-commuting parameter of SUSY transformations. (See

appendix A for details.) Note that (Q̃a)
† = Qa.

– 7 –
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We now state the independent commutation rules for the operators Qa and Q̃a with

the various annihilators:

[

Q̃a, B+(p)
]

= 0 ,
[

Q̃a, F
b
+(p)

]

= 〈ǫ p〉 δb
aB+(p) ,

[

Q̃a, B
bc(p)

]

= 〈ǫ p〉
(

δb
a F

c
+(p) − δc

a F
b
+(p)

)

,
[

Q̃a, Bbc(p)
]

= 〈ǫ p〉α4 ǫabcd F
d
+(p) ,

[

Q̃a, F
−
b (p)

]

= 〈ǫ p〉Bab(p) ,
[

Q̃a, B
−(p)

]

= −〈ǫ p〉F−
a (p) ,

[Qa, B+(p)] = [p ǫ]F a
+(p) ,

[

Qa, F b
+(p)

]

= [p ǫ]Bab(p) ,
[

Qa, Bbc(p)
]

= [p ǫ]α4 ǫ
abcd F−

d (p) ,
[

Qa, Bbc(p)
]

= [pǫ]
(

δa
bF

−
c (p)−δa

cF
−
b (p)

)

,
[

Qa, F−
b (p)

]

= −[p ǫ] δa
b B

−(p) ,
[

Qa, B−(p)
]

= 0 .

(2.3)

Note that Q̃a raises the helicity of all operators and involves the spinor angle bracket 〈ǫ p〉
in which |p〉 ↔ λα̇

p is the dotted spinor for a particle of momentum pµ. Similarly, Qa lowers

the helicity and spinor square brackets [p ǫ] appear. Commutators with Bbc(p) and Bbc(p)

are related by self-duality. The Qa and Q̃a operators generate independent Ward identities

for n-point amplitudes. We will primarily be concerned with those for Q̃a.

For distinct SUSY parameters ǫ1, ǫ̃1 and ǫ2, ǫ̃2, we define Qa
i = −ǫαi Qa

α and Q̃ia =

ǫ̃iα̇Q̃
α̇
ia. For any operator O above, the SUSY algebra reads

[

[Qa
1, Q̃2b],O

]

=
[

Qa
1, [Q̃2b,O]

]

−
[

Q̃2b, [Q
a
1 ,O]

]

= 〈ǫ2 p〉[p ǫ1] δa
b O ,

[

[Qa
1, Q

b
2],O

]

=
[

Qa
1, [Q

b
2,O]

]

−
[

Qb
2, [Q

a
1,O]

]

= 0 , (2.4)
[

[Q̃1a, Q̃2b],O
]

=
[

Q̃1a, [Q̃2b,O]
]

−
[

Q̃2b, [Q̃1a,O]
]

= 0 .

Next we proceed in a similar fashion to discuss the transformation rules of N = 8

supergravity, in which the annihilation operators for the 128 bosons and 128 fermions are

b+(p) , fA
+ (p) , bAB

+ (p) , fABC
+ (p) ,

bABCD(p) =
1

4!
α8 ǫ

ABCDEFGH bEFGH(p) , (2.5)

f−ABC(p) , b−AB(p) , f−A (p) , b−(p) .

The 70 scalars satisfy an SU(8) self-duality condition with α8 = ±1. The notation is

redundant, since the information on particle type and helicity is determined by the number

and position of the global symmetry indices.

There are chiral spinor supercharges QA
α and Q̃α̇

A which transform in the inequivalent 8

and 8̄ representations. We contract these charges with a SUSY Grassmann parameter and

define QA ≡ −ǫαQA
α and Q̃A ≡ ǫ̃α̇Q̃

α̇
A. It is then straightforward to write SU(8) covariant

– 8 –
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commutators with annihilation operators:

[

Q̃A, b+
]

= 0 ,

[

Q̃A, fB
+

]

= 〈ǫ p〉 δB
A b+ ,

[

Q̃A, bBC
+

]

= 〈ǫ p〉
(

δB
A fC

+
−δC

A fB
+

)

,

[

Q̃A, fBCD
+

]

= 〈ǫ p〉
(

δB
A bCD

+ +δC
A bDB

+ +δD
A bBC

+

)

,

[

Q̃A, bBCDE
]

= 〈ǫ p〉
(

δB
A fCDE

+ −δC
A fDEB

+

+δD
A fEBC

+ −δE
A fBCD

+

)

,

[

Q̃A, bBCDE

]

= 〈ǫ p〉 1

6
α8 ǫABCDEF GH fF GH

+
,

[

Q̃A, f−

BCD

]

= 〈ǫ p〉 bABCD ,

[

Q̃A, b−BC

]

= −〈ǫ p〉 f−

ABC ,

[

Q̃A, f−

B

]

= 〈ǫ p〉 b−AB ,

[

Q̃A, b−
]

= −〈ǫ p〉 f−

A ,

[

QA, b+
]

= [p ǫ]fA
+

,

[

QA, fB
+

]

= [p ǫ] bAB
+ ,

[

QA, bBC
+

]

= [p ǫ] fABC
+

,

[

QA, fBCD
+

]

= [p ǫ] bABCD ,

[

QA, bBCDE
]

= [p ǫ] 1

6
α8 ǫABCDEF GH f−

F GH ,

[

QA, bBCDE

]

= [p ǫ]
(

δA
B f−

CDE−δA
C f−

DEB

+δA
D f−

EBC−δA
E f−

BCD

)

,

[

QA, f−

BCD

]

= −[p ǫ]
(

δA
B b−CD+δA

C b−DB+δA
D b−BC

)

,

[

QA, b−BC

]

= [p ǫ]
(

δA
B f−

C −δA
C f−

B

)

,

[

QA, f−

B

]

= −[p ǫ]δA
B b− ,

[

QA, b−
]

= 0 .

(2.6)

The supersymmetry generators satisfy (2.4) for any operator O above.

Supercharge commutators with creation operators can be obtained as the adjoints of

the relations given in (2.3) and (2.6). Phases in these commutators have been fixed to

be compatible with crossing. Crossing symmetry relates an S-matrix element containing

a particle with physical (positive null) momentum in the initial state to the amplitude

containing its anti-particle with opposite helicity and unphysical (negative null) momentum

in the final state. Thus the SUSY transformation of any creator a(p,±)∗ must agree with

that of the annihilator a(−p,∓) multiplied by the conventional [20] crossing phase (−)s−λ

of helicity amplitudes (which has the value −1 only for negative helicity fermions). Note

that spinors for negative null momenta satisfy | − p〉 = −|p〉, | − p] = |p].

2.2 The operator map

The precise operator map between (N = 8) ↔ (N = 4)L⊗(N = 4)R is presented in table 1.

Operators in the R gauge theory are dressed with tildes whereas the operators of the L

factor are undecorated. The entries in the map are determined, up to signs, by matching

the helicity and global symmetry properties of supergravity operators with products of

gauge theory operators. Unfixed signs are then determined by compatibility with the

scalar self-duality conditions and especially by the consistent action of the supercharges of

the N = 8 and N = 4 theories.

To discuss the implementation of the SUSY commutators we denote a generic annihi-

lation operator by a in supergravity and by A and Ã in the L and R copies of the gauge

theory. The image of any a under the map (1.1) is a specific product A⊗ Ã. A supercharge

component Qa from the first SU(4) sector acts non-trivially only on A, while Qr from the

– 9 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
3

second sector acts non-trivially only on Ã. Thus we have the scheme

a(p) ↔ A(p) ⊗ Ã(p) ,

[Qa, a] ↔ [Qa, A⊗ Ã] ≡ [Qa, A] ⊗ Ã , (2.7)

[Qr, a] ↔ [Qr, A⊗ Ã] ≡ A⊗ [Qr, Ã] ,

with similar definitions of the action of Q̃a and Q̃r. We then require that the left and right

sides of (2.7) still map properly when the transformation rules of section 2.1 are used. This

determines the signs of entries in table 1.

Here are two examples, interesting because the two sectors mix. The first example is

[

Qa , bbr+ (p)
]

= [p ǫ] fabr
+ (p) , (2.8)

[

Qa , F b
+(p) ⊗ F̃ r

+(p)
]

= [p ǫ]B(p)ab ⊗ F̃ r
+(p) . (2.9)

This is compatible with the supersymmetry algebras because the right sides are images

under the map (1). The other example is

[

Q̃r , b
abcs(p)

]

= −〈ǫ p〉 δs
r f

abc
+ (p) , (2.10)

[

Q̃r , F
−
d (p) ⊗ F̃ s

+(p)
]

= −〈ǫ p〉 δs
r F

−
d (p)B̃+(p) . (2.11)

After multiplication of the second equation by α4 ǫ
abcd, we see that the map works properly.

We have checked explicitly that all entries in the map are consistent with the transformation

rules.

There is a choice of the scalar self-duality phases α8, α4, and α̃4 in the N = 8 super-

gravity theory and in the two N = 4 SYM factors. It turns out that consistency of the

map with the commutator algebras requires that

α4 α̃4 = α8 . (2.12)

We leave α4, α̃4, and α8 arbitrary in the map in table 1, but in applications below we will

often set α4 = α̃4 = α8 = 1.

2.3 SU(8) symmetry and the operator map

The generators of the fundamental representation of SU(8) are the set of 63 8× 8 traceless

matrices:

(TA
B )CD = δA

D δC
B − 1

8
δA
B δ

C
D , (2.13)

in which A,B denote the Lie algebra element, and C,D are row and column indices. The

commutators are
[

TA
B , TC

D

]

= δA
D T

C
B − δC

B T
A
D . (2.14)

The algebra decomposes with respect to the subgroup SU(4)L ⊗ SU(4)R ⊗ U(1). We

use indices (a, b, · · · = 1, 2, 3, 4 and r, s, · · · = 5, 6, 7, 8). After a minor rearrangement of the

– 10 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
3

b+ = B+ B̃+ b− = B− B̃−

fa
+ = F a

+ B̃+ f−a = F−
a B̃−

f r
+ = B+ F̃

r
+ f−r = B− F̃−

r

bab
+ = Bab B̃+ b−ab = Bab B̃

−

bar
+ = F a

+ F̃
r
+ b−ar = −F−

a F̃−
r

brs
+ = B+ B̃

rs b−rs = B− B̃rs

fabc
+ = α4 ǫ

abcd F−
d B̃+ f−abc = −α4 ǫabcd F

d
+ B̃

−

fabr
+ = Bab F̃ r

+ f−abr = Bab F̃
−
r

fars
+ = F a

+ B̃
rs f−ars = F−

a B̃rs

f rst
+ = α̃4 ǫ

rstuB+ F̃
−
u f−rst = −α̃4 ǫrstuB

− F̃ u
+

babcd = α4 ǫ
abcdB− B̃+ babcd = α4 ǫabcdB+ B̃

−

babcr = α4 ǫ
abcd F−

d F̃ r
+ babcr = α4 ǫabcd F

d
+ F̃

−
r

babrs = Bab B̃rs babrs = Bab B̃rs

barst = α̃4 ǫ
rstu F a

+ F̃
−
u barst = α̃4 ǫrstu F

−
a F̃ u

+

brstu = α̃4 ǫ
rstuB+ B̃

− brstu = α̃4 ǫrstuB
− B̃+

Table 1: Operator map for annihilators of (N = 8) ↔ (N = 4)L ⊗ (N = 4)R. Indices a, b, c, d =

(1, 2, 3, 4) and r, s, t, u = (5, 6, 7, 8) refer to the splitting of SU(8) into the two separate SU(4) factors.

basis of (2.13), we obtain a set of 63 matrices whose non-vanishing elements are

(T a
b )cd = δa

d δ
c
b −

1

4
δa
b δ

c
d , (T r

s )tu = δr
u δ

t
s −

1

4
δr
s δ

t
u ,

(T )cd = δc
d , (T )tu = −δt

u ,

(T a
s )td = δa

dδ
t
s , (T r

b )as = δr
sδ

a
b . (2.15)

We now define the action of the corresponding Hilbert space operators on the states of the

operator map. The generators T a
b and T r

s have the usual matrix action of SU(4), defined

in (2.15), on gauge theory operators. Nothing special is required. Examples make things

clear:
[

T a
b , b

ct
+

]

= δc
b b

at
+ ,

[

T a
b , F

c
+ ⊗ F̃ t

+

]

= δc
b F

a
+ ⊗ F̃ t

+ ,
[

T a
b , f

−
c

]

= −δa
c f

−
b ,

[

T a
b , F

−
c ⊗ B̃−

]

= −δa
c F

−
b ⊗ B̃− . (2.16)

The remaining generators are more subtle, but very simple. They have no well defined

action on single operators of the gauge theory, but we define their action on tensor products
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of gauge theory operators to match the appropriate supergravity states. The generator T

is diagonal on all states. Thus, for example,
[

T , f+abc
]

= 3 f+abc ,
[

T , α4ǫ
abcdF−

d B̃
+
]

≡ 3α4ǫ
abcdF−

d B̃
+ . (2.17)

For the mixed generators T a
s , T

r
b the definitions require changes from boson to fermion

operators in each gauge theory factor. Hence
[

T r
b , f

−
cds

]

= − δr
s f

−
cdb ,

[

T r
b , Bcd ⊗ F̃−

s

]

= δr
s α4ǫcdbeF

+e ⊗ B̃− (2.18)

The consistency test for any claimed realization of SU(8) is that the commutation rela-

tions (2.14) are satisfied. But this is certainly true here, by explicit construction, since our

definitions simply track the conventional implementation of SU(8) in supergravity.

This implementation of SU(8) in the operator map is correct but formal. The acid

test is that supergravity amplitudes constructed from gauge theory transform correctly.

This requires the kind of non-miracle discussed in the introduction. The dynamical parts

of products of very different gauge theory amplitudes must agree, and so must their group

theory factors. To show that this non-miracle happens, we will use SUSY Ward identities.

2.4 SUSY Ward identities for on-shell amplitudes

To begin the discussion, we use the generic notation of [21]. An annihilation operator of

N = 4 SYM or N = 8 supergravity is denoted either by αi or βi. The subscript i indicates

particle momentum, while helicity and global symmetry indices are suppressed. For a pair

of supercharges Qa, Q̃a of N = 4 SYM with fixed SU(4) index, an α operator is defined

as one for which [Qa, α] is non-vanishing, and a β operator is one for which [Q̃a, β] is

non-vanishing. It is clear that [Qa, α] = [p ǫ]β and [Q̃a, β] = 〈ǫ p〉α. The division into α-

and β-operators depends on the index choice a. For example, the α, β operators for the

supercharge pair Q1, Q̃1 are

α operators : B+(p) , F b
+(p) , Bbc(p) , B1b(p) , F−

1 (p) . (2.19)

β operators : F 1
+(p) , B1b(p) , Bbc , F−

b (p) , B−(p) , (2.20)

where b, c 6= 1. The definition of α, β operators in N = 8 supergravity is entirely analogous.

The basic Ward identities are simply the statements that, since supercharges annihilate

the vacuum,

0 =
〈[

Q̃a, β1β2 . . . βn αn+1αn+2 . . . αn+m

]〉

, (2.21)

0 =
〈[

Qa, β1β2 . . . βn αn+1αn+2 . . . αn+m

]〉

.

By adding and subtracting terms, we convert (2.21) into a sum of commutators [Q̃a, βi] or

[Qa, αj ]. We can then rewrite (2.21) as

0 =
n
∑

i=1

〈ǫ i〉 〈β1 . . . αi . . . βn αn+1 . . . αn+m〉 , (2.22)

0 =

n+m
∑

j=n+1

[j ǫ] 〈β1 . . . βn αn+1 . . . βj . . . αn+m〉 . (2.23)
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Since the spinors have two components, the analytic and anti-analytic expressions each

contain two independent constraints on the amplitudes. To obtain a useful identity one

must start with a string of operators in (2.21) which contains an odd number of fermion

annihilators. Then the individual amplitudes which appear in the constraints contain an

even number of fermions. Otherwise they vanish trivially. The ordering of operators is

relevant in gauge theory because amplitudes are color ordered, but it has no significance

in supergravity.

Let’s consider the two cases in which the initial string of operators in (2.21) contains

only one or two α operators, respectively. Then the Qa Ward identities read

[(n+ 1) ǫ] 〈β1 . . . βnβn+1〉 = 0 , (2.24)

[(n+ 1) ǫ] 〈β1 . . . βnαn+1βn+2〉 + [(n+ 2) ǫ] 〈β1 . . . βnβn+1αn+2〉 = 0 . (2.25)

We now exploit the freedom to choose the two-component spinor ǫα. We can choose it so

that [(n+1) ǫ] 6= 0. Then (2.24) tells us that any amplitude which contains only β operators

must vanish. To exploit the information in (2.25) we choose, in turn, |ǫ] ∼ |n + 2] and

then |ǫ] ∼ |n + 1]. We learn that any amplitude with n β operators and one α operator

must vanish. By similar arguments, we can use the Q̃a Ward identity to show that any

amplitude containing at most one β operator must vanish. These statements comprise the

well known helicity conservation rules for n-point functions. For amplitudes containing

only gluons, they read An(1+, 2+, . . . , n+) = 0 and An(1+, . . . , (n− 1)+, n−) = 0.

Relations between different amplitudes are obtained when the initial string contains

k ≥ 3 β operators plus n − k ≥ 1 α operators. The case of exactly three β operators is

particularly easy to analyze and very useful. The analytic Ward identity reads

〈ǫ 1〉 〈α1β2β3α4 . . . αn〉 + 〈ǫ 2〉 〈β1α2β3α4 . . . αn〉 + 〈ǫ 3〉 〈β1β2α3α4 . . . αn〉 = 0 . (2.26)

As stated above this equation contains two independent relations among the three ampli-

tudes involved. By choosing |ǫ〉 = |2〉 and then |ǫ〉 = |1〉, we obtain

〈α1β2β3α4 . . . αn〉 = −〈2 3〉
〈2 1〉 〈β1β2α3α4 . . . αn〉 , (2.27)

〈β1α2β3α4 . . . αn〉 = −〈1 3〉
〈1 2〉 〈β1β2α3α4 . . . αn〉 . (2.28)

An example of these relations is the
〈

[Q̃a, B
−(1)B−(2)F b

+(3)B+(4) . . . B+(n)]
〉

= 0

Ward identity in gauge theory. The two constraints above then become

〈

F−
a (1)B−(2)F b

+(3)B+(4) . . . B+(n)
〉

= δb
a

〈2 3〉
〈2 1〉

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

, (2.29)

〈

B−(1)F−
a (2)F b

+(3)B+(4) . . . B+(n)
〉

= δb
a

〈1 3〉
〈1 2〉

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

. (2.30)

Thus an amplitude containing a pair of opposite helicity gluinos is related to the well known

MHV n-gluon amplitude. For this reason the set of amplitudes with two β operators and
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n − 2 α operators is called the MHV sector of the theory. Note that the gluinos can be

placed in any positions by change in the placement of the three initial β operators.

As another example of an MHV Ward identity in the gauge theory, consider

〈

[Q̃a, B
−(1)F−

b (2)Bcd(3)B+(4) . . . B+(n)]
〉

= 0 ,

and use (2.30) to simplify the 〈ǫ 3〉 terms. With |ǫ〉 ∼ |1〉 or ∼ |2〉 we get two Ward

identities:

〈

B−(1)Bab(2)B
cd(3)B+(4) . . . B+(n)

〉

= 2δcd
ab

〈13〉2
〈12〉2

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

,

(2.31)
〈

F−
a (1)F−

b (2)Bcd(3)B+(4) . . . B+(n)
〉

= 2δcd
ab

〈13〉〈23〉
〈12〉2

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

.

(2.32)

Anti-symmetrizers are defined as δb1...bn
a1...an

= 1
n!(δ

b1
a1

· · · δbn
an

± perms). It is also easy to derive,

see [22],

〈

B+(1) . . . B−(i) . . . B−(j) . . . B+(n)
〉

=
〈i j〉4
〈1 2〉4

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

. (2.33)

Let’s examine the anti-analytic
〈

[Qb, B−(1)F−
a (2)B+(3) . . . B+(n)]

〉

= 0 Ward identity,

which gives the relation

[2 ǫ]δb
a

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

(2.34)

+

n
∑

j=3

[j ǫ]
〈

B−(1)F−
a (2)B+(3) . . . F b

+(j) . . . B+(n)
〉

= 0 .

If we use the previous result (2.30) and its extension to the case where F a
+(j) appears,

then (2.34) reduces to

( n
∑

j=2

〈1 j〉[j ǫ]
)

δb
a

〈

B−(1)B−(2)B+(3) . . . B+(n)
〉

= 0 . (2.35)

But the sum of products of spinor brackets vanishes because of momentum conservation,

so the anti-analytic Ward identity (2.34) is satisfied, after information from the analytic

Ward identities is used. This is a general feature of the MHV sector, but it is not true in

the NMHV sector and beyond.

Ward identities for amplitudes in the MHV sector of N = 8 supergravity can be

obtained in a similar fashion. With appropriate choices of the α, β operators (and of |ǫ〉)
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one can derive the useful results:

〈

b−(1)f−A (2) b+(3) . . . fB
+ (k) . . . b+(n)

〉

(2.36)

= δB
A

〈1k〉
〈12〉

〈

b−(1)b−(2)b+(3) . . . b+(n)
〉

,

〈

b−(1)b−AB(2) b+(3) . . . bCD
+ (k) . . . b+(n)

〉

= 2 δCD
AB

〈1k〉2
〈12〉2

〈

b−(1)b−(2)b+(3) . . . b+(n)
〉

,

〈

b−(1)f−ABC(2) b+(3) . . . fDEF
+ (k) . . . b+(n)

〉

= 3! δDEF
ABC

〈1k〉3
〈12〉3

〈

b−(1)b−(2)b+(3) . . . b+(n)
〉

,

〈

b−(1)bABCD(2) b+(3) . . . bEFGH(k) . . . b+(n)
〉

= 4! δEFGH
ABCD

〈1k〉4
〈12〉4

〈

b−(1)b−(2)b+(3) . . . b+(n)
〉

.

It is easy to write generic Ward identities in the NMHV sector, but much harder to

extract useful information from them. From
〈

[Q̃a , β1β2β3β4α5 . . . αn]
〉

= 0, one derives

〈ǫ 1〉 f1 + 〈ǫ 2〉 f2 + 〈ǫ 3〉 f3 + 〈ǫ 4〉 f4 = 0 , (2.37)

with f1 = 〈α1β2β3β4α5 . . . αn〉, f2 = 〈β1α2β3β4α5 . . . αn〉, f3 = 〈β1β2α3β4α5 . . . αn〉, and

f4 = 〈β1β2β3α4α5 . . . αn〉. By choice of ǫ one can derive two independent relations among

the four amplitudes. Given one set of amplitudes fi which satisfy (2.37), then one may use

the Schouten identity to show that another one is given by f1 + 〈2 3〉f0, f2 + 〈3 1〉f0, f3 +

〈1 2〉f0, f4, where f0 is an arbitrary function. Thus additional information is required to

specify the amplitudes [21]. The solution for N = 1 6-point functions in [21] is rederived

by spinor-helicity methods in appendix B. It could be very useful to develop techniques to

solve the NMHV Ward identities, particularly for extended SUSY.

Many of the properties we have illustrated above in the examples are neatly encoded

in generating functions for MHV amplitudes. This is our next subject.

3. Generating functions for MHV amplitudes

In section 2.4 we showed that SUSY Ward identities are quite simple in the MHV sec-

tors of N = 4 SYM and N = 8 supergravity, indeed amenable to step-by-step solution.

Nevertheless, a systematic method of solution for the entire MHV sector is awkward at

best. Nor do we yet know a simple way to determine whether particular amplitudes, such

as 〈B−(1)F a
+(2)F b

+(3)F c
+(4)F d

+(5)B+(6) . . . B+(n)〉 or the 8-gluino amplitude mentioned

in the Introduction are within the MHV sector. The remarkable generating function de-

rived for the gauge theory by Nair [14], and further developed by Georgiou, Glover, and

Khoze [15], provides very simple answers to these questions. In this section we explain

and elucidate new properties of this generating function and generalize it to the MHV

sector of N = 8 supergravity. Then we show that it embodies a clear explanation of the

compatibility of N = 8 SUSY and SU(8) global symmetry with the map (1.1).
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3.1 Gauge theory

Suppose that we are interested in the full sector of MHV n-point functions in the gauge

theory. Following Nair, we introduce a set of 4n anti-commuting variables ηia in which

i = 1, . . . , n indicates particle momentum, and a = 1, 2, 3, 4 is the SU(4) index. The

generating function depends on the ηia and the (commuting) spinors λ̃α̇
i ↔ |i〉 which

encode particle momenta. The generating function is

Fn =

( n
∏

i=1

〈i (i + 1)〉
)−1

δ(8)
( n
∑

i=1

|i〉ηia

)

, (3.1)

and the 8-dimensional δ-function can be expressed as

δ(8)
( n
∑

i=1

|i〉ηia

)

=
1

16

4
∏

a=1

n
∑

i,j=1

〈i j〉 ηia ηja . (3.2)

It is a sum of
(

1
2n(n− 1)

)4
terms, each involving a product of 8 distinct ηia; it is invariant

under SU(4) transformations of the ηai and under cyclic permutations of the momentum

labels i.

The coefficient of each distinct product of 8 ηai is an MHV amplitude when interpreted

by means of the prescription of [15]. We restate this prescription in terms of products of

derivatives. Each annihilation operator of the gauge theory is associated with a differential

operator6 as follows:

B+(i) ↔ 1, F a
+(i) ↔ Da

i

∂

∂ηia
, (3.3)

Bab(i) ↔ Dab
i =

∂2

∂ηia∂ηib
, Bab(i) ↔ Diab =

1

2
ǫabcdD

cd
i ,

F−
a (i) ↔ Dia = −1

6
ǫabcd

∂3

∂ηib∂ηic∂ηid
, B−(i) ↔ Di =

1

24
ǫabcd

∂4

∂ηia∂ηib∂ηic∂ηid
.

Any desired MHV amplitude is obtained by applying an 8th order differential operator

composed as the product of appropriate factors from (3.3). For example, the n-gluon

Parke-Taylor [23] amplitude is given by

An(1−, 2−, 3+, . . . , n+) = D1D2 Fn =
〈1 2〉4

∏n
i=1〈i (i + 1)〉 . (3.4)

We can use this to write the generating function in the alternate form

Fn =
An(1−, 2−, 3+, . . . , n+)

〈1 2〉4 δ(8)
( n
∑

i=1

|i〉ηia

)

, (3.5)

6The product structure of Fn suggests that we use upper indices for all fields, thus (F−)abc(i) ↔
∂3

∂ηia∂ηib∂ηic
. The lower index field is then defined as the dual, i.e. (F−)abc(i) = ǫabcdF−

d (i). This definition

leads to the − sign in the derivative Dia. Similar remarks apply to the negative chirality fields in supergravity

and the associated differential operators. See (3.15) below.
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which is useful to compare with extensions discussed below.

Any product of 8 derivatives produces an amplitude in the MHV sector of the gauge

theory. Since the maximum order of any individual operator is 4, each 8th order differential

operator is associated with a partition of the integer 8 with maximum summand nmax ≤ 4.

Each partition corresponds to a particular set of particles in an n-point MHV amplitude.

There are 15 such partitions, which correspond to the 15 types of MHV amplitude listed in

(5.4) of [15]. For example, the 〈B−(1)F a
+(2)F b

+(3)F c
+(4)F d

+(5)B+(6) . . . B+(n)〉 amplitude

mentioned in the first paragraph of this section corresponds to the partition 8 = 4 + 1 +

1+1+1, and the 8-gluino amplitude of the Introduction is 8 = 1+1+1+1+1+1+1+1.

How do we know that all amplitudes obtained by differentiation of Fn agree with those

produced by explicit stepwise solution of the Ward identities? To answer this question we

show below that the amplitudes obtained from Fn satisfy the SUSY Ward identities, and

we already observed above that the n-gluon Parke-Taylor amplitude is correctly produced.

The solution of the MHV Ward identities is unique under these conditions, so the favorable

conclusion is valid.

We define supercharges

Q̃a =

n
∑

i=1

|i〉 ηia , Qa =

n
∑

i=1

[ i | ∂

∂ηia
, (3.6)

which act by multiplication and differentiation in the space of functions of the η’s. Their

anticommutator is

{Qa , Q̃b} = δa
b

n
∑

i=1

| i〉 [i | = 0 . (3.7)

The fact that it vanishes due to momentum conservation should not be a surprise, since (3.7)

corresponds exactly to the basic SUSY anticommutator {Qaα , Q̃β̇
b } = δa

b P
β̇α which also

vanishes when the operator P β̇α is applied to an amplitude.

Consider the spinor contraction 〈ǫ Q̃a〉 =
∑

i〈ǫ i〉ηia of the supercharge Q̃a in (3.6) with

the parameter ǫ. The set of commutators of this operator with the differential operators

of (3.3) is isomorphic to the commutator algebra of (2.3). For example,

[

〈ǫ Q̃a〉 , 1
]

= 0 ,
[

〈ǫ Q̃a〉 , Db
i

]

= 〈ǫ i〉 δb
a 1 , (3.8)

[

〈ǫ Q̃a〉 , Dbc
i

]

= 〈ǫ i〉
(

δb
aD

c
i − δc

aD
b
i

)

, etc.

Thus the correspondence (3.3) between particle annihilators and differential operators re-

spects SUSY.

It may seem that there is at most a half-truth here since the commutators of [Qa ǫ] =
∑

i[i ǫ]∂/∂ ηia with all operators of (3.3) vanish rather than mirror the structure of (2.3).

This apparent paradox requires more thought. It may be related to the fact that the Qa

Ward identities are automatically satisfied in the MHV sector and are thus suggestive of a

type of 1/2-BPS property which we discuss further in section 7.
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The SUSY Ward identities hold formally in the form

Q̃aFn = 0 , QaFn = 0 , (3.9)

the first because we are multiplying δ(8) by its own argument and the second by momentum

conservation. We view these formal Ward identities as the analogue of the statement (2.21).

The concrete Ward identities of section 2.4 are obtained from products of the form

D(9)
(

〈ǫ Q̃a〉Fn

)

= 0 , (3.10)

where D(9) is a product of operators from the correspondence (3.3) of total order 9. Sim-

ilarly explicit Ward identities of the supercharge Qa are obtained from products of the

form

[ǫQa]D(7)Fn = 0 . (3.11)

This expression is a sum of 8th order derivatives. There are two possibilities depending on

the SU(4) indices of the product operator D(7). Either each individual term vanishes due

to SU(4) symmetry, or there are three non-vanishing terms7 which constitute an explicit

Qa Ward identity relating three amplitudes. These comments about SU(4) symmetry also

apply to the Q̃a Ward identities of (3.10).

3.2 Practicalities

As an example will show, the computation of spin factors from D(8)δ(8)
(
∑n

i=1 |i〉ηia

)

, re-

duces to a simple Wick contraction algorithm of the basic operators ∂a
i ≡ ∂/∂ηia. The

elementary contraction is

∂̂a
i . . . ∂̂

b
j = ±δab〈i j〉 . (3.12)

The . . . indicates other operators between those which are contracted and the sign depends

on whether the number of these operators is even or odd. Suppose we want to obtain the

amplitude of (2.32) for the specific index values a = c = 1, b = d = 2. From the

correspondence (3.3) we see that we must compute

D(8)δ(8)
( n
∑

i=1

|i〉ηia

)

= −∂2
1∂

3
1∂

4
1 ∂

1
2∂

3
2∂

4
2 ∂

1
3∂

2
3

1

16

4
∏

a=1

n
∑

i,j=1

〈i j〉 ηia ηja

= 〈1 2〉2〈2 3〉〈1 3〉 . (3.13)

The spin factor obtained by explicit action on δ(8) is more easily found by pairwise Wick

contraction of the operators in the string D(8). When the spin factor in (3.13) is multiplied

by the dynamical prefactor in the generating function (3.1), one finds exactly the amplitude

produced by explicit solution of the Ward identities in (2.32).

7In some cases more than three terms appear, but all except three vanish when definite values are

assigned to the SU(4) indices.
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3.3 Gravity

The good news now is that it is a very straightforward matter to write down a generating

function for the MHV sector of N = 8 supergravity. To describe n-point functions one

now needs 8n anti-commuting variables ηiA in which A is an SU(8) index. The generating

function is then

Ωn =
Mn(1−, 2−, 3+, . . . n+)

〈1 2〉8 δ(16)
( n
∑

i=1

|i〉ηiA

)

, (3.14)

with δ(16)
( n
∑

i=1

|i〉ηiA

)

=
1

256

8
∏

A=1

n
∑

i,j=1

〈i j〉 ηiA ηjA .

The quantity Mn(1−, 2−, 3+, . . . , n+) is the n-graviton MHV amplitude which can be writ-

ten using the KLT relations [13] or one of the several specific forms available for MHV am-

plitudes [24, 8, 25]. Although it is not obvious, the quantity Mn(1−, 2−, 3+, . . . n+)/〈1 2〉8
is invariant under the exchange i ↔ j of any pair of lines. This property actually follows

from the SUSY Ward identities [22]. Thus the formula (3.14) is entirely Bose symmetric.

It is also SU(8) invariant. It is a sum of products of 16 distinct η’s.

To use the generating function Ωn we define a new set of differential operators:

DA
i =

∂

∂ηiA
, DAB

i =
∂2

∂ηiA∂ηiB
,

DABC
i =

∂3

∂ηiA∂ηiB∂ηiC
, DABCD

i =
∂4

∂ηiA∂ηiB∂ηiC∂ηiD
, (3.15)

DiABC = − 1

5!
ǫABCDEFGH

∂5

∂ηiD · · · ∂ηiH
, DiAB =

1

6!
ǫABCDEFGH

∂6

∂ηiC · · · ∂ηiH
,

DiA = − 1

7!
ǫABCDEFGH

∂7

∂ηiB · · · ∂ηiH
, Di =

1

8!
ǫABCDEFGH

∂8

∂ηiA · · · ∂ηiH
.

As in the case of gauge theory, the fields of supergravity are associated with these

operators as follows:

b+(i) ↔ 1 , fA
+ (i) ↔ DA

i , bAB
+ (i) ↔ DAB

i , (3.16)

fABC
+ (i) ↔ DABC

i , bABCD(i) ↔ DABCD
i , f−ABC(i) ↔ DiABC ,

b−AB(i) ↔ DiAB , f−A (i) ↔ DiA , b−(i) ↔ Di .

To obtain the MHV amplitude for a particular set of external lines one simply applies

a 16th order differential operator which is the product of the corresponding operators

from (3.16). As a typical example, we write

〈

b−(1) bAB(2) bCD(3) b+(4) . . . b+(n)
〉

= D1 D2AB DCD
3 Ωn

= 2 δCD
AB

〈1 3〉2
〈1 2〉2 Mn(1−, 2−, 3+, . . . , n+) , (3.17)

which agrees with (2.36).
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It is significant that the state dependent spinor factors obtained from δ(16) involve

only analytic spinor brackets 〈i j〉, although complete supergravity amplitudes also involve

anti-analytic spinor brackets [i j].

It should be clear that any product of the derivatives in (3.15) of order 16 produces an

amplitude in the MHV sector, and that we can associate a partition of 16 with nmax ≤ 8

with each distinct product. There are 186 such partitions, each of which corresponds to

an n-point amplitude for a particular set of external fields. For example the amplitude

in (3.17) corresponds to the partition 16 = 8 + 6 + 2.

It is also clear from the preceding discussion in gauge theory that the amplitudes

generated in this way satisfy the SUSY Ward identities for N = 8 supergravity. Since these

Ward identities have a unique solution in the MHV sector, the amplitudes so constructed

are correct. Each of the 186 MHV amplitudes is the product of the n-graviton amplitude

times a state-dependent spin factor which is a homogeneous function with k ≤ 8 angle

bracket factors 〈i j〉 in the numerator and 〈1 2〉k in the denominator.

We now put readers on notice that the punch line of our argument concerning the

realization of SU(8) global symmetry in the map from gauge theory to supergravity is

near, at least for MHV amplitudes. This follows from the simple factorization properties

of the generating function Ωn and the differential operators in (3.15). To exhibit these

properties we split the set of 8n ηiA into two subsets, namely a subset ηia in which A is

restricted to index values A → a = 1, 2, 3, 4 and a subset ηir in which A → r = 5, 6, 7, 8.

Remarkably, and very simply, the supergravity generating function Ωn(ηiA) factors as

Ωn =
Mn(1−, 2−, 3+, . . . , n+)

〈1 2〉8 δ(8)
( n
∑

i=1

|i〉 ηia

)

δ(8)
( n
∑

j=1

|j〉 ηjr

)

. (3.18)

Remarkably and equally simply, the differential operators factorize precisely in accor-

dance with the map (1), including all signs. As an example, we write the map of graviphoton

operators with mixed SU(4) indices to illustrate how the − sign in the negative helicity

sector arises:

bar
+ (i) ↔ ∂2

∂ηia∂ηir
=

∂

∂ηia

∂

∂ηir
↔ F a

+(i) F̃ r
+(i) , (3.19)

b−ar(i) ↔ 1

6!

(

6

3

)

ǫarbcdstu
∂6

∂ηib∂ηic∂ηid∂ηis∂ηit∂ηiu
(3.20)

↔ −
(

− 1

3!
ǫabcd

∂3

∂ηib∂ηic∂ηid

)(

− 1

3!
ǫrstu

∂3

∂ηis∂ηit∂ηiu

)

↔ − F−
a (i) F̃−

r (i) .

We have checked that all N = 8 supergravity operators factor correctly. This also implies

that the differential operators (3.16) satisfy the N = 8 supersymmetry algebra.

The factorized structure ensures many desiderata, namely

a. Supergravity amplitudes satisfy N = 8 supersymmetry Ward identities, and they are

SU(8) covariant.
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b. The spin dependence of N = 8 supergravity amplitudes for all helicity states fac-

torizes into products of gauge theory spin factors. This works for MHV amplitudes

because the spin factors obtained by applying differential operators to the product

of δ(8)-functions in (3.18) are the same for all permutations in formulas such as the

KLT formula or the formula (3.21) below, which relate the graviton amplitude Mn

to products of two n-gluon amplitudes An.

c. N = 8 supersymmetry and SU(8) global symmetry can indeed be implemented in

the map (1.1).

These statements have been checked in a number of examples. We discuss some in the

next section.

3.4 Tests of the operator map

We now discuss the construction of two examples of MHV amplitudes in N = 8 supergrav-

ity from the map (1.1) using the operator correspondence in table 1. We need an explicit

formula which relates the n-graviton amplitude to products of n-gluon amplitudes. The

KLT formula is available and will be used in the NMHV sector. However, for MHV ampli-

tudes, there is a simpler choice, namely the form recently derived [25] by rearrangement of

the BGK formula [24, 8]. It reads

Mn(1−, 2−, 3+, . . . , n+) =
∑

P(i4,...,in)

〈1 2〉〈i3 i4〉
〈1 i3〉〈2 i4〉

s1in

(

n−1
∏

s=4

βs

)

An(1−, 2−, i+3 , . . . , i
+
n )2 ,

(3.21)

βs = −〈is is+1〉
〈2 is+1〉

〈2| i3 + i4 + · · · + is−1|is] . (3.22)

To apply (3.21), one chooses one distinguished positive helicity line i3 and then sums over

permutations of the remaining n− 3 such lines. This formula embodies the identifications

b− ↔ B− ⊗ B̃− and b+ ↔ B+ ⊗ B̃+ in the operator map of of table 1.

As the first example, we consider the two gravitino MHV amplitude
〈

b−(1) f−A (2) b+(3) . . . fB
+ (k) . . . b+(n)

〉

which was obtained in the first line of (2.36)

by solving the relevant N = 8 SUSY Ward identity. For a non-zero result, the SU(8)

indices must be chosen in the same SU(4) factor, A,B → a, b. For each permutation

in (3.21) we make use table 1 to decompose f−a ↔ F−
a ⊗ B̃− and write

〈

B− F−
a (2)B+(3) . . . F b

+(k) . . . B+(n)
〉

L

〈

B̃− B̃−(2) B̃+(3) . . . B̃+(k) . . . B̃+(n)
〉

R

= δb
a

〈1 k〉
〈1 2〉 〈B

−(1)B−(2)B+(3) . . . B+(n)〉L
〈

B̃− B̃−(2) B̃+(3) . . . B̃+(k) . . . B̃+(n)
〉

R
.

The spin factor can be obtained either from the N = 4 Ward identity, see (2.30), or from the

gauge theory generating function. The spin factor 〈1 k〉/〈1 2〉 is common to all permutations

in (3.21) and may be extracted as an overall factor. The result via the map (1.1) therefore

agrees with the supergravity formula in (2.36).
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The next example is the two scalar MHV amplitude given in the fourth line of (2.36).

There are three distinct decompositions of the SU(8) indices into distinct SU(4) sectors,

and we consider each in turn. It is interesting to note how products of rather different gauge

theory amplitudes conspire to produce the common spin factor required by supergravity.

Choose first all group indices in one SU(4), say SU(4)L, so that babcd ↔ B− ⊗ B̃+.

Then (with momentum labels implicit by order) we have

〈

b− b−abcd b
efgh
+ b+ . . . b+

〉

→ α2
4 ǫabcd ǫ

efgh
〈

B−B+B−B+ . . . B+

〉

L

〈

B̃− B̃− B̃+B̃+ . . . B̃+

〉

R

= 4! δefgh
abcd

〈13〉4
〈12〉4

〈

B−B−B+B+ . . . B+

〉

L

〈

B̃− B̃−B̃+B̃+ . . . B̃+

〉

R
.

In the second line we have used the gluon MHV identity (2.33) to obtain the spin factor

〈1 3〉4/〈1 2〉4 (which is common to all permutations in the formula (3.21)). The identity

ǫabcdǫ
efgh = 4! δefgh

abcd is also used. The result agrees perfectly with (2.36).

Next split the SU(8) indices such that one leg of each scalar lies in the SU(4)R and

the rest in SU(4)L. Reducing the 4-index antisymmetrizer in (2.36) this way gives δefgs
abcr =

3! δs
r δ

efg
abc . The operator map in table 1 tells us

〈

b− babcr b
efgs b+ . . . b+

〉

→ (−1)α2
4 ǫabcd ǫ

efgh
〈

B− F d
+ F

−
h B+ . . . B+

〉

L

〈

B̃− F̃−
r F̃ s

+ B̃+ . . . B̃+

〉

R

= − ǫabcd ǫ
efgh

(

− δh
d

〈12〉
〈13〉

)

〈

B−B+B
−B+ . . . B+

〉

L
×

×
(

δs
r

〈13〉
〈12〉

)

〈

B̃− B̃− B̃+ B̃+ . . . B̃+

〉

R

= 3! δs
r δ

efg
abc

〈13〉4
〈12〉4

〈

B−B−B+B+ . . . B+

〉

L

〈

B̃− B̃− B̃+B̃+ . . . B̃+

〉

R
.

The minus sign (−1) in the first line comes from conscientiously moving F̃−
r past F−

h when

separating the operators into the L and R gauge theory amplitudes. In the second line we

used the gluino Ward identity (2.30). In the last line, (2.33) again gives the correct overall

spin factor. Observe how gauge theory results (either from Ward identities or the generating

function) combine to produce the supergravity amplitude which agrees with (2.36).

The third distinct split of the scalar SU(8) indices places two of the four indices in

SU(4)L and the other two in SU(4)R. The antisymmetrizer splits as δcdtu
abrs = (2!)2 δcd

ab δ
tu
rs.

Table 1 tells us that the gauge theory amplitudes needed in (3.21) involve two scalars and

n − 2 gluons. This amplitude is given in (2.31) and contains the spin factor 〈1 3〉2/〈1 2〉2.
In the product of the two gauge theory amplitudes this factor is squared exactly as needed

to agree with (2.36).

Several other examples of MHV amplitudes in supergravity have been studied using

the map in table 1 to identify the appropriate gauge theory amplitudes. In every case the

application of (3.21) produces the same result as a straightforward calculation using the

supergravity generating function.
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4. An application: intermediate state helicity sums

So far the generating function has been shown to be a useful bookkeeper for the spin

dependence of MHV amplitudes in gauge theory and supergravity. In this section we

outline a further application, namely to sums over intermediate helicity states needed

when the product of MHV trees occurs in a unitarity cut of a 1-loop amplitude.

First we use the generating function to reproduce the intermediate state sum in a

2-particle cut in gauge theory, as discussed in section 5 of [26]. Figure 1(a)8 indicates

the 2-particle cut of a 1-loop amplitude containing MHV amplitudes to the left and right.

Each amplitude contains one negative helicity gluon, on line i− in the left factor and line

j− on the right, plus arbitrary numbers of positive helicity gluons denoted as lines m on

the left and n on the right. The intermediate state is a pair of particles of momenta l1, l2.

Conservation laws allow these to be either a gluon pair, a gluino pair, or a pair of scalars.

In the approach of [26], one must solve the Ward identities to find the amplitudes and sum

their contributions weighted by the multiplicities, 1-4-6-4-1, of the states in the N = 4

gauge theory. This is not difficult, nor is the resulting binomial sum and spinor algebra

which is required to obtain the final answer. However, we find it interesting to put the

generating function to work on the problem.

We are interested only in the helicity sum so we drop the dynamical prefactors in the

generating function (3.1). The core situation is then governed by the product

D1D2 δ
(8)(I)δ(8)(J) , (4.1)

where

I = |l1〉η1a + | − l2〉η2a + |i〉ηia +
∑

m

|m〉ηma , (4.2)

J = | − l1〉η1a + |l2〉η2a + |j〉ηja +
∑

n

|n〉ηna , (4.3)

Dl =

4
∏

a=1

∂

∂ηla
, l = 1, 2 . (4.4)

We see that I and J are the arguments of the δ-functions in the generating functions for

the left and right amplitudes respectively. The derivatives D1D2 act on the Grassmann

variables η1a and η2a in both I and J . They reproduce the intermediate state sum in

a very compact fashion, automatically keeping track of phases and multiplicities. Each

intermediate state comes from a particular split of the individual derivatives in D1D2 so

that some factors act on I and the rest on J .

To see this first note that, because of the outgoing line convention, the particles on

the two ends of an internal line have opposite helicity. One term of the spin sum is the

case where a positive helicity gluino F b
+, with SU(4) index b, is emitted from the left on

line l1 and absorbed as a negative helicity gluino F−
b on the right. This case corresponds

to the split of the operator D1 with ∂/∂η1b acting on I and the third order D1b from

8This reproduces figure 4 of [26].
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i− j−

l1

l2

I J

i−

j−
k−

l1

l2

l3

I

JK

(a) (b)

Figure 1: Intermediate spin sums.

the list in (3.3) acting on J . After the 4th order Di is applied to describe the emission

of the negative helicity external gluon, we must apply 3 further derivatives to δ(8)(I) to

have a non-vanishing result. Thus the derivative D2 is forced to split with the third order

D2b applied to I and the first order Db
2 applied to J . The negative sign associated with

the fermion loop comes from anti-commutation of derivatives. The multiplicity factor 4

for gluinos comes from the sum over the 4 choices of the index b. This description is

unnecessarily tedious. In practice all of the bookkeeping is done automatically (while the

physicist sips his tea).

Let’s now proceed to the full calculation; we must compute

D1D2

(

Diδ
(8)(I)Djδ

(8)(J)
)

. (4.5)

The computation is simpler in the order indicated. We write9

Diδ
(8)(I) = Di

4
∏

a=1

(

− 〈l1 l2〉η1aη2a + 〈l1 i〉η1aηia − 〈l2 i〉η2aηia + . . .
)

=

4
∏

a=1

(

− 〈i l1〉η1a + 〈i l2〉η2a + . . .
)

. (4.6)

The omitted terms . . . involve the Grassmann variables ηma. They can be dropped since

no derivatives ∂/∂ηma will be applied. Hence

Diδ
(8)(I)Djδ

(8)(J) =

4
∏

a=1

4
∏

b=1

XaYb = (X1Y1)(X2Y2)(X3Y3)(X4Y4) , (4.7)

Xa = −〈i l1〉η1a + 〈i l2〉η2a ,

Ya = 〈j l1〉η1a − 〈j l2〉η2a .

9We use the continuation | − l〉 = −|l〉 of spinors for negative null momenta.
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Each product simplifies by the Schouten identity, viz

XaYa =
(

〈j l1〉〈i l2〉 − 〈j l2〉〈i l1〉
)

η1aη2a (no sum)

= −〈i j〉〈l1 l2〉 η1aη2a . (4.8)

Finally we obtain

D1D2

(

Diδ
(8)(I)Djδ

(8)(J)
)

= 〈i j〉4〈l1 l2〉4, (4.9)

which is equivalent to (5.6) of [26]. We did this calculation in gauge theory to facilitate

comparison with [26], but it is just as easy in supergravity. The final result there is

〈i j〉8〈l1 l2〉8.
It is no more difficult to handle the spin sum for the 3-particle cut shown in figure 1(b),

which is related to the supergravity calculation discussed in section 4B of [8]. The external

states involve one negative helicity graviton on each sub-amplitude. The core involves

a product of three generating δ-functions to which operators D1D2D3 which effect the

automatic spin sum are applied:

D1D2D3

[

δ(16)(I)δ(16)(J)δ(16)(K)
]

, (4.10)

I = |l1〉η1a + | − l3〉η3a + |i〉ηia +
∑

m

|m〉ηma ,

J = | − l1〉η1a + |l2〉η2a + |j〉ηja +
∑

n

|n〉ηna ,

K = | − l2〉η2a + |l3〉η3a + |k〉ηka +
∑

p

|p〉ηpa .

The differential operators are now all eighth order, given by the last entry in the list (3.15).

Derivatives Di,Dj ,Dk for the external gravitons require only simple calculations similar

to (4.6) which give

Diδ
(8)(I) =

8
∏

a=1

(

〈i l1〉η1a − 〈i l3〉η3a

)

≡
8
∏

a=1

Xa ,

Djδ
(8)(J) =

8
∏

b=1

(

− 〈j l1〉η1b + 〈j l2〉η2b

)

≡
8
∏

b=1

Yb , (4.11)

Dkδ
(8)(K) =

8
∏

c=1

(

− 〈k l2〉η2c + 〈k l3〉η3c

)

≡
8
∏

c=1

Zc .

Next we assemble the product

8
∏

a=1

(XaYaZa) =
8
∏

a=1

[

〈i l1〉〈j l2〉〈kl3〉 − 〈i l3〉〈j l1〉〈kl2〉
]

η1aη2aη3a . (4.12)

Finally we apply D1D2D3 which trivially gives the result

[

〈i l1〉〈j l2〉〈kl3〉 − 〈i l3〉〈j l1〉〈kl2〉
]8

(4.13)
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and agrees10 with (4.23) of [8].

We have applied the generating function to situations which are fairly straightforward

in their original form in [26] and [8]. However, we wanted to strut our stuff in the hope

that the technique will be useful in more complex situations where intermediate spin sums

are required.11

5. Spin factors and CFT correlators

There is a spectacular analogy between the spin factors for MHV diagrams and holomorphic

correlators in conformal field theory on the complex plane. Suppose we are interested in

the spin factor for a general MHV n-point amplitude in supergravity which we denote by

〈φ1φ2 . . . φn〉. Each of the operators φ1 has an ”η-count” ri ∈ 0, 1, . . . , 8 and a specific

assignment of SU(8) indices which we omit in the notation. Of course
∑

i ri = 16 for an

MHV process as we have emphasized in section 3.3, but this constraint will not play a

major role. The conformal analogy we now develop is equally valid in the gauge theory.

The spin factor is defined in this section as

〈φ1φ2 . . . φn〉 = D(r1)
1 . . .D(rn)

n δ(16)
(

∑

i

|i〉ηηiA

)

, (5.1)

in which D(ri)
i is a differential operator of order ri which carries the SU(8) indices of φi.

In every case we deal with below we assume that the 16 SU(8) indices are paired so that

the spin factor is non-vanishing. We noticed the analogy by asking the question “What

features of the spin factor are determined only by the ri and what features require the

explicit assignment of indices?”

Let’s begin with the 3-point case in which the derivatives in (5.1) give the result (up

to a sign):

〈φ1 φ2 φ3〉 = 〈1 2〉ν12〈2 3〉ν23〈3 1〉ν31 . (5.2)

Since each derivative D(ri)
i in (5.1) produces ri factors of the spinor |i〉, we see that

ν12 + ν31 = r1 ,

ν12 + ν23 = r2 , (5.3)

ν23 + ν31 = r3 ,

which uniquely determine the values

νij =
1

2
(ri + rj − rk) , (5.4)

where i, j, k is a cyclic permutation of 1,2,3. At this point, the reader will undoubtedly

recall that the correlation function of 3 conformal primary operators Oi of scale dimension

(ri, 0) is

〈O1(z1)O2(z2)O3(z3)〉 = c123
1

zν12

12 z
ν23

23 z
ν31

31

(5.5)

10The denominator in (4.23) is included in the prefactors omitted in our calculation.
11Pilot calculations of 1- and 2-loop helicity sums involving NMHV tree amplitudes in N = 4 SYM

indicate that the generating function method is applicable.
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with the same exponents νij . Conclusion: a 3-point spin factor is completely determined by

the ri just as a CFT 3-point correlator is completely determined by the 3 scale dimensions.

The forms are strikingly similar. This is not an accident; we can push further.

The spin factor of any 4-point amplitude obtained from (5.1) contains a product of as

many as 6 angle brackets, viz.

〈φ1 φ2 φ3 φ4〉 = 〈1 2〉ν12〈1 3〉ν13〈1 4〉ν14〈2 3〉ν23〈2 4〉ν24 〈3 4〉ν34 . (5.6)

The set of 4 equations analogous to (5.3) are not sufficient to solve for the 6 exponents

νij . What else can we do to help determine them? Consider the spin factor for the MHV

amplitude corresponding to the partition r1 = 7, r2 = 5, r3 = 2, r4 = 2, which corresponds

to an amplitude with one gravitino, one graviphotino, and two graviphotons. Let’s write

one possible expression which carries the correct scaling weight (|i〉)ri for each spinor,

namely

〈φ1 φ2 φ3 φ4〉 ∼ 〈1 2〉5〈1 3〉〈1 4〉〈3 4〉 . (5.7)

There is additional freedom to multiply this by a function which is invariant under scaling

of all 4 spinors. It seems that we can multiply by any function of the variables

ξ =
〈1 3〉〈2 4〉
〈1 2〉〈3 4〉 , ξ′ =

〈2 3〉〈4 1〉
〈1 2〉〈3 4〉 , (5.8)

but they are not independent, rather ξ′ = 1 − ξ due to the Schouten identity. Similarly

ξ” = 〈1 3〉〈2 4〉/〈2 3〉〈4 1〉 = ξ/(1 − ξ). Thus it appears that the most general form for our

spin factor is

〈φ1 φ2 φ3 φ4〉 = 〈1 2〉5〈1 3〉〈1 4〉〈3 4〉 f(ξ) , (5.9)

where f(ξ) is an arbitrary function of ξ. At this point the relevance of conformal field

theory is clear. The properties of the 4-point spin factor are identical to those of the

4-point correlator12 of operators with scale dimension (ri, 0) which involves an arbitrary

function of one “cross ratio” which may be taken to be Ξ = (z13)(z24)/(z12)(z34).

One property of spin factors, which is not present in conformal field theory, is that the

exponents νij in (5.6) must be non-negative integers. This severely restricts the choice of

f(ξ) to f(ξ) = 1, f(ξ) = ξ, or f(ξ) = 1 − ξ. Each choice corresponds to an inequivalent

configuration of SU(8) labels as follows:

f(ξ) = 1 ↔ 〈φ1234567
1 φ12345

2 φ68
3 φ78

4 〉 ,
f(ξ) = ξ ↔ 〈φ1234567

1 φ12348
2 φ56

3 φ78
4 〉 , (5.10)

f(ξ) = 1 − ξ ↔ 〈φ1234567
1 φ12348

2 φ68
3 φ57

4 〉 .

A general n-point spin factor for a process involving operators of η-count r1, r2, . . . rn
can be expressed as the product of up to n(n− 1)/2 independent angle brackets 〈i j〉, each

raised to the non-negtive integer power νij. Suppose that we have obtained one candidate

12See for example section 5.1 of [27]. The scale dependent product of six factors (〈i j〉)r/3−ri−rj suggested

by (5.28) of [27] can be used for the general 4-point spin factor. However, it involves fractional exponents,

since r =
P

i ri = 16, which is awkward.
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expression which scales as Λri for each spinor. We would then need to consider modification

of that expression, involving the possible scale invariant variables which can be constructed

from the spinors. To find such variables it is sufficient to scale each spinor13 to the form

|i〉 → λ̃α̇
i = (zi 1). Then each angle bracket satisfies 〈i j〉 = zi − zj ≡ zij This establishes

an exact correspondence between scale invariant variables constructed from spinor angle

bracket and CFT cross ratios. In the 4-point case above, we have ξ = Ξ! There are n− 3

independent variables for an n-point function.

Although the CFT analogy is quite perfect, it has been of limited use for us. One

application concerns the asymptotic behavior of the spin factors for diagrams in the MHV-

vertex expansion of an NMHV amplitude.

6. Generating Functions for NMHV amplitudes

We would like to extend our study beyond the MHV sector, but there are several difficul-

ties. The structure of non-MHV amplitudes with external gluons or gravitons is far more

complicated than MHV, and the recursion relations they satisfy contain more terms. It is

also more difficult to extract information14 from the SUSY Ward identities which relate am-

plitudes within each non-MHV sector. Happily it turns out that we can make considerable

progress in the NMHV (next-to-MHV) sector which consists of all amplitudes connected

by supersymmetry to the n-gluon or n-graviton amplitude with 3 negative helicity lines.

One needs n ≥ 6 for a genuine NMHV amplitude. For n = 5, the amplitude with helicity

configuration 〈−−−++〉 is the complex conjugate of the MHV configuration 〈+++−−〉.
In this section we discuss NMHV amplitudes in N = 4 gauge theory and N = 8

supergravity. Our treatment is based on the MHV-vertex expansion developed for gauge

theory in [16] and extended to gravity in [17]. For external gluon amplitudes, the method

was established before the invention of modern recursion relations in [9, 10], but the version

of recursion relations studied in [18] provides the simplest and most general approach, and

clarifies the validity of the method.

6.1 Recursion relations and the MHV-vertex method

Recursion relations express n-point tree amplitudes such as An as finite sums of products

of two sub-amplitudes An1
, An2

with n1, n2 < n. They exploit the simple analyticity

properties of on-shell tree amplitudes in a variable z which appears through a shift of

the spinors used to parametrize the complex momenta. Cauchy’s theorem can be used

to derive a valid recursion relation provided that the amplitude vanishes as the complex

variable z → ∞. Our applications to N = 8 supergravity force us to confront this basic

fact head on, so it will play an important role in our discussion below (sections 6.2.2

and 6.3.2). Later we will compare the large z behavior associated with both 3-line and the

more common 2-line shift, so we begin with a review of the latter. See [30, 8] and [31] for

more information on the large z asymptotics.

13We thank Gary Gibbons for this observation.
14We solve the N = 1 SUSY Ward identities for NMHV 6-point amplitudes in appendix B. Some explicit

results have also been found in [28] and [29].
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6.1.1 2-line shifts

The simplest recursion relations are based on a complex continuation of on-shell amplitudes

in which the spinors of two external lines are shifted. Suppose that we are interested in

n-point amplitudes of gluons An(1−, 2−, 3, 4, . . . , n) or gravitons Mn(1−, 2−, 3, 4, . . . , n).

Particles 1 and 2 have negative helicity, as indicated, while the helicity of the remaining

particles can be positive or negative. In the method of [11], the spinors of particles 1 and

2 are shifted as follows:15

|1〉 → |1̂〉 = |1〉 − z|2〉 , |2〉 → |2〉 ,
|1] → |1] , |2] → |2̂] = |2] + z|1] . (6.1)

The shifted momenta are rank 1 products of spinors and therefore null vectors, and the

shift cancels in the sum, so that momentum is conserved, viz

(p̂1 + p̂2)
α̇β =

(

|1〉 − z|2〉
)

[1| + |2〉
(

[2| + z[1|
)

= (p1 + p2)
α̇β . (6.2)

Therefore the shifted amplitudes

An(z) = An(1̂−, 2̂−, 3, . . . , n) , Mn(z) = Mn(1̂−, 2̂−, 3, . . . , n) . (6.3)

are indeed on-shell analytic continuations of An(0) = An(1−, 2−, 3, . . . , n) and Mn(0) =

Mn(1−, 2−, 3, . . . , n).

The only singularities of tree amplitudes are poles where propagators vanish. Therefore

A(z) and M(z) are meromorphic with simple poles in z, a pole for each partition of the

amplitude into a product of two sub-amplitudes connected by a propagator carrying the

z-dependent momentum P̂I = p̂1+K1 = −(p̂2+K2) whereK1 =
∑

pI1 and K2 =
∑

pI2 are

the sums of unshifted momenta in each factor. If the important condition that A(z) → 0

as z → ∞ is satisfied, then Cauchy’s theorem can be applied to derive, see [10, 11], the

recursion relation

An(1−, 2−, 3, . . . , n) =
∑

I

An1
(1̂−,−P̂I , . . . , n)

1

sI
An2

(P̂I , 2̂
−, 3, . . .) . (6.4)

Here n1 + n2 = n + 2, and sI = −(p1 + K1)
2 is the unshifted Mandelstam invariant

associated with the partition I. The sum includes all partitions of the amplitude in which

the shifted lines are on opposite sides. For each such partition, z is evaluated at the pole

zI determined by

0 = P̂ 2
I = (p̂1 +K1)

2 = − sI + zI〈2|PI |1] , (6.5)

in which PI = p1 + K1. The internal particle emitted from the first sub-amplitude can

have either helicity. Propagation to the second sub-amplitude conserves helicity, but it

is recorded there with opposite helicity because of the outgoing momentum convention.

Graviton amplitudes satisfy recursion relations [11] of the same form as (6.4), but with

An’s replaced by Mn’s.

15This is usually called a [−,−〉 shift. It is known that [−, +〉 and [+, +〉 shifts also lead to a valid

recursion relation, but a [+,−〉 shift does not.
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1̂−

2̂−

l+

P̂I− +
2̂−

1̂−

k+

P̂I+ −

(a) (b)

Figure 2: Diagrams from the 2-line shift recursion relations (6.4) for MHV amplitudes in both

gauge theory and gravity. The 3-vertex in the right hand diagram vanishes as a consequence of

kinematics.

It is interesting to examine the types of diagrams that actually contribute to the re-

cursion relation for various types of amplitudes. The simplest case is MHV amplitudes

in gauge theory in which color ordering and helicity conservation (see the discussion be-

low (2.24)–(2.25)) imply that only the two diagrams listed in figure 2 can contribute. Both

of them involve the 3-gluon vertex with two positive helicity lines. But the two situations

are rather different. The 3-vertex in figure 2(b) vanishes at the pole by “special kinematics”:

the null condition P̂ 2
I = 〈2 l〉[2̂ l] = 0 for the internal line requires [2̂ l] = 0, and therefore

A3(2̂
−, P̂+

I , l
+) ∝ [P̂I l]

3 ∝ [2̂ l]3 = 0. The 3-vertex in figure 2(a) does not vanish because

|1̂] = |1]. Thus there is only one contributing diagram, and it is not difficult to show by

iteration [32] that the Parke-Taylor amplitude (3.4) is the solution of the recursion relation.

The diagrams for n-graviton MHV amplitudes are similar. Helicity conservation restricts

the possible diagrams to those containing a 3-graviton vertex, and special kinematics again

forces the diagram of figure 2(b) to vanish. However there are now more diagrams of the

type in figure 2(a), namely the n−2 diagrams containing cyclic permutations of the positive

helicity lines [11]. This is required by Bose symmetry. The simplicity of MHV recursion

relations was exploited in [25] to prove a relationship between Mn and (An)2 for all n.

The recursion relation is also valid for non-MHV amplitudes, but more diagrams con-

tribute. Diagrams for the simplest case of the NMHV gauge theory amplitudes, such as

An(1−, 2−, 3−, 4+, . . . , n+), include both NMHV and MHV sub-amplitudes. An example

with NMHV vertices is shown in figure 3. This undesirable feature can be avoided with

3-line shifts as we discuss in section 6.1.2.

Recursion relations fail if amplitudes shifted as in (6.1) do not vanish as z → ∞. It is

by now well established that n-gluon amplitudes vanish as 1/z and n-graviton amplitudes

vanish as 1/z2 if two negative helicity lines are shifted [30, 8, 31]. Indeed this behavior

of MHV amplitudes can be directly observed in (3.4) and (3.21). But the asymptotic

behavior does depend on particle type, a fact of particular concern for this paper. For

example consider the amplitude (2.31) for two scalars and n−2 gluons. If lines 1 and 2 are

shifted, the spin factor in (2.31) contains a factor z2 which overwhelms the 1/z falloff of the

n-gluon amplitude. One can see from (2.36) that amplitudes in which a pair of gravitons

of opposite helicity is replaced by a pair of particles of spin s behave as z(2−2s) at large z.

These remarks apply specifically to the shift of (6.1), and there are other shifts available

in these examples. In particular, if the spinors of particle 1 and 2 are exchanged in (6.1),
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2̂−

3−

k+

1̂−

P̂I+ −

Figure 3: 2-line shift recursion relations for NMHV amplitudes contain non-vanishing diagrams

with NMHV vertices. It is an appealing feature of 3-line shifts that such diagrams vanish due to

special kinematics and the recursion sum consequently contains MHV subdiagrams only.

the amplitudes vanish as z → ∞ and recursion relations can be derived.

6.1.2 3-line shifts

We now discuss the recursion relation which arises from the 3-line shift first considered

in [18] with further details discussed in [17]. This shift applies to NMHV amplitudes

such as An(1−, 2−, 3−, 4+, . . . , n+) and Mn(1−, 2−, 3−, 4+, . . . , n+). In this shift, all |p〉
spinors are unchanged, while three spinors |1], |2] |3] are shifted. In our applications we

will consider the 123-shift and other choices for the 3 shifted lines. So we define the more

general shift

|m1] → |m̂1] = |m1] + z 〈m2m3〉 |X] ,

|m2] → |m̂2] = |m2] + z 〈m3m1〉 |X] , (6.6)

|m3] → |m̂3] = |m3] + z 〈m1m2〉 |X] ,

where |X] is an arbitrary reference spinor, which will play an important role in our analysis.

Shifted momenta p̂i remain on shell and total momentum is conserved because of the

Schouten identity.

Let’s focus first on 6-point amplitudes. When the mi are chosen to be the three

negative helicity lines, the pure gluon and pure graviton amplitudes vanish for large z.

Using for example the results for the amplitudes given in the literature, e.g. [28], we find

numerically for large z in gauge theory

〈−̂−̂−̂ + ++〉 ∼ 〈−̂−̂ + −̂ + +〉 ∼ 1

z4
,

〈−̂ + −̂ + −̂+〉 ∼ 1

z5
, (6.7)

and in gravity (via KLT)

〈−̂−̂−̂ + ++〉 ∼ 1

z6
. (6.8)

Higher n-point graviton amplitudes are discussed in section 6.3.5.

We will also see later that these exponents change for amplitudes with other states of

the N = 4 or N = 8 theories. However, it is clear that the NMHV amplitudes A6 and M6

do satisfy recursion relations. We first discuss the gauge theory case in detail and then the

modifications necessary for gravity.
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Gauge theory. The NMHV amplitude An(1−, 2−, 3−, 4+, . . . , n+) satisfies the recursion

relation

An(1−, 2−, 3−, 4+, . . . , n+) =
∑

I

An1
(m̂1,−P̂I , . . . , n)

1

sI
An2

(P̂I , m̂2, m̂3, 4, . . . ) , (6.9)

in which m1,m2,m3 are a cyclic permutations of 1,2,3 and the sum includes all partitions

I in which the negative helicity lines are separated and all external lines appear in cyclic

order on the right side.16 The contribution of each individual diagram depends on |X].

However, if the amplitude vanishes as z → ∞ for all |X], Cauchy’s theorem ensures that

the sum of all diagrams is independent of |X].

Spinors for the shifted momenta 1̂, 2̂, 3̂, P̂I which appear in (6.9) are evaluated at the

pole of the variable z in (6.6) for each contributing diagram. The channel momentum

P̂I can always be written to include the negative helicity line m̂1, plus the sum K of the

positive helicity lines in the same sub-amplitude, i.e. P̂I = m̂1 + K. The pole condition,

similar to (6.5), is

0 = P̂ 2
I = −sI − zI〈m2m3〉〈m1|PI |X] . (6.10)

Scalar products among the shifted (denoted by mi) and unshifted (denoted by k) spinors

are required to evaluate sub-amplitudes. They are given by (see [17])

〈i P̂I〉 = ω−1 〈i |PI |X] , ω = [P̂I X] , (6.11)

[P̂I k] =
ω 〈m1|PI |k]
〈m1|PI |X]

, PI = m1 +K , (6.12)

[m̂2 m̂3] = [m2m3] + zI 〈m1|m2 +m3|X] , (6.13)

[m̂1 k] = [m1 k] − zI 〈m2m3〉[k X] . (6.14)

where zI is determined by (6.10).

We now return to the recursion sum (6.9). Due to helicity conservation, the two sub-

amplitudes must be MHV for partitions in which both n1 > 3 and n2 > 3. The only

possibility for non-MHV subdiagrams in the sum (6.9) arises from diagrams like that of

figure 3, but now with 1, 2, 3 all shifted according to (6.6). As a result of the different shifts,

the 3-point anti-MHV amplitude in this expression now vanishes due to kinematics. This is

easily seen using A3(m̂
−
1 , k

+,−P̂+
I ) = [k P̂I ]

3/([P̂I m̂1][m̂1 k]). Equations (6.12) then tell us

that [k P̂I ] = −ω 〈m1|PI |k]/〈m1|PI |X] = 0, because PI = m1 + k, while both factors in the

denominator are non-vanishing. We conclude that the sum (6.9) (and its generalizations

to other orderings of the ±ve helicity lines) contains only diagrams where each subdiagram

is MHV. This is the principal advantage of the 3-line shift. It allows the construction of

the relatively difficult NMHV amplitudes from simpler and familiar MHV elements.

Since the sub-amplitudes are MHV, there is only one choice of helicities for the internal

line, and hence each diagram in the recursion expansion is uniquely characterized by its

pole momentum PI . Figure 4 shows a typical diagram An,I that contributes to the sum

16Formula (6.9) applies specifically to the case of consecutive ordering of the lines of each helicity. For

other orderings there are similar relations.
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An,I =

l+

(k + 1)+

m̂−
2

m̂−
3

(l + 1)+

k+

m̂−
1

P̂I− +

Figure 4: Generic MHV-vertex diagram from the 3-line shift recursion relations for NMHV am-

plitudes in both gauge theory and gravity.

in (6.9) for An(1, . . . ,m−
1 , . . . ,m

−
2 , . . . ,m

−
3 , . . . , n). Each vertex amplitude is MHV, so we

use the Parke-Taylor formula [23] to write

An,I = An1
(m̂−

1 , . . . , k
+,−P̂−

I , (l + 1)+, . . . )
1

sI
An2

(m̂−
2 , . . . , m̂

−
3 , . . . , l

+, P̂+
I , (k + 1)+, . . . )

=
〈m1 P̂I〉4

〈P̂I , l + 1〉 · · · 〈k P̂I〉
1

sI

〈m2m3〉4
〈P̂I , k + 1〉 · · · 〈l P̂I〉

. (6.15)

Each angle bracket with P̂I can be rewritten using (6.11), giving |P̂I〉 = ω−1PI |X].

Since the ω-factors cancel in (6.15), we can ignore them from the beginning. Thus we will

use the simpler rule

|PI〉 = PI |X] = (pm1
+K)|X] . (6.16)

This is the CSW spinor prescription for an internal line, and the 3-line recursion relations

thus reproduce the MHV-vertex expansion of [16].

A useful alternate form [15] of (6.15) is

An,I =

( n
∏

1

〈i, i + 1〉−1

)

1

VI
〈m2m3〉4 〈m1 PI〉4 , (6.17)

where

1

VI
=

〈l, l + 1〉〈k, k + 1〉
sI 〈PI , l + 1〉〈k PI〉〈PI , k + 1〉〈l PI〉

. (6.18)

The cyclic invariant product is common to all diagrams which contribute to the full am-

plitude.

Example: the 6-point gluon NMHV amplitudes. Shifting the negative helicity lines

1, 2, 3, the recursion relations for the gluon amplitude A6(1
−, 2−, 3−, 4+, 5+, 6+) contains 6

diagrams which we label by their poles, namely 12, 23, 34, 61, 612, and 234; the diagrams

are shown in figure 5. While each diagram depends on |X], their sum is |X]-independent

because A6(z) → 0 for all |X] as z → ∞.

The two other 6-point gluon NMHV amplitudes A6(1
−, 2−, 3+, 4−, 5+, 6+) and

A6(1
−, 2+, 3−, 4+, 5−, 6+) can likewise be computed from recursion relations obtained from

shifting the three negative helicity lines. They contain 8 and 9 diagrams, respectively, and

again the sums of diagrams are independent of |X].

Let us now consider the analogous approach to graviton amplitudes.
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3̂ 2̂
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6

Figure 5: The six MHV-vertex diagrams needed for the 3-line recursion relation for the gluon

NMHV amplitude A6(1
−, 2−, 3−, 4+, 5+, 6+). Amplitudes for other external particles of N = 4

theory are obtained by multiplying each gluon diagram by the appropriate spin factor.

Gravity. The 3-line shift gives the recursion relation

Mn(1−, 2−, 3−, 4+, . . . , n+) =
∑

I

Mn1
(m̂−

1 ,−P̂−
I , . . . )

1

sI
Mn2

(m̂−
2 , m̂

−
3 , P̂

+
I , . . . ) . (6.19)

For each value of n1, the sum includes all cyclic orderings of the negative helicity lines and

of all distinct arrangements of the positive helicity lines. Overall Bose symmetry is then

maintained. The sum in (6.19) only contains MHV-vertex diagrams. This can be shown

as in gauge theory using M3 = A2
3.

The form of the BGK formula presented in [25] can be used to express the two MHV

sub-amplitudes and show that the ω-factor in (6.11) drops out. In more detail:

Mn1
(m̂−

1 ,−P̂−
I , i

+
3 , . . . , i

+
n1

) (6.20)

= ω−4
∑

P(i4,...,in1
)

〈m1 PI〉〈i3 i4〉
〈m1 i3〉〈PI i4〉

sm̂1in1

(

n1−1
∏

s=4

βs

)

An1
(m̂−

1 ,−P−
I , i

+
3 , . . . , i

+
n1

)2 ,

with

βs = − 〈is is+1〉
〈PI is+1〉

〈PI | i3 + i4 + · · · + is−1|is] . (6.21)

The ω−4 factor comes from setting |P̂I〉 = ω−1PI |X] in A2
n1

.

Likewise,

Mn2
(m̂−

2 , m̂
−
3 , P̂

+
I , j

+
4 , . . . , j

+
n2

) (6.22)

= ω4
∑

P(j4,...,jn2
)

〈m2m3〉〈PI j4〉
〈m2 PI〉〈m3 j4〉

sm̂2jn2

(

n2−1
∏

s=4

βs

)

An2
(m̂−

2 , m̂
−
3 , P

+
I , j

+
4 , . . . , j

+
n2

)2 ,

with

βs = − 〈js js+1〉
〈m3 js+1〉

〈m3| P̂I + j4 + · · · + js−1|js] . (6.23)

– 34 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
3

This latter expression contains P̂I only in the ω-independent combination 〈m3 P̂I〉[P̂I js] =

〈m3 PI〉〈m1|P |js]/〈m1 PI〉. (See (6.11)–(6.12).) The two results for ω-factors are only valid

for n1, n2 ≥ 4. For n1 or n2 = 3 one can simply use M3 = (A3)
2 to deduce the same results.

It is obvious now that the ω-factors cancels in Mn1
s−1
I Mn2

yielding diagrams which are

independent of ω. Note that the effect of the shift appears in |PI〉, given in (6.16), and in

sm̂ij = 〈mi j〉[j m̂i].

Example: the 6-point graviton NMHV amplitude. Shifting the negative helicity

lines 1, 2, 3, the recursion relations for the graviton amplitude M6(1
−, 2−, 3−, 4+, 5+, 6+)

contains 21 diagrams which fall in three classes: three 2-particle “−−” poles (I =

12, 13, 23), nine 2-particle “−+” poles (I = mi4,mi5,mi6) and nine 3-particle poles

(I = mi45,mi46,mi56). One only needs to compute one amplitude from each class; the

rest can be obtained by momentum relabelling. Our numerical check shows that the sum

of the 21 diagrams is independent of |X].

The diagrammatic expansions associated with the recursion relations (6.9) for gauge

theory and (6.19) for gravity are the basis for our treatment of NMHV amplitudes. We

apply them to amplitudes for general external states of N = 4 SYM and N = 8 supergrav-

ity using the generating functions discussed below to determine the spin factors for each

diagram. It is important that the amplitudes vanish as z → ∞, and this condition will

play a crucial role in the application to N = 8 supergravity.

6.2 NMHV Generating Function for N = 4 SYM

In this section we derive the generating function of [15] and discuss several properties that

are important for our application. The goal is to obtain a correct and efficient construction

of the entire NMHV sector of the N = 4 theory. The NMHV sector consists of the top

n-gluon amplitudes An (for various orderings of the three negative helicity lines) together

with all other amplitudes related to those by SUSY Ward identities. The practical defini-

tion of this sector is that it contains all sets of external particles for which the corresponding

differential operator formed from products of n factors from the list (3.3) is of total order

12, rather than order 8 which characterizes the MHV sector. There is another significant

difference between the two sectors. In the MHV sector there is a single generating function

Fn, given in (3.1), from which all n-point amplitudes are obtained. In the NMHV sector

there is a different generating function for each diagram An,I in the MHV-vertex decompo-

sition. After applying the appropriate 12th order differential operator, the full amplitude is

obtained by adding the results for all diagrams contributing to the recursion relation (6.9).

Consider an NMHV n-point amplitude for a general set of external states, and choose

3 lines, m1, m2, m3, to shift, as in (6.6), such that the amplitude vanishes as z → ∞. Not

all shifts produce an amplitude with the required falloff at large z. The issue of the choice

of a valid shift is discussed in section 6.2.2.

Given a valid shift, the amplitude can be expressed as the sum of diagrams in the

recursion relation (6.9). Each diagram contains the product of two MHV sub-amplitudes,

as shown in figure 6, and each of these can be expressed as the appropriate eighth order

product of derivatives from the correspondence (3.3) acting on the MHV generating func-
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An,I =

l

(k + 1)

m̂2

m̂3

(l + 1)

k

m̂1
P̂I− +

Figure 6: MHV-vertex diagram from the 3-line shift recursion relations for NMHV amplitudes

with external states of the N = 4 theory.

tion (3.1). Thus we can write the generalization of the amplitude (6.15) of figure 6 to an

arbitrary set of external states as

An,I ≡ sign(I)
An1

(l + 1, . . . ,m1, . . . , k,−PI)

〈m1 PI〉4
1

sI

An2
(PI′ , k + 1, . . . ,m2, . . . ,m3, . . . , l)

〈m2m3〉4

×
(

Dl+1 . . . Dk DI δ
(8)
(

L
)

)(

DI′Dk+1 . . . Dl δ
(8)
(

R
)

)

, (6.24)

where

L = |PI〉 ηIa +

k
∑

i=l+1

|i〉 ηia , R = |P ′
I〉 ηIb +

l
∑

i=k+1

|i〉 ηib . (6.25)

The delta functions δ(8) are defined in (3.2). The spinors for the internal lines are17

|PI〉 = PI |X] = −|PI′〉 , (6.26)

where PI is the sum of the external momenta on the left sub-amplitude of figure 6.

The differential operators DI and DI′ represent particles at the left and right ends of

the internal line. Since these particles are opposite helicity states of the same field, the

orders of the operators are related by dI + dI′ = 4, and they carry distinct SU(4) indices.

Thus

DI DI′ = ±
4
∏

a=1

∂

∂ηIa
. (6.27)

When the derivative operators of the external lines are applied to δ(8)
(

L
)

δ(8)
(

R
)

, they

uniquely determine the split of the four derivatives
∏4

a=1
∂

∂ηIa
into the product DI DI′ .

Starting with an initial ordering of the differential operators, D1D2 . . . Dn as dictated by

the color ordering, we can therefore write

( 4
∏

a=1

∂

∂ηIa

)

D1D2 . . . Dn = sign(I)Dl+1 . . . Dk DI DI′ Dk+1 . . . Dl , (6.28)

where the sign, sign(I) = ±1, which also appeared in (6.24), arises from the required

interchange of Grassman derivatives.

We now use three facts:

17All factors of ω have been removed as discussed in the previous section.
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i. The external state derivatives can all be moved to the left of the expression (6.24)

and reordered according to (6.28).

ii. Integration and differentiation are equivalent for functions of Grassmann variables,

so the 4 ηIa derivatives can be written as integrals.

iii. The 4-fold integral can be performed using the technique of section 5 of [15].

Using this we can rewrite (6.24) as the product D1D2 . . . Dn of derivatives acting on

∫ 4
∏

a=1

dηIa δ
(8)
(

L
)

δ(8)
(

R
)

= δ(8)
( n
∑

i=1

|i〉ηia

) 4
∏

b=1

k
∑

j=l+1

〈PI j〉ηjb . (6.29)

We started with a product of 16 derivatives in (6.24) and eliminated the 4 derivatives on

ηIa, The remaining product of 12 derivatives corresponds exactly to the external states of

the amplitude.

Since the argument applies to any diagram of the general NMHV amplitude, we have

derived the generating function

Fn,I =
Agluons

n,I

〈m1 PI〉4〈m2m3〉4
δ(8)
( n
∑

i=1

|i〉ηia

) 4
∏

b=1

∑

jǫI

〈PI j〉ηjb , (6.30)

where Agluons
n,I is the value of the pure gluon MHV-vertex diagram obtained from the same

shift,

Agluons
n,I = An1

(l + 1, . . . ,m1, . . . , k,−PI)
1

sI
An2

(PI′ , k + 1, . . . ,m2, . . . ,m3, . . . , l) .(6.31)

This prefactor ensures that the pure gluon amplitudes are correctly reproduced by (6.30).

Thus, given the values of each gluon MHV-vertex diagram Agluons
n,I any NMHV amplitude

is simply calculated by applying the ordered string of differential operators associated with

the string of external states to the sum over generating functions for each diagram

ANMHV
n = D1D2 . . . Dn Fn , Fn =

∑

I

Fn,I . (6.32)

Note that this construction automatically produces the correct relative sign of diagrams in

the MHV-vertex decomposition.

The sum Fn of generating functions of the MHV-vertex diagrams is the generating

function for the whole NMHV amplitude. Each term Fn,I is a sum of products of 12 distinct

η’s, so an NMHV n-point amplitude is calculated by applying the appropriate 12th order

differential operator composed of n factors from the list (3.3). Each distinct NMHV process

corresponds to a particular 12th order operator and conversely. The number of distinct

NMHV processes is thus the number of partitions of 12 with nmax ≤ 4 which is 34. For

each given set of particles, i.e. for each process, there are several independent amplitudes

in which their order is permuted.18 For processes with n < 12 external particles, the total

18In addition there are usually inequivalent assignments of SU(4) indices which give independent ampli-

tudes.
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number of NMHV processes is < 34 because one must count only partitions of length ≤ n.

For this reason there are ‘only’ 18 distinct 6-point processes. Each of these may have

several inequivalent assignments of SU(4) indices.

To gain further confidence in the use of the generating function (6.30) let’s examine

whether the amplitudes obtained from it satisfy SUSY Ward identities. One should bear

in mind that these Ward identities need not be satisfied by individual diagrams, but they

must hold for the full amplitude. The Q̃a Ward identity reads

Q̃aF̃n = 0 , (6.33)

and it is satisfied diagram by diagram, as in the MHV case, because one is again multiplying

the δ(8) function by its own argument. The Qa Ward identity presents a more interesting

situation. Using the two identities

Qa
4
∏

b=1

∑

kǫI

〈PI k〉ηkb =
∑

iǫI

[ǫ i]〈i PI 〉
∏

b6=a

∑

jǫI

〈PI j〉ηjb ,
∑

iǫI

[ǫ i]〈i PI 〉 = − [ǫX]P 2
I ,

(6.34)

we evaluate

QaF̃n =
1

VI

( n
∏

i=1

〈i (i + 1)〉
)−1

δ(8)
( n
∑

i=1

|i〉ηia

)

Qa
4
∏

b=1

∑

jǫI

〈PI j〉ηjb

= −[ǫX]P 2
I

1

VI

( n
∏

i=1

〈i (i + 1)〉
)−1

δ(8)
( n
∑

i=1

|i〉ηia

)

∏

b6=a

∑

jǫI

〈PI j〉ηjb . (6.35)

This shows that each diagram contributing to a given amplitude vanishes if we choose

Xα ∼ ǫα. However, provided that the amplitude vanishes for large z, the MHV-vertex

formalism ensures that the sum of these diagrams is independent of the reference spinor

Xα, so the full amplitude will satisfy the Qa Ward identity.

At first sight we now seem to be in the same position as we were in the analysis of

MHV amplitudes. The full NMHV sector is determined by the values of the diagrams

for the n-gluon amplitudes, and all amplitudes satisfy SUSY Ward identities. However,

there is an important difference. In the MHV sector there is a unique set of amplitudes

which satisfy the Ward identities and agree with the top An. In the NMHV sector it is

not sufficient to reproduce only An; additional input is required.19 However, the MHV-

vertex decomposition contains additional dynamical input, namely the correct analyticity

and factorization properties, so we can be confident that it generates the right amplitudes

— provided that there is no contribution from infinity in the recursion relations.

6.2.1 NMHV spin factors

We will illustrate the use of the generating function (6.30) and the calculation of spin

factors through an example, which will also be relevant for our examination of the large z

behavior of NMHV amplitudes in N = 4 SYM theory.

19Relations from N = 2 Ward identities were used recently in [29] to simplify the calculation of 6-gluon

amplitudes in open string theory.
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Consider the six scalar20 amplitude

〈

B12(1)B13(2)B14(3)B23(4)B24(5)B34(6)
〉

. (6.36)

The recursion relations following from a shift of lines 1,2,3 consists of a sum over the

six diagrams drawn in figure 5. Each of these diagrams is the product of the result for

6-gluons times a spin factor obtained by applying the external state derivatives to the

generating function (6.30) and dividing by 〈m1PI〉4〈m2m3〉4. The spin factor encodes

the state dependence of the amplitude. It is a ratio of products of angle brackets and is

homogeneous in PI .

In practice it is simplest to compute the spin factor from the product δ(8)(L) δ(8)(R)

in (6.24) and define it precisely for a generic diagram as

SI ≡ sign(I)

(

Dl+1 . . . Dk DI δ
(8)
(

L
)

)(

DI′Dk+1 . . . Dl δ
(8)
(

R
)

)

/
(

〈mi PI〉4〈m2m3〉4
)

.

(6.37)

If the diagram is non-vanishing there is a unique choice of the operators DI and DI′ for the

internal line which produces the result. The derivative operation is equivalent to a Wick

contraction algorithm based on (3.12).

The example of the 6-scalar amplitude (6.36) will make things clear. Consider the

12-pole diagram. Using the notation ∂a
i = ∂/∂ηia and ∂a

I = ∂/∂ηIa, the derivatives applied

to δ(8)(L) are

∂1
1∂

2
1 ∂

1
2∂

3
2 ∂

1
I∂

2
I∂

3
I∂

4
I . (6.38)

The total derivative order must be 8, so we included the unique internal line derivative

of order 4. There is no way to make 4 non-vanishing Wick contractions among these

derivatives so the 12-pole diagram vanishes. The same is true for the 23-pole diagram. For

the 34 pole diagram we write the string of derivatives

S34 = (∂1
3∂

4
3 ∂

2
4∂

3
4 ∂

1
I∂

2
I∂

3
I∂

4
I ) × (∂2

5∂
4
5 ∂

3
6∂

4
6 ∂

1
1∂

2
1 ∂

3
2∂

4
2)/
(

〈3P34〉4〈1 2〉4
)

(6.39)

= −〈4P34〉2
〈3P34〉2

〈1 5〉〈2 6〉〈5 6〉
〈1 2〉3

= − [3X]2

[4X]2
〈1 5〉〈2 6〉〈5 6〉

〈1 2〉3 .

In the first line we chose the unique 4th order internal derivative which describes the

emission of a negative helicity gluon from the left vertex and subsequent absorption as

a positive helicity gluon on the right. The second line gives the unique non-vanishing

Wick contraction. It exemplifies the general feature that the spin factor is a homogeneous

function of angle brackets and also homogeneous in |PI〉. In the last line we have used

〈4P34〉 = 〈4 3〉[3X] and a similar equality. We invite readers to compute the remaining 3

20We choose this particular configuration of three different “particles” and their “anti-particles” because

it is the gauge theory analogue of a 6-scalar amplitude in N = 8 supergravity which we will study in detail

in section 6.3.2.
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non-vanishing spin factors:

S61 = −〈6P61〉2
〈1P61〉2

〈24〉〈35〉〈45〉
〈23〉3

= − [1X]2

[6X]2
〈24〉〈35〉〈45〉

〈23〉3 , (6.40)

S612 =
〈35〉〈45〉〈4P612〉

〈3P612〉3
〈26〉〈1P612〉〈6P612〉

〈12〉3

=
〈4|3 + 5|X]〈1|6 + 2|X]〈6|1 + 2|X]

〈3|4 + 5|X]

〈26〉〈35〉〈45〉
〈12〉3 , (6.41)

S234 =
〈15〉〈56〉〈6P234〉

〈1P234〉3
〈24〉〈3P234〉〈4P234〉

〈23〉3

=
〈6|1 + 5|X]〈3|2 + 4|X]〈4|2 + 3|X]

〈1|5 + 6|X]3
〈15〉〈24〉〈56〉

〈23〉3 . (6.42)

We have checked numerically that the sum of the four non-vanishing diagrams is in-

dependent of the reference spinor |X], and that the amplitude vanishes for large z under a

subsequent shift of lines 1,2,3.

6.2.2 Large z behavior in N = 4 gauge theory

Since the NMHV generating function (6.32) is based on the recursion relations obtained

from the 3-line shift (6.6), it requires that shifted amplitudes vanish as z → ∞. Tree

amplitudes always behave as the power law z−∆ with integer ∆, so we require ∆ > 0 for all

amplitudes in order to use the NMHV generating function with confidence. The exponent

∆ depends on the spin of external states. We now discuss evidence that ∆ > 0 for all

n-point NMHV amplitudes in N = 4 SYM theory.

Each diagram in the MHV-vertex expansion can be written as a spin factor SI times

the pure gluon diagram. Under a shift of the 3 negative helicity lines, the pure gluon

diagram goes to zero for large z at least as fast as 1/z4. To see this recall that the gluon

diagram is the product of two Parke-Taylor amplitudes and the internal propagator,

〈m1P̂I〉4
〈kP̂I〉〈P̂I (l + 1)〉(. . . )

1

P 2
I

〈m2m3〉4
〈lP̂I〉〈P̂I (k + 1)〉(. . . )

(6.43)

=
〈m1|PI |X]4

〈k|PI |X]〈l + 1|PI |X](. . . )

1

P 2
I

〈m2m3〉4
〈l|PI |X]〈k + 1|PI |X](. . . )

.

The factors in (. . . ) do not involve PI and are not relevant to our argument, in which we

perform another 3-line shift of the lines mi, this time with a new arbitrary reference spinor

|Y ]. The only factors that can shift are those that involve the momentum PI . Specifically

〈i|PI |X] shifts, except when i = m1, and the propagator denominator P 2
I shifts. Simple

power counting in (6.43) then shows that for large z the diagram goes as 1/z5 when

k, (l + 1) 6= m1 and as 1/z4 otherwise.

The spin factor denominator 〈m1PI〉4〈m2m3〉4 does not shift. The numerator contains

a fourth order product of angle brackets containing |PI〉, so under the new |Y ]-shift, SI can
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at most grow as z4. Thus, for any 3-line shift the most divergent behavior possible for any

diagram is order O(1). However, any NMHV amplitude carries a total of 12 SU(4) indices,

and group invariance requires that each distinct index 1, 2, 3 or 4 must occur exactly 3

times among the n external lines. Thus it is always possible to shift 3 lines which have

at least one common index, say the index 1. In every MHV partition of the amplitude

that same index must also appear on the internal line of the sub-amplitude containing the

line m1. Thus at least one unshifting factor 〈m1PI〉 occurs in the numerator of every spin

factor. Hence, if one chooses a shift with at least one common SU(4) index, every diagram

will vanish at least as fast as 1/z.

This argument strongly supports the conjecture that all NMHV amplitudes of the N =

4 theory are constructible by the MHV-vertex method, but it does not prove it. To eliminate

the possibility of a contribution from infinity which could invalidate the recursion relations,

one would need to determine the asymptotic powers of NMHV amplitudes without using

the form of the expansion itself.21

Because the general argument does not quite reach its goal, we looked for additional

evidence through a numerical study. We have written a Mathematica code which for given

SU(4) indices of the external states calculates the MHV-vertex decomposition for any 6-

point NMHV amplitude of the N = 4 SYM theory. With this program we have calculated

many NMHV amplitudes, and in all cases we have found that there exists at least one 3-line

shift such that the associated sum of MHV-vertex diagrams is independent of the reference

spinor |X]. This is further evidence that there exists a “good” 3-line shift with associated

valid recursion relations for any 6-point NMHV amplitude of N = 4 SYM theory.

Large z for the six scalar amplitude in N = 4 SYM theory. In a Feynman diagram

analysis, the polarization vectors of the 3 negative helicity gluons provide the power z−3 at

large z. When the gluons are replaced by scalars, this asymptotic damping is lost. This sug-

gests that the least favorable asymptotic behavior occurs for external scalars which have nei-

ther polarization vectors nor external spinors. With this in mind we discuss the large z be-

havior of the gauge theory 6-point amplitude 〈B12(1)B13(2)B14(3)B23(4)B24(5)B34(6)〉
whose spin factors were calculated in section 6.2.1.

Using the explicit results for the four non-vanishing spin factors given in (6.39)

and (6.40), one readily sees that under a subsequent |Y ]-shift of lines 123, the large z

behavior is

S34 ∼ z2 , S61 ∼ z2 , S612 ∼ z3 , S234 ∼ z3 . (6.44)

Each spin factor SI must be multiplied by the value of the corresponding diagram in figure 5

for the 6-gluon process. Since the leading behavior of each of these gluon diagrams is 1/z4,

the leading contribution to the 6-scalar amplitude comes from the 3-particle diagrams and

is 1/z. There is no cancellation, so the falloff of the full amplitude is 1/z. We also checked

the behavior of the 6-scalar amplitude under 2-line shifts. The large z behavior is 1/z2 for

a [1, 3〉 shift, but O(1) for a [1, 2〉 shift and O(z) for a [1, 6〉 particle-antiparticle shift.

21It has subsequently been proven in [19] that there always exists a valid 3-line shift for any NMHV

amplitude of N = 4 SYM theory.
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We have also used the generating function to construct all other 6-scalar amplitudes

with different configurations of SU(4) indices. In every case the sum of MHV-vertex dia-

grams is independent of |X].

6.3 Generating function for NMHV amplitudes in N = 8 supergravity

At the formal level, it is not difficult to extend the construction of the previous section to

supergravity, but the issue of large z behavior will become acute. The extension is based

on the MHV-vertex formalism for n-graviton amplitudes of [17] which we have discussed

in section 6.1.

The NMHV sector of N = 8 supergravity consists of all amplitudes related to the

top n-graviton amplitude Mn(1−, 2−, 3−, 4+, . . . , n+) by SUSY Ward identities. In analogy

with the N = 4 theory, the practical definition of this sector is that it contains amplitudes

for all sets of external particles for which the associated differential operator constructed

from products of n operators from the correspondence (3.16) is of total order 24. We will

justify this definition below.

If an NMHV amplitude vanishes at large z under the 3-line shift, it also obeys a

recursion relation (equivalently, it has a valid MHV-vertex decomposition) similar to (6.19).

The contribution of a generic diagram corresponding to figure 6 has the same structure as

the gauge theory formula (6.24) and can be written as

Mn,I ≡ sign(I)
Mn1

(l + 1, . . . , m̂1, . . . , k,−P̂I)

〈m1 P̂I〉8
1

sI

Mn2
(P̂I , k + 1, . . . , m̂2, . . . , m̂3, . . . , l)

〈m2m3〉8

×
(

Dl+1 . . .Dk DI δ
(16)
(

L
)

)(

DI′Dk+1 . . .Dl δ
(16)
(

R
)

)

, (6.45)

The arguments L and R of the δ-functions are given in (6.25), and the detailed form of

the shifted sub-amplitudes Mn1
and Mn2

are given in (6.21) and (6.23). Note that the

derivatives acting on each δ-function are of total order 16.

We follow the same steps used in the gauge theory case to obtain the generating

function for this diagram

Ω̃n,I =
Mn1

(l + 1, . . . , m̂1, . . . , k, . . . ,−P̂I)

〈m1 P̂I〉8
1

sI

Mn2
(P̂I , k + 1, . . . , m̂2, . . . , m̂3, . . . , l)

〈m2m3〉8

× δ(16)
( n
∑

i=1

|i〉ηiA

) 8
∏

B=1

k
∑

j=l+1

〈P̂I j〉ηjB . (6.46)

The generating function for the full amplitude is then
∑

I Ω̃n,I , where the sum runs over

all 3(2n−3 − 1) internal pole channels.

In the process of deriving (6.46) 8 internal derivatives DIDI′ were converted to integrals

and eliminated. The remaining external line derivatives D1 · · · Dn which one applies to Ω̃I

to (re)obtain the diagram (6.45) are of total order 32 − 8 = 24. Thus each distinct n-point

NMHV process in N = 8 supergravity corresponds to a particular 24th order differential

operator composed of n factors from the correspondence (3.16). The number of distinct
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NMHV amplitudes is the number of partitions of 24 with nmax ≤ 8 which is 919. One

needs n-point functions with n ≥ 24 to realize this maximum number. For n < 24, the

partition length must be ≤ n, so there are fewer types of NMHV amplitudes. For n = 6

there are 151 distinct processes.

The structure of the formula (6.46) is analogous to (6.30) in gauge theory. In gauge

theory the dynamical function which multiplies the Grassmann factors is the value of the

n-gluon diagram divided by 〈. . .〉4〈. . .〉4 for the negative helicity lines of the diagram. In su-

pergravity it is the n-graviton diagram divided by 〈. . .〉8〈. . .〉8 for the negative helicity lines.

One significant difference is that one must insert the correctly shifted anti-holomorphic

spinors |m̂i] for the 3 distinguished negative helicity gravitons.

The contribution of each diagram to a particular amplitude of interest is obtained by

applying the appropriate order 24 product of external state derivatives to the generating

function. Each diagram has its own spin factor which is obtained in this way. Our experi-

ence indicates that it is easiest to calculate the spin factor by applying the derivatives to

the product of δ-functions for each sub-amplitude. Thus, in analogy with (6.37), the spin

factor for a MHV-vertex diagram in supergravity is defined by

SI ≡
(

Dl+1 . . .Dk DI δ
(16)
(

L
)

)(

DI′Dk+1 . . .Dl δ
(16)
(

R
)

)

/(〈mi PI〉8〈m2m3〉8) . (6.47)

The products include a pair of internal line derivatives DI and DI′ which are uniquely

determined by SU(8) covariance and the fact that the total order of derivatives on each

δ(16) must equal 16. The simplest way to calculate uses the Wick contractions of (3.12). The

spin factors of some diagrams may vanish, implying that the diagram makes no contribution

to the amplitude.

In the previous section, we argued that amplitudes obtained from the NMHV generat-

ing function in N = 4 SYM theory satisfy the SUSY Ward identities. The same argument

applies to supergravity, so it is clear that the amplitudes obtained from (6.46) satisfy the

Ward identities of N = 8 supergravity if the MHV-vertex expansion is valid.

The validity of the generating function relies on the vanishing of the shifted amplitudes

for large z. While there is evidence that such “good” shifts can always be found for NMHV

amplitudes in N = 4 SYM theory, we have found explicit counter-examples in N = 8

supergravity. We will discuss large z behavior in section 6.3.2, including several examples

and the lessons they teach us.

6.3.1 Factorization

In section 3.3 we discussed the factorization of the MHV generating function for supergrav-

ity. Factorization ensures that MHV amplitudes are compatible with the operator map (1)

and that all symmetries are consistently implemented. A similar factorization with similar

consequences holds for the generating function of each MHV-vertex diagram in the NMHV

sector. We observe that the Grassmann terms in (6.46) factor into a product of two factors

of the analogous terms for gauge theory in (3.1), one each for the L and R gauge theory

factors in the map (1.1). Thus the supergravity generating function for each diagram can
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be rewritten as

Ω̃I =
Mn1

(l + 1, . . . , m̂1, . . . , k, . . . ,−P̂I)

〈m1 P̂I〉8
1

sI

Mn2
(P̂I , k + 1, . . . , m̂2, . . . , m̂3, . . . , l)

〈m2m3〉8
(6.48)

×
(

δ(8)
( n
∑

i=1

|i〉ηia

) 4
∏

b=1

k
∑

j=l+1

〈P̂I j〉ηjb

)

×
(

δ(8)
( n
∑

i=1

|i〉ηir

) 8
∏

c=5

k
∑

j=l+1

〈P̂I j〉ηjc

)

.

We see that the spin factors for supergravity amplitudes are products of spin factors for

the appropriate gauge theory amplitudes. This means that SU(8) and SUSY Q̃A Ward

identities, which hold separately for each term in the MHV-vertex expansion, are satisfied

on the gauge theory side of the map (1.1). The same conclusion holds for SUSY QA

Ward identities after summation of all contributing diagrams, provided that the sum is

independent of |X].

6.3.2 Large z behavior of NMHV amplitudes in N = 8 supergravity

As in gauge theory, the shifted tree amplitudes of N = 8 supergravity behave as z−∆ for

large z, and the validity of the generating function requires ∆ > 0. The arguments that

gave evidence for this in gauge theory do not carry over to supergravity. Indeed, we will

present explicit counter-examples, namely NMHV amplitudes of N = 8 supergravity for

which no 3-line shift gives ∆ > 0. As in section 6.2.2 we begin the discussion by determining

the large z behavior of typical diagrams in the MHV-vertex expansion. Each diagram is the

product of the result for n external gravitons times a spin factor. The general discussion

will tell us what to expect at large z, and the actual behavior will then be illustrated in

several examples.

General discussion. Our first task is to ascertain the large z asymptotics of a typical

diagram for the 6-graviton NMHV amplitude M6(1
−, 2−, 3−, 4+, 5+, 6+).22 The formu-

las (6.21) and (6.23) contain most of the information needed to extract the power of z

obtained from a further scaling of |1], |2], |3] in a generic direction |Y ] in spinor space.

However 2-particle pole diagrams, which contain the factor M3, must be examined sepa-

rately. It is not difficult to obtain the following information about the large z behavior:

i. 2-particle pole diagrams for external gravitons with −− helicity vanish at the rate

1/z7.

ii. 2-particle poles with graviton helicity −+ vanish more slowly, namely at the rate

1/z5.

iii. 3-particle pole diagrams, necessarily with − − + and − + + helicities in each sub-

amplitude, vanish as 1/z6.

These estimates apply to each individual diagram. It is possible that there are cancellations

among diagrams, so that the full amplitudes actually fall off faster.

22n-point amplitudes with n > 6 are briefly discussed in section 6.3.5.
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The MHV-vertex decomposition of M6(1
−, 2−, 3−, 4+, 5+, 6+) contains 21 non-

vanishing diagrams. Numerical results show that the sum of these diagrams is independent

of |X] and vanishes as 1/z6 upon a further shift of lines 123. One can see analytically that

there is a cancellation among the nine 2-particle pole diagrams with −+ helicities. We

have also checked that the MHV-vertex method and the KLT formula produce the same

result.

For general external states, the MHV-vertex expansion expresses the amplitude as a

sum of n-graviton diagrams multiplied by spin factors. See (6.45) and (6.47). The spin

factors are readily computed for any given process, but it is useful to have general estimates

of their growth rate at large z as an indication of the behavior of the full amplitude.

We consider the z-dependence of the spin factors for a shift of 3 chosen lines labelled

m1, m2, m3. The key parameter that determines the large z growth rate is the number of

SU(8) indices which appear on all three shifted lines. We let ncom denote the number of

common indices.

For the spin factors of 6-point amplitudes we can prove the following:

A. For diagrams with a 2-particle pole in the m2m3 channel, the product of spin factors

grows no faster than z8−ncom .

B. For any 3-particle pole diagram, the maximum growth rate of the product of spin

factors is also z8−ncom .

C. For diagrams with a 2-particle pole in a channel with one shifted line, say m1 and

one unshifted line a, the product of spin factors grows at the rate zra , where ra
is the η-count of particle a (defined as the order of the corresponding Grassmann

derivative).

The proof of A and B is quite simple. The numerator of the product of spin factors

in (6.47) contains a product of 8 brackets 〈i PI〉 where i denotes any of the 6 external

lines. All products except 〈m1 PI〉 grow linearly with z after a shift. This bracket occurs

as 〈m1 P 〉ν1 in the product of spin factors, so the growth rate of that product is z8−ν1 .

We will show that ν1 ≥ ncom which will prove the bound on growth rate stated above. To

establish this inequality we refer to figure 6. Lines m2 and m3 have at least ncom SU(8)

indices in common. Therefore these indices cannot appear at the right end of the internal

line. The reason is that each sub-amplitude must be an SU(8) singlet, so that the 16

indices either one contains must comprise 8 distinct matched pairs. The common indices

must then appear on the left end of the internal line, and at least ncom of them are shared

with line m1. Thus ν1 ≥ ncom and the proof is finished. (Note that the maximum growth

rate z8−ncom is actually valid for the spin factors of all diagrams of any n-point NMHV

amplitude.)

The proof of C follows from the CFT analogy (see section 5) which gives

Dm1
DaDI δ

16(L) ∝ 〈m1 PI〉8−ra . This leaves 8 − (8 − ra) = ra powers of 〈·PI〉 that shift

in the product of spin factors for the two sub-amplitudes. (This argument also applies to

n-point amplitudes).
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The information on the growth of spin factors can now be combined with the estimates

of the 6-graviton prefactors to give the asymptotic growth rates of each type of diagram.

i. 2-particle pole diagrams with two shifted lines have prefactors which fall off as 1/z7.

After multiplying by the (worst case) rate z8−ncom for the spin factor we see that the

maximum growth rate of the diagram is O(1).

ii. A 2-particle pole diagrams with one shifted and one unshifted line behaves as zra−5

The growth rate is no worse than O(1) unless ra ≥ 6. We can always choose to shift

three lines with rmi ≥ ra. Since the total η-count of an NMHV amplitude is 24,

the case ra = 7 is then eliminated. The only process with ra = 6 we need concern

ourselves with has partition 6 + 6 + 6 + 6. For this four graviphoton amplitude, it

turns out that the potential linear divergences cancel by the same mechanism that

the pure graviton amplitude’s leading 1/z5 terms cancels down to 1/z6.

Thus we never encounter worse than O(1) asymptotics from the 2-particle pole dia-

grams.

iii. For 3-particle pole diagrams the maximum growth rate is z2−ncom , so we may en-

counter linear growth and O(1) behavior.

The bound z8−ncom on the growth of spin factors suggests that the optimal behavior

at large z can be obtained by shifting 3 lines with the largest value of ncom. Indeed, for

M6(1
−2−3−4+5+6+) the conventional − − − shift realizes the maximal value ncom = 8. In

our numerical exploration of large z behavior of non-optimal shifts were also included and

were instructive. Since the total η-count of an NMHV amplitude is 24 and SU(8) symmetry

requires that every index 1, 2, . . . , 8 must appear exactly 3 times among the 6 lines, it is

always possible to choose a shift with ncom = 1. One might suspect that the recursion

relation would fail for a shift of lines m1, m2, m3 with ncom = 0 because a physical pole

in the channel m1m2m3 would be omitted. However, in an example below we find a valid

recursion relation for such a shift.

Let us now turn to the results of our extensive numerical study of NMHV amplitudes

in N = 8 supergravity. In turn we will discuss “good” amplitudes for which the sum of

diagrams vanishes as z → ∞, “bad” amplitudes in which O(1) behavior occurs in the sum,

and “very bad” amplitudes with linear growth. We will argue that both “bad” and “very

bad” amplitudes still have valid recursion relations.

“Good” amplitudes. There are numerous examples of NMHV amplitudes in N = 8

supergravity for which there are 3-line shifts with ∆ > 0 and hence valid MHV-vertex

expansion. The generating function works for these examples just as it did in gauge theory.

However we will briefly discuss some examples which reveal interesting regularities.

Consider the amplitudes 〈b− b− f−1 f1
+ b+ b+〉, 〈b− b− b−12 b12+ b+ b+〉,

〈b− b− f−123 f123
+ b+ b+〉, and 〈b− b− b1234 b1234 b+ b+〉, in which a graviton pair is re-

placed, in turn, by a pair of gravitini, graviphotons, graviphotini, and scalars. All

amplitudes have 18 contributing diagrams whose sum is independent of |X]. Let’s label

each particle by its spin s, with s = 2 for the graviton, s = 3/2 for the gravitino, etc. It is
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interesting to observe a simple pattern for the spin factors of each diagram as s decreases.

For any given diagram An,I let us simply denote by SI its spin factor in the gravitino

amplitude. For other cases the same diagram has the spin factor S(4−2s)
I . Furthermore the

amplitude with the spin s pair vanishes as 1/z2s+2 as z → ∞ under a further 123 shift.

The pattern in the NMHV sector is similar to what occurred in the analogous set of MHV

amplitudes in (2.36).

Another example of a “good” amplitude is the scalar amplitude

〈

b1234 b1234 b1234 b5678 b5678 b5678
〉

, (6.49)

whose external states are three identical scalars b1234 and their conjugates b5678. A KLT

calculation shows that the amplitude (6.49) has a 1/z2 falloff for large z under shifts that

do not involve conjugate scalars,23 such as the 123-shift, and the resulting recursion sum

of 18 MHV-vertex diagrams therefore gives the correct amplitude and is indeed, as shown

in our numerical work, independent of |X].

“Bad” amplitudes. It was an unwelcome discovery that by a mere change of the SU(8)

labels in the six scalar amplitude, one finds an amplitude

〈

b1234 b1358 b1278 b5678 b2467 b3456
〉

, (6.50)

for which the sum of MHV-vertex diagrams depends on |X]. This result appears to be

unacceptable, so we proceed to study it further, specifically by an independent construction

using the KLT formula. (The method is explained in more detail below.) The KLT result

is valid for general complex momenta and we can explore the large z behavior by making

various 3-line shifts numerically. The amplitude consists of three pairs of conjugate scalars

(e.g. b1234 and b5678) and has only two types of 3-line shifts, namely shifts involving no

conjugate pairs — such as a 123-shift — and shifts that involve a conjugate pair of scalars

(e.g. a 124-shift). The former give O(1) for large z and the latter O(z2) (since the 3-lines

do not share a common index, ncom = 0). Thus there are no 3-line shifts of the six scalar

amplitude (6.50) that give large z falloffs faster then O(1), and we therefore categorize it

as a “bad” amplitude.

At first sight, a MHV-vertex decomposition based on 3-line recursion relations seems

to be impossible for “bad” amplitudes. However, 3-line shifts with O(1) asymptotics can

still be used to derive a recursion formula if the reference spinor |X] is suitably chosen.

To explain our approach to “bad” amplitudes we start with the example of the pure gluon

amplitude in gauge theory:

Example: O(1) shifts in gauge theory and the role of |X]. The gluon amplitude

A6(1
−, 2−, 3−, 4+, 5+, 6+) is well known and we have already seen that it can be calculated

with the MHV-vertex method associated with a shift of the three negative helicity lines.

But it is illustrative to consider the large z behavior of other 3-line shifts of the amplitude.

23If the lines shifted involve a scalar and its conjugate then the shifted amplitude grows as z2 for large z.
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This can be done numerically and we find

〈−̂−̂ − +̂ + +〉 ∼ 1

z
,

〈−̂ − −̂ + +̂+〉 ∼ 1

z
,

〈−−̂ − +̂ + +̂〉 ∼ 1

z
,

〈− −−+̂+̂+̂〉 ∼ O(1) ,

〈−̂−̂ − + + +̂〉 ∼ O(1) ,

〈− − −̂+̂+̂+〉 ∼ O(1) .

(6.51)

Cauchy’s theorem gives valid recursion relations for the first three types of shifts for which

the amplitude vanishes as z → ∞. In all three cases, the sum of MHV-vertex diagrams is

independent of |X].

The shifts which give O(1) asymptotics also give rise to valid recursion relations, but

only for the special values of |X] for which the O(1)-contribution vanishes. This condition

is a polynomial equation in |X], and for each of the three cases above, we have found the

roots |Xq] numerically. The asymptotic O(1) term vanishes at each root, so the conditions

needed to use Cauchy’s theorem are satisfied. Indeed we have verified that precisely for

these values of |X] the recursion sum of MHV-vertex diagrams agrees with the result from

the − − − shift and thus gives the correct 6-gluon amplitude. For any other values of

|X] the recursion sum is invalid; the contribution from “infinity” in Cauchy’s theorem is

missing.

This result is particularly striking for the last two shifts which each involve 3 lines

with ncom = 0. Thus there is no diagram which contains the gluon pole in the channel of

the shift. Nevertheless this pole is reproduced by the other diagrams at the special values

|Xq].

We have found that the situation is similar for all “bad” NMHV 6-point amplitudes in

N = 8 supergravity. This leads to a modified criterion for the validity of the MHV-vertex

method which we now summarize:

— If a shifted amplitude goes to zero for any |X], then the sum of MHV-vertex dia-

grams resulting from that 3-line shift must be independent of |X] and gives a correct

expression for the amplitude.

— If a shifted amplitude does not go to zero for all |X], then the sum of MHV-vertex

diagrams resulting from that 3-line shift depends on |X]. Nonetheless, the corre-

sponding MHV-vertex method gives the correct result, provided that |X] is chosen

to eliminate the O(1)-term which is the residue of the simple pole at infinity.

With these rules we can apply the generating function to the large number of the

NMHV amplitudes in the N = 8 theory whose best shifts give O(1) for large z. We have

tested this procedure in several examples, including the six scalar amplitude (6.50). We
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first calculate the amplitude using the KLT formula,

〈

a(1) a(2) a(3) a(4) a(5) a(6)
〉

=

{

s34 s16
〈

A(1)A(2)A(3)A(4)A(5)A(6)
〉

×
[

s15
〈

Ã(1) Ã(3) Ã(4) Ã(2) Ã(6) Ã(5)
〉

(6.52)

+(s15 + s56)
〈

Ã(1) Ã(3) Ã(4) Ã(2) Ã(5) Ã(6)
〉

]}

+P(4, 5, 6) .

The a’s can be annihilation operators for any states of the N = 8 theory, and A and

Ã denote the decomposition of the a operators under the map (1). We use the NMHV

generating function of section 6.2 to calculate each gauge theory amplitude.

Different ways to split SU(8) → SU(4) × SU(4) result in different decompositions

a = A⊗Ã, but the r.h.s. of (6.52) must give the same result for the supergravity amplitude.

Calculating the supergravity amplitudes from different KLT decompositions provides a

useful check on the correctness of the result.

Next we perform a 3-line shift of the supergravity amplitude (6.52) with an arbitrary

reference spinor |X]. The O(1) term for large z is a function of |X], f = f(|X]). Setting

f(|X]) = 0 gives a polynomial equation in |X], and its roots |Xq] make the recursion

relation valid. For the six scalar amplitude (6.50) there are six solutions |Xq]. We then

compute the MHV vertex expansion for the same shift, and evaluate it for |X] = |Xq]. The

sum of diagrams always agrees with the KLT result and thus confirms the validity of the

procedure.

The six scalar amplitude (6.50) is not the only amplitude whose best 3-line shift gives

O(1) for large z. We list here a selection which illustrates that the O(1) behavior occurs

in a variety of different cases, not necessarily involving scalars.

〈

b−78 b
−
56 b

1567 b2578 b36+ b48+
〉

〈

b− b1234 b1567 f258
+ f368

+ b47+
〉

〈

f−678 b
1358 b1278 b5678 b2467 f346

+

〉

〈

f−678 f
−
458 f

−
235 f

268
+ f578

+ f345
+

〉

〈

b−12 b
−
34 b

−
56 b

−
78 b+ b+

〉

(6.53)

We have calculated each of these amplitudes using the KLT formula (6.52), determined

|X∗] such that the asymptotic O(1) vanished, and verified numerically that the generating

function gives the correct values for |X] = |X∗].24

We have attempted to test how many of the 151 partitions of distinct 6-point NMHV

processes contain “bad” amplitudes. A preliminary count gives 73; this based on a scan

of different SU(8) index structures and tests of large z asymptotics of the diagrams of the

MHV-vertex expansion associated with all possible 3-line shifts.

24The order of the polynomial f(|X]) typically varies in the range 2-8.
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“Very bad” amplitudes. We finally turn our attention to the “very bad” amplitudes.

With the help of Mathematica we have analyzed which 6-point NMHV amplitudes have

the property that no 3-line shifts give better behavior than O(z) for large z. We find that

there are only two such amplitudes, namely

〈

f−678 b
2568 b3478 b4578 b1367 f126

+

〉

,
〈

f−678 f
−
458 f

−
238 b

2468 b3578 f8
+

〉

. (6.54)

We have computed both amplitudes using the KLT relations and confirmed that they grow

linearly in z for large z under any one of the twenty possible different 3-line shifts. The

linear growth term does not invalidate the recursion relation, but there is a contribution

from the subleading O(1)-term. As in the case of “bad” amplitudes, we can choose |X] to

set this term to zero, and the MHV-vertex expansion is then found numerically to agree

with the KLT result.

One may wonder how the Ward identities can accommodate amplitudes with different

large z behaviors; this is the subject of the next section.

6.3.3 Supersymmetric Ward identities and large z

As discussed in section 2.4, SUSY Ward identities in the NMHV sector always relate sets

of four amplitudes. To see this explicitly in the N = 4 and N = 8 theories, one must

choose specific values of the flavor indices. The generic form of any NMHV SUSY Ward

identity is therefore

0 = 〈ǫ i1〉A1 + 〈ǫ i2〉A2 + 〈ǫ i3〉A3 + 〈ǫ i4〉A4 , (6.55)

where ik = 1, 2, 3, 4, 5, or 6. There are a variety of possibilities. A given Ward identity can

involve only “good” amplitudes, or both “good” and “bad”, only “bad”, etc. This termi-

nology refers to asymptotic behavior under an optimally chosen shift of each amplitude.

To investigate the large z asymptotics of the entire Ward identity, one must use the same

shift to analytically continue all four amplitudes.

Under any such common shift, we can assume that for large z, the amplitudes behave as

Ai ∼ zki for large z. Without loss of generality, let us assume that k1 ≥ k2 ≥ k3 ≥ k4. Start

by setting |ǫ〉 = |x1〉 in (6.55). Then we must have k2 = k3, because either k2 = k3 = k4, or

— if k3 > k4 — then k2 = k3, so that the leading powers zk2 and zk3 cancel down to zk4 .

Likewise, we determine from |ǫ〉 = |i3〉 that k1 = k2. We conclude that the SUSY Ward

identity (6.55) restricts the powers of the leading z-behaviors to be k1 = k2 = k3 ≥ k4.

Thus for each shift, the four amplitudes in the Ward identity can at most involve two

different large z powers, and the slowest falloff must occur at least thrice.

Let’s see how this works in practice. Consider the Ward identity

0 =
〈

[Q̃6, b
−
78 b

2568 b3478 b4578 b1367 f126
+ ]

〉

= 〈ǫ 1〉
〈

f−678 b
2568 b3478 b4578 b1367 f126

+

〉

+ 〈ǫ 2〉
〈

b−78 f
258
+ b3478 b4578 b1367 f126

+

〉

+〈ǫ 5〉
〈

b−78 b
2568 b3478 b4578 f137

+ f126
+

〉

+ 〈ǫ 6〉
〈

b−78 b
2568 b3478 b4578 b1367 b12+

〉

. (6.56)

We recognize the first amplitude of (6.56) as one of the “very bad” amplitudes (6.54). The

three other amplitudes in the Ward identity (6.56) turn out to be just “bad”. Under any
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3-line shift, the first amplitude give O(z) for large z. Depending on the choice of which

three lines are shifted, the Ward identity (6.56) accommodates three different combinations

of large z behaviors:

• All four amplitudes grow as O(z) (e.g. 134-shift).

• One amplitude gives O(1) and the three others give O(z). This happens only in 5

cases: the 156-shift gives O(1) for the second amplitude, the 126-shift gives O(1)

for the third amplitude and the 124-, 135- and 125-shifts give O(1) for the fourth

amplitude.

• The three “bad” amplitudes grow as z2 for large z while (as always) the “very bad”

amplitude grows as z. This occurs when the three shifted lines involve three states

in the “bad” amplitudes which do not share a common index.

We have verified this in explicit numerical calculations, with amplitudes computed by the

KLT formula. Numerical tests included Ward identities for both the Q̃A and QA operators,

The pattern of large of z asymptotics found here is in complete agreement with the general

analysis.

6.3.4 2-line shifts vs. 3-line shifts

We would like to point out some differences — and relationships — between the 2- and

3-line shifts. First of all, the 3-line shifts involve the arbitrary reference spinor |X]. The

fact that Cauchy’s theorem only requires Mn(z) → 0 for z → ∞ for some |X], allow us

to use the generating function and the MHV-vertex expansion even for amplitudes whose

best shifts go as O(1) for large z; the |X] must be chosen such that the O(1) term vanishes.

This freedom is clearly not available in the 2-line recursion relations.

An example illustrating the differences between the 2- and 3-line shifts is the “bad”

six scalar amplitude (6.50). There are no valid 2-line shifts for this amplitude; if a pair

of conjugate scalars is shifted, the amplitude grows as z2 for large z, while if a pair of

non-conjugate scalars are shifted, then the large z behavior is O(1). On the other hand,

the 123-shift recursion relations give a valid MHV-vertex decomposition of the amplitude

for the six special values of |X] for which the O(1)-term of the large 123-shift vanishes.

It was pointed out in [17] that the 3-line shifts can be built from three successive 2-line

shifts, viz.

|1̂] = |1] + z 〈23〉|X] , |X̂〉 = |X〉 − z 〈23〉|1〉 ,
|2̂] = |2] + z 〈31〉|X] , |X̂〉 = |X〉 − z 〈31〉|2〉 , (6.57)

|3̂] = |3] + z 〈12〉|X] , |X̂〉 = |X〉 − z 〈12〉|3〉 .

The spinor |X] can be chosen as the holomorphic spinor of lines 4, 5, or 6, since the

cumulative shift of |X〉 cancels by the Schouten identity.

The two amplitudes in (6.54) are problematic because they cannot be computed with

the MHV-vertex method for any |X]. However, there do exist good 2-line shifts for both

– 51 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
3

amplitudes, e.g. the [1, 6〉-shift works for both. (The resulting 2-line recursion relations will

involve anti-MHV vertices.)

The existence of (three) valid 2-line shifts does not imply that the combined 3-line

shift (6.57) is valid. An explicit example of this is provided by the second amplitude
〈

f−678 f
−
458 f

−
238 b

2468 b3578 f8
+

〉

of (6.54), for which all of the twenty possible 3-line shifts give

O(z) for large z. Under each of the 2-line shifts [1, 6〉, [2, 6〉, [3, 6〉 this amplitude goes as

1/z for large z, but the combined shift is a 3-line shift with |X] = |6], and we know that

the amplitude will not go to zero for large z under such a shift. In fact, for the 123-shift

with |X] = |6] the amplitude goes to a constant. The reason that one finds O(1) rather

than O(z) is that |X] = |6] happens to be one of the solutions to setting O(z) = 0 for the

123-shift.

We will see next that there are problems with 3-line shifts even for pure graviton

NMHV amplitudes for sufficiently large n.

6.3.5 n-point NMHV graviton amplitudes with n > 6

One can estimate the large z falloff of the n-point graviton NMHV amplitude from the

large z behavior of the individual diagrams in the MHV-vertex expansion (6.19). The

large z asymptotics of the two MHV-vertices can be extracted from the BGK formula, as

presented in (6.21) and (6.23). For n = 6, the slowest falloff comes from the +− 2-particle

pole diagrams and is 1/z5. However, due to a cancellation among these diagrams, the

falloff of the full amplitude is 1/z6.

In (6.23) the βs factors shift, and for each extra external leg, one therefore gets diagrams

which falloff slower by one power of z. Provided that the leading large z falloff cancels for

n > 6 as it does for n = 6, one is lead to expect that under a 123-shift, the NMHV graviton

amplitudes behaves as

Mn(1̂−, 2̂−, 3̂−, 4+, 5+, . . . , n+) ∼ 1

z12−n
(6.58)

for large z.25 We have verified this behavior in explicit numerical work for n = 5, . . . , 11.

This is done by calculating the MHV-vertex expansion for each n, testing numerically that

the sum of 3(2n−3 − 1) diagrams is independent of |X]. Then another 123-shift with an

arbitrary reference spinor is performed on the result for the amplitude, and the leading

z falloff is read off from a series expansion as z → ∞. As an extra check we have also

calculated Mn for n = 5, . . . , 9 with the recursion relations associated with the 2-line shift

[2, 1〉 and numerically tested that the result agrees with the MHV-vertex expansion.

This means that for n ≥ 12 we must expect the MHV-vertex decomposition to be valid

only for the specific choices of |X] which eliminate the O(1)-term. It also means that as

the number of external legs grow, the spin factors arising from external states other than

gravitons will come to dominate the gravity prefactors for large z, and so there will be

more bad amplitudes, more very bad amplitudes and also very very bad amplitudes. We

expect that these can all be handled by choosing |X] to set the O(1)-term to zero.

25Other shifts −− +, − + + and + + + give asymptotic zn−4 behavior.
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As a final point, it is worth noting that the n-point NMHV graviton amplitudes con-

tinue to be calculable from recursion relations based on 2-line shifts. We have indeed

checked numerically for n = 5, . . . , 10 that the two line shifts [−,−〉, [−,+〉, [+,+〉-shifts

give 1/z2 for large z, while a [+,−〉-shift gives z6. This is expected from the general analysis

of [31].

Cachazo et al provided in [30] the first proof of the validity of the 2-line recursion

relations for graviton amplitudes. Our numerical work confirms their results for 2-line

shifts, but it disagrees with their statement that the 3-line shift is valid because it can be

obtained by successive 2-line shifts as in (6.57).

7. Discussion and open problems

In this paper we have studied n-point tree amplitudes with general external particles of N =

4 SYM theory and N = 8 supergravity. We have elucidated properties of the generating

function proposed for MHV amplitudes in the gauge theory in [14] and extended to the

NMHV level in [15], and we have developed similar generating functions for supergravity.

The generating function is a simple function of auxiliary Grassmann variables. There is a

1:1 correspondence between particles of the N = 4 and N = 8 theories and Grassmann

derivatives, and any desired amplitude is obtained by applying the appropriate product of

derivatives to the generating function.

Any n-point MHV amplitude is the product of the “top” n-gluon or n-graviton am-

plitude times a “spin factor” depending on the external particles. The spin factor of every

MHV process in supergravity is a homogeneous function of weight 16 (weight 8 in gauge

theory) of the spinors |i〉 associated with the external particles. We have found a curious

and rather perfect analogy between the structure of the spin factors and the structure of

holomorphic correlation functions in conformal field theory on the complex plane.

The MHV generating function neatly encodes the full set of spin factors and it allows

one to count the number of independent MHV processes. It also clarifies how N = 8

supersymmetry and SU(8) global symmetry of supergravity are implemented in quadratic

relations between gauge theory and supergravity amplitudes such as the KLT formulas and

the MHV-level formula of [25]. It turns out that, for each permutation in those formulas, the

supergravity generating function factors into the product of two gauge theory generating

functions.

At the NMHV level the situation is similar, but there is a different generating function

for each diagram in the MHV-vertex expansion of the amplitude. Our application to

supergravity requires clarification of an important feature of past work. In the MHV-

vertex construction, the contribution of each diagram depends on an arbitrary reference

spinor |X]. In past work it has always been assumed that the full amplitude obtained by

summing all diagrams were independent of |X]. It was proven in [16] that this property

holds for n-gluon NMHV amplitudes, but the argument used does not readily extend to

other situations.

The recursion relations obtained from the 3-line shift of [18] provide a precise frame-

work for the MHV-vertex method, and they clarify the role and origin of the reference
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spinor |X] which determines the shift. The diagrammatic expansion of an amplitude M

is valid if the shifted amplitude vanishes at infinity, M(z, |X]) → 0 as z → ∞. If this

condition is satisfied for all |X], then the derivation of the recursion relation from Cauchy’s

theorem ensures that the sum of MHV-vertex diagrams will be independent of |X]. If it is

not satisfied, the expansion will not produce the right amplitude because the contribution

from infinity required by Cauchy’s theorem is neglected. Then the sum of diagrams may

well depend on |X].

The situation can be made sharper. The 3-line recursion relation is valid if the residue

at z = ∞ vanishes for some values of |X]; not necessarily all values. The sum of diagrams

will produce the correct physical amplitude at precisely those values.

A study of the large z behavior of the individual MHV-vertex diagrams as well as

explicit MHV-vertex constructions of many 6-point NMHV amplitudes, indicate that the

property M(z, |X]) → 0 as z → ∞ holds for all |X] for general external states in N = 4

SYM theory. But our results also show that there is a contribution from the term at infinity

for many supergravity amplitudes. The amplitude calculated from the NMHV generating

function is correct provided that |X] is chosen such that the contribution from infinity

vanishes.

The appropriate values of |X] for which the MHV-vertex expansion is justified can be

determined from a supplementary calculation of the amplitude using the KLT formula. The

special values of |X] are roots of a polynomial which precisely expresses the condition that

the large z portion of the Cauchy contour integral vanishes. The sum of the diagrammatic

expansion is the same at each of these roots and agrees with the value from KLT. This

is a pragmatic test of the validity of our approach. Because of the algebraic complexity

of NMHV amplitudes in supergravity, our computations are done primarily after input of

numerical values for the spinors |i〉, |i] which contain the information on particle momenta.

However, it is clear that the large z polynomial involves only Lorentz invariant spinor

brackets 〈i j〉, [i j], so that the procedure does not violate Lorentz invariance. Furthermore

the key role of the generating function, namely that it encodes the spin factors of all NMHV

processes, is preserved.

It is awkward that a supplementary calculation of an amplitude is needed to fix the

reference spinor |X] and make the MHV-vertex expansion valid. It would be interesting

and useful to find techniques to determine the pole at infinity without a full evaluation of

the amplitude.26

The generating function approach can be used to simplify the intermediate state helic-

ity sums needed to obtain the integrands of Feynman loop diagrams from products of tree

amplitudes by the general cutting techniques widely applied in the work of Bern, Dixon,

and Kosower and their collaborators. The MHV level sums carried out in section 4 are

really simple, and preliminary calculations of NMHV level sums in the gauge theory are

promising. It may be difficult to implement NMHV sums in supergravity because of the

necessity to fix |X], as we have discussed above.

For n-graviton amplitudes with n ≥ 5, an analytic study indicates that there are

26We thank P. Benincasa and D. Skinner for discussions of this question.
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individual MHV-vertex diagrams which grow at the rate zn−11 under a −−− shift. (This

is the same behavior as in individual terms of the KLT formula.) Subsequent numerical

evaluation of the sum of diagrams shows that there is a leading order cancellation, so that

the full amplitude grows at the rate zn−12. For general external states, spin factors can

contribute extra positive powers zk with 0 ≤ k ≤ 8. The large z behavior of tree amplitudes

is related to UV behavior at the 1-loop level [8]. It would be interesting to understand

whether the large z growth we have found for 3-line shifts in supergravity may be an omen

of future problems with its UV structure.

An aspect of N = 8 supergravity we have not yet discussed is the nonlinearly real-

ized E(7, 7) symmetry. Details of the action of E(7, 7) are nicely described in the recent

paper [33]. The 70 scalar fields of the theory are Goldstone bosons of the spontaneous

breaking E(7, 7) → SU(8). We would like to find the footprint of E(7, 7) symmetry in the

set of n-point tree amplitudes we have studied. We expected that E(7, 7) would reveal itself

in the limit of vanishing boson 4-momentum, as in the low energy theorems for soft pion

emission obtained long ago by Adler [34] and discussed by Coleman [35]. In pion physics,

the low energy limit of a single soft pion is generally non-vanishing and obtained from the

sum of Feynman diagrams in which the soft pion is attached to other external lines. Graphs

with internal attachment vanish at low energy because of the coupling to the axial current.

The soft pion limit is non-zero in tree approximation for the process π+N → 2π+N even

in a version of the linear σ-model with gradient coupling N̄γµ[∂µσ + iγ5~τ · ∂µ~π]N so that

both π and N are massless.

We examined the one-soft-boson limits of our tree amplitudes and found that the limit

always vanishes. This was puzzling because the Lagrangian has [36] cubic vertices in which

the Goldstone bosons couple to two graviphotons and to a gravitino-graviphotino pair.

This leads to diagrams with external line insertions, but their soft limit vanishes when all

external particles are on shell. So our results are consistent, but it is still puzzling why soft

boson limits are trivial in supergravity but not in pion physics.27

Another aspect of our construction, which was only noted in section 3.1, is the tan-

talizing 1/2 BPS structure of the generating functions for tree level MHV amplitudes.

Introducing the ‘standard’ Grassman variables of N = 4 on-shell superspace θa
α̇ and θ̄α

a ,

one can rewrite the MHV generating function as an integral over only a chiral half of

superspace since

δ(8)(
∑

i

ηi
aλ

α̇
i ) =

∫

d8θ exp

(

θa
α̇

∑

i

ηi
aλ

α̇
i

)

. (7.1)

One can go a step further and observe that the ladder of differential operators acting on

the auxiliary η’s is strikingly reminiscent of the ladder of ‘classical’ fields generated by the

action of (broken) supersymmetry on a self-dual (instanton) configuration. The 8 spinors θa
α̇

are the bookkeeper for the fermionic zero-modes. As in supersymmetric instanton calculus,

see e.g. [37] for a recent review, for a non-zero result one must to ‘soak up’ the 8 fermionic

27It appears that the limit of two soft bosons is closer to the situation in pion physics. There are low

energy theorems which reflect the fact that the equal-time commutator of two E(7, 7) coset currents lies in

the compact SU(8) subalgebra.
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zero modes of chiral N = 4 superspace. This selects exactly the set of 15 types of MHV

related amplitudes. It is tempting to conjecture that the functional integral representation

of MHV amplitudes is ‘dominated’ by classical self-dual configurations of the gauge field

whose precise form depends on the boundary conditions dictated by the choice of external

momenta [38, 39]. This is further supported by the recent results of [40, 41] where the

N = 4 multiplet is packaged into a scalar light-cone (LC) superfield that only depends on

half the LC superspace θLC ’s. For related work in the supertwistor formulation, see for

example [42]. Similar considerations may apply to N = 8 supergravity, where the recent

LC N = 8 superspace approach of [43] supports the 1/2 BPS structure of MHV amplitudes

and sheds some light on the role of E(7, 7).
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A. Conventions

Our notation for the spinor helicity formalism is largely inspired by [22, 44], but we use

different conventions which are summarized in the following.

A.1 Spinor helicity formalism

We work with a mostly-plus metric, ηµν = diag(−1,+1,+1,+1). Gamma-matrices are

defined as

γµ =

(

0 σµ

σ̄µ 0

)

, {γµ, γν} = 2ηµν , γ5 ≡ iγ0γ1γ2γ3 =

(

−1 0

0 1

)

, (A.1)
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with σµ = (1, σi), σ̄µ = (−1, σi) and σi the standard Pauli matrices.28

Positive and negative helicity solutions of the massless Dirac equation, γ · p us(p) = 0,

are written in terms of commuting 2-component spinors λ̃ and λ defined as

u−(p) =

(

λα

0

)

, u+(p) =

(

0

λ̃α̇

)

. (A.2)

Projectors P± = 1
2(1 ± γ5) then act as P±u±(p) = u±(p) and P±u∓(p) = 0. With the

adjoint of a Dirac spinor Ψ defined as

Ψ̄ ≡ −iΨ†γ0 , (A.3)

we have

u−(p) = (0,−i λ̃α̇) , u+(p) = (i λα, 0) , (A.4)

where λα = (λ̃α̇)∗ and λ̃α̇ = (λα)∗. Note that λα = ǫαβλβ and λ̃α̇ = ǫα̇β̇λ̃β̇.

Defining pαβ̇ = pµ (σµ)αβ̇ and pα̇β = pµ (σ̄µ)α̇β, the massless Dirac equation can be

written

pα̇βλβ = 0 , λ̃α̇ p
α̇β = 0 pαβ̇λ̃

β̇ = 0 , λα pαβ̇ = 0 . (A.5)

One can show that

λαλ̃β̇ = −pαβ̇ , λαλ̃β̇ = +pβ̇α . (A.6)

We now introduce the bra-ket notation which is used heavily throughout the paper.

Define

|p] = u−(p) =

(

λα

0

)

, |p〉 = u+(p) =

(

0

λ̃α̇

)

, (A.7)

〈p| = i ū−(p) =
(

0, λ̃α̇

)

, [p| = −i ū+(p) =
(

λα, 0
)

, (A.8)

It then follows from (A.6) that

−pµγ
µ = |p]〈p| − |p〉[p| . (A.9)

Spinor products are defined as

〈p q〉 = λ̃p α̇λ̃
α̇
q , [p q] = λα

pλq α , (A.10)

and they are related to the dot-product of the momenta by

〈p q〉 [p q] = 2 p · q = −spq , (A.11)

where the Mandelstam variables are spq = −(p+q)2. For real momenta, the spinor products

satisfy [p q]∗ = 〈q p〉, so that up to phases [p q] ∼ 〈p q〉 ∼ √
2 p · q. In applications we often

28Note that (σ̄µ)α̇β = −ǫβγǫα̇δ̇(σµ)γδ̇. We use ǫ12 = ǫ12 = 1.
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use complex momenta in which case angle and square brackets (λ̃ and λ) will not be complex

conjugates, but independent. We remark on the properties of the angle and square spinors

under analytic continuation p→ −p. In our conventions, | − p〉 = −|p〉 and | − p] = +|p].
It is convenient to define “angle-square brackets” 〈i|P |j] as

〈i|P |j] =
m
∑

k=1

〈i k〉 [k j] for P =
m
∑

k=1

pik . (A.12)

In the spinor helicity formalism polarization vectors can be written as

ǫµ+(p; q) = − [q|γµ|p〉√
2 [q p]

, ǫµ−(p; q) =
〈q|γµ|p]√

2 〈q p〉
. (A.13)

One can show29 that the polarization vectors are related by complex conjugation and satisfy

the orthogonality relations

(

ǫµ±(p)
)∗

= −ǫµ∓(p) , ǫµs (p)∗ǫµ s′(p) = δss′ . (A.14)

A.2 Explicit representation

Take the momentum to be

pµ = (E, E sin θ cosφ, E sin θ sinφ, E cos θ) . (A.15)

Then

pαβ̇ = −2E

(

s2 −c s e−iφ

−c s eiφ c2

)

, pα̇β = 2E

(

c2 c s e−iφ

c s eiφ s2

)

, (A.16)

where we use s = sin θ
2 and c = cos θ

2 . It is straightforward to show that the two-component

vectors

λα =
√

2E

(

−s e−iφ/2

c eiφ/2

)

, λ̃α̇ =
√

2E
(

− s eiφ/2, c e−iφ/2
)

, (A.17)

λ̃α̇ =
√

2E

(

c e−iφ/2

s eiφ/2

)

, λα =
√

2E
(

c eiφ/2, s e−iφ/2
)

(A.18)

solve the massless Dirac equation in the form (A.5).

With pµ given by (A.15), we write the positive and negative helicity vectors

ǫµ±(p) = ∓ 1√
2

(

0, cos θ cosφ∓ i sinφ, ± i cos φ+ cos θ sinφ, − sin θ

)

. (A.19)

These clearly satisfy (A.14). It can be shown that the expressions (A.13) reproduce the

polarization vectors (A.19) for an appropriate choice of reference momentum q.

29It is useful to note the following properties: 〈p|P |q] = Pµ〈p|γ
µ|q], [q|γµ|p〉 = −〈p|γµ|q], [q|γµ|p〉∗ =

[p|γµ|q〉, and [p1|γ
µ|p2〉〈p3|γµp4] = 2[p1p4]〈p3p2〉.
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A.3 Majorana spinors

A Majorana spinor satisfies the condition

ψ = B−1ψ∗ , B = γ0 γ1 γ3 =











0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0











. (A.20)

In the γ-matrix representation (A.1) this means that

ψ =

(

ψα

ψ̃α̇

)

with ψα =

(

ψ1

ψ2

)

and ψ̃α̇ =

(

ψ∗
2

−ψ∗
1

)

. (A.21)

It follows from this and ψ̃α̇ = ǫα̇β̇ψ̃β̇ that ψ̃α̇ = (ψα)∗.

Let ε and Q be Majorana spinors. Then

ε̄Q = − i
(

ǫ∗1Q
∗
2 − ǫ∗2Q

∗
1 − ǫ2Q1 + ǫ1Q2

)

= − i
(

ǫ̃α̇Q̃
α̇ − ǫαQα

)

≡ − i
(

Q̃+Q
)

.(A.22)

If δǫA is the supersymmetry transformation of the field A, then the susy generators

act as

δǫA = i
[

ε̄Q, A
]

=
[

Q+ Q̃,A
]

. (A.23)

Including labels a, b, · · · = 1, . . . ,N , the generators Qa and Q̃b satisfy the extended

supersymmetry algebra

[

[Qa, Q̃b], A
]

= δa
b 〈ǫ2 p〉[p ǫ1]A ,

[

[Qa, Qb], A
]

= 0 ,
[

[Q̃a, Q̃b], A
]

= 0 ,(A.24)

for distinct susy parameters ǫ1,2 and ǫ̃1,2.

B. Solution of the N = 1 SUSY Ward identities for 6-point NMHV am-

plitudes

We apply spinor-helicity methods to obtain the solution to the SUSY Ward identities for

6-point NMHV amplitudes in an N = 1 theory originally found in [21].30 The solution

is valid for complex momenta in an arbitrary Lorentz frame and reduces to the solution

of [21] for real momenta in the center-of-mass frame. We hope that the new method will

be useful for solving the NMHV Ward identities of extended supersymmetry.

Let b± and f± denote the annihilators of the bosonic and fermionic states of an N = 1

supersymmetric theory. There are 20 independent 6-point NMHV amplitudes for which

we introduce the notation:

G = σb

〈

b+b+b+b−b−b−
〉

, Gi,I = (−)i+Iσb

〈

f+b+i f
+f−b−I f

−
〉

, (B.1)

F = σf

〈

f+f+f+f−f−f−
〉

, Fi,I = σf

〈

b+f+
i b

+b−f−I b
−
〉

. (B.2)

30See also [45].
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The momentum (and position) labels i, j, k run over 1, 2, 3 while I, J,K = 4, 5, 6. The

subscript i on b+i means that the particle is in position i with momentum pi, etc. For

example, G1,6 = −σb

〈

b+(1) f+(2) f+(3) f−(4) f−(5) b−(6)
〉

.

The supersymmetric Ward identities can be solved to express the 18 amplitudes Gi,I

and Fi,I in terms of the purely bosonic and fermionic amplitudes G and F . The result is

Fi,I = ∆−1
(

ǫijk〈jk〉 ǫIJK [JK]F + 4〈Ij〉[ij]G
)

, (B.3)

Gi,I = ∆−1
(

ǫijk[jk] ǫIJK〈JK〉G+ 4〈iJ〉[IJ ]F
)

, (B.4)

where

∆ = − 2〈ij〉 [ij] = − 2〈IJ〉 [IJ ] , (B.5)

and repeated indices are summed. The remainder of this appendix is devoted to the proof

of (B.3)–(B.4).

The commutator relations of the N = 1 SUSY generator Q̃ with the annihilators is

[

Q̃, b+(p)
]

= σb〈ǫ p〉 f+(p) ,
[

Q̃, f+(p)
]

= 0 ,
[

Q̃, b−(p)
]

= 0 ,
[

Q̃, f−(p)
]

= σf 〈ǫ p〉 b−(p) . (B.6)

The phases σb,f = ±1 depend on which N = 1 multiplet is considered. Similar relations

exist for the generator Q which raises the helicity by 1/2.

The SUSY Ward identities from the Q̃ commutator relations can be written compactly

as

〈ǫ i〉Fi,I + 〈ǫ I〉G = 0 ,

〈ǫ i〉F + 〈ǫ I〉Gi,I = 0 , (B.7)

ǫijk〈ǫ j〉Gk,I + ǫIJK〈ǫ J〉Fi,K = 0 .

We will also need a subset of the Ward identities obtained from the conjugate Q Ward

identities. In notation that should be obvious, these read

σ [ǫ i]G− [ǫ I]Fi,I = 0 , σ [ǫ I]F − [ǫ i]Gi,I = 0 , (B.8)

with σ = ±1 resulting from the choice of phases in the algebra of Q with the annihilators.

We start with the solution ansatz

Fi,I = Mi,I G+Ni,I F , Gi,I = Ki,I G+ Li,I F , (B.9)

where M,N,K,L are 3 × 3 matrices. The Ward identities (B.7) split into two sets of

equations, one set for the matrices N and L,

〈ǫ i〉Ni,I = 0 , 〈ǫ I〉Li,I = − 〈ǫ i〉 , ǫijk 〈ǫ j〉Lk,I + ǫIJK 〈ǫ J〉Ni,K = 0 , (B.10)

and another for M and K

〈ǫ I〉Ki,I = 0 , 〈ǫ i〉Mi,I = −〈ǫ I〉 , ǫijk 〈ǫ j〉Kk,I + ǫIJK 〈ǫ J〉Mi,K = 0 . (B.11)
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In addition equation (B.8) gives (among other relations)

[ǫ I]Nk,I = 0 , [ǫ k]Kk,I = 0 . (B.12)

Due to the separation of the constraints, we will focus our attention on the equations for

N and L; the system of K,M equations is identical and is treated the same way.

The equation 〈ǫ i〉Ni,I = 0 is simply solved by Ni,I = ǫijk〈j k〉nI for any vector nI . This

follows from the Schouten identity. Next, [ǫ I]Nk,I = 0 is solved by nI = ǫIJK [J K]∆−1 for

some general function ∆ to be determined. Hence

Ni,I = ∆−1ǫijk〈j k〉ǫIJK [J K] . (B.13)

Using the standard identity ǫIJK ǫKLM = (δILδJM − δIMδJL), the third equation of (B.10)

then gives

2

∆
ǫijk〈j k〉〈ǫ J〉[I J ] = − ǫijk〈ǫ j〉Lk,I . (B.14)

Multiplying both sides with ǫilm and summing over i we then find

4

∆
〈ǫ J〉[IJ ]〈l m〉 = − 〈ǫ l〉Lm,I + 〈ǫm〉Ll,I . (B.15)

Choosing 〈ǫ| = 〈l| (no sum on l) provides the solution for L; it is

Ll,I =
4

∆
〈l J〉[IJ ] . (B.16)

The only task left now is to determine the scalar function ∆. This is easily done as

follows. Multiply (B.15) by 〈ǫ′ I〉 for some arbitrary spinor ǫ′. Summing over I and using

〈ǫ′ I〉Li,I = − 〈ǫ′ i〉 we obtain

4

∆
〈ǫ′ I〉〈ǫ J〉[IJ ]〈l m〉 = 〈ǫ l〉〈ǫ′m〉 − 〈ǫm〉〈ǫ′ l〉 = − 〈ǫ ǫ′〉〈ml〉 . (B.17)

Antisymmetrization of IJ on the l.h.s. of (B.17) gives (by Schouten)

4

∆
〈ǫ′ I〉〈ǫ J〉[IJ ] =

2

∆

(

〈ǫ′ I〉〈ǫ J〉 − 〈ǫ′ J〉〈ǫ I〉
)

[IJ ] = − 2

∆
〈ǫ ǫ′〉〈IJ〉[IJ ] . (B.18)

Thus the factors of 〈ǫ ǫ′〉 can be eliminated and we conclude from (B.17) and (B.18) that

∆ = − 2〈IJ〉[IJ ] . (B.19)

Note that momentum conservation implies that

∆ = −2〈IJ〉[IJ ] = −2
∑

I,J

(pI + pJ)2 = −2
∑

i,j

(pi + pj)
2 = −2〈ij〉[ij] . (B.20)

This completes the solution for N and L. Since the system of equations for K and M

is identical, we have proven that (B.3)–(B.4) solve the N = 1 SUSY Ward identities.
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