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Chapter 1

Introduction

Matter and forces in nature

Through the eye of the particle physicist, nature is regarded as matter continu-

ously interacting with itself within a flat space-time. The matter interactions are

mediated by three distinct forces: the electromagnetic, the weak nuclear and the

strong nuclear forces. The fourth force known in nature, gravity, is significantly

weaker at sub-atomic scales. Atoms of different chemical elements consist of the

same elementary building blocks: a nucleus composed of neutrons and protons and

a cloud of electrons orbiting the nucleus. The neutrons and protons are themselves

complex compounds, made of quarks.

Quarks are elementary particles which as yet have no further internal structure.

They can never be observed directly but only confined in hadrons. In total, there

are six different quarks. Their anti-particles also exist and are called anti-quarks.

Baryons, like the neutron or the proton, are bound states of three quarks (qqq).

Bound states of a quark and an anti-quark are called mesons (qq̄).

The three forces mediating interactions can be described by the exchange of

particles: the photon, the three gauge bosons and the eight gluons are the forces’

messengers through which matter bits interact with each other. A classification of

elementary particles is given in Table 1.1. Both the lepton and the quark sectors are

organized in three families which feature similar quantum numbers but very different

masses. The lightest of the three families is formed by the electron, the electron

neutrino and the up and down quarks. These are the particles which constitute

the matter around us. Particles belonging to the other two families are formed in

high-energy interactions and quickly decay to particles of the first family.



2 Introduction

FERMIONS

Leptons Quarks

νe (e-neutrino) νµ (µ-neutrino) ντ (τ -neutrino) u (up) c (charm) t (top)

e (electron) µ (muon) τ (tau) d (down) s (strange) b (beauty)

BOSONS

Forces Carrier particle

Electromagnetic γ (photon)

Weak nuclear W+,W−,Z0 (gauge bosons)

Strong nuclear g (gluon)

Table 1.1. Classification of elementary particles. The fermions constitute matter. The

bosons are the force carriers.

The Standard Model is the most advanced quantum theory known yet which

describes how elementary particles interact. It incorporates all elementary particles

as well as the electromagnetic, weak and strong nuclear forces in one mathematical

framework. The Standard Model has been confirmed experimentally to great accu-

racies. Nevertheless, there are many questions for which this theory cannot provide

an analytic answer and, for few other questions, no answer at all. For instance, it

is not known why elementary particles have precisely the masses that we observe

they have.

The proton

The most abundant element in the Universe is hydrogen, which constitutes about

3/4 of the luminous matter1. The proton is the nucleus of the hydrogen atom.

Protons were created in large numbers at about 10−6 seconds after the Big Bang.

They are believed to be stable2. The proton is built from three valence quarks

(uud) which carry the proton quantum numbers. These quarks are kept together

by the strong force. The quarks constantly radiate and absorb gluons which, in

turn, can split into pairs of quarks and anti-quarks or other gluons. This virtual sea

1Only 4% of the total energy density in the Universe consists of luminous matter. The rest is
thought to be dark matter (22%) and dark energy (74%).

2The experimental lower limit on the proton’s lifetime is 1035 years.
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of quarks and gluons determines many of the proton’s properties. Quantum chromo

dynamics (QCD) is an advanced quantum theory, itself part of the Standard Model,

which describes interactions of quarks and gluons.

The inner structure of the proton can be studied in great detail with electron-

proton scattering. HERA, an e−p collider, accelerates both protons and electrons

to extremely high energies and then collides them against each other. From the

resulting collision fragments, information can be inferred about the structure of the

proton, while at the same testing predictions of QCD.
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Chapter 2

Structure of the proton

2.1 Neutral current deep inelastic scattering

Deep inelastic scattering, in short DIS, is the process in which an incoming lepton

collides with a constituent parton from inside the proton. Neutral current, in short

NC, refers to those interactions mediated by a neutral boson, either a photon or a

Z gauge boson. Interactions mediated by charged gauge bosons W±, which have a

neutrino in the final state, are known as charged current interactions. The higher the

virtuality of the gauge boson, the smaller the distances resolved inside the proton.

Event kinematics

Figure 2.1. Feynman diagrams for a NC DIS collision. 4-vectors of incoming and
outgoing particles (a) and Lorentz invariant scalars defining the event (b)

Figure 2.1 shows an electron proton scattering interaction schematically. Taking

k and P to be the 4-momenta of the colliding lepton and proton respectively, the
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NC DIS interaction is written as:

e(k) + p(P) → e′(k′) + X(P′) (2.1)

where q = k − k′ defines the 4-momentum transfer from the lepton to the proton

from which follows that P′ = P + q. In Eq. 2.1, X denotes any final state obeying

energy momentum and quantum number conservation. In this interaction, the

exchanged boson only interacts with charged constituents of the proton. These

charged constituents can be identified with quarks (and anti-quarks). In this way,

one can rewrite Eq. 2.1 as:

e(k) + q(xP) → e′(k′) + q(xP + q) (2.2)

where x is the fraction of the proton four-momentum carried by the struck quark.

The kinematics of an event can be described using the two variables x and Q2:

Q2 = −q2 = (k − k′)2

x =
−q2

2P · q
which are Lorentz scalars. The virtuality of the photon, Q2, defines the scale of

the interaction. Two other variables, which are not independent of x and Q2, are

frequently used:

• The inelasticity y = P·q
P·k

• The hadronic final state center of mass energy W , defined through W 2 =

(P + q)2.

The following simple formulas allow transformation between variables:

W 2 = Q21 − x

x
+ m2

p (2.3)

Q2 = sxy (2.4)

where s is the center-of-mass energy squared s = (k + P)2 of the event. A combi-

nation of any these two variables define the event kinematics.
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2.2 Structure functions

The most general form for the unpolarized cross section for positron proton scat-

tering can be written as σ ∼ LµνW
µν where W µν represents the hadronic tensor

and Lµν the leptonic tensor. The hadronic part can be reduced to defining three

independent functions, called structure functions, which parametrize the structure

of the proton as seen by the virtual boson:

d2
NCσe+p

dQ2dx
=

2πα2

xQ4

(

2xyF1(x, Q2) + 2 (1 − y)F2(x, Q2) −
(

2y + y2
)

xF3(x, Q2)
)

(2.5)

with α the fine structure constant α = e2/4πǫ0 ≃ 1/137. All the detailed physics of

the proton is contained within the structure functions. Often, in the literature the

following regrouping FL(x) = F2(x) − 2xF1(x) is performed on Eq. 2.5 to obtain:

d2
NCσe+p

dQ2dx
=

2πα2

xQ4

(

Y+F2(x, Q2) − y2FL(x, Q2) − Y−xF3(x, Q2)
)

(2.6)

with Y± = 1 ± (1 − y)2. In this way, FL describes the coupling of the proton only

to longitudinally polarized photons. The structure function F1 is proportional to

the transverse component of the cross-section and F2 is the sum of both transverse

and longitudinal parts of the cross-section. F3 is the parity violating term due to

the Z0 exchange. F2 is the dominant structure function. The contribution of FL to

the total cross-section can only become appreciable at y near 1. F3 only becomes

relevant when Q2 is comparable to the mass squared of the heavy gauge bosons. As

this thesis will deal only with Q2 values that are significantly lower, the F3 term

will be neglected from now on.

When comparing Eq. 2.5 with the cross section for the interaction between a

positron and a free spin 1/2 quark the structure function can be identified with:

F2(x) =
∑

q

e2
qxfi(x)

where eq is the charge of the quark and fi(x) are quark densities inside the proton,

i.e. the probability of finding a parton i with the momentum fraction x in the

proton. The summation is carried out over the different quark flavors. In the case

of massless spin 1/2 quarks, the conservation of helicity in the interaction precludes

an interaction with a longitudinally polarized photon. In this static model of the
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proton, FL = 0. This is commonly referred to as the “Callan Gross” relationship.

This static model of the proton predicts that the structure functions are independent

of Q2. This behavior was confirmed at SLAC at Q2 ≃ 4GeV [1] and lead to the

general acceptance of the quark model of hadrons [2, 3].

Subsequent measurements revealed that the total four-momentum carried by the

quarks was far below the value of 1, predicted by the static model described above.

The solution to this problem arrived with the introduction of Quantum Chromo-

dynamics as the theory of strong interaction. In this theory, the strong interaction,

which holds the quarks together inside the proton, is mediated by the exchange

of gluons. These gluons are neutral particles and so do not directly participate in

the DIS interaction. They do however carry a substantial fraction of the proton

momentum. Experimental evidence for the existence of the gluons was given by the

TASSO, JADE and MarkJ experiments at the PETRA collider at DESY in 1979

[4].

2.3 QCD and ep interactions

Quantum Chromdynamics (QCD) is a non-abelian gauge theory, based on the SU(3)

color symmetry group. It describes the interactions of quarks and gluons. Quarks

manifest one of the six possible color charges (three fundamental colors and three

anti-colors) and interact by exchanging gluons. Gluons carry one color and one

anti-color and can therefore interact with each other as well. This is a direct con-

sequence of the non-abelian nature of the underlying symmetry group. The strong

force decreases at small distances, a phenomenon called asymptotic freedom. The

Standard Model describes the strength of the quark-gluon interaction in terms of the

strong coupling constant αs. The value of αs varies with Q2. As Q2 rises, smaller

distances can be resolved inside the proton and smaller values of αs are measured.

A world summary of measurements of αs[5] is shown in Fig. 2.2. Theoretically, the

running of αs is expressed as:

αs(µ
2
r) = ln





12π

(33 − 2Nf) ln
(

µ2
r

Λ2
QCD

)



 (2.7)

where µr is the renormalization scale, Nf is the number of active quark flavors in

the interaction and ΛQCD is a parameter which is determined experimentally. As

µ2
r increases, for µ2

r >> Λ2
QCD it holds that αs << 1. In this regime, QCD can be
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described completely perturbatively such that each higher order Feynman diagram

involving a higher power of αs will contribute less to the total cross-section than

the previous orders in the calculation. In the case when µ2
r ∼ Λ2

QCD , αs ∼ O(1) ,

higher order terms in the perturbative expansion may not converge and therefore

non-perturbative approaches are taken, such as phenomenological models based on

measurement or numerical methods. In DIS, µ2
r can be equated to Q2.

Figure 2.2. World summary of measurements of the running coupling constant αS ,
as measured in DIS, e+e−annihilation, hadronic collisions and heavy quarkonia, as a
function of Q2. The curves are the QCD predictions for the combined world average
value of αs(MZ0) (2006).

2.4 QCD dynamics and evolution

Inside the proton, quarks continuously exchange gluons and gluons fluctuate in qiq̄i

pairs or even interact among themselves (a direct consequence of the fact that gluons

also carry color charge). The number of quarks and gluons changes depending on

the scale of interaction. Also, the strong force decreases rapidly at small distances:
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this is called asymptotic freedom. This allows DIS to be described as a photon

interaction with a free quark. Processes like a gluon radiating a quark or a quark

splitting into a quark and a gluon can be computed in QCD. The calculation of the

cross-section γ∗q → qg yields:

dσγ∗q→qg

dp2
T

=
4πα2

s
e2

q

1

p2
T

αs

2π
Pqq(z) (2.8)

where z is the momentum fraction of the outgoing quark (w.r.t. its incoming mo-

mentum) and pT is its transverse momentum. The function P (z) is called the

splitting function and is proportional to the probability for the quark to split into

a quark with a momentum fraction z by radiating a gluon [6]:

Pq→q(z) = Pqq(z) =
4

3

(

1 + z2

1 − z

)

(2.9)

The divergence at z = 1 is due to radiation of very soft gluons ( very low energy)

and is canceled by virtual loop contributions. Integrating Eq. 2.8 over pT , one

obtains:

σγ∗q→qq =
4πα2

s
e2

q

αs

2π
Pqq(z) log

Q2

µ2
(2.10)

with µ some minimum momentum of the outgoing quark. The contribution of this

process to the structure functions is Q2 dependent. F2(x, Q2) becomes:

F2 (x, Q2)

x
=
∑

q,q̄

e2
q

∫ 1

x

dy

y
q(y)

(

δ

(

1 − x

y

)

+
αs

2π
Pqq(

x

y
) log

Q2

µ2

)

(2.11)

where y is the fraction of the incoming quark w.r.t. the proton momentum and x

is the momentum fraction of the secondary quark w.r.t. the proton z = x/y. The

integral runs over all possible momentum fractions y larger than x.

One can also include quark contributions coming from gluon splitting into quarks

or other gluon contributions from gluon splitting and so on. The parton (quark and

gluon) densities will evolve as a function of the probe scale due to the increase in

detail with increasing Q2. This evolution of the PDF’s is given by the following

equation:

∂

∂ ln Q2

(

qi(x, Q2)

gi(x, Q2)

)

=
αs(Q

2)

2π

∫ 1

x

dy

y
P1

(

x

y

)(

qi(y, Q2)

gi(y, Q2)

)

(2.12)
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where qi denotes all the active (light) quark flavors. This equation is known as the

DGLAP equation, after its authors Dokshitzer, Gribov and Lipanov and Altarelli

and Parisi[6]. It describes the coupled evolution of quark and gluon densities in the

proton. The kernel P1 is given by:

P1(z) =





Pqq(z) Pqg(z)

Pgq(z) Pgg(z)



 (2.13)

where one of the entries was made explicit in Eq. 2.9. Each of the splitting functions

that enter the kernel are represented schematically in Fig. 2.3.

Through the QCD induced evolution, the parton distributions depend on Q2.

By inspecting the proton with finer and finer probes (higher Q2) more and more

quarks and gluons can be resolved. We have taken into account so far only leading

order (LO) splitting functions. These can be extended to next to leading order

(NLO):

∂

∂ ln Q2

(

qi(x, Q2)

gi(x, Q2)

)

=
αs

2π

∫ 1

x

dy

y
P1

(

x

y

)(

qi

gi

)

+
α2

s

4π2

∫ 1

x

dy

y
P2

(

x

y

)(

qi

gi

)

+ ...

and so on. The splitting functions for higher orders gain in complexity as they

involve more diagrams. The NLO splitting functions are known for some time

[6] and recently NNLO splitting functions have been calculated numerically [7].

Possible contributions from NLO diagrams are shown in Fig. 2.7.

Figure 2.3. Leading order contribution of different splitting functions

Processes involving higher order QCD interactions give rise to a non-zero cou-

pling between the longitudinally polarized incoming photon and quarks off the mass-

shell and consequently FL 6= 0.
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2.5 The improved quark parton model

It was shown that QCD can describe the evolution of the parton distributions inside

the proton with Q2. It is however not possible to predict the values of the parton

distributions and these must therefore be determined experimentally.

In practice, the DIS structure function data is utilized for this. The method

used is to parametrize all parton densities (quark and gluon) at a single value of

Q2, Q2
0, as a function of x. Given the parton densities, QCD is used to predict

the structure functions over a large kinematic range. By comparing the predictions

with the measured structure functions, the parameters describing the parton density

distributions at Q2
0 can be fitted.

This method has been used by the ZEUS collaboration to determine the parton

distributions. The inclusive structure functions measured by ZEUS and several

fixed target experiments are given in Fig. 2.5, together with the QCD fit. Excellent

agreement is obtained. The parton distributions extracted from these fits are shown

in Fig. 2.4. The results are compared to PDFs from several PDF fitting groups,

MRST [8] and CTEQ [9].
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Figure 2.4. Standard ZEUS NLO QCD fit for Q2 = 10GeV2. The gluon sea and the
up and down valence quark distributions are shown. The shaded band represents the
uncertainty. For comparison, MRST and CTEQ fits are also shown.
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2.6 Heavy quark production

Production of heavy quarks can be determined at least at moderate Q2 perturba-

tively, as their masses are larger than ΛQCD. The focus will be on c and b quark

production as t production is beyond the reach of the HERA accelerator.

Above the charm threshold, effectively Q2 ∼ (2mc)
2, cc̄ pair production increases

steeply, contributing more and more to the F2 structure function with increasing Q2

and decreasing x. For instance, at x ∼ 0.01 and Q2 ∼ 100 GeV2, charm contributes

approximately 25% to the total NC DIS cross-section.

The dominating process for creating such cc̄ pair at HERA is known as boson

gluon fusion and schematically represented in Fig. 2.6. In the pQCD inspired

picture of the proton, the gluon splits (at leading order) in a off mass-shell cc̄ pair

which subsequently interacts with the photon. The interaction transfers enough

energy to the quark system such that the charm quarks can become on mass-shell.

Leading order and next to leading order diagrams are shown in Fig. 2.7.

Figure 2.6. (a) The boson gluon fusion process. (b) Different flavor contributions to
the NC ep cross section for 0.005 < x < 0.02. Charm and beauty production decreases
steeply at low Q2

The charm leading-order contribution to the structure function is directly pro-

portional to the gluon density in the proton. The next-to-leading-order contribution

also contains a term that follows the gluon density. Therefore, charm production is

directly sensitive to gluon density inside the proton. The cross-section for charm in

DIS follows from eq. (2.5) (restricted to charm only):

d2σcc̄

dQ2dx
=

2πα2

xQ4

(

(1 + (1 − y)2)F cc̄
2 (x, Q2) − y2F cc̄

L (x, Q2)
)

(2.14)
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Figure 2.7. (a) Leading order contribution to charm production in NC DIS. (b), (c)
contribution of the NLO gluon (∼ 20%), quark (∼ 5%)

The charm structure functions dependence on the parton densities are known

to the next-to-leading order [10]. The b quark is heavier: its production threshold

is effectively Q2 = (2Mb)
2 ≃ 100GeV2. As F2 is proportional to the the square

of the quark charge, the beauty production is a factor of (ec/eb)
2 = 4 suppressed

w.r.t. charm production, at infinite Q2. For a
√

(s) = 318GeV, the cross-sections

for ep → ecc̄ + X and ep → ebb̄ + X are about 0.5 µb and 1 nb respectively.

2.7 Charm hadrons

The calculations of cross-sections for b and c quark production are performed in

perturbative QCD. Nevertheless, due to color confinement in QCD1, the experi-

mentalist measures colorless hadrons (mesons and baryons) which are produced in

the fragmentation process. Hadronization cannot be described by pQCD. There-

fore, theoretical predictions at hadron level depend on data already collected at

other experiments and on empirical models.

Charm hadrons are hadronization products of the charm quark. Some of their

properties are listed in the Table 2.1. The lighter mesons, with masses below 2GeV,

are pseudo-scalars. The heavier mesons, containing a “*” in their names, repre-

sent excited states of their pseudo-scalar counterparts and are vector mesons with

the same quark content but different quark spin alignment. Pseudo-scalars decay

weakly: for instance, the two main contributing diagrams in D0 decay are given in

Fig. 2.9. There, a charm meson decays into non-charm mesons due to the flavor

changing property of the weak decay. The weak decay also dictates the timescale

for this decay to happen. In Fig. 2.8, the two main contributions to D∗+ vector me-

1Free quarks or gluons cannot exist individually. The process of formation of hadrons out of
free quarks or gluons is called hadronization.
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meson D0 D+ D+
s D∗+ D∗0 D∗+

s

quarks cū cd̄ cs̄ cd̄ cū cs̄

m (GeV) 1.864 1.869 1.968 2.010 2.007 2.112

cτ (s) 4.1 · 10−13 10.4 · 10−13 5.0 · 10−13 O(10−18) O(10−18) O(10−18)

Table 2.1. Charm mesons and their properties as listed by Particle Data Book 2006: the

valence quarks content, the mass (in GeV) and the mean lifetime (in seconds) are given.

son are depicted. Only electromagnetic and strong interaction forces are involved.

The associated time scale is much shorter. Nowadays, particle detectors tend to

have spatial resolutions for vertex reconstruction of the order of tens-hundreds of

microns. For high momentum particles, above 1GeV, one can reconstruct charm

meson decay vertices: the secondary vertices can be separated from the primary

interaction point and therefore charm decay can be tagged and properties such as

lifetime can be measured. Vector mesons decay much too fast and from the exper-

imentalist’s point of view their decay happens “at the primary vertex”. We will

come to this issue in later chapters as it is a critical tool for improving filtering out

combinatorial background w.r.t. the genuine signal.

u
d

c

(a) (b)

D +

c

c

u

u

d

D * +D * +

c

d

D0

Pi+

photon

Figure 2.8. Two main contributions to the D∗ branching ratios: D∗+ decays electro-
magnetically (a) D∗+ → D+ + γ or strongly (b) D∗+ → D0 +π+. The time scale of these
decays is much shorter than the weak interaction timescale. (roughly 10−18 sec. for e.m.
and 10−23 sec. for strong interaction). The out-coming particles are still charm mesons.

The probability of charm to hadronize to a particular charm hadron is described

by the charm fragmentation fractions f(c → D , Λ). The fragmentation fractions

are assumed to be universal[11]. The fragmentation of the c quark is shown schemat-

ically in Fig. 2.10. The branching ratio’s represent world averages, as reported by
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Pi+

Figure 2.9. Main contributions to the D0 → K−+π+ weak decay. (a) The c quark emits
a W+which solely decays into a π+ (b) an internal W+ exchange and a creation of uū
pair out of the vacuum. As these two diagrams interfere constructively, the cross-section
for D0 → K− + π+ increases and the D0 lifetime decreases.

the Particle Data Group [12]. A recent ZEUS measurement [11] is shown in Fig.

2.11. After the subsequent strong/electromagnetic decays of D∗0 and D∗+, the D0

charm meson is the most abundant.
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Figure 2.10. The charm fragmentation tree into vector and pseudo-scalar charm mesons.
The numbers indicate the world average values for the fragmentation fractions[12]. The
table on the right sums the different branching contributions to the fragmentation fractions
of charm to D+, D0 and D+

s .

Figure 2.11. Charm fragmentation fractions as measured by ZEUS in photo-production
and DIS, compared to H1 and e+e− results. More than half of charm quarks fragment
into D0 mesons. [11]



Chapter 3

The ZEUS detector

3.1 The HERA accelerator

The HERA ( Hadron-Elektron Ring Anlage) collider, located at the Deutches Elek-

tronen Synchrotron (DESY) research center in Hamburg, Germany, is the world’s

first accelerator to collide beams of electrons and protons. The HERA ring mea-

sures a total of 6.3km in circumference and is situated 10 − 25m under ground.

The layout of the collider is shown in Fig. 3.1.

HERA

PETRA

DORIS

HASYLAB

DESY

North Hall (H1)

East Hall (HERMES)

South Hall (ZEUS)

West Hall  (HERA−B)

Electrons / Positrons

Protons

Synchrotron Radiation

Figure 3.1. Layout of the HERA collider and pre-accelerators
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Data taking at HERA began in spring 1992 and ended in summer 2007. Pro-

tons and electrons (or positrons) are stored in two independent storage rings. The

collider features four straight sections, each 360m in length; in three of them inter-

actions occur (at ZEUS, H1 and HERMES), while the fourth is used for injection.

Before being injected into the main ring, protons and electrons are pre-accelerated.

Electrons get an initial momentum of 200MeV in the linear accelerator after which

they are transferred to the DESY II synchrotron and accelerated to 7.5GeV. Af-

ter transfer to the PETRA pre-accelerator, they are brought up to 14GeV after

which they are injected into HERA. Here, after the final acceleration, the electrons

reach 27.5GeV and are ready for collision. Protons also undergo several stages of

pre-acceleration: starting off as H− ions at 50MeV in the proton LINAC, they are

accelerated to 7.5GeV in DESY III and further to 40GeV in PETRA II before

being injected in HERA. Once in HERA, protons are accelerated to a momentum of

920GeV. Protons are kept on their orbit by superconducting dipole and quadrupole

magnets. The electron beam is guided by warm (non-superconducting) magnets.

Both beams are accelerated to their nominal momenta in HERA by radio-frequency

cavities.

Along the interaction regions, guiding magnets deflect the particle beams until

they run inside the same vacuum pipe. Collisions happen at zero crossing angle.

After passing the interaction regions, the protons are deflected back to the proton

ring.

Both the electron and the proton beams are divided in particle bunches. There

is a separation of 28.8m between each pair of bunches with a total capacity of

220 bunches orbiting around the HERA ring. The time between bunch crossings is

96 ns. Table 3.1 summarizes the main HERA parameters.

The main parameter of particle colliders is the luminosity L. The luminos-

ity is defined as the number of collisions per unit of area and per unit of time

(cm−2s−1). The specific luminosity is defined as the luminosity divided by the

beam currents (cm−2s−1A−2). It quantifies the intrinsic quality of the colliding

beams. The integrated luminosity Lint is the integral of the luminosity over a pe-

riod of time (cm−2). In particle physics, cross-sections are expressed in pico-barns,

with 1 pb = 10−36cm−2. The number of occurrences of a certain process with a

corresponding cross-section σ found in a data sample of an integrated luminosity

Lint is given by:
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Tunnel circumference 6336.83 m

Bunch spacing (in time) 96 ns

Bunch spacing (in distance) 28.8 m

Number of buckets 220

Beam crossing angle 0 mrad

Center of mass energy 318 GeV

Number of colliding bunches 174

Peak luminosity 7.5 × 1031 cm−2s−1

Specific luminosity 1.8 × 1030 cm−2s−1A−2

max. Ip 140 mA

max. Ie 58 mA

Beam size at I.P. in x 0.110 mm

Beam size at I.P. in y 0.030 mm

Table 3.1. Hera collider main parameters.

N = σ × Lint (3.1)

3.2 The ZEUS detector

The ZEUS detector [13] has been designed as a multi-purpose particle detector

that measures final state particles in ep collisions. It has an almost 4π solid angle

coverage around the interaction point, leaving out only two small holes for the beam

pipe to enter and exit. The detector is shown from different angles in Fig. 3.2, 3.3

and 3.4.

Fig. 3.2 shows a cross-section along the beampipe of the complete detector. The

major detector components are labeled explicitly: forward, rear and barrel sections

of the uranium calorimeter ( the FCAL, RCAL and BCAL), the central tracking

detector (CTD), the microvertex detector (MVD), the forward detector (STT), the

rear tracking detector (RTD) and the small angle rear tracking detector SRTD as

well as the muon detectors BMUON , FMUON and RMUON. The backing calorime-

ter (BAC) forms the outer shell of the ZEUS detector. Between the CTD and the

uranium calorimeter, there is a thin superconducting solenoid which produces a

1.43T magnetic field. The iron yoke outside the calorimeter functions as a return

path for the magnetic field lines. Several detectors were built to veto events arising
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Figure 3.2. The ZEUS detector (z− y view). The electrons enter the detector from the left. Major components are labeled explicitly.
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Figure 3.3. The ZEUS detector in XY cross-section view. The beampipe runs perpen-
dicular through the center of the figure.

Figure 3.4. The ZEUS detector.
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from beam-gas collisions and secondary collisions: the veto wall detector VETO

and the C5 counter are two of these detectors. The luminosity monitor LUMI is

located 107m away from the interaction point.

The ZEUS coordinate system is a right-handed Cartesian system with the Z axis

pointing in the flight direction of the proton beam (the forward direction). The X

axis points towards the center of the HERA ring and the origin of the coordinate

system is at the nominal interaction point.

The analysis described in this thesis relies on the calorimeter and the tracking

detectors CTD and MVD 1. They will be described in the following sections.

3.2.1 The uranium calorimeter

The uranium scintillator calorimeter (CAL) [14, 15, 16] covers 99.8 % of the full

solid angle and has been designed to stop all particles except muons and neutrino’s.

The calorimeter weighs 700 tons (see Fig 3.6). It is subdivided into 80 modules

which form the forward (FCAL), central (BCAL) and rear (RCAL) calorimeters.

The FCAL, RCAL and BCAL are further transversely divided into towers and

longitudinally into one electromagnetic section (EMC) and one (in RCAL) or two

(in BCAL, FCAL) hadronic sections. Each module has a layered structure consisting

of 3.3 mm thick depleted uranium (DU) plates wrapped in stainless steel foils (200

or 400 µm thick) as absorber material interleaved with 2.6 mm thick sheets of plastic

scintillator as detector. The thicknesses of the absorber and detector plates were

selected to achieve equal electron and hadron response. Up to 185 layers of absorber

and scintillator form the calorimeter modules. A schematic cross-section of a BCAL

tower is shown in Fig. 3.5.

Light generated by charged particles crossing the scintillator planes is collected

by plastic wavelength shifters and guided to photomultiplier tubes. The pulse height

in each cell and the arrival time are read out, with a precision better than one nano-

second (whereas the bunch crossing time is 96 ns).

The calorimeter provides a linear response for electrons and hadrons (such as

protons or pions) up to the highest energies. Test beam measurements revealed a

relative energy resolution of σ(E)/E = 0.35/
√

E for hadrons and jets and σ(E)/E =

0.17/
√

E for electrons (with E in GeV).

Different particles leave different shower signatures in the calorimeter. This is

illustrated in Fig. 3.7. Information from both longitudinal and transverse shapes of

1The forward detector STT did not function during 2005.
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Figure 3.5. Cross-section view through BCAL. The electromagnetic section and the
hadronic sections are shown. The electromagnetic section is closest to the interaction
point. On the right, the layered structure of the calorimeter module is enlarged.

Figure 3.6. The uranium calorimeter within the ZEUS detector (x − y view).
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Figure 3.7. Different calorimeter shower signatures produced by a hadron, an electron
and a muon are shown. In this figure, particles originating at the interaction point enter
the detector from above.

the showering in the calorimeter allows for identification of three different particle

types with the CAL:

• electrons, positrons and photons start to shower immediately after entering

the CAL. The shower is limited in size, longitudinally and transversely.

• hadrons start showering only deeper into the calorimeter. The showers extend

more in depth and width.

• muons completely traverse the calorimeter, depositing an energy loss (through

ionization) that is mostly independent of the muon energy.

The calorimeter is calibrated using the natural radioactivity of the depleted ura-

nium. The gain of the photomultiplier tubes is calibrated few times a month re-

sulting in a uniformity of about 1%. At the end of each HERA fill, bad channel

lists are archived for corrections in the subsequent offline reconstruction. During

data taking, the shift crew carefully monitors calorimeter parameters in combina-

tion with trigger rates. Especially noisy cells in the calorimeter can spoil an efficient

data taking and therefore should be masked by the calorimeter first level trigger

expert as soon as they are discovered. Bad channels in the calorimeter are repaired

regularly, during short periods of detector access.
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Figure 3.8. The flow of the magnetic field lines inside the detector space. The arrows
follow the direction of the field lines; their length is proportional to the strength of the
magnetic field. (Protons enter the detector from the left. )

3.2.2 The superconducting solenoid

The tracking detectors work in a 1.43T magnetic field provided by a supercon-

ducting solenoid. Inside the magnetic field, charged particles follow a helix like

trajectory in response to the Lorentz force:

~FL = q~v × ~B (3.2)

with q the electric charge, ~v the velocity and ~B the magnetic field vector. The

transverse momentum of the charged particle is obtained from the track curvature:

pT = |kqBr| (3.3)

where r is the radius in meters, ~B is the field strength measured in Tesla, pT the

transverse momentum in GeV and k is the curvature constant, k = 0.2998GeV T−1 m−1.

In ZEUS, the magnetic field is oriented along the Z axis with a strength of 1.43T

at the interaction point and remains almost constant inside the tracking volume. A

map of the field lines is shown in Fig. 3.8.
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3.2.3 The central tracking detector

The central tracking detector (CTD) [17, 18] is a wire chamber that covers 205 cm

in Z and extends in the radial direction from 16.2 cm to 79.4 cm. It consists of

72 cylindrical drift chamber layers, organized in 9 superlayers. The CTD covers a

polar angle region of 15◦ < θ < 164◦ and is filled with a mixture of argon, carbon

dioxide and ethane. When particles pass through the detector, they ionize gas

atoms; the freed electrons drift towards the sense wires. Near a wire, ionization

avalanches are generated due to large electric fields. The pulse measured with

the sense wires is proportional to the energy loss of particles passing through the

CTD. Particle identification is possible using measurements of the mean energy loss,

dE/dx, of charged particles in the gas of the active volume. The odd numbered

(axial) superlayers contain drift wires that run parallel to the z-axis. The even

numbered (stereo) superlayers are oriented at a small angle with respect to the

z-axis. This allows both rφ and z coordinates to be measured.

sense wire
ground wire
guard wire
shaper wire
field wire

(a)
X-Y SECTION
THROUGH THE CTD

(b)
A TYPICAL CELL

IN THE CTD
showing ionisation drift paths

(b)

Figure 3.9. x − y view through the CTD. Typical cell lay-out.

The inner three axial superlayers of the CTD are provided with a z-by-timing

system. This estimates the z position of a hit by measuring the difference in pulse

arrival times at the two ends of the detector, for each wire. This measurement
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has a resolution of ∼ 4 cm, much cruder than the resolution obtained when using

full stereo and axial super-layer information. The z-by-timing system is used for

triggering and pattern recognition purposes.

The hits in the CTD are combined to reconstruct particle trajectories. The

transverse momentum resolution for full-length CTD tracks is σ(PT )/PT = 0.0058 PT⊕
0.0065⊕0.0014/PT with PT in GeV. Three different effects add to the total resolu-

tion: the error on the CTD hits, multiple scattering within the CTD and multiple

scattering in dead material on the particle flight path before the CTD. The average

resolution for a track that has passed through all superlayers is ∼ 180 µm in rφ and

∼ 2 mm in z. The event vertex measured by the CTD is accurate to about 1 mm

in xy and 4 mm in z.

3.2.4 The luminosity monitor

At ZEUS, the delivered luminosity is measured using the Bremsstrahlung process

e p → e p γ. The cross-section σB for this process at fixed photon scattering angle

θγ and energy Eγ is well known. The luminosity L is determined by measuring the

photon rate Nγ :

L =Nγ/σB (3.4)

The measurement of Nγ is performed by a lead-scintillator calorimeter placed 107 m

away from the beamspot. It accepts photons arriving from the interaction point in

an almost straight line (θγ < 0.5 mrad) with the electron beam. The error on this

measurement is ≈ 3%. A large rate of synchrotron radiation and a high probability

for multiple Bremsstrahlung photons in a single bunch crossing are two main sources

that can spoil the accuracy of the luminosity measurement. In order to cope with

these effects, the lead scintillator detector is shielded by three radiation lengths

of uninstrumented lead, reducing the probability of detection of Bremsstrahlung

photons and thus reducing the probability of photon overlap. This also shields the

calorimeter from synchrotron radiation. A second independent luminosity monitor

uses two separate calorimeters to measure coincidences of e+e− pairs coming from

photon conversions γ → e+ + e− within the photon pipe exit window. Detection

is low enough to avoid double counting and the calorimeters are placed outside the

main synchrotron envelope. A schematic representation of the luminosity measuring

system is shown in Fig. 3.10.
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Figure 3.10. Schematic diagram of the luminosity measuring system.

3.3 The microvertex detector

3.3.1 Design

The detector closest to the interaction point is the microvertex detector (MVD).

The MVD was installed during the 2000-2001 shutdown. Its main design purpose

was to improve the tracking and vertexing provided by the CTD2 such that cleaner

heavy quark samples can be selected by tagging secondary decay vertices.

The MVD is a silicon strip detector. It consists of a 60 cm long barrel and 4

disks in the forward region. The MVD runs in Z along the beampipe, spanning in

rφ the space between the beampipe up to the CTD inner layer. It is divided into

two distinct regions: barrel (BMVD) and forward (FMVD), as seen in Fig. 3.11.

The microvertex detector has the following specifications:

• a polar angle coverage of 7.6◦ < θ < 160◦

• covering from 38 to 247 mm radially

• covering in z direction from −300 to 750 mm as measured from the ZEUS

coordinate system origin

• 3(2) barrel layers and 4 forward planes

• intrinsic hit resolution of better than 20 µm

2The CTD in itself can recognize displaced vertexes only if they are more than 1.5−2 cm away
from the primary vertex.
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• 100 µm impact parameter resolution for completely transverse tracks (θ = 90◦)

of at least 2GeV

• noise occupancy3 < 10−3

• single hit efficiency > 99%

390 mm

protonselectrons

618 mm

=7
θ

θ
= 22θ =160

3 layer barrel4 wheels

Figure 3.11. The MVD layout: a barrel region and forward wheels. Protons enter the
beampipe from the right. The polar angle coverage is also shown.

The MVD is equipped with a total of 712 silicon strip sensors. The barrel region is

organized into three cylinders and contains 600 sensors, each with an area of 41 cm2.

Another 112 sensors compose the four wheels. The layout of the MVD is given in

Fig. 3.11. A picture of the lower half of the detector is shown in Fig. 3.12.

The semiconductor sensors are 300 µm thick and the bulk of the sensor is n-

doped silicon. On one side, parallel p-doped strips are implanted at 20 µm distance

from each other. The readout strips are 120 µm apart with 5 intermediate p-doped

strips in between each pair. On the opposite side of the bulk, an aluminum back-

plane provides a homogeneous electric field. Pairs of sensors are glued together to

form a half-module as depicted in Fig. 3.13. The strips of the two sensors run

perpendicular to one another. This is called rφ versus z ganging. When placed in

the barrel MVD, one sensor provides z information and the other rφ information.

Since the strips are connected with a bond wire, it cannot be determined a priori

through which of the two sensors a particle has passed. This issue is resolved at

the track reconstruction level. By combining information from other hits along the

track as well as CTD measurements, the “ghost” hits can be distinguished from the

real hits.

3This value changed considerably due to radiation damage.



32 Charm in ZEUS

Figure 3.12. Half of the MVD detector. The different sensor layers are visible in the
wheels (foreground) and in the barrel region (background). At the far end, the electric
connections are seen.

By gluing half-modules together with mirror imaged half-modules, full modules

are formed. With a full module it is possible to reconstruct a full three dimensional

position on a particle trajectory. In the barrel MVD, 30 ladders are organized into 3

cylinders, as visible in Fig. 3.12. Five full modules are fixed to one ladder, as shown

in Fig. 3.13. The ladder is made of carbon fiber composite and provides support

not only for the modules but also for the electronics, the readout cables and cooling

water pipes. A schematic view of the MVD barrel cylinders is presented in Fig.

3.14. The four forward wheels contain similar sensors, glued in pairs, back to back:

an inner and an outer sensor form a wheel sector. The crossing angle between the

strips in the inner and outer sensor is 180◦/14. The detailed design and tests of the

silicon sensors are described elsewhere [19].
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Figure 3.13. Two sensors are glued into a half-module (left figure). A full-module is
obtained by combining one half-module with its mirror imaged half-module. In the right
figure, five modules are fixed together to one ladder as part of the 30 ladders that compose
the barrel MVD.

3.3.2 Detection principle and readout

The detection of charged particles crossing silicon is based on electron-hole pair

generation. When a charged relativistic particle traverses matter, it looses energy.

One of the main energy loss mechanisms is ionization. Inside a silicon crystal, the

energy transferred to the semi-conductor is converted to electron-hole pairs4. The

average energy necessary to produce such pair is approximately 3.6 eV for silicon.

Typically, when crossing 300 µm of silicon, a minimum ionizing particle (MIP) will

generate about 27000 electron-hole pairs inside a 10 µm thick tube centered around

the track. The electrons and the holes will drift to opposite sides producing a

readout signal. The electrons drift to the back-plane, as illustrated in Fig. 3.15.

The MVD employs Helix 3.0 readout chips. Each chip handles 128 input chan-

nels. All together, the MVD has 207360 readout channels5. The Helix chip amplifies

the collected charge of each channel. The signal is shaped into a pulse with a height

proportional to the collected charge. The width of the pulse is about 50 ns and thus

smaller than one bunch crossing time interval. The signal is transferred further by

an analogue link to an ADC unit. The ADC unit can be programmed such that

4Inside semi-conductors, many more charge carriers are generated per unit of transversed dis-
tance than in a gaseous detectors. Silicon layers of hundreds of microns thickness are sufficient to
produce reliable signals. Another advantage for using silicon detection is that the charge carriers
move very quickly inside the silicon lattice producing a drift time of about 10 ns.

5About 5.7% of the total number of MVD channels were dead (in 2005) due to radiation
damage.
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Figure 3.14. Schematic view of the MVD barrel ladders (x − y cross-section).

N−type silicon

P−type implanted strips

Aluminium strips

Aluminium

electron

hole

300    m  µ

20   mµ

Silicon dioxide  layer

Charged particle

N+

External amplifier

Figure 3.15. Schematic cross-section of one MVD strip sensor.
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signals from individual strips or clusters are accepted only if they surpass a prede-

fined threshold. The final data consists of strip addresses and the corresponding

digitized signals.

3.3.3 Track reconstruction

ZEUS uses a combined track pattern recognition of the MVD and CTD. The pattern

recognition makes full use of the track finding powers of the individual detectors and

employs a multi-pass algorithm which combines the CTD, the forward and barrel

MVD. This has lead to an increase in track finding efficiency for the CTD with

information of the MVD. Seeds are constructed from super-layer information in both

tracking detectors and the resulting trajectories are then used to find additional hits.

In the MVD, separate seeds consisting of partly barrel and partly forward MVD

hits are constructed to cover the transition area. Track candidates with ample

hit information from both CTD and MVD are created; later in the procedure,

tracks composed entirely from MVD or CTD hits are found, extending the range

of track reconstruction. The information assigned to a track is then used as input

to the Kalman filter based track fit6. The track fit computes more accurate track

parameters and the corresponding covariances taking the dead material distribution

of the MVD and of the beampipe into account. Outlier hits are rejected based on

their χ2 contribution to the fit (purification of the track). MVD information also

improves considerably the momentum resolution at large momenta. This has a

direct impact on particle mass resolution. A detailed description of the track fit

procedure can be found in [22].

As particles pass through the beampipe and the MVD, they scatter in the pres-

ence of material and therefore lose energy and change direction. The average ma-

terial that a particle goes through while transversing one ladder is about 3% of a

radiation length. Fig. 3.16 is a scatter plot of the energy loss per unit of length

dE/dx versus the track momentum, as reconstructed by the MVD. The kaon, pion

and proton bands are visible. The effect of multiple scattering is mainly a change in

direction, modeled by a gaussian distribution around zero angle change. The width

of the distribution depends on the number of radiation lengths of the scattering

medium as well as the momentum, velocity and charge of the scattered particle

6The Kalman filter[20] is a recursive algorithm that handles discrete data linear problems in
a dynamic fashion. It is applied in many fields of science and engineering. The technique was
introduced to high energy physics by R. Fruhwirth[21].
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Figure 3.16. dE/dx distribution as reconstructed by the MVD. The kaon, pion and
proton bands are visible.

as described in [22]. For high momentum tracks, the effects of multiple scattering

become smaller. The track fit takes into account effects of both multiple scattering

and ionization energy loss at each step in the fitting procedure by increasing the

error matrix and modifying the track parameters. Especially the material of the

beampipe leads to an unconstrained and therefore only estimated increase of these

errors.

3.3.4 Alignment and resolution

Detector alignment plays a crucial role for the performance of highly resolution

dependent analyses. For the MVD, a complex alignment strategy was adopted [23].

First, both the position of the half modules on the ladders and the position of the

ladders inside the completed detector were surveyed with a precision of 10 µm during

construction [24]. Second, a laser alignment system has been incorporated in the

overall support structure to monitor the stability of the MVD during operation [25,

26]. Different stability periods are defined for more specific track based alignment
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procedures, using both cosmic and ep-collision tracks. The data from the laser

alignment system indicate that the position of the MVD as a whole is stable relative

to the global ZEUS coordinate system with a precision of approximately 10 µm. It

has been shown [23] that when the HERA machine magnets nearest to the ZEUS

detector are operational, the associated minor movements of these magnets are also

transmitted to the MVD. This effect, taken into account in the alignment, is due to

the fact that the MVD service and readout cables are wrapped tightly around the

final HERA magnet.

In 2003, the barrel MVD has already been aligned using cosmic muons. Cosmic

muons cross both halves of the MVD therefore providing on the average 12 mea-

surements in a very clean environment. An iterative two step method was used

both to determine the global displacement of the entire MVD relative to the ZEUS

coordinate system as well as to align ladders relative to each other. Statistics were

not sufficient to align individual half-modules with the cosmic data. The residual of

a hit is defined as the difference between the hit position as predicted by the track

fit and the measured hit position. The width of the residual distributions quantifies

the alignment precision of each ladder within the MVD frame. The residual distri-

bution widths are shown for all ladders in Fig. 3.17, after cosmic alignment. The

widths are about 60 µm for the rφ and and 40 µm for the rz sensors respectively.

Horizontal ladders benefit the most from cosmic alignment. The forward MVD

cannot be aligned with cosmics due to lack of coverage.

Recent progress was made by using tracks from the ep collisions recorded during

2004 and 2005. All the ladders were aligned with the same accuracy: residuals are

about 25 µm. The improvement in residual distribution, both in width and shape,

for ladders 8, 9, 21 and 22 is shown in Fig. 3.18. The width has been reduced from

about 40 µm before the ep-alignment to 22 µm after ep-alignment. There were no

significant differences found between sensors within the same ladder.

A direct consequence of the e−p alignment is an improvement in the impact

parameter resolution of tracks with respect to the interaction point. This resolution

becomes, on the average, about 100 µm. Given the long track extrapolation length,

as well as multiple scattering, this value is the best possible. A radar plot in rφ

of the impact parameter resolution is given Fig. 3.19. The impact parameter is

plotted after cosmic alignment and after the subsequent ep track alignment. This is

compared to the simulated impact parameter, with an ideally aligned detector, as

reconstructed by the track fit routine. Vertical ladders benefit most from ep track



38 Charm in ZEUS

Figure 3.17. Hit residuals per ladder for all barrel MVD ladders for rz sensors (top)
and rφ sensors (bottom), after applying cosmic alignment.

alignment. The regions φ ∈ [340◦, 0◦], φ ∈ [70◦, 90◦] and φ ∈ [150◦, 220◦] display

a worse impact parameter resolution due to the geometry of the detector: there,

only two cylinders of sensors are available, as shown in the left plot. A significant

improvement in impact parameter resolution can be seen when using alignment

from ep-collisions as opposed to the cosmic alignment.

The entire data set used in this thesis has been reprocessed using the final ep-

alignment.

3.3.5 Vertex reconstruction and resolution

Initially, tracks are reconstructed independently. Afterwards, a search for common

vertices is performed. The mathematical formalism employed for vertex reconstruc-

tion is described in detail in Chap. 4. After vertexing, tracks belong either to

the primary/secondary vertices or are labeled as “non-vertex” tracks if they do
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Figure 3.18. Residual distribution of four ladders near φ ≃ 180◦ before (left) and after
alignment (right) with tracks from ep collisions. The fitted gaussian curves has a width
of 40 µm (left) and 22 µm (right).

not fit to any of the reconstructed vertices. Because of the ZEUS magnetic field,

the track momentum vector is meaningful only for tracks whose origins are known.

This statement has great implications for charm and beauty meson tagging. The

invariant mass of two tracks is calculated as:

m2 = (E1 + E2)
2 − ( ~P1 + ~P2)

2 (3.5)

where ~P1 and ~P2 are the momentum vectors of the two tracks. The invariant mass

of the mother particle depends strongly on the two momentum values as well as on

their orientation. For an accurate invariant mass reconstruction, the momentum

vectors need to be given at the decay vertex. All tracks used in invariant mass

reconstruction ought to be vertexed tracks.

In ZEUS, several software packages are used for independent vertex finding and

fitting. In particular, the vertex reconstruction package kfvertex [22] finds the best

primary vertex candidate as well as secondary vertices. A standard kfvertex re-

construction is provided: for each event, complex information about the primary

vertex, beam spot, secondary vertices, tracks associated to these, jets, calorimeter

energy clusters, etc is available [27]. Seen with MVD precision, the standard vertex

reconstruction is not sufficient to detect all possible event topologies automatically.

For this reason, many precision vertexing analyses employ context-dependent re-

vertexing techniques at the analysis level. The drawback is that these techniques

demand high processing power and CPU time.

For this analysis, specific revertexing is employed for each event, as detailed in
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Figure 3.19. The impact parameter resolution in radar view (rφ), for data recorded in 2005. The radial scale displays µm. The
alignment with ep collision tracks improves the impact parameter resolution w.r.t. the cosmic alignment, especially for vertical ladders.
The impact parameter reconstructed by the track fit routine in Monte Carlo simulations, with an ideal detector, is also shown. The
asymmetry in rφ is due to the geometry of the MVD: three angular regions corresponding to two cylinders are shown in the left plot.



3.3 The microvertex detector 41

Chap. 6. Tracks with pT > 0.125GeV, with at least 2 MVD hits and crossing at

least 2 CTD superlayers, are vertexed as follows. A search for the best two track

secondary vertex candidate with a χ2 < 16 as calculated in eq. 4.6 is performed, for

all track pairs. The remaining tracks in the event are vertexed separately. First, a

seed for the primary vertex is chosen, by searching for track intersections in the XY

plane. An attempt is made to add tracks to this vertex, one by one. This process

is repeated with subsequent seeds until all tracks have been matched to the vertex

or cannot be matched at all. In this way, a list of primary vertex candidates is

made. The best candidate is chosen as the event vertex by considering the number

of tracks that fit to it and the total χ2 per number of degrees of freedom. The

position of the primary vertex in the transverse XY plane is cross-checked with

the position of the beamspot in a loose manner. The transverse positions of all

reconstructed vertices for a small sample of 100k events recorded in 2005 are shown

in Fig. 3.20. The mean values, also defining the beamspot position, are 13.35 mm

in X and 2.19 mm in Y. The beamspot position can move as much as 100 µm during

the same fill. The primary vertex width is about 220 µm in X and 180 µm in Y .

This width is dominated by the slope at which the beams traverse the detector. The

secondary vertex distributions have slightly larger widths due to the fact that they

were constructed from 2 tracks only whereas the primary vertex consists of 5-10

tracks. The secondary vertex distributions show also non-gaussian tails associated

with genuine decays away from the primary vertex. All vertices are reconstructed

with no mass constraint.
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Figure 3.20. The X (left plots) and Y (right plots) positions of reconstructed primary
vertices (upper plots) and of secondary vertices (lower plots) for a sample of 100k events,
2005 e−p data. The mean values are 13.35mm in X and 2.19mm in Y. The primary
vertex width is about 220µm in X and 180µm Y . The secondary vertex distributions
have larger widths and exhibit wider tails associated with genuine decays.



Chapter 4

Vertexing

Vertexing is a central issue of this analysis. As explained in Sec. 3.3, the momentum

of a helix track is meaningful only at a given point along the helix. Because the

invariant mass of two tracks depends directly on the value and orientation of each

of the two track momenta, a rigorous approach to vertex reconstruction is taken.

In this chapter, the mathematical formalism of vertexing will be described. The

material presented here is described in greater detail in [28]. This formalism has

been “coded” in the ZEUS vertexing package kfvertex. Also, tagging variables

such as decay length, decay length significance, impact parameter and lifetime are

defined.

4.1 Track parametrization

0

0

0φ0
0

D θdip

0θ0
D

x

y

R

s

s=0

q=+1
sign(D  )=+10
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z

s
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Figure 4.1. Projection of a helix track onto the XY plane (left) and YZ plane(right).
The helix parameters are explicitly shown.

The trajectory of a charged particle inside an uniform magnetic field is a helix.

The velocity v‖ of the particle along the field lines determines the step of the helix;
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the radius of the helix circle is proportional to v⊥, the component of the particle

velocity perpendicular to magnetic field lines. ZEUS employs a right handed coor-

dinate system with colliding particles moving along the OZ axis, with the protons

advancing in the positive direction. A uniform magnetic field of strength Bz ≃ 1.43

Tesla is aligned along the OZ axis: ~B = (0, 0, Bz).

The trajectory of each track in the global Cartesian (x, y, z) frame is parametrized

by a 5-vector helix:

~p = (W, T, φ0, D0, Z0) (4.1)

W is the signed curvature of the track: W = q/R, with q the charge and R the

helix radius. The parameter T is defined as tan(θdip) where θdip is the complement

of the polar angle θ0. The Cartesian vector ~D0 points to the point on the helix

closest to the z-axis. The scalar D0 is then the distance of closest approach to the

z-axis and Z0 the z coordinate of the helix at this point. Projecting the helix onto

a circle in the xy plane, φ0 is the angle that ~t, the tangent of the (projected) track

at the point of closest approach, makes with the x axis. D0 is signed. The sign is

defined by the sign of the cross-product ~D0 × ~t. Fig. 4.1 shows the projection of a

helix track onto the xy plane (left plot) and yz plane (right plot) for a positively

charged particle.

One can now recover the position (x, y, z) of any point along the helix using the

above parametrization:
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(4.2)

Here, s⊥ = s sin(θ) is the distance along the helix, measured from the point of

closest approach.

The trackfit routine gives the best possible estimate of five track parameters

and their uncertainties, based on a collection of hits inside the tracking detectors.

A detailed description of how trackfit is implemented can be found in [22]. The

estimated uncertainties of each of the five helix parameters are organized in a 5× 5

covariance matrix V . Once reconstructed, a track is completely described by a 5-

vector ~p in the helix parametrization and its covariance matrix V and can be further

manipulated as such.
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4.2 Kalman filter and vertex reconstruction

4.2.1 The mathematical formalism

One starts always with an estimate of the vertex1. Then, this estimate is compared

to the information from a random2 track in the event. If the track is consistent with

coming from the vertex, the track information is added, yielding a new estimate.

This procedure is then iterated for each track in the event and that leads to a final

vertex estimate. This technique is called filtering. By smoothing, the momentum of

each particle is recomputed at the final vertex position. A notation is defined:

xk = estimate of the vertex position after adding k tracks to vertex

xt = true vertex position

Ck = cov(xk)

qk = estimate of the momentum of particle k at xk

Dk = cov(qk)

Ek = cov(xk,qk)

mk = measurement vector (five measured helix parameters)

vk = measurement noise (disturbance in measuring mk)

Vk = cov(vk)

Gk = V −1
k = weightmatrix of particle k

The measurement equation is a map h of the true vertex position xt and true

momentum qt
k of track k to the measured parameters mk distorted by the noise vk:

mk = hk(x
t, qt

k) + vk (4.3)

1A vertex estimate can come from various sources. One good start could be the beam spot. In
ZEUS, the kfvertex routine uses overlap points of track pairs, in the xy plane, as seeds for primary
vertex finding.

2By random track it is understood here any track of a given event that passed certain qual-
ity cuts depending on the transverse momentum, number of MVD hits or CTD superlayers, η
distribution, etc.
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Kalman filtering can be applied only to linear measurement equations. Therefore,

hk(x
t, qt) is approximated by a first order Taylor expansion:

hk(x
t, qt

k) ≈ hk(x
(0), q

(0)
k ) + Ak(x

t − x
(0)
k ) + Bk(q

t
k − q

(0)
k ) = c

(0)
k + Akx

t + Bkq
t
k (4.4)

with

Ak = ∂hk

∂xt

∣

∣

(x
(0)
k ,q

(0)
k )

, Bk = ∂hk

∂qt
k

∣

∣
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(0)
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(0)
k )

c
(0)
k = hk(x

(0), q
(0)
k ) − Akx

(0)
k − Bkq

(0)
k

(4.5)

The vertex reconstruction proceeds as follows: choose a starting value x0 for the

vertex position and a covariance matrix. This can depend on information that one

has before hand. A blind choice would be the origin of the coordinate system and a

3 × 3 covariance matrix with infinite quantities on the diagonal. A more fortunate

choice is the beam spot and its standard deviations. Next, recompute an estimate

x by adding the weighted information of track 1 3. This is done by the so called χ2

minimizing method.

χ2
KF (x, q) = (x − x0)

T (C0)
−1 (x − x0) +

+ (m1 − c
(0)
1 − A1x − B1q)

T G1(m1 − c
(0)
1 − A1x − B1q)

(4.6)

The position x and the momentum q that minimize this χ2
KF are the first guesses

for x1 and q1 at the new vertex. One solves ∂χ2
KF /∂x = 0 and ∂χ2

KF /∂q = 0 and

finds:

x1 = C1

[

(C0)
−1x0 + AT

1 GB
k (m1 − c

(0)
1 )
]

q1 = W1B
T
1 G1(m1 − c

(0)
1 − A1x1)

C1 =
(

(C0)
−1 + AT

1 GB
1 A1

)−1

D1 = W1 + Q1B
T
1 G1A1C1A

T
1 G1B1W1

E1 = −C1A
T
1 G1B1W1

(4.7)

3Note that the point x(0) around which we Taylor expand need not be the same as the vertex
start value x0. One choice is the point on the track closest to x0.
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with

W1 = (BT
1 G1B1)

−1 , GB
1 = G1 − G1B1W1B

T
1 G1

cov(x1) = C1 , cov(q1) = D1 , cov(x1, q1) = E1

D1 is called momentum covariance and E1 cross-covariance.

The new (updated) vertex is located at x1 with the covariance C1. We can now add

track 2 and so on. In this way, an iterative procedure adding track k will lead to

the same answers as in Eq. (4.7) but with the lower index 1 replaced by k (and 0

by k − 1). Smoothing track k to the new vertex changes its momentum:

qs
k = WkB

T
k Gk(mk − c

(0)
k − Akxk) (4.8)

where s upper index stands for smoothed. This step is essential for accurately

determining the invariant mass at the vertex. After smoothing all tracks to the final

vertex position, the covariance matrix Q for the correlation between the smoothed

momenta is recovered. For instance, the cross-momentum correlation covariance

matrix between tracks i and j after smoothing has the form:

Qi,j = cov(qs
i , q

s
k) = WiB

T
i GiAiCfA

T
j GjBjWj (4.9)

with Cf being the final vertex covariance matrix. Note that Qi,j = QT
i,j .

So far, the formalism is valid for any track parametrization. In ZEUS, charged

tracks parametrized as in Eq. 4.1 are vertexed in this way.

4.3 Expanding the tracking package

The trackfit routine can only reconstruct tracks that have crossed the detector.

The kfvertex routine has been modified for this analysis such that new tracks can

be constructed, associated to particles which decayed before reaching the MVD.

A pseudotrack is defined as a composite object made from a vertex and several

charged daughter tracks emerging from that vertex. The pseudotrack represents

the mother particle which decayed at that vertex. A careful treatment of the errors

involved leads to a completely determined object parametrized by a 5-vector in the

helix parametrization and its covariance matrix. Furthermore, one could employ
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the pseudotrack (a real particle) to search for new decay vertices at which the

reconstructed mother particle had participated as a daughter/decay product.

The method will become more transparent if a specific parametrization is chosen.

The main focus of this thesis is the neutral pseudotrack (neutral mother particle

decaying in two charged tracks). The treatment of charged pseudotracks is similar

[29](to be published).

4.3.1 Neutral Pseudotracks

As the curvature is not defined for neutral tracks moving in straight lines in a

magnetic field, the parametrization from Eq. 4.1 presents a problem. Therefore,

the following parameters are chosen for the measurement vector m :

m(1) = p (0, +∞) absolute value of the total momentum

m(2) = φ (−π, π) azimuth angle at DCA

m(3) = θ (0, π) polar angle

m(4) = dca (−∞, +∞) distance of closest approach

m(5) = z (−∞, +∞) z at DCA

The geometrical momentum vector ~q is defined as follows:

q(1) = p (0, +∞) absolute value of the total momentum

q(2) = φ (−π, π) azimuth angle at DCA

q(3) = θ (0, π) polar angle

The vector ~p = (px, py, pz) is called the kinematical momentum of a particle.

Although the geometry of the neutral track does not depend on its momentum,

its errors do. This happens essentially because the errors of the daughter track

momenta translate into an error on the vertex position which will feed into the

error of the pseudotrack. The calculation of the pseudotrack parameters is done in

three steps:

(a) Determine the kinematical momentum of the mother from the fitted geometrical

momenta of the daughters at the vertex

(b) Calculate the geometrical momentum of the mother particle from its kinemati-

cal momentum. This is necessary as it is part of the neutral track parametriza-

tion.
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(c) Calculate the measurement parameters of the mother particle at the DCA as

well as its covariance matrix.

In step (a), for each of the two charged daughters, one has:

px = pt cos(φ) , py = pt sin(φ) , pz = pt cot(θ) (4.10)

So a mapping ~pa,b = f(~qa,b) exists. The Jacobian propagation matrix is defined as

Wa,b = (∂f/∂qa,b)|q(0)
a,b

. With ~pa and ~pb calculated, the pseudotrack momentum is

simply:

~ptot = ~pa + ~pb (4.11)

In step (b) the geometrical momentum of the mother particle is computed, starting

from ~ptot. Using ~ptot = (px, py, pz), the mapping ~qtot = gn(ptot) takes the form:

p =
√

p2
x + p2

y + p2
z , φ =

(

px√
p2

x+p2
y

)

,

θ = arccos

(

px√
p2

x+p2
y+p2

z

) (4.12)

The Jacobian matrix W−
n for the error propagation and its inverse are defined as:

W−
n =

∂ ~gn

∂~p

∣

∣

∣

∣

p
(0)
tot

= (Wn)−1 (4.13)

Finally, all entries of the neutral track "measurement" vector mn are known. Fig.

4.2 illustrates how parameters measured at the decay vertex P0 are translated into a

measurement vector given w.r.t. the point of closest approach. Using the notation

of Fig. 4.2, it holds that:

mn = hn(x0, y0, z0; p0, φ0, θ0)

p = p0 , φ = φ0 , θ = θ0 , dca = r⊥ sin(ξ)

z = z0 − r⊥ cos(ξ) 1
tan(θ)

(4.14)

where:

r⊥ =
√

x2
0 + y2

0 , φ′
0 = arccos

(

x0

r⊥

)

, ξ = φ0 − φ′
0 (4.15)

The covariance matrix of the pseudotrack has to be calculated by a proper error

propagation. Let us write down again the names and the physical meaning of each

of the matrices involved:
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Figure 4.2. Pseudotrack projection on the xy plane. Parameters measured at decay
vertex P0 are expressed in Eq. 4.14, 4.15 in terms of parameters expressed at DCA.

Cf = cov(xf ), covariance matrix of the smoothed vertex position

Ei = cov(xf , q
s
i ), for daughter tracks

Qi,j = cov(qs
i , q

s
j ), correlation between tracks , i 6= j

Qi,i = cov(qs
i , q

s
i ) = Di, momentum covariance for each daughter track

A, B first order Taylor expansion matrices for the pseudotrack w.r.t. the point

of closest approach, as given in Eq. 4.5.

We define:

E =
∑

i EiW
T
i

Q =
∑

i,j WiQi,jW
T
j

Then, the covariance matrix of the mother particle is:

Cpseudo = ACfA
T + AE(W−1)T BT + BW−1ET AT + BW−1Q(W−1)T BT (4.16)

The 5 × 5 covariance matrix Cpseudo is symmetric and positive definite.
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4.3.2 The decay length significance

A neutral particle created at the (primary) vertex ~v1 decays later at the secondary

vertex ~v2 into two oppositely charged daughter particles, as pictured in Fig. 4.3.

The decay length vector is defined as:

~L = ~v2 − ~v1 (4.17)

The decay length is then L = |~L|. Let ~1L be a unit vector in the direction of
~L: | ~1L| = 1. The error of the decay length is then computed by projecting the

covariance matrices C1 and C2 of ~v1 and ~v2 respectively along the unit vector ~1L:

∆L =

√

( ~1L)T · C1 · ~1L + ( ~1L)T · C2 · ~1L (4.18)

Due to measurement errors, the momentum of the mother particle at the decay

vertex, ~pM = ~p1 + ~p2 does not always point in the same direction as the decay

length vector ~L. In order to separate poorly reconstructed decays in which the

mother particle seems to be coming back towards the origin vertex ~v1 , equivalent

to ~L · ~pM < 0, from the more “physical” decays in which the mother particle moves

away from ~v1, with ~L · ~pM > 0, the decay length is signed:

L → Sign(~L · ~pM) · L (4.19)

The decay length significance is the ratio of the signed decay length and its error:

σD.L. = Sign(~L · ~pM)
L

∆L
(4.20)

4.3.3 Impact parameter significance

The impact parameter d of the pseudotrack w.r.t. the primary vertex is a useful tool

which discriminates between particles created at the interaction vertex or elsewhere.

It is defined as the distance of closest approach of the pseudotrack momentum line

to the primary vertex v1, as shown in Fig. 4.3. The following holds:

cos γ =
~L · ~pM

|L| |pM | (4.21)

with γ the angle opposing the impact parameter. Then, d is computed as:
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d2 = L2 − (~L · ~pM)2

|pM |2 (4.22)

where the relations sin γ = d/L and sin2 γ + cos2 γ = 1 were used.

If ~1d is a unit vector pointing in the same direction as the impact parameter,

then the impact parameter error is : ∆d =
√

(~1d)T · C1 · ~1d + (~1d)T · C2 · ~1d with

C1, C2 covariance matrices of the primary and secondary vertices. The significance

of the impact parameter is simply: σd = d/∆d and is a positive quantity.

4.3.4 Lifetime

The lifetime of a particle that has the momentum ~p , velocity β = v/c and decay

length ~L in the laboratory frame is:

cτ =
L

βγ
= m

L

|p| = m
Lxy

PT

(4.23)

where γ = 1/
√

1 + β2 , PT is the transverse momentum and Lxy the projection of

the decay length vector ~L on the xy plane. The last equality exploits the fact that

the ZEUS detector has a better resolution in the transverse plane than along the

beam axis.
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Figure 4.3. A neutral particle moves away from vertex v1 and decays later on at vertex
v2. The particle momentum ~pM at v2, the decay length vector ~L and the impact parameter
d of the particle w.r.t. to (creation) vertex v1 are shown.



Chapter 5

Event selection in DIS

In this chapter, the ZEUS data acquisition flow is explained. The signature of a DIS

event is described. Various methods employed to reconstruct the event kinematics

are compared. The DIS event selection cuts and data selection utilizing the three

level ZEUS trigger chain are presented.

5.1 Data acquisition flow

The ZEUS data acquisition uses a three level trigger system in order to reduce

the huge volumes of data streaming from the detector. The HERA bunch crossing

rate is high: every 96 ns, a proton bunch collides with an electron bunch possibly

giving an e−p interaction. On average, one in one hundred bunch crossings gives

a detectable event. Therefore a fast readout is essential. The raw data coming

from ∼ 250.000 channels of the detector is approx. 0.5 Mb in size and, given that

final event data is written out at speeds close to 1 Mb/sec, the total amount of

data needs to be drastically reduced in early stages of data acquisition. Treated

as a black box, the trigger chain effectively reduces the event rate from a 100 kHz

input down to 5 Hz such that end storage facility can handle the data flow. The

challenge is to identify the 5 most interesting events from hundreds of thousands of

detectable collisions every second. At each level in the trigger chain, data volume is

reduced, giving the system time to compute more characteristics of each accepted

event at the next level of the trigger. Each subsequent level can therefore perform

more sophisticated filtering of the data. The schematic description of the data flow

and event rate reduction is given in Fig. 5.1.
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Figure 5.1. Data acquisition flow at ZEUS. The left vertical scale depicts the event rate
reduction at each trigger level.
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5.1.1 First level trigger

The first level trigger (FLT) is a hardware based trigger employing programmable

logic to accept or reject events. It consists of component FLT’s, mostly local to

each component, and the global first level trigger (GFLT). At first level trigger, all

data are stored by the detector components locally, in hardware buffers. Because

the trigger cannot take decisions within the time between two bunch crossings, the

data are moved down a pipeline for a maximum delay of about 5 µs to allow a trigger

decision to be taken. The individual component decisions use only a subset of the

component’s entire data and are taken within 1 − 2.5 µs. The component trigger

decisions are then fed to the GFLT algorithm which combines the local decisions

to make the global first level trigger decision. The output of the this global trigger

arrives with a latency of 4.4 µs.

The most important components are the CAL and the CTD. Typical information

used by GFLT is the vertex position of the event, total transverse energy and energy

sums in sections of the calorimeter. Events that have a signal in SRTD for which

the timing is inconsistent with particles arriving from the event vertex are rejected

as beam gas events. A NC DIS event is identified at the FLT level by tagging the

scattered electron. The FLT reduces the event rate from 100 kHz to below 1 kHz

by selecting events with large energy deposits in the calorimeter and good tracks

from the CTD FLT.

For the current analysis, only those events are kept which, at the FLT level,

passed at least one of the following criteria:

• an isolated electron identification (isolated EMC clusters in the calorimeter)

with a minimum energy of 3.9GeV in at least one RCAL EMC cluster. (Near

the beam pipe, this threshold is raised to 5GeV.)

• an isolated electron identification (isolated EMC clusters in the calorimeter),

with a minimum energy of 2GeV in at least one RCAL EMC cluster AND a

track pointing to it.

• the total energy in the CAL EMC cells is larger than 20GeV.

• for higher Q2, the electron scatters at larger angles, crossing the BCAL. To

keep those events, a cluster with minimum BCAL energy of 4.7GeV AND a

reconstructed track pointing to this cluster are required.
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For all the events, additional cuts on the timing information from C5, veto wall and

SRTD were required such that background events like beam gas interaction and

cosmics are rejected.

5.1.2 Second level trigger

All events accepted by GFLT are fully digitized and then copied to local component

second level trigger (SLT) processors. The component SLT’s use the entire data from

each component in order to send processed information to the global SLT (GSLT).

The algorithms are more complex than the GFLT ones: objects like track momenta,

event vertex and calorimeter clusters are reconstructed.

The ZEUS Global Tracking Trigger (GTT) Barrel Algorithm integrates track in-

formation from the CTD and MVD to obtain a global picture of the track topology

in the barrel region (-1.5 < η < 1.5) of the ZEUS detector at the SLT stage. Algo-

rithm processing is performed on a farm of Linux PCs and, to avoid unacceptable

dead-time in the ZEUS readout system, must be completed within the strict require-

ments of the ZEUS trigger system. The GTT Barrel Algorithm greatly improves

the vertex resolution and the track finding efficiency of the ZEUS SLT.

At the SLT level, events are vetoed using timing obtained from the FCAL,

RCAL or the upper and lower halves of the BCAL. Timings are calibrated such

that a t = 0 corresponds to collisions at the nominal interaction point. If the arrival

time reported by RCAL, in absolute value, is larger than 8 ns or the time difference

between FCAL and RCAL arrival times is larger than 8 ns, the event is vetoed

as proton beam gas event. If the lower BCAL half reports a time delay longer

than 10 ns w.r.t. the upper BCAL half, the event is vetoed as a cosmic event. A

cut on
∑n

cells,i E
cells
i − P cells

z,i < 75GeV is also required in order to further remove

background and reduce rate.

The GSLT takes its decision after ≈6 ms. The SLT reduces the event rate from

1 kHz to a typical 30-100 Hz.

For each event that passed the GSLT, the data of the event is sent to the

event builder (EVB) where it is combined into a single record of ADAMO database

tables[30]. This is also the data structure used in subsequent offline analysis . It is

further distributed to the TLT processor nodes.
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5.1.3 Third level trigger

The third level trigger (TLT) algorithms run on a farm of processors. Each work-

station individually analyzes each single event with a custom simplified version of

the offline reconstruction software and uses the full event information to calculate

the event kinematics. Detailed tracking and jet finding algorithms are performed.

Events that pass specific trigger criteria get a tag associated with these criteria

added. These tags are known as the TLT flags and the pattern of these flags is used

to select specific types of events. Typically, about 5 events pass the TLT criteria

each second. The TLT accepted events are sent further to the event repository

through a dedicated connection (FLINK) and to the online cluster for monitoring.

During data taking, the ZEUS crew on shift monitors the trigger rates carefully for

an optimal quality of data being recorded.

All data used in this analysis passed the TLT criteria, described by the following

bit names:

• TLT_HFL02: a filter for charm mesons in DIS, it requires a DIS scattered

electron OR a HFM trigger bit to be set. Essentially, the HFM trigger bits

filter events with at least one loose charm meson candidate:

– HFM01 tags events in which the decay D∗ → K− + π+ + π+
s has been

loosely reconstructed (1.65 < m(K, π) < 2.1GeV ; PT (D∗) > 1.35GeV

; PT (K, π) > .035GeV; PT (πs) > 0.1GeV)

– HMF02 and HFM03 are similar to HFM01 but tag the decays D∗ →
K− + π+ + π− + π+ + π+

s and D∗ → K0 + π+ + π− + π+
s respectively

– HFM04 tags the decay D0 → K− + π+ . The D0 candidate is re-

constructed in the mass window [1.6 , 2.2]GeV with the PT (D0) >

2.8GeVand PT (K, π) > 0.7GeV

– HFM05 through HFM17 reconstruct other charm meson decay channels

such as D0 → K + 3π , D0 → K0 + 2π , D+and Ds decays.

• TLT_DIS03: a medium Q2 trigger, it requires an electron of at least 4GeV,

found by either SINISTRA or EM packages [31, 32]. For electrons scattered

into the RCAL, a minimal radius around the beampipe of at least 35 cm is

also required. Furthermore, 30GeV < Etotal − pZ is necessary as well as

a combination of FLT and SLT bits (FLT 28,30,40,41,43,44,46,47 and SLT

1,2,3,4,5,6,7,8) to be on.
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• TLT_SPP02: an inclusive DIS trigger. It requires 30 < Etotal − pZ <

100GeV, an electron of at least 4GeV and excludes a region of 12 × 12 cm

around the rear beampipe for the impact position of the electron (box cut).

5.1.4 Offline reconstruction

Typically, within a couple of days after acquisition, the data are reconstructed offline

using not only the full event information but also calibration information regarding

the status of the detector, such as calorimeter noise, MVD alignment, etc. so that

corrections to event variables are performed for a more accurate measurement. The

more CPU intensive parts of the reconstruction are implemented here rather than

at TLT level. Samples of similar events are selected by associating each event with

a specific code called a DST bit.

DST bits 9,10 and 11 (tagging good NC events or events with a well recon-

structed electron) were also required for all selected events. Bit 9 requires a scat-

tered electron with an energy of at least 4GeV found by at least 4 of the electron

finder packages, bit 10 filters events with a well reconstructed primary vertex and

bit 11 requires E − PZ > 30GeV.

5.2 Data from Hera II

After a long shutdown, HERA resumed operation in 2001. A summary of the

luminosity recorded by ZEUS since 2002 until present day is given in Fig. 5.2. The

luminosity values corresponding to different data taking periods are also given in

Table 5.1. In the years 2002 and 2003 positrons were used. During the second half

of 2004 and the entire 2005, electrons were used. This analysis uses a data sample of

127.35 pb−1, corresponding to 129714544 e−p collisions recorded by ZEUS in 2005.

In this thesis, the incoming/scattered lepton will be referred to as the electron. The

following sections look at the selection criteria for obtaining a clean NC DIS sample.

The quality of the selected events is scrutinized. All the runs have microvertex

detector information available.

5.3 Event reconstruction

The final state of a DIS event consists of the scattered electron and the hadronic

system. The hadronic system refers to all event attributes not related to the scat-
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Figure 5.2. Integrated luminosity gated by ZEUS since 2002 until presently. Different
positron/electron periods are plotted separately. The data set used in this analysis is
shown as “04/05 e− “.

tered electron: the jet, which is the result of the struck quark hadronizing, and the

proton remnant. An event is determined in terms of kinematics by any two of the

variables Q2, x and y, as explained in Chap. 2. Different methods are employed

in order to compute the event kinematics: one can use only information from the

hadronic system, scattered electron or a combination of the two.

Period Beams Recorded luminosity

2007 (MER) e+p 7.77 pb−1

2007 (LER) e+p 13.18 pb−1

2006/2007 e+p 145.90 pb−1

2006 e−p 61.23 pb−1

2004/2005 e−p 152.26 pb−1

2004 e+p 43.74 pb−1

2003 e+p 2.87 pb−1

2002/2003 e+p 1.78 pb−1

Table 5.1. A summary of different data taking periods and corresponding luminosities,
as recorded by ZEUS. The top two entries (LER, MER = low and respectively medium
energy runs) refer to periods for which the center of mass energy was altered. This analysis
uses a sub-sample of 127 pb−1 of the 2004/2005 data taking period.
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5.3.1 Jacquet-Blondel method

The Jacquet-Blondel method uses only hadronic information to reconstruct the

event kinematics. First, the following are defined:

δh =
N
∑

i

(Ei − pz,i) (5.1)

p2
T,h =

(

N
∑

i

px,i

)2

+

(

N
∑

i

py,i

)2

(5.2)

where i runs over all calorimeter clusters not associated with the scattered electron.

The polar angle γh of the struck quark, at leading order, is given by:

cos γh =
p2

T,h − δ2
h

p2
T,h + δ2

h

(5.3)

The kinematic variables of the event are reconstructed as:

yJB =
δh

2Ee beam

(5.4)

Q2
JB =

p2
T,h

1 − yJB

(5.5)

where Ee beam is the nominal beam energy of the incoming electron. The hadronic x

is obtained from Q2 = sxy. Because a large fraction of the hadronic system escapes

undetected as it goes down the beampipe, the measured p2
T,h can be distorted. For

this reason, the resolution of this method is somewhat poor, especially for low Q2

and moderate x. The Jacquet-Blondel method is mainly used in charge current

interactions where there is no information available from the final state lepton:

neutrino’s cross the ZEUS detector completely undetected.

5.3.2 Electron method

This method uses solely the measurement of the scattered electron. The kinematic

variables are given by the following equations:

ye = 1 − Ee

2Ee beam

(1 − cos θe) (5.6)
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Q2
e = 2EeEe beam (1 + cos θe) (5.7)

where θe and Ee are the angle and the energy of the scattered electron respectively.

Both reconstructed variables depend on the accurate reconstruction of Ee and θe.

Although the electron angle can be measured well with the help of the SRTD at low

angles and by tracking at high angles, accurately determining the electron energy is

problematic due to some amount of dead material in front of the calorimeter at low

angles. At moderate x, x ∈ [10−4, 10−2], this method has a poor resolution. A more

detailed description of different reconstruction methods and their discriminative

power for different regions of the phase-space can be found in previous ZEUS theses

[33, 34].

5.3.3 Double angle method

This method relies on the angles of both the hadronic system and the scattered

electron [35].

yDA =
sin θe(1 − cos γh)

sin γh + sin θe − sin(γh − θe)
(5.8)

Q2
DA = 4E2

e−beam

sin γh(1 + cos θe)

sin γh + sin θe − sin(γh − θe)
(5.9)

Neither yDA nor Q2
DA depend on any measured energies. Since angles are in general

more precisely measured than energies with the ZEUS detector, this method leads to

accurate results in larger regions of the phase-space. These regions are characterized

by substantial hadronic activity at large angles and a well measured electron track.

These coincide with the region where charm can be measured well. The double

angle method will therefore allow for an optimum reconstruction of the kinematic

variables and so will be used in this thesis for the determination of the kinematics.

5.4 DIS selection

Present ZEUS analyses use a complex library of reconstruction software which trans-

lates the raw timed hits in the detector into physical objects, as explained in detail

in previous chapters. Each event that has passed the trigger is reconstructed using

programs from this library. The reconstructed events containing tracks, covariance
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matrices and calorimeter energy deposits are written to the output. ROOT[36] is

an object oriented data analysis framework which serves as an interface between

the data and the particle reconstruction algorithms. All data used in this thesis

have been processed within the Heavy Flavor analysis group at ZEUS in the form

of ROOT files. This large data sample represents the raw data. A preselection is

made from these events. First, events passing the criteria for deep inelastic scatter-

ing are selected. This is done using the following criteria:

DIS selection:

• z position of the primary vertex: −50 cm < z < 50 cm . The z position

of the vertex is restricted to this range to ensure a high (and better under-

stood) acceptance for the calorimeter as well as for the central trackers. Also,

events for which the interaction point could not be reconstructed properly are

rejected.

• Energy distribution in the calorimeter: 38 < δ < 65GeV, with δ = E−pz and

E being the event total energy. For a perfectly contained and measured DIS

event, it follows from energy and momentum conservation that δ = 2Ee beam =

55GeV. Particles escaping down the beam-pipe in the forward direction have

energies almost equal to their momenta in the z direction and therefore their

contribution to δ is negligible. The same is not true in photo-production: the

electron escapes the detector through the rear beam-pipe and therefore Ee and

pe
z do not cancel, effectively lowering the measured δ. This cut is therefore

effective at removing photo-production background events while keeping DIS

events.

• Scattered electron : at least one candidate with probability larger than 0.9

according to the SINISTRA electron finder [31] and energy in the calorimeter

of at least 10GeV is required. This electron is most likely to be the scattered

electron.

• ye < 0.95. This cut will remove fake candidates (such as neutral pions) mis-

taken for scattered electrons by the ZEUS reconstruction software.

• yJB > 0.02. This cut is a convenience cut as in charm analysis well recon-

structed tracks are required and thus reconstructable charm events will always

pass this criterion. This cut is stronger than the cut used in inclusive DIS
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Figure 5.3. This DIS event with Q2 ≃ 43GeV2 was recorded in January 2005. The
detector is seen in r φ view on the left and zθ view on the right. The interaction point (1)
and the proton remnant (2) are marked on the right figure. Also an electron of 21GeV

is clearly seen in the calorimeter (3)

analyses. It removes events where the full hadronic system is contained near

the beampipe in the proton direction.

• A restriction is made on the kinematic domain: 1 < Q2
DA < 1000GeV2 and

0.03 < yDA < 0.7. For this, double angle variables are used.

This DIS selection is a standard selection for any ZEUS NC DIS analysis and

therefore very well understood. In Fig. 5.3 and 5.4 two typical DIS events of

Q2 ≃ 43GeV and Q2 ∼ 336GeV are presented: the electron is found in the RCAL

and the proton remnant flies in the forward direction, leaving energy deposits in the

FCAL. In both figures, the calorimeter energy deposits associated with the scattered

electron (3) and the proton remnant (2) are clearly visible. The interaction point

is also explicitly labeled (1). In Fig. 5.4, the region around the interaction point

has been enlarged (left figure). The beampipe and the first cylinder of barrel MVD

ladders are visible. The primary interaction point (1) is pointed out, as well as a
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Figure 5.4. A DIS event with Q2 ≃ 336GeV2 recorded in October 2005. On the right
plot: the scattered electron (3) was found in RCAL with an energy of 19.8GeV. The
interaction point (1) and proton remnant (2) are also shown. On the left plot: the region
around the interaction point has been enlarged. The beampipe and the first four ladders
of the barrel MVD are visible. The primary interaction point can be seen (1) as well as
a secondary vertex consisting of two tracks (4).

two track secondary vertex (4).

For a subset of 240k events of raw data, the distributions in E − pz, Z vertex

position, energy of the scattered electron energy, the angle θ of the scattered elec-

tron, log10(Q
2) and log10(x) of the event are shown in Fig. 5.5. This is shown both

excluding and including the DIS selection.

When searching for charm, it is necessary to identify the secondary vertices as-

sociated with the decay of the charm particle. For these vertices, high resolution is

achieved if the tracks to be vertexed are well defined. This implies that a certain

selection of “good” tracks should be performed for each event. Distributions of

track characteristics such as momentum, number of MVD hits, η and number of

crossed superlayers in the CTD are presented in Fig. 5.6, after applying the DIS

selection. The η distribution is asymmetric, with more reconstructed tracks in the

forward direction, due to the large proton boost along the positive z axis. Well re-
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Figure 5.5. Data plots: distributions of E − PZ , Z vertex position, the energy of the
scattered electron as reported by the CAL, the angle θ of the scattered electron, log10(Q

2)
and log10(x). The open squares represent distributions before the DIS selection is applied,
the filled histograms are the distributions after DIS selection. The figures correspond to
240k events recorded during 4 runs in 2005.
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Figure 5.6. Data plots. For all tracks, the following distributions are shown (from
top left to bottom right): the number of hits in barrel MVD, MVD hits in the wheels,
transverse momentum, pseudorapidity η and the number of crossed superlayers in the
CTD. The distributions represent the DIS selected data.
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constructed CTD tracks, which crossed 5 superlayers and whose DCA z coordinates

were reconstructed within 10 cm around the origin of the coordinate system, are

used to extract the barrel MVD efficiency shown in first plot of Fig. 5.6. About

∼ 90% of all good tracks crossing the BMVD are associated hits in the MVD, as

it can be inferred from Fig. 5.6. Both the pattern recognition software efficiency

and the dead MVD channels influence this value. Also, there are tracks with more

than 6 barrel hits (3 rφ + 3 rz hits, in 3 different cylinders), due to small overlaps

of the edges of some neighboring ladders (see Fig. 3.14). In very rare cases, the

maximum of 24 hits has been observed. For the forward MVD, the selected tracks

do not always pass through the detector leading to an apparent loss in efficiency in

Fig. 5.6. In Fig. 5.8 it is shown that tracks crossing at least 4 superlayers in the

CTD have a corresponding polar angle larger than θ = 22◦. For θ values around

19◦, tracks will cross the first wheel of the FMVD and 2-3 CTD superlayers. This is

valid for straight lines; low momentum helices can collect more hits in the FMVD

and still cross few CTD superlayers. This analysis uses tracks within the pseudo-

rapidity window −1.6 < η(track) < 1.6, corresponding to a polar angle range of

25.4◦ < θ < 154◦. The large majority of the selected tracks will therefore leave at

least 2 hits in the BMVD, ensuring a precise reconstruction of their position and

momentum.

5.5 The Monte Carlo simulation

Charm quarks are generated and fragmented into a D meson. Charm decay was

modelled through eight different decay modes. Transverse momentum cuts for the

charm mesons were introduced in order to generate Monte Carlo events efficiently

in the kinematic region required by the measurement, as summarized in Table 5.2.

For this analysis, the Monte Carlo programs HERWIG[37, 38] and PYTHIA[39],

which implement leading order matrix elements followed by parton showers and

hadronization, were used to model the final state. Direct and resolved events were

generated separately and in proportion to the cross-sections. As input for the

proton and photon parton distribution functions1, the CTEQ5L[40] and GRV-G

LO[41] were used.

After generating the final state partons using the Monte Carlo generators, events

are input into the detector simulation. The detector simulation is performed by the

1The photon PDF’s are used for the generation of resolved events.
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Decay modes PT cuts

D∗+ → D0 π+
s → K− π+ π+

s 1.25GeV

D∗+ → D0 π+
s → K0

s π+ π− π+
s 1.35GeV

D∗+ → D0 π+
s → K− π+ π+ π− π+

s 2.3GeV

D0 → K− π+ 2.6GeV

D+
S → K− K+ π+ 1.7GeV

D+ → K− π+ π+ 2.8GeV

D+ → K− K+ π+ 1.7GeV

Λc → p K− π+ 2.8GeV

Table 5.2. Modelled decay channels in charm Monte Carlo and their PT cuts at the
generating level.

MOZART program which is based on GEANT 3.13 package[42]. The MOZART

program simulates the interaction between particles passing through different com-

ponents and materials of the detector and outputs the simulated detector response.

Trigger simulation is also included. The MC events are reconstructed in precisely

the same way as the data and stored into similar ROOT ntuples. These ROOT

files also contain information on the generated physics event: the truth variables.

The simulated sample used in this analysis has an equivalent total luminosity of

295pb−1.

In Fig. 5.7, comparisons are made between data and simulation for the dis-

tributions of DIS variables E − PZ , the primary vertex Z position, the scattered

electron energy and angle, Q2 of the event and Bjorken x. The same reconstruction

software was used both in data and in Monte Carlo. The histograms were area

normalized2. The shape of all distributions is well described by the simulation. A

shift of few GeV to higher values is seen in the energy of the scattered electron due

to imperfections in the dead material description. This also reflects in the E − PZ

distribution.

2Luminosity normalization cannot be applied when comparing distributions of events because
light flavor events were not included in the simulation.
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Figure 5.7. Distributions of E−PZ , the primary vertex Z position, the energy and angle
of scattered electron, Q2 of the event and Bjorken x are compared in data and simulated
files. The histograms are area normalized. The shape is well described overall. A shift of
∼ 2GeV in the scattered electron energy is seen, producing a similar effect on E − PZ .



7
0

E
v

e
n

t
S

e
le

c
tio

n
in

D
IS

z

y

=160
 o

θ

 o
θ = 7

θ
 o

=19

θ=22
 o

RTD

FTD

p  +e /e -

CTD

FMVDBMVD

STTSolenoid

1.0 m

Figure 5.8. The ZEUS detector and its tracking detectors. A polar angle of ∼ 19 ◦ or smaller ensures one or more hits in the FMVD.
A polar angle bigger than 22 ◦ corresponds to 4 or more superlayers in the CTD.



Chapter 6

Charm finding

This chapter is organized as follows. First, the reconstruction of the D0 charm

meson is described. A total sample of candidates is found. Second, the total

sample is further divided into two sub-samples: the tagged sample, consisting of D0

mesons originating from a D∗+ decay, and the untagged sample, of D0’s originating

elsewhere. Based on the tagged sample, a method is developed for removing a fake

reflected component of the signal in the untagged sample. Third, the cleaned signal

is optimized, based on parameters computed at the D0 decay vertex. The signal is

studied as a function of the virtuality Q2 of the event, the transverse momentum

and pseudo-rapidity of the charm meson as well as Bjorken x. Last, a comparison

between data and simulation is made.

6.1 Charm at Zeus

In Zeus, the charm content of the proton can be probed in various ways. Several

techniques suited to investigating charm are explained in this chapter.

Free quarks or gluons cannot exist individually, due to color confinement. The

process of formation of hadrons out of free quarks or gluons is called hadronization.

The narrow cone of particles created by the hadronization of a single parton is

called jet. Most charm quarks hadronize into charm mesons. The charmed vector

mesons (D∗+, D∗0 and D∗+
s and their antiparticles) always decay to charmed pseudo-

scalars (D+, D0 and D+
s and their antiparticles). Those decays are either strong or

electromagnetic and from the experimentalist’s point of view the vector mesons have

zero life-time: a charmed vector meson created at the interaction point will decay to

a pseudo-scalar at the interaction point. The pseudo-scalar will continue its flight
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for a relatively short time before decaying. D0 is the shortest lived pseudo-scalar

charmed meson: it has a lifetime of (410±1.5)×10−15 seconds, as listed by Particle

Data Group in 2006 [43], or , in experimental units, a “cτ” of 123 µm. The slightly

more massive D+ lives almost 3 times longer: cτ = 311 µm. The ZEUS detector is

powerful enough to resolve secondary decay vertices associated with charmed meson

decays.

6.2 D0 reconstruction

6.2.1 The algorithm

D0 mesons will be reconstructed via the decay channel D0 → K− + π+ which

accounts for 3.8 % of all D0 decays. The daughter particles, kaons and pions, are

both electrically charged and long lived. These will generate hits in the tracking

detectors and their path can therefore be reconstructed.

D0 reconstruction is performed as follows: for each event a list of high quality

tracks is made. Criteria for selecting good tracks are:

• the number of hits in the MVD (at least 2 hits required)

• the number of crossed superlayers in the CTD (minimum of 3 superlayers

required)

• a minimum transverse momentum of 0.2GeV.

These requirements ensure that the selected tracks are well defined and are con-

strained to the central region of the ZEUS detector where the reconstruction ef-

ficiency is higher and acceptance well understood. The criteria also remove ghost

tracks found in the pattern recognition. Ghost solutions can be created by com-

bining good segments from different tracks. They almost never link well with the

MVD information.

For each event, all two-track combinations are made with tracks of opposite

charge. No absolute value for the charge of the kaon and pion candidates is required

therefore allowing the reconstruction of D̄0 as well. The best secondary vertex

formed by the track pair is calculated. The track momenta are recomputed at

the secondary vertex using the smoothing procedure described in Chap. 4. The

invariant D0 mass is calculated at the vertex. Candidates with a mass m(D0) ∈
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[1, 2.5] GeV are kept. In order to reduce the background, further cleaning cuts are

introduced such as minimum transverse momenta for both the K and π as well as

for the reconstructed D0. Candidates are reconstructed only in the pseudo-rapidity

region of η ∈ [−1.6, 1.6]. The reconstructed D0’s could be either directly produced

in the hadronization process of the charm quark or could come from a charmed

vector meson decay, such as D∗0 → D0 + γ and D∗+ → D0 + π+.

6.2.2 Signal and background.

The entire 2005 e−p dataset was used to produce the D0 invariant mass plot shown

in Fig. 6.1. The corresponding kinematic range is 5 < Q2 < 1000GeV2, 3 <

PT (D0) < 20GeV, |η(D0)| < 1.6. The signal has been enhanced by demanding

that |η(K, π)| < 1.6 and PT (K, π) > 0.8GeV. The histogram is fitted with a

modified Gaussian signal superimposed on a modified exponential background:

F(m) = (am + b) exp [c(m − 1.73)] + A exp



−
( |m − m0|

2σ

)

“

1+ 1
1+|m−m0|/(2σ)

”





(6.1)

The modified Gaussian was chosen based on the fact that the signal does not have a

fixed width: its resolution depends slightly on the K and π daughter track momenta.

The background function, an exponential with varying amplitude, fitted the easiest

to the the regions outside the signal peak.1

A clear signal can be seen at the fitted value of m0 = 1.864GeV, on top of a

large but smooth background2. There are 7440±233 signal events extracted by the

fit. The statistical error has been computed as ∆N(D0) =
√

N + B where N is

the number of candidates and B is the number of background combinations under

the peak. The sudden rise in background for mass values below 1.73GeV is due to

another D0 decay, D0 → K− + π+ + π0. By leaving out the π0 daughter track, a

smeared out peak appears in the background below values of m = m(D0)−m(π0) ∼
1.73GeV. This feature has been taken into account by allowing the fit function to

change slope around the mentioned value (two sets of a, b and c parameters).

The candidates were divided into two sub-samples: if the D0 candidate was

found to have originated from a D∗+ → D0 + π+ decay, then the candidate was

1The MINUIT package [44] found the lowest χ2 when fitting this particular background function
to the data points, w.r.t. to several polynomial functions.

2The PDG[43] value for D0 invariant mass is 1864.5± 0.4MeV.
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Figure 6.1. D0 invariant mass for the kinematic range: Q2 > 5GeV2, 3 < PT (D0) <
20GeV and |η(D0)| < 1.6. The plot corresponds to 127 pb−1 of e−p collisions recorded
in 2005. The fit parameters of the function from eq. 6.1 are listed on the top right: the
meson invariant mass m0 = 1.864GeV, the width of the modified gaussian, σ = 15MeV

and so on. A total of 7440 ± 233 candidates was found.

labeled as “tagged”. The rest of the candidates which were not associated with D∗+

decays formed the “untagged “ sample. Below, a detailed description is given of

how the tagging procedure was carried out and what the advantages are of dividing

the sample into tagged and untagged sub-samples.

6.2.3 D0 originating from D∗+ decays

D∗+ can be best reconstructed using the golden decay mode D∗+ → D0 + π+
s →

K− +π+ +π+
s . Here, πs means that the pion is “slow” or almost at rest in the D∗+

center of mass due to phase-space considerations: the D∗+ and D0 masses are only

145.15MeV apart and the π+ has a mass of 139.57MeV.

For each event, a search for D0 candidates is performed as described previously.

A third track is then added as the slow pion, with the constraint that its electric

charge be opposite to the charge of the assumed kaon. A minimum transverse

momentum for the slow pion was required: pT (πs) > 0.125GeV. Let δm = m(D∗)−
m(D0). Then, by keeping only those D0 candidates for which a slow pion was found

such that 0.143 < δm < 0.148GeV, a clean sample of D0’s coming from D∗ decays

is selected. This sample will be referred to as the “tagged” sample. All other D0

candidates which fail the δm cut form the “untagged” sample. The invariant mass
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difference δm is plotted in Fig. 6.2. The signal has been greatly enhanced by

additionally requiring a “genuine” D0: 1.8 < m(D0) < 1.92GeV (right plot).
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Figure 6.2. The invariant mass difference δm = m(D∗) − m(D0) is shown (left). The
signal has been enhanced greatly by requiring 1.8 < m(D0) < 1.92GeV(right). The
fitted peak value is 0.1454GeV, identical to the PDG value [43].

6.2.4 The reflected signal

As the slow pion’s charge is selected opposite to the kaon charge, the kaon and the

pion are identified without ambiguity. For the candidates belonging to the untagged

sample, there is no way to uniquely identify the kaon and the pion; therefore, the

invariant mass distribution in Fig. 6.1 contains not only the signal and combina-

torial background but also a component from the signal with incorrectly assigned

particle identifications. Wrongly assigned combinations are unavoidable within the

untagged sample. The wrongly assigned candidates add both to the background

and to the signal of the invariant mass distribution but with different weights. For

very high values of the D0 momentum, the kaon and pion momenta contribute sig-

nificantly more than their masses when reconstructing the mass of the D0 mother

and therefore wrongly assigned candidates will also exhibit a peak at the same mass

value as the D0 meson. At very low momenta of the D0 meson, wrongly assigning

masses leads to a well spread invariant mass distribution which does not contribute

to the signal more than to the background. In general, the wrongly assigned can-

didates produce a so-called “reflected signal”. The tagged sample is in this respect

reflection-free. Fig. 6.3 shows the invariant mass distribution of both the tagged

and the untagged samples. There were 1668 ± 46 tagged candidates found and

5747 ± 228 untagged candidates found.
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Figure 6.3. Left plot: invariant mass distribution for tagged D0’s (coming from D∗

decays). Due to phase-space and right charge selection, the background is much reduced
w.r.t. Fig. 6.1. Right plot: invariant mass distribution for untagged D0’s.

One can now produce a purely reflected invariant mass distribution by wrongly

assigning masses to the kaon and the pion tracks for the tagged sample. In this way,

the artificially induced reflection can be studied and used further to remove the re-

flection within the untagged sample. The reflection produced by the tagged sample

is shown in Fig. 6.4. In order to remove reflected signal from the untagged sample,
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Figure 6.4. Invariant mass for the reflected signal produced by tagged D0 sample. The
number of entries in the above histogram equals the number of entries in Fig. 6.3 but the
peak structure is lost.

the reflection displayed in Fig. 6.4 is scaled up and subtracted from the untagged

sample invariant mass distribution. The scale factor is not known a priori. This is

due to the fact that the efficiencies of the tagged and untagged sample differ as the

efficiency of selecting the slow pion, which acted as a discriminant between the two
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samples, is less than 100%. Therefore, the subtraction of the reflected signal is per-

formed in an iterative fashion, also described in [45]. A good starting value for the

scaling factor at the first iteration is the ratio of tagged/untagged candidates. The

iteration continues until the scale factor settles to a value3. The mass distribution

corresponding to the untagged sample, after the iterative subtraction, is presented

in Fig. 6.5. The number of untagged candidates was reduced from 5747 to 5215.
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Figure 6.5. Invariant mass distribution for the untagged sample, after reflection sub-
traction. A total of 5215 ± 221 candidates was found. By comparing to Fig. 6.4, the
reflection contributed to as much as 9 %.

The reflection contributed to as much as 9 % of the total signal.

6.2.5 Improving the signal versus background ratio

As the charmed meson decay vertex is explicitly reconstructed, several tagging vari-

ables can serve as good tuning cuts when scrutinizing the ratio
√

N + B/N , where

N is the number of candidates and B the number of background combinations under

the mass peak. This ratio represents the relative error on the number of candidates

and it is this error that propagates directly into the error on the (differential) cross-

sections. Cuts on the decay length, the decay length error, the “cτ” of the meson

candidate as well as the χ2 of the secondary vertex need to be optimized such that

the relative error on the signal is minimum.

3The iteration converges quickly. The first two iterative steps return: 5747(start
value)→5124(1st step)→5238(2nd step)→etc
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χ2 of the secondary vertex

χ2 is a measure of how well the vertexing procedure has performed. The decay

vertex quality had been optimized at the vertexing level, by keeping only vertices

with χ2 < 16. Two helix tracks of 5 parameters each have 10 degrees of freedom

in total. After vertexing the two tracks to one vertex, there are only 9 degrees of

freedom left: the 3-dimensional vertex position and two 3-dimensional directional

momentum vectors of the two tracks at the vertex. Therefore, the χ2/ndof = 16 is

equivalent to a 4σ confidence level.

The relative error on the signal is studied while varying the χ2 cut: χ2 < χ2
cut ,

with χ2
cut ∈ {1, 2, 4, 6, 8, 16}. The results are presented in Table 6.1. The smallest

relative error was obtained for χ2
cut = 8 beyond which the relative error remains

constant. Setting χ2
cut = 8 is equivalent with accepting almost all secondary ver-

tices4. Accepting candidates with vertices whose χ2 is larger than this value would

not change the relative error on the signal but would further lower the purity of the

sample.

χ2cut Nr. candidates Relative Error

1 4773 3.81 %

2 5568 3.42 %

4 6318 3.21 %

6 6603 3.17 %

8 6695 3.13 %

16 6951 3.13 %

Table 6.1. The variation on the number of candidates when varying χ2
cut. Each row

corresponds to a fitted signal value. The smallest relative error is obtained when χ2
cut ≤ 8.

Primary vertex χ2 increase due to pseudo-track fitting

A neutral pseudotrack has been reconstructed for each D0 candidate following the

method described in Sec. 4.3.1. Furthermore, the pseudotrack was refitted to the

primary vertex. A new primary vertex position and its corresponding χ2 increase

were computed. The signal and its relative error is studied for various cuts on the

χ2
increase induced by the new fit to the primary vertex and the results are given

in Table 6.2. The relative error on the signal increases rapidly when the sample

4A cut of χ2 = 9 is equivalent to a 3 σ confidence level: only 1% of the genuine signal is lost.
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χ2
increase Nr. candidates Error Relative error

1 1542 113 7.4 %

4 4015 179 4.4 %

6 4810 195 4.0 %

10 5815 209 3.5 %

20 6729 221 3.2 %

Table 6.2. The variation of the number of candidates with varying the χ2
increase cut in

χ2 < χ2
increase , after fitting the D0 neutral pseudotrack to the primary vertex as described

in section 4.3.1. Each row corresponds to a fitted signal. The smallest relative error is
achieved when using the entire data sample ( no χ2

increase cut).

size is reduced. The χ2
increase proves to be a poor discriminant between signal and

background. Nevertheless, the χ2
increase cut can be a useful tool when searching for

D0 candidates not coming from the interaction point, such as in B meson decays.

Decay length. Significance of the decay length

The decay length is the distance between the secondary vertex and primary interac-

tion point: l = |~l| = | ~x2 − ~x1|. The decay length is signed, as explained in Sec. 4.3.

The significance of the decay length is defined as the signed decay length divided

by its error:

σl =
l

∆l
· sign(~l · ~P ) (6.2)

Pure combinatorial background as well as light flavor decays produce symmetric

distributions of the signed decay length and its significance. In Fig. 6.6 the signif-

icance distribution of all combinations is plotted. The plot exhibits an excess for

positive σl with respect to its mirrored negative region. The excess is due to heavy

flavor decays, among which charm decays contribute most. The central saddle point

is a phase-space effect: as l → 0 so does the 4πl2dl volume element and therefore the

number of combinations per volume element in the “decay length” space becomes

smaller.

The m(K, π) invariant mass distribution has been fitted for various significance

cuts σ ≥ σcut with σcut ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8}. The results are shown

in Table 6.3. A relative error of 3.2 % is achieved at σcut = 1. This cut also

enhances the charm purity within the selected sample by increasing the signal over



80 Charm finding

DLσ
-10 -8 -6 -4 -2 0 2 4 6 8 10

en
tr

ie
s

0

20

40

60

80

100

120

140

160

180

310×

DLσ

<0 reflection DLσ

Decay Length Significance

Figure 6.6. The signed decay length significance for all combinations exhibits excess on
the positive side due to genuine heavy flavor decays. The negative left side of the plot is
also shown as mirrored on the right side.

background ratio.

σcut Nr. of candidates Error Relative error

-2 6768 267 3.9 %

-1 6250 201 3.2 %

0 5454 177 3.2 %

1 4527 148 3.2 %

2 2707 106 3.9 %

3 1350 76 5.6 %

4 659 59 8.9 %

5 348 48 13.7 %

6 192 42 21.8 %

7 158 38 24.0 %

Table 6.3. Variation of the number of candidates with varying the cut σl ≥ σcut. Each
row corresponds to a fitted signal. The relative error is smallest when σl = 1 .

cτ of the meson candidate

The proper time is reconstructed as:
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cτ = βγl =
m

|~P |
l = m

lxy

PT

(6.3)

where β = v/c and γ = 1/
√

1 − β2, l is the signed decay length and ~P the charm

meson momentum. The signal versus background ratio has been studied for various

cuts of cτ > cτcut with cτcut ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}mm. The

results are tabulated in Table 6.4. The smallest relative error is when cτcut = 0

which is implicit when cutting on the D.L. significance: σcut = 1.

cτcut Nr. of candidates Error Relative Error

0.0 5454 177 3.2 %

0.1 4419 151 3.4 %

0.2 2894 117 4.0 %

0.3 1770 92 5.1 %

0.4 969 75 7.7 %

0.5 588 64 10.8 %

0.6 391 56 14.3 %

0.7 250 50 20.0 %

0.8 185 46 24.8 %

0.9 127 42 33.0 %

Table 6.4. The variation on the number of candidates when varying cτcut. Each row
corresponds to a fitted signal value. The smallest relative error is obtained when cτcut = 0.

So far, the cuts we explored produced larger relative errors when applied, except

the decay length significance cut. Unfortunately, the D0 meson proves to be a

difficult particle to track due to its short lifetime. As the error on the secondary

vertex reconstruction is of the order of hundred microns, the same as the charm

meson cτ , tools that discriminate between charm and light flavor decay and which

worked extremely well when reconstructing other (longer lived) charm mesons [46]

fail when applied to D0 decays because at large enough distances/proper times,

where the background combinations are very few, the charm meson signal is also

depleted by the rapid decay.
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6.3 Unfolding the signal

The invariant mass distributions for m(K, π) will be shown in bins of transverse

momentum PT and pseudo-rapidity η of the D0 meson as well as x and Q2 of the

interaction, for the untagged sample. The kinematic range and all the selection cuts

are given below:

• Kinematic range

– Q2
DA > 5GeV2

– 3GeV <PT (D0) < 20GeV

– −1.6 < η(D0) < 1.6

– 0.02 < yDA < 0.7

• DIS selection

– primary vertex position: −30 cm < Z(vtx) < 30 cm

– electron energy: E(e−) > 10GeV

– E − PZ = δ of the event: 40GeV < δ < 65GeV

– yJB > 0.02

– yel < 0.95

• D0 selection cuts

– PT (K) > 0.8GeV, PT (π) > 0.8GeV

– |η(K)| < 1.6

– |η(π) < 1.6

– at least 3 superlayers in the CTD for both K and π

– at least 2 hits in the MVD for both K and π

– applying reflection correction for wrongly assigned tracks (reflection sub-

traction).

A total number of 3156 ± 136 candidates was found.
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6.3.1 PT spectrum

The signal has been reconstructed for the following bins in transverse momentum

of the charmed meson: PT ∈ {3, 3.5, 4.5, 6, 20}. The different signals are shown in

Fig. 6.7. The change in slope at around 1.73GeV becomes more evident at higher

PT . The width of the signal goes through a minimum value after which increases

again, with increasing PT . The fit values and their errors, for each PT bin, are given

in Table 6.5.

 m ( GeV ) 
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

en
tr

ie
s

0

200

400

600

800

1000

1200

72±Candidates=654
<3.5 GeVT3.0<P

 ) π m ( K, 

 m ( GeV ) 
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

en
tr

ie
s

0

200

400

600

800

1000

1200

1400

1600

78±Candidates=960
<4.5 GeVT3.5<P

 ) π m ( K, 

 m ( GeV ) 
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

en
tr

ie
s

0

200

400

600

800

1000

63±Candidates=773
<6.0 GeVT4.5<P

 ) π m ( K, 

 m ( GeV ) 
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

en
tr

ie
s

0

100

200

300

400

500

600

700

55±Candidates=777
<20.0 GeVT6.0<P

 ) π m ( K, 

Figure 6.7. m(K,π) distribution for 4 transverse momentum bins. The signal corre-
sponds to the untagged sample, reflection subtracted.

6.3.2 η spectrum

The signal has been reconstructed for the following bins in pseudo-rapidity of the

charmed meson: η ∈ {−1.6,−0.8,−0.4, 0, 0.4, 0.8, 1.6}. The different fitted distri-

butions are given in Fig. 6.8. The background is higher in the forward region as
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Bin edges [GeV] Signal Statistical Error

3 − 3.5 654 ±72

3.5 − 4.5 960 ±78

4.5 − 6 773 ±63

6 − 20 777 ±55

Table 6.5. The signal is unfolded in 4 bins of PT (D0). The bin edges and the absolute
statistical error are given.

there are more forward tracks due to the high momentum of the proton. As a con-

sequence, the (relative) error on the signal is higher in the forward region. The fit

values and their errors, for each η bin, are given in Table 6.6.

Bin edges Signal Statistical Error

[−1.6] − [−0.8] 348 ±43

[−0.8] − [−0.4] 590 ±48

[0.4] − 0 595 ±56

0 − 0.4 654 ±59

0.4 − 0.8 590 ±59

0.8 − 1.6 397 ±63

Table 6.6. The signal is unfolded in 6 bins of η(D0). The bin edges and the absolute
statistical error are given.

6.3.3 Q2 spectrum

The total Q2 range has been divided as: Q2 ∈ {5, 15, 40, 100, 1000}. The fitted

signals are presented in Fig. 6.9. The fit values and their errors are tabulated in

Table 6.7. The highest Q2 bin exhibits a significantly wider signal width.

6.3.4 x spectrum

The x range of the event has been partitioned as: x ∈ {10−4, 5 · 10−4, 10−3, 3.5 ·
10−3, 10−1}.The fitted histograms are shown in Fig. 6.10. The fitted signal values

and their errors are tabulated in Table 6.8.
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Figure 6.8. m(K,π) distribution for 6 pseudo-rapidity bins. The signal corresponds to
the untagged sample, reflection subtracted.
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Figure 6.9. m(K,π) distribution for 4 Q2 bins. The signal corresponds to the untagged
sample, reflection subtracted.

Bin edges [GeV2] Signal Statistical Error

5 − 15 905 ±64

15 − 40 1118 ±71

40 − 100 691 ±66

100 − 1000 427 ±70

Table 6.7. The signal is unfolded in 4 bins of Q2 of the event.

Bin edges Signal Statistical Error

10−4 − 5 · 10−4 625 ±54

5 · 10−4 − 10−3 647 ±53

10−3 − 3.5 · 10−3 1153 ±78

3.5 · 10−3 − 10−1 708 ±79

Table 6.8. The signal is unfolded in 4 bins of Bjorken x.
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Figure 6.10. m(K,π) distribution for 4 x bins. The signal corresponds to the untagged
sample, reflection subtracted.

6.4 Comparison between simulation and data

A description of the detector simulation used for the present measurement is given in

Sec. 5.5. The same reconstruction code has been run both on data and simulation.

As an example, the simulated signal is shown in four bins of Q2 in Fig. 6.11. Because

the simulation does not include light flavors, the simulated signal is reconstructed

more easily than in data.

Distributions of signal events as functions of different variables are compared

in the data and simulated files. The distributions are area normalized. Each bin

corresponds to a fitted signal value. Luminosity normalization was not used as

the luminosity normalization factor Ldata/LMC is ∼ 10 − 15% lower than the area

normalization factors for each of the unfolding variables. This effect is caused by

the fact that the Monte Carlo simulation employs only leading order calculations.
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Figure 6.11. The reconstructed signal in the simulated files, in bins of Q2. This corre-
sponds to a simulated luminosity of 295 pb−1, as described in Sec. 5.5.

The signal has been unfolded in:

• bins of the event kinematic variables x, y, Q2, Z position of the primary

vertex, electron energy and E−PZ . Results are presented in Fig. 6.12. There

is good agreement in shape. The electron energy distribution exhibits a slight

shift of few GeV to higher values in the simulation w.r.t. the data. This also

causes the shift seen in the E − PZ distribution. The DIS cuts are placed

safely outside of the affected regions. Also, the simulation presents a slight

shift to higher values in the y distribution, but within the statistical errors.

• bins of PT (K), PT (π), η(K) and η(π) as well as a function of the number

of MVD hits of the kaon and the pion tracks. The fit results are shown

in Fig. 6.13. The data and the MC samples agree within the errors. The
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momentum distributions are well described. The pion pseudo-rapidity is less

accurately described in the simulated files, especially at the low and high end

of the pseudo-rapidity spectrum. Regarding the number of MVD hits the

kaon and the pion tracks collect, a clear shift is seen in the simulation: there

are relatively more simulated kaons and pions with more MVD tracks than

in the data. This is due to the fact that the MVD suffered from radiation

damage (up to 5.7% of the total number of channels were dead in 2005) and

this aspect is not simulated at all.

• bins of the decay tagging variables: χ2 of the secondary vertex, the decay

length, the decay length error and the decay length significance. The fit

values are shown in Fig. 6.14. The decay length error is the least well described

variable. The resolution of the detector is over-estimated in Monte Carlo. This

will introduce a significant systematic error in the cross-section measurement.

The χ2 and decay length distributions are well described.

• bins of PT (D0) and η(D0). The corresponding distributions of the number of

meson candidates are given in Fig. 6.15. The data and the simulation show

good agreement in shape. In the central region, the pseudo-rapidity of the

charm meson is less accurately described but well within the statistical errors.
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Figure 6.12. Comparison between MC (fill) and data (points): the variation of the
number of candidates as a function of x (top left), y (top right), Q2 (center left), ZV TX

(center right), electron energy ( bottom left) and E − PZ (bottom right). Each bin
corresponds to a fitted signal value. In each plot, the data distribution has been area-
normalized with the Monte Carlo.
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Figure 6.13. Comparison between MC (fill) and data (points): the variation of the
number of candidates as a function of PT (K)(top left), PT (π)(top right), η(K) (center
left), η(K) (center right), nr. of MVD hits of the kaon ( bottom left) and nr. of MVD
hits of the pion (bottom right). Each bin corresponds to a fitted signal value. In each
plot, the data distribution has been area-normalized with the Monte Carlo.
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Figure 6.14. Comparison between MC (fill) and data (points): the variation of the
number of candidates as a function of χ2 of the secondary vertex (top left), decay length
(top right), decay length error (bottom left) and decay length significance (bottom right).
Each bin corresponds to a fitted signal value. In each plot, the data distribution has been
area-normalized with the Monte Carlo.
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Figure 6.15. Comparison between MC (fill) and data (points): the variation of the num-
ber of candidates as a function of PT (D0) (left) and η(D0) (right). Each bin corresponds
to a fitted signal value. In each plot, the data distribution has been area-normalized with
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Chapter 7

Charm cross-sections

In this chapter, the measurements of events containing an untagged D0 meson

(not coming from a D∗ decay) in the final state are presented. The charm cross-

sections are presented as functions of photon virtuality Q2 of the event, transverse

momentum PT of the charm meson, pseudo-rapidity η of the charm meson and

Bjorken x. The kinematic region has been chosen such that the results can be

compared to previous ZEUS measurements performed on HERA I data.

7.1 Definition of the cross-sections

The measured cross-sections are dσ/dQ2, dσ/dPT (D0), dσ/dη(D0) and dσ/dx . The

measurement was performed in the following kinematic region:

• 5GeV2 < Q2 < 1000GeV2

• 0.02 < y < 0.7

• 3 < PT (D0) < 20GeV

As the measurement required a D0 meson in the final state which did not come from

a D∗ decay as the only criterion, the cross-sections include events both involving

direct charm decay or charm decay that followed from a beauty meson decay.

The differential cross-section dσ/dα for a given observable α was computed as:

dσ

dα
=

Ndata

ALB∆α
(7.1)

where A is the acceptance in the corresponding α bin, L is the total luminosity of

the data set, B is the branching ratio for the particular decay channel and ∆α is
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the bin width. The 2005 e−p data set has a luminosity of L = 127.35pb−1. The

branching ratio quoted by the Particle Data Group in 2006 for the D0 → K− + π+

decay is B = 3.82 ± 0.07%. The detector acceptance A within a given bin ∆α was

determined from Monte Carlo as the ratio between the number of reconstructed

candidates and the number of generated mesons within that bin: A = N recon/Ngen

and also includes effects of bin to bin migration.

7.2 Systematic uncertainties

To accurately account for the errors induced by the uncertainties on variables used

to select the final event sample, the thresholds of various cuts were varied both to

larger and smaller values within the resolution of these variables. This was done

both in data and Monte Carlo. The variations on individual cuts are listed in Table

7.1. For some variables, the threshold can be varied only in one direction: varying

Variable Nominal Thres. Variation

zvtx(cm) 30 ±5

E − PZ(GeV) 40 − 65 → 45 − 60

E(e−)(GeV) 10 → 11

Yel. 0.95 → 0.9

YJB 0.02 → 0.03

Box Cut (cm2) 15 × 15 → 16 × 16

MVD Hits (K) 2 → 3

MVD Hits (π) 2 → 3

PT (K)(GeV) 0.8 ±0.1

PT (π)(GeV) 0.8 ±0.1

|η(K)| 1.6 ±0.05

|η(π)| 1.6 ±0.05

χ2
sec/ndof 8 ±1

σ(D.L.) 1 ↑ 2 and ↓ −1

Table 7.1. List of cuts which generate systematic uncertainties. The nominal thresholds
and their variations are shown. For certain variables, variations in only one direction were
allowed; the resulting systematic error in these cases were symmetrized.

in the opposite direction would spoil the data set by allowing background events

into the sample. To fully take into account the effects of the cut variations, a
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detailed description of the background would be necessary. When this is the case,

the obtained error is symmetrized.

A nominal cross-section σ0 is calculated, corresponding to the nominal cuts.

Each variation of a given variable i leads to a new cross-section value σi . Defining

δi = σi −σ0, the upper and lower systematic errors ∆+
i and ∆−

i on the cross-section

due to source i are computed as:

∆+
i =







δi if δi > 0

0 if δi < 0

∆−
i =







δi if δi < 0

0 if δi > 0

The total error is then computed by summing all the individual errors in quadra-

ture:

∆+ =

√

∑

i

(∆+
i )2 (7.2)

and

∆− =

√

∑

i

(∆−
i )2 (7.3)

The systematic error induced by each of the variations from Table 7.1 are shown

as a function of Q2, PT (D0), η(D0) and x in Fig. 7.9, 7.10, 7.11 and 7.12. These

errors will be discussed in detail below.

7.2.1 DIS selection

The errors due to the DIS selection are small with respect to other sources. To

account for these errors, the zvtx of the primary vertex, E −Pz, the electron energy,

YJB and Yel, as well as the box cut around the beam pipe were varied. A significant

contribution came from the box cut variation at low Q2 (the electron hits the RCAL

closer to the beampipe at low Q2). The shift between the data and the Monte Carlo

electron energy displayed by control plots in Fig. 6.12 also introduces a noticeable

systematic error. The size of these errors is estimated to be ∼ 5%.



98 Charm cross-sections

7.2.2 Track momentum and pseudo-rapidity

The uncertainty in track momentum was accounted for by varying the momenta

of both the kaon and the pion tracks by ±0.1GeV. The effect on the final cross-

section was negligible. The pseudo-rapidity cut was also varied by ±0.05 units

for both tracks. This effect was less than 8%, despite the slight disagreement in

pseudo-rapidity seen in control plots in Fig. 6.13.

7.2.3 Uncertainty in the MC beauty fraction

In addition to charm mesons directly produced at the interaction point, the sim-

ulated sample contains a small number of charm candidates coming from beauty

meson decays. In total, 1147 true D0 generated mesons originated from beauty me-

son decays, compared to 33679 D0 mesons generated at the interaction point. Both

numbers correspond to an equivalent luminosity of 295 pb−1. The charm mesons

originating from beauty decay form the beauty fraction. In order to determine how

sensitive the measurement is to the beauty fraction, the Monte Carlo beauty fraction

was doubled and its induced error on the cross-section symmetrized. The effect was

not significant with respect to other error sources, indicating that the measurement

is not sensitive to beauty production.

7.2.4 Luminosity

The luminosity at ZEUS, for the 2005 data set, is known within 2 % accuracy. This

error is not added to the total systematic error.

7.2.5 Number of MVD hits

The control plots in Fig. 6.13 revealed that in the Monte Carlo more signal events

are reconstructed where both the K and the π daughter tracks have more hits in

the MVD when compared to tracks in the data. This is a known flaw of the Monte

Carlo and it is caused by some dead strips in the MVD not being simulated in Monte

Carlo. Therefore, the simulation contains relatively more tracks, on the average,

with a higher number of MVD hits. In this analysis, a minimum of 2 hits in the

MVD was required for both the K and the π. The systematic error due to this cut

was computed by changing the threshold to 3 hits for each of the two tracks. This

error is significant and is at the level of 5%.
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7.2.6 Signal extraction

A significant statistical error appears in the final cross-section measurement due to

the signal extraction. The systematic error associated with signal extraction has

also been investigated. In particular, due to the fact that the Monte Carlo does not

contain light flavor decays, the signal over background ratio is much enhanced in

Monte Carlo. This leads to an inaccurate modeling of the background w.r.t. the

data sample. The fit for extracting the number of candidates is performed by the

MINUIT package [44] within ROOT. The fit function is given in Eq. 6.1. As a

systematic variation, the background component of the function was changed to a

linear function. The error introduced by changing the background function is not

significant, being at the level of 2-3% for most of the bins.

7.2.7 Reflected signal subtraction

Wrong mass assignment to the daughter track pair pollutes the signal. An iterative

procedure of subtracting the reflected signal was explained in detail in Chap. 6.

Despite the fact that the procedure is applied independently in data and in the

Monte Carlo, significant errors are introduced because statistical fluctuations are

scaled up during the iterative process. To account for this effect, all cross-sections

were recomputed without subtracting the reflected signals for any of the fits. The

errors were symmetrized. Although in some bins the errors reach the 10-15% level,

especially in the η bins, they are within the statistical errors.

7.2.8 Uncertainty due to the D.L. significance

Tagging the charmed meson decay and using decay related variables to enhance the

charm purity of the sample is another source of systematic errors. When comparing

data with simulation, as in Fig. 6.14, an overall good agreement is seen for the entire

spectrum of variables such as χ2 of the secondary vertex and the signed decay length

itself. A disagreement is seen when comparing the data and simulated signals in bins

of the decay length error, namely there are relatively more candidates in the Monte

Carlo with small decay length errors. Errors are underestimated in the Monte Carlo

for various reasons: inappropriate treatment of dead material, alignment issues,

dead cells in the MVD or noisy detector cells not correctly accounted for and so

on. Therefore, event selection by decay significance has a strong dependence on the

decay length error. This is investigated further.
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One defines the signal efficiency associated with the decay length significance

cut as:

ǫ =
Nσ

NR

(7.4)

where Nσ is the number of signal candidates at a minimal particular decay signif-

icance cut σDL and NR is a reference signal, extracted without a significance cut.

In Fig. 7.1, the signal efficiency in data and Monte Carlo are compared. Differ-

ences are visible. The relative data efficiency ǫrel, defined below, quantifies these

differences.

ǫrel = (ǫdata − ǫMC)/ǫMC (7.5)

ǫrel is also shown in Fig. 7.1. The simulation describes well the data up to a decay
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Figure 7.1. Left plot: Signal efficiency as a function of the D.L. significance cut, com-
parison between data, in colored squares, and Monte Carlo, in open squares. Right plot:
The relative difference of the two efficiencies as defined in Eq. 7.5.

significance of σDL = 2 which is larger than the nominal cut used in this analysis. As

the significance has per definition a pull of 1 and because the nominal significance

cut is within the range for which the Monte Carlo describes the data, thresholds

of one unit away from the nominal value, σlow
DL = 0 and σhigh

DL = 2, can be used for

calculating the systematic error.

A more conservative approach can be taken. The efficiency ǫ was plotted in Fig.

7.2 as a function of decay length error ∆DL, both for data and for Monte Carlo.

The right plot denotes the relative difference between the data and the simulated

sample efficiencies. An overall variation of 75% in the relative efficiency difference

can be seen (in one direction only) when the entire decay length error spectrum is

spanned.
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Figure 7.2. Left plot: signal efficiency in data (solid squares) and MC (open squares)
as a function of decay length error ∆DL. Right plot: the relative difference of the two
signal efficiencies. An overall variation of 75 % in relative efficiency difference is sufficient
within the errors to contain the entire efficiency spectrum.

The efficiency variation extracted from the decay length error spectrum in Fig.

7.2 is propagated to the efficiency plot in Fig. 7.3. The horizontal shaded area

denotes the 75% efficiency error which has been centered on the nominal cut of

σDL = 1. A modified arc-tangent function, fitted along the efficiency slope, reaches

the outer edges of the error band at of σlow
DL = −1 and σhigh

DL = 2. These are

the variational thresholds employed in this analysis for calculating the induced

systematic error. In conclusion, both the “one unit away from the nominal value”

rule and the conservative approach taken above lead to very similar estimates for

the variation of the D.L. significance employed in calculating the systematic error.

This is confirmed by the fact that the simulation and the data agree well in efficiency

for all values of D.L. significance below σDL = 1, as shown in Fig. 7.1 (right plot)

and that the number of candidates in the region of disagreement, in relation to the

total number of candidates, is minute.

It is worth mentioning that a solution for reducing significantly the systematic

errors due to σDL can be found by rescaling the decay length error in the Monte

Carlo such that it describes the data as accurately as possible. As an exercise, a

simple rescaling of the form ∆new
DL = 120%∆DL was performed only on the simulated

samples. The new relative efficiency difference is plotted once more in Fig. 7.4. Only

a 20% variation in relative efficiency difference is seen after scaling up the Monte

Carlo decay length error. This could be improved further.

The decay significance systematic error contributes the most to the final error

with respect to any other sources. Nevertheless, this error is comparable to the
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Figure 7.3. The signal efficiency in data as a function of the decay length significance
is shown in solid squares. The nominal cut used in this analysis is σDL = 1. An arc-
tangent function is fitted to the efficiency curve. The horizontal shaded band centered
on the nominal cut represents the 75 % variation in relative efficiency extracted from the
decay length error spectrum (see Fig. 7.2). A systematic shift in reconstructing σDL by
±∆σDL is equivalent to a systematic shift in the signal efficiency. Therefore, a variation in
significance is computed. The arc-tangent fit intersects the outer edges of the horizontal
shaded error band at σlow

DL = −1 and at σhigh
DL = 2. These are the two σDL up and down

threshold values used to compute the systematic errors induced by the decay length tag.

statistical error of the measurement.

7.3 D0 cross-sections

7.3.1 Differential cross-section w.r.t. Q2: dσ/dQ2

The differential cross-section w.r.t. the photon virtuality Q2 of the event for the pro-

cess e−p → e−+D0+X has been measured for the bins: Q2 ∈ {5, 15, 40, 100, 1000}GeV2.

The results are presented in Fig. 7.5 and tabulated in Appendix B, Table B.1. The

inner error bars (where visible) denote the statistical errors, the outer error bars

represent the systematic errors. The measurement is compared to a second ZEUS

analysis performed recently by John Loizides and Dan Nicholass from University

College London. The second analysis measured within the same kinematic range as

the one defined in Sec. 6.3 but was performed independently, using different track-

ing and vertexing packages, a slightly larger data set and some different cleaning
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Figure 7.4. Left plot: signal efficiency in data (solid squares) and simulation (open
squares) as a function of decay length error ∆DL, after rescaling the Monte Carlo decay
length error by a 20% increase. Right plot: the new relative difference of the two signal
efficiencies. An overall variation of only 20 % in relative efficiency difference is seen after
rescaling.

cuts. The results of a previous ZEUS measurement, using HERA I data [47], are

also shown, for the first two Q2 bins only. The next to leading order theoretical

prediction is also displayed, together with its error. Details on how the NLO pre-

diction was calculated are given in Sec. 7.4. The relative difference between the

measurement and the theoretical prediction, as defined in Eq. 7.6, is shown sepa-

rately (bottom plot). The error bars correspond to the relative total error (statistic

and systematic); the shaded band is the relative error of the theoretical prediction.

There is good agreement in shape between the data and the theoretical prediction

but the overall normalization is off by ∼ 15−25%. The systematic errors on dσ/dQ2

due to the sources listed in Table 7.1 are displayed in Fig. 7.9. The total system-

atic error (lower plot in Fig. 7.9) is calculated by adding all systematic errors in

quadrature. It is worth mentioning that for each systematic variation, the signal

extraction is subject to a statistical fit error which cannot be decoupled from the

intrinsic systematic error. Therefore, low statistics bins, such as the high Q2 bin,

display larger systematic errors due to the fact that the background and signal fits

suffer from statistical fluctuations.

7.3.2 Differential cross-section w.r.t. PT (D0): dσ/dPT

The differential cross-section as a function of the charm meson transverse momen-

tum PT (D0) for the process e−p → e−+D0+X has been measured for the following

bins: PT ∈ {3, 3.5, 4.5, 6, 20}GeV. The results are presented in Fig. 7.6 and tab-
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Figure 7.5. The differential cross-section dσ/dQ2 for the process e−p → e− + D0 +
X was measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error
bars (where visible) represent statistical errors, the outer bars denote the systematic
errors. The results are compared to a second independent ZEUS measurement (only
statistical error bars shown), to a measurement performed on Hera I data (the first 2 bins
only) and to the NLO theoretical prediction. The beauty cross-section in the simulated
files is also displayed, for reference. Bottom plot: the relative difference between the
measurement and the NLO prediction is shown, together with its total error. The shaded
band represents the error on the prediction.

ulated in Appendix B, Table B.2. The measurement is compared to the second

independent analysis as well as to the NLO theoretical prediction. The beauty con-

tribution to the cross-section, computed purely from the simulated sample, is also

shown. The relative difference between the measurement and the NLO prediction

is shown separately (bottom plot). The error bars correspond to the relative total

error (statistical and systematic); the shaded band gives the relative error on the

theoretical prediction. There is good agreement in shape but the measured cross-

section values are 20 − 30% lower. In the third PT bin, the measurement agrees

the least with the second analysis. The systematic errors on dσ/dPT (D0) due to

uncertainties in measuring the variables listed in Table 7.1 are displayed in Fig.

7.10, for each source independently. The total systematic error was obtained by
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Figure 7.6. The differential cross-section dσ/dPT (D0) for the process e−p → e− +
D0 + X was measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error
bars (where visible) represent statistical errors, the outer bars denote the systematic
errors. The results are compared to the second independent ZEUS measurement (only
statistical errors shown) and to the next to leading order theoretical prediction. The
beauty cross-section in the simulated files is also displayed, for reference. The relative
difference between the measurement and the NLO prediction is shown separately (bottom
plot). The error bars denote the relative total errors (statistical and systematic) whereas
the shaded band is the relative error on the theoretical prediction.

adding the individual errors in quadrature. The measured cross-section has a large

systematic error in the highest PT bin due to the systematic error induced by the

variation of D.L. significance.

7.3.3 Differential cross-section w.r.t. η(D0): dσ/dη

The differential cross-section as a function of the charmed meson pseudo-rapidity

η(D0) for the process e−p → e− + D0 + X has been measured for the following

bins: η ∈ [−1.6,−0.8,−0.4, 0, 0.4, 0.8, 1.6]. The results are presented in Fig. 7.7

and tabulated in Appendix B, Table B.3. The measurement is compared to the

second independent analysis as well as to the NLO theoretical prediction. The two
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Figure 7.7. The differential cross-section dσ/dη(D0) for the process e−p → e− +D0 +X
was measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error bars
represent statistical errors, the outer bars denote the systematic errors. The results are
compared to the second independent ZEUS measurement (only statistical errors shown)
and to the next to leading order theoretical prediction. The beauty cross-section in
the simulated files is also displayed, for reference. The relative difference between the
measurement and the prediction is shown separately (bottom plot). The shaded band
represents the relative error on the NLO prediction whereas the error bars correspond to
the relative total error.

analyses agree within the statistical errors. The beauty contribution to the cross-

section, computed purely from the simulated sample, is also shown. The relative

difference between the measurement and the NLO prediction is shown separately

(bottom plot). Both the relative total errors on the measurement (error bars) and

the error on the prediction (shaded band) are also displayed. The NLO calculation

overestimates the cross-section by some 10 − 25% in the central region and almost

40% at high and low η. The overall shape is reasonably reproduced. The systematic

errors on dσ/dη(D0) due to uncertainties in measuring the variables listed in 7.1 are

displayed in Fig. 7.11, for each source independently. The total systematic error

was obtained by adding the individual errors in quadrature.
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7.3.4 Differential cross-section w.r.t. Bjorken x: dσ/dx

The differential cross-section as a function of the Bjorken x ,for the process e−p →
e−+D0+X, has been measured for the following bins: x ∈ {10−4, 5×10−4, 10−3, 3.5×
10−3, 10−1}. The results are presented in Fig. 7.8 and tabulated in Appendix B,

Table B.4 . The cross-section is concentrated at low values of x. The measurement
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Figure 7.8. The differential cross-section dσ/dx for the process e−p → e− +D0 +X was
measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error bars (where
visible) represent statistical errors, the outer bars denote the systematic errors. The
results are compared to the second independent ZEUS measurement (only statistical errors
shown) and to the NLO theoretical prediction. The beauty cross-section in the simulated
files is also displayed, for reference.The relative difference between the measurement and
the prediction is shown separately (bottom plot). The shaded band represents the relative
theoretical error whereas the error bars correspond to the relative total error on the
measured cross-section.

is compared to the second analysis and to the next to leading order theoretical pre-

diction. The beauty contribution to the cross-section, computed purely from the

simulated sample, is also shown. The second analysis and the present analysis agree

well, given the different tracking, vertexing and cut optimization used. The rela-

tive difference between the measurement and the theoretical prediction is displayed

separately (bottom plot). A good agreement in shape with the NLO is seen but
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the overall normalization is 15 − 30% higher for the predicted cross-section. The

systematic errors on dσ/dx due to uncertainties in measuring the variables listed in

7.1 are displayed in Fig. 7.12, for each source independently. The total systematic

error was obtained by adding the individual errors in quadrature.

7.4 The theoretical prediction

The theoretical predictions for the differential cross-sections, displayed in Fig. 7.5,

7.6, 7.7 and 7.8, were computed using the HVQDIS package [48]. HVQDIS calcu-

lates differential cross-sections of charm production in DIS in both leading order and

next to leading order. Peterson fragmentation [49] is applied to both the charm and

the anti-charm quarks at the hadron level. The Peterson fragmentation function

depends only on one parameter, ǫP , determined by experiment [50]. Other inputs

to HVQDIS are the renormalization and factorization scales µR and µF , the mass of

the charm quark mc and a particular choice of parton distribution functions. These

input values together with their variations are given in Table 7.2.

Quantity Value Variation

Renormalization scale µR µR =
√

Q2 + 4M2
C 2

√

Q2 + 4M2
C

Factorization scale µF µF = µR larger of: 1
2

√

Q2 + 4M2
C or 2MC

Peterson parameter ǫP 0.035 ±0.030

Charm mass mC 1.35GeV ±0.15GeV

Input PDF’s ZEUS NLO PDF ZEUS PDF: Upper and lower predictions

Table 7.2. The list of input parameters to the HVQDIS package used in calculating

the central value. The input parameter variations are used to calculate the errors on the

central value.

The differences between the measured (σexp) and theoretical (σth) differential

cross-sections are quantified by δσrel:

δσrel =
σexp − σth.

σth

(7.6)

δσrel has been plotted as a function of Q2, PT (D0), η(D0), and Bjorken x in Fig.

7.5, 7.6, 7.7 and 7.8 respectively. The error bars on δσrel denote both statistical
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and systematic errors on the measurement, divided by the NLO central value. The

relative error on the prediction is shown as a shaded band. The theoretical predicted

cross-sections are on the average 20-30% higher than what the measurement finds.

The relative difference is somewhat larger in η, where it reaches 40% at high and

low η values.



110 Charm cross-sections

σ/σ∆
   

   
   

   
 

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

 (K) TP

   rel. stat. error   

σ/σ∆
   

   
   

   
 

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

 (sec. vtx) 2χ

σ/σ∆

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

) -E (e

σ/σ∆

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Mvd Hits (K)  

]    .2[GeV10
210 10

σ/σ∆

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Reflection Subtraction 

) π (TP

rel. syst. error: Up

D.L.  significance 

 
el

y

) πMvd Hits (

 (K) η

rel. syst. error: Down

Z (vtx)  

 
JB

y

Beauty x 2 

) π (η

 ZE-P

) 
-

Cal pos. (e

Linear Background 

        2GeV
10 210 310

σ/σ∆
   

   
   

   
 

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Total Systematics

relative statistical error  

rel. syst. error: up variation

rel. syst. error: down variation

Figure 7.9. The systematic errors, calculated and labelled for each source separately, are
displayed as a function of Q2. A large contribution for all Q2 bins comes from varying the
decay length significance cut and from turning off the reflected signal subtraction. The
total systematic error as a function of Q2 (lower plot) is computed by adding in quadrature
all systematic errors. The total systematic error is consistent with the statistical error.
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Figure 7.10. The systematic errors, calculated and labelled for each source separately,
are displayed as a function of PT of the charm meson. A large contribution for all PT bins
comes from varying the decay length significance cut and from turning off the reflected
signal subtraction. The total systematic error as a function of PT (lower plot) is computed
by adding in quadrature all systematic errors. The total systematic error is consistent
with the statistical error.
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Figure 7.11. The systematic errors, calculated and labelled for each source separately,
are displayed as a function of η of the charm meson. A large contribution for all η bins
comes from varying the decay length significance cut and from turning off the reflected
signal subtraction. The total systematic error as a function of η (lower plot) is computed
by adding in quadrature all systematic errors. The total systematic error is consistent
with the statistical error.
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Figure 7.12. The systematic errors, calculated and labelled for each source separately,
are displayed as a function of proton momentum fraction x of the struck quark. A large
contribution for all x bins comes from varying the decay length significance cut and from
turning off the reflected signal subtraction. At very low x, the systematic errors due to
cuts on number of MVD hits and changing the background fit function become significant
as well. The total systematic error as a function of x (lower plot) is computed by adding
in quadrature all systematic errors. The total systematic error is consistent with the
statistical error.
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Chapter 8

Expanding the kinematic range

Measurements of D0 production using HERA I data sets have been performed only

for the kinematic range PT (D0) > 3GeV. The measurement presented in the pre-

vious chapter is performed for the same kinematic range, using HERA II data.

The agreement between the present measurement and previous HERA I published

results confirmed that the upgraded ZEUS detector is well understood. After the

upgrade, tracking and vertexing improved significantly. Using Hera II data sets,

it is now possible to reconstruct D0 mesons with transverse momenta less than

3GeV. The aim of this analysis is to measure charm production in a phase-space

region unexplored so far at ZEUS, while at the same time taking advantage of the

increased statistics. This will allow for a finer granularity of the measurement.

8.1 Reconstructing D0 mesons at low PT

Fig. 8.1 shows the invariant mass distribution for candidates with 1.5 < PT (D0) <

3GeV. A clear signal is visible at a fitted mass value of 1.861GeV. A total of

5483±473 candidates were found at these low transverse momenta. The background

is large as no cuts on the decay variables were yet applied. The plot corresponds to

a luminosity of 127.35pb−1, e−p collisions, recorded by ZEUS in 2005. The clean-

ing cuts applied on the transverse momenta of the daughter tracks were reduced:

PT (K) > 0.7GeV and PT (π) > 0.4GeV. The cut asymmetry is due to the fact

that the kaon is more massive.

The kinematic range specified in Sec. 6.3 can therefore be expanded to lower

PT (D0):

• Q2 > 5GeV2



116 Expanding the kinematic range

 / ndf 2χ   60.7 / 31
A         154.0±  2116 

    0m  0.001± 1.861 
   σ  0.000± 0.011 
    1a  449± 3.411e+04 
    1b  258.747± 3.434 
    1c  0.047± -1.766 
    2c  0.0129± -0.8593 
    2a  720± 1.573e+04 
    2b  416± 1.066e+04 

 m [ GeV ]   
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

en
tr

ie
s 

   
   

   
 

20000

25000

30000

35000

40000

 / ndf 2χ   60.7 / 31
A         154.0±  2116 

    0m  0.001± 1.861 
   σ  0.000± 0.011 
    1a  449± 3.411e+04 
    1b  258.747± 3.434 
    1c  0.047± -1.766 
    2c  0.0129± -0.8593 
    2a  720± 1.573e+04 
    2b  416± 1.066e+04 

 473±Candidates = 5483 

 )  π m ( K, 

Figure 8.1. Invariant mass distribution for untagged D0 candidates with 1.5 < PT (D0) <
3GeV.

• 1.5GeV <PT (D0) < 20GeV

• 0.02 < y < 0.7 .

8.2 Optimizing the signal

A similar prescription to the one detailed in Sec. 6.2.5 is applied for optimizing the

relative error of the signal in the kinematic range defined above. Table 8.1 samples

the variation of the extracted signal and its error when varying the decay length

significance cut. The smallest relative error is found for σDL ∈ {−1, 0, 1}. The

nominal cut σcut
DL = 1 is chosen as this The secondary vertex selection has already

been optimized at the vertexing level, by keeping only good two track vertices with

a χ2
sec < 16. When minimizing the relative error, an optimum χ2 associated with

the D0 decay vertex is found at χ2
sec < 8. The relative error on the signal extraction

is minimum when no cut on the proper lifetime is set.

8.3 Data versus simulation

New Monte Carlo files were produced in which the D0 charm mesons were gener-

ated with no minimal transverse momentum cut1. Events in the simulation were

reweighted so that the decay length significance is well described. In Fig. 8.2, data

1Note that the D0 production is suppressed for P (D0) values lower than the charm quark mass.



8.3 Data versus simulation 117

σcut Nr. of candidates Error Relative error

-2 13694 519 3.8%

-1 12433 466 3.7%

0 11229 411 3.7%

1 9306 344 3.7%

2 5246 237 4.5%

3 2545 166 6.5%

4 1375 129 9.4%

5 856 109 13%

6 542 96 18%

7 429 87 20%

Table 8.1. Variation of the number of candidates with varying the cut σDL ≥ σcut
DL. Each

row corresponds to a fitted signal. The relative error is smallest when σcut
DL = 1 .

are compared to simulation. The signal distributions as a function of x, y, Q2 of

the event, Zvtx position of the primary vertex, scattered electron energy and E−PZ

of the event are presented. The MC histograms are area normalized to the data

points. Each bin represents a fitted signal value. A good agreement in shape is seen

overall. The simulated electron energy exhibits a shift by few GeV to higher values

than in the data due to imperfect dead material description in the simulation. This

reflects also in the shift in E − PZ of the event. Although the nominal cuts on the

electron energy and E − PZ of the event are placed safely at the edges of the two

distributions, the induced systematic error cannot be neglected.

In Fig. 8.3, the signal is plotted as a function of PT (K), PT (π), η(K), η(π) and

the number of MVD hits of the kaon and pion tracks. Each bin corresponds to a

fitted signal value. In general, a good agreement in shape is seen. A systematic

shift is visible in the number of MVD hits: both the kaon and the pion have more

MVD hits, on the average, in the simulation than in the data. This introduces a

significant systematic error.

In Fig. 8.4, the data are compared to the simulation in bins of χ2 of the secondary

vertex, the decay length, its error and its significance. The decay length error is the

least well described. The simulated distributions exhibit an excess at low values of

the decay length error. The significance distributions agree well due to the fact that

the simulated events were generated such that the data is well described for this

variable in particular. In Fig. 8.5, the number of candidates is plotted a function
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of PT (D0) and η(D0). The data and the simulation agree.

In order to investigate whether the disagreement between the reconstructed D.L.

errors in data and simulation has any effect on the D.L. significance distributions,

in different regions of the phase-space, fitted signal values have been plotted as a

function of the D.L. significance in different bins of Q2 and x of the event, as well

as in bins of PT (D0) and η(D0). The results are presented in Fig. 8.6, 8.7, 8.8 and

8.9. The D.L. significance is well simulated for all bins. Some bins, such as high Q2

or high x bins, do not have enough statistics for a proper unfolding of the signal.

It is safe to select events using the D.L. significance.
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Figure 8.2. Comparison between data and simulation: the number of D0 candidates as
a function of x, y, Q2 of the event, Zvtx position of the primary vertex, the energy E(e−)
of the scattered electron and E − Pz of the event. An overall good agreement in shape is
seen. The simulated electron energy and implicitly the simulated E − Pz exhibit a shift
to higher values by few GeV due to imperfections in the dead material description. The
simulation histograms have been area-normalized to the data.
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Figure 8.3. Comparison between data and simulation: the number of D0 candidates as
a function of PT (K), PT (π), η(K), η(π) and the number of MVD hits of the kaon and
pion track. An overall good agreement in shape is seen. In the simulated files, there are
relatively more (kaon and pion) tracks with higher number of MVD hits than in the data.
The simulation histograms have been area-normalized to the data.
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Figure 8.4. Comparison between data and simulation: the number of D0 candidates
as a function of χ2 of the secondary vertex, the three dimensional decay length, the two
dimensional decay length (projection in XY), the two dimensional decay length error,
the decay length significance and the proper lifetime. The decay length error is the least
well described by the simulation. The simulated events were generated such that the
decay length significance describes the data well. The simulation histograms have been
area-normalized to the data.
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Figure 8.5. Comparison between data and simulation: the number of D0 candidates as
a function of PT (D0) and η(D0). Good agreement in shape is seen. The Monte Carlo
histograms were area normalized to the data points. Each bin represents a fitted signal
value.
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Figure 8.6. Comparison between data and simulation: the number of D0 candidates as
a function of D.L. significance in 6 bins of Q2 ∈ [5, 10, 20, 40, 80, 200, 1000]GeV2 of the
event. The histograms are area-normalized. Each bin represents a fitted signal value.
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Figure 8.7. Comparison between data and simulation: the number of D0 candidates as
a function of D.L. significance in 5 bins of PT (D0) ∈ [1.5, 2.4, 3, 4, 6, 20]GeV . The Monte
Carlo histograms were area normalized to the data points. Each bin represents a fitted
signal value.
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Figure 8.8. Comparison between data and simulation: the number of D0 can-
didates as a function of D.L. significance in 6 bins of pseudo-rapidity η(D0) ∈
[−1.6,−0.8,−0.4, 0., 0.4, 0.8, 1.6]. The Monte Carlo histograms were area normalized to
the data points. Each bin represents a fitted signal value.
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Figure 8.9. Comparison between data and simulation: the number of D0 candidates as a
function of D.L. significance in 5 bins of x ∈ [8·10−5, 4·10−4, 1.5·10−3 , 5·10−3, 10−2, 10−1]
of the event. The Monte Carlo histograms were area normalized to the data points. Each
bin represents a fitted signal value.
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8.4 Systematic uncertainties

The approach taken to estimate the systematic errors induced by various selection

criteria was described in detail in Sec. 7.2. The same approach was used for

the measurement performed in the extended kinematic range. A summary of the

nominal cuts and their systematic variations is given in Table 8.2. For convenience,

Variable Nominal Thres. Variation

zvtx(cm) 30 ±5

E − PZ(GeV) 40 − 65 → 45 − 60

E(e−)(GeV) 10 → 11

Yel. 0.95 → 0.9

YJB 0.02 → 0.03

Box Cut (cm2) 15 × 15 → 16 × 16

MVD Hits (K) 2 → 3

MVD Hits (π) 2 → 3

PT (K)(GeV) 0.7 ±0.1

PT (π)(GeV) 0.4 ±0.1

|η(K)| 1.6 ±0.05

|η(π)| 1.6 ±0.05

χ2
sec/ndof 8 ±1

σ(D.L.) 1 ↑ 2 and ↓ 0

Table 8.2. List of cuts which generate systematic uncertainties. The nominal thresholds
and their variations are shown. For certain variables, variations in only one direction were
allowed; the resulting systematic errors in these cases were symmetrized.

the errors on the differential cross-sections are shown for each source separately in

Appendix A, in figures A.1, A.2, A.3 and A.4. The most significant sources are

summarized below:

• The largest systematic error on the cross-section was induced by the D.L.

significance cut. The relative systematic error is within 20 − 25% for most of

the bins. The error was computed using a variation of ±1 unit away from the

nominal cut.

• The subtraction of the reflected signal induces a systematic error of about

20%.

• The systematic error induced by changing the background function to a linear

function can be as high as 5 − 15% of the differential cross-section for some

Q2 bins.
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• Non-negligible errors come also from varying the track momenta and the track

number of MVD hits. At low momentum, the effects of multiple scattering

increase. These are slightly underestimated in the Monte Carlo.

8.5 Single differential cross-sections

The single differential cross-sections as a function of Q2, PT (D0), η(D0)and Bjorken

x were measured in the extended kinematic range defined in Sec. 8.1. They are

presented below.

8.5.1 Differential cross-section w.r.t. Q2: dσ/dQ2

The differential cross-section as a function of the interaction Q2 of the event for

the process e−p → e− + D0 + X has been measured for the following bins: Q2 ∈
[5, 10, 20, 40, 80, 200, 1000]GeV2. The results are presented in Fig. 8.10 and tab-

ulated in Appendix B, Table B.5. The inner error bars (where visible) denote the

statistical errors, the outer error bars represent the systematic errors. The mea-

surement is compared to the second ZEUS analysis and to the NLO theoretical

prediction. Details on how the NLO prediction was calculated are given in Sec. 7.4.

The relative difference between the measurement and the theoretical prediction, as

defined in Eq. 7.6, is shown separately (bottom plot). The error bars correspond

to the relative total error (statistic and systematic); the shaded band corresponds

the relative error of the theoretical prediction. There is good agreement in shape

between the data and the theoretical prediction but the overall normalization is off

by ∼ 25%. The systematic errors on dσ/dQ2 due to the sources listed in Table 8.2

are displayed in Appendix A, Fig. A.1. The total systematic error, shown in Fig.

8.11, top left plot, is calculated by adding all systematic errors in quadrature. Due

to low statistics, the highest Q2 has large statistical errors.

8.5.2 Differential cross-section w.r.t. PT (D0): dσ/dPT

The differential cross-section as a function of PT (D0) for the process e−p → e− +

D0 + X has been measured for the following bins: PT ∈ [1.5, 2.4, 3, 4, 6, 20]GeV.

The results are presented in Fig. 8.12 and tabulated in Appendix B, Table B.6. The

measurement is compared to the second ZEUS analysis and to the NLO theoretical

prediction. The relative difference between the measurement and the theoretical
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Figure 8.10. The differential cross-section dσ/dQ2 for the process e−p → e− + D0 + X
was measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error bars
(where visible) represent statistical errors, the outer bars denote the systematic errors.
The results are compared to the second independent ZEUS measurement (only statistical
error bars shown) and to the NLO theoretical prediction. The beauty cross-section in
the simulated files is also displayed, for reference. Bottom plot: the relative difference
between the measurement and the NLO prediction is shown, together with its total error.
The shaded band represents the error on the prediction.

prediction is shown separately (bottom plot). The error bars correspond to the

relative total error (statistic and systematic); the shaded band corresponds the

relative error of the NLO prediction. There is again good agreement in shape

between the data and the theoretical prediction but the overall normalization is off

by 15 − 30%. The systematic errors on dσ/dPT (D0) due to the sources listed in

Table 8.2 are displayed in Appendix A, Fig. A.2. A large contribution for all PT

bins comes from varying the decay length significance cut and , at low PT , from

varying the calorimeter box cut and the transverse momenta of the daughter tracks.

The total systematic errors, shown in Fig. 8.11, are within 15% of the measured
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Figure 8.12. The differential cross-section dσ/dPT (D0) for the process e−p → e−+D0 +
X was measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error bars
(where visible) represent statistical errors, the outer bars denote the systematic errors.
The results are compared to the second independent ZEUS measurement (only statistical
error bars shown) and to the NLO theoretical prediction. The beauty cross-section in
the simulated files is also displayed, for reference. Bottom plot: the relative difference
between the measurement and the NLO prediction is shown, together with its total error.
The shaded band represents the error on the prediction.

cross-section, except the highest PT bin where they reach 30%.

8.5.3 Differential cross-section w.r.t. η(D0): dσ/dη

The differential cross-section as a function of η(D0) for the process e−p → e−+D0+

X has been measured for the following bins: η ∈ [−1.6,−0.8,−0.4, 0, 0.4, 0.8, 1.6].

The results are presented in Fig. 8.13 and tabulated in Appendix B, Table B.7. The

measurement is compared to the second ZEUS analysis and to the NLO theoretical

prediction. The relative difference between the measurement and the theoretical

prediction is shown underneath. There is reasonable agreement in shape between
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Figure 8.13. The differential cross-section dσ/dη(D0) for the process e−p → e−+D0+X
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the data and the theoretical prediction. The theory overestimates the cross-section

by 20-30% and there in an indication that the data are concentrated more at larger

values of η: the lowest η shows the largest disagreement of almost 40%. All the

systematic errors on dσ/dPT (D0) are displayed in Appendix A, Fig. A.3, for each

source. The total systematic errors, shown in Fig. 8.11, are within 20 − 25% of

the measured cross-section and of the same size as the statistical errors. Large

systematic errors for all η bins come from varying the decay length significance cut

and from turning off the reflected signal subtraction. Also, errors induced by the

background fit function and the cuts on the daughter track momenta are significant.
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8.5.4 Differential cross-section w.r.t. Bjorken x: dσ/dx

The differential cross-section as a function of Bjorken x for the process e−p →
e− + D0 + X has been measured for the following bins: x ∈ [8 · 10−5, 4 · 10−4, 1.5 ·
10−3, 5 · 10−3, 10−2, 10−1]. The results are presented in Fig. 8.14 and tabulated in

Appendix B, Table B.8. The measurement is compared to the second ZEUS analysis
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Figure 8.14. The differential cross-section dσ/dx for the process e−p → e− + D0 + X
was measured on a 2005 e−p data sample of 127 pb−1(top plot). The inner error bars
(where visible) represent statistical errors, the outer bars denote the systematic errors.
The results are compared to the second independent ZEUS measurement (only statistical
error bars shown) and to the NLO theoretical prediction. The beauty cross-section in
the simulated files is also displayed, for reference. Bottom plot: the relative difference
between the measurement and the NLO prediction is shown, together with its total error.
The shaded band represents the error on the prediction.

and to the NLO theoretical prediction. There is good agreement between the two

analyses. The relative difference between the measurement and the theoretical

prediction is shown separately (bottom plot). The shape is reasonably described

although there is a tendency for the data to drop relative to the prediction towards
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higher x values. The statistics precludes any further conclusion. All the systematic

errors on dσ/dx are displayed in Appendix A, Fig. A.4, for each source. The total

systematic errors, shown in Fig. 8.11, are within 20 − 25% of the measured cross-

section and of the same size as the statistical errors, except for the highest x bin

where both statistical and systematic errors reach 50%. The D.L. significance, the

background fit function and the reflection subtraction induce the largest systematic

errors.

8.6 Double differential cross-section

The double differential cross-section as a function of Q2 and y , σ(Q2
low, Q2

high, ylow, yhigh),

for the process e−p → e− +D0 +X, has been measured in the bin2 for the following

bins: 3 Q2bins , Q2 ∈ [5, 9, 44, 1000]GeV2; each Q2 bin was further divided in 3 y

bins: y ∈ [0.02, 0.12, 0.3, 0.7]. The kinematic range for this measurement is defined

in Sec. 8.1. The results are presented in Fig. 8.15 and tabulated in Appendix B,

Table B.9.

The systematic errors associated with the double differential cross-section suf-

fered significantly due to the intrinsic statistical errors on the signal fits. Because

of the lower statistics in each double differential bin, especially at low and high

Q2and y, the effect was much more pronounced than in the case of single differ-

ential cross-sections. This issue has been dealt with by subtracting an estimated

statistical error from the systematic error, for each source separately. A value of

the statistical error estimate for each particular cut variation was computed in the

simulated files, by looking at the efficiency of the cut variation on the signal:

ǫi =
NMC

i

NMC
nom

(8.1)

where NMC
i represents the number of meson candidates reconstructed in the simula-

tion after varying cut i, and NMC
nom is the number of meson candidates reconstructed

at nominal cuts. The estimated statistical error for source i that feeds into the

induced systematic error is then given by:

∆feed
i =

√

ǫi(1 − ǫi) · ∆stat (8.2)

where ∆stat was the statistical error on the reconstructed signal in data, at the

2This means that the cross-section values were not divided by the double bin widths.
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Figure 8.15. The double differential cross-section σ(Q2
low, Q2

high, ylow, yhigh) is shown for

3 different Q2 bins, Q2 ∈ [5, 9, 44, 1000]GeV2 in the top, central and bottom figures.
The cross-section is given in the bin (the values have not been divided by the bin width).
The measurement is compared to the NLO theoretical prediction and the second analysis
(only statistical errors shown). Larger errors are associated to bins in which the statistics
was low.
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nominal cuts. If the polluted (original) systematic error is ∆sys, the corrected

systematic error becomes:

∆sys. cor
i =







√

(∆sys
i )2 − (∆feed

i )2 if ∆sys
i > ∆feed

i

0 if ∆sys
i < ∆feed

i

Finally, the original sign of ∆sys is passed to the ∆sys. cor
i . It is worth noting that

this subtraction has little effect when statistics are high.

The systematic errors for each source listed in Table 8.2 are given in Appendix

A, figures A.5, A.6 and A.7 corresponding to first, second and third Q2 respectively.

Once again, the largest contribution comes from varying the D.L. significance. The

reflection subtraction induces also a large systematic error, especially In the highest

y bins, for all 3 Q2 bins, reaching the level of 30% in the first Q2, first y bin. The

systematic errors in most of the bins are within the statistical error. The total

systematic errors corresponding to each of the three Q2 bins are displayed in Fig.

8.16. The lowest total error of about 15 − 20% is found for the central Q2 bin, in

all 3 y bins, as a larger fraction of the signal is concentrated here.

8.7 Measuring F cc̄
2

It was shown in Fig. 8.10, 8.12, 8.13, 8.14 and 8.15 that the NLO prediction

reproduces the shape of the measured cross-section distributions well in all measured

variables. Assuming this holds outside the measured kinematic range, we can use

the NLO calculation to extrapolate to the unmeasured kinematic area. The NLO

calculation is also used to perform the bin centering corrections, as explained below.

From the measured visible cross-section in a bin in Q2 and y, the charm structure

function F cc̄
2 can be extracted at any value of x and Q2 that falls within the kinematic

limits corresponding with the y and Q2 bins through the equation:

F cc̄
2, meas(x, Q2) =

σbin
meas(ylow, yhigh, Q

2
low, Q2

high)

σbin
th (ylow, yhigh, Q2

low, Q2
high)

F cc̄
2, th(x, Q2) (8.3)

where F cc̄
2, th is the NLO prediction for the structure function, σth is the NLO theo-

retical prediction for the cross-section and σmeas is the measured cross-section. To

depend least on any mismatch of the cross-section shape within the bin, the bin

center of gravity is chosen for the Q2 value at which F cc̄
2 is quoted. Also, the y bin

edges were translated to x bin edges through the relation Q2 = sxy and a central x
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Figure 8.16. The total systematic errors on the double differential cross-section
dσ/dQ2dy are shown for 3 Q2 bins: Q2 ∈ [5, 9, 44, 1000]GeV2. The total systematic
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value was chosen at which to quote the structure function.

The measured F cc̄
2 is plotted in Fig. 8.17 and tabulated in Table B.10 of Ap-

pendix B. The results are compared to NLO theoretical prediction, which is inde-

pendent of the kinematic range of the measurement as the extrapolation procedure

was performed to the full phase-space. Also, the results of the second independent

analysis are shown. The measured shape is well reproduced by the NLO prediction,

except for the lowest x bin at high Q2 where the measured value is lower but within

2σ of the NLO central value.

The ratio between the measured F cc̄
2 presented above and the ZEUS published

F em
2 [51], at the same Q2 and Bjorken x values, has been plotted in Fig. 8.18. Its

shape is compared to the NLO/F em
2 and it is found to be well reproduced. There is

an increase in charm contribution to the total F2 at higher Q2. The ratio decreases

with increasing x, proving that charm production is dominated by gluon distribution

at low x. Regarding the overall normalization, the NLO predicts a higher ratio of

F cc̄
2 /F em

2 by about 20% w.r.t. the measured value. If this deficit is actually due to

a gluon density mismatch, then any cross-section dependent on gluon-gluon fusion

at the Large Hadron Collider will be less than the expected value by 40%.
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Figure 8.17. The measured F cc̄
2 as a function of Bjorken x for three fixed values of Q2

is presented. The results are compared to the second independent analysis and to the
theoretical NLO prediction.
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Figure 8.18. The ratio F cc̄
2 /F em

2 is compared to the ratio NLO/F em
2 at 3 different Q2

values. Charm contributes to as much as ∼ 25% to the total F2 at high Q2. The shape is
well reproduced by the NLO.



Chapter 9

Conclusions

The aim of the analysis presented in this thesis is the measurement of the production

of charm quarks in deep inelastic scattering. The measurement was performed on

data recorded by the ZEUS collaboration in 2005, having a total luminosity of 127.35

pb−1. The present analysis relies both on the performance of the ZEUS microvertex

detector as well as on analysis-dependent vertexing techniques.

More than 95% of the HERA II data recorded in 2005 has MVD information.

The vertex detector improves greatly the quality of the reconstructed tracks and

vertices. A key issue for a good MVD performance is the MVD alignment. Great

progress has been made by using tracks from e−p collisions to align all ladders of the

MVD with equal accuracy. Previously, only alignment based on cosmic tracks was

used. The new alignment procedure based on e−p tracks improves hit resolution

(∼ 25 − 30 µm for all ladders now) and impact parameter w.r.t. the interaction

point (∼ 100 − 150 µm). This analysis takes advantage of these improvements in

the alignment.

Charm was reconstructed using the decay channel D0 → K + π which accounts

for 3.8% of charm D0 meson decays. As more than 50% of charm hadronizes to

D0 mesons either directly or via D∗ decays (a large fraction of D∗ decay to D0),

the decay channel D0 → K + π is a prolific channel for charm signal. There are

disadvantages, however, such as the short D0 lifetime and the fact that the K and

the π are not uniquely identified, leading to a reflected signal.

For this analysis, specific vertexing was performed, by vertexing separately com-

binations of two tracks of opposite charge. Good vertices were selected by the vertex

χ2. The D0 invariant mass at the vertex was reconstructed. The best reduced pri-

mary vertex was created using all other tracks in the event. In this way, the charm
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meson decay was tagged. Information about the decay length and decay length

significance, the momentum vector at the decay vertex and the charm meson life-

time were optimized for producing the smallest relative error on the signal and the

highest purity. A neutral pseudotrack was built using knowledge of the decay ver-

tex, the K and π tracks and their errors. The pseudotrack was then refitted to the

primary vertex, producing a new primary vertex position and a χ2 increase. An

attempt was made to further improve the relative error on the signal by selecting

events using the primary vertex χ2 increase cut. This provided no improvement

essentially because the D0 meson is a difficult particle to tag. It is the shortest

lived particle whose decay can be tagged by the ZEUS detector. Its decay length

is comparable to the flightpath resolution which makes it difficult to distinguish

the genuine decays from background combinations, which also decrease in number

with increasing decay lengths. In total, there were 7440± 233 D0 candidates found

for the kinematic range 5 < Q2 < 1000GeV2, 3 < PT (D0) < 20GeV. Among

them, 1668 ± 46 candidates were additionally tagged as coming from a D∗+ decay,

D∗+ → D0+πs. The rest were either directly produced in the hadronization process

of the charm quark or came from a strong/electromagnetic D∗0 decay. The improve-

ment in track and vertex resolution, due to the microvertex detector, allowed signal

reconstruction of D0 mesons at transverse momenta less than 3GeV. An addi-

tional number of 5483 ± 473 D0 candidates were reconstructed with a transverse

momentum in the range of 1.5 < PT (D0) < 3GeV. This was the first charm meson

signal reconstructed at ZEUS at PT (D0) < 3GeV and it increased significantly the

statistics.

The extracted signal was used to perform two similar measurements, for the

kinematic ranges of 1.5 < PT (D0) < 20GeV and 3 < PT (D0) < 20GeV respec-

tively. The higher PT measurement acted as a check with respect to previous HERA

I measurements while the measurement in the expanded kinematic range increased

statistics. The differential cross-sections as functions of Q2 of the event, η(D0),

PT (D0) and Bjorken x were measured. They were compared to the next to leading

order theoretical prediction. For both measurements, the differential cross-section

shapes were well reproduced, for all variables, but the predicted overall normaliza-

tion was higher by a factor of 20 − 30%. It was shown that the NLO prediction

describes the data well at low transverse momenta of the charm meson. The main

input parameters to the theoretical prediction software package HVQDIS are: the

ZEUS parton density functions, the charm mass Mc = 1.35GeV, the Peterson frag-
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mentation parameter ǫ = 0.035 and the renormalization and factorization scales

µR = µF =
√

Q2 + 4M2
c . Also, the double differential cross-section d2σ/dQ2dy

was measured. This cross-section was used to extract the charm structure function

F cc̄
2 . A good agreement with the theoretical prediction of F cc̄

2 was found. When

measuring F cc̄
2 , the increased statistics allowed finer granularity and reduced the

extrapolation by a factor of ∼ 3.

The vertexing techniques used in this analysis can be applied with great success

to charm or beauty meson tagging. Selecting charm candidates by their decay length

significance and/or by the χ2 increase of the charm pseudotrack on the primary

vertex have already proved to be great tools for enhancing the signal purity and

reducing the signal relative error in the tagging of D+ mesons at ZEUS. Also, the

accuracy of the measurement presented here will be increased by including the entire

HERA II data set with a luminosity of h 400 pb−1.

This measurement confirms that theoretical predictions performed with gluon

distributions extracted from inclusive DIS are certainly trustworthy within ∼ 25%.
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Appendix A

Systematic uncertainties

In this appendix, the relative systematic errors on the differential cross-sections are

shown for each source separately, for the following cross-sections:

• single differential cross-sections as a function of Q2, PT (D0), η(D0) and Bjorken

x, displayed in figures A.1, A.2, A.3 and A.4 respectively.

• double differential cross-section σ(Q2
low, Q2

high, ylow, yhigh) in figures: A.5, A.6

and A.7.

The measurement was performed in the kinematic range:

• 5GeV2 < Q2 < 1000GeV2

• 0.02 < y < 0.7

• 1.5 < PT (D0) < 20GeV
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Figure A.1. The systematic errors, calculated and labelled for each source separately,
are displayed as a function of Q2. A large contribution for all Q2 bins comes from varying
the decay length significance cut and from turning off the reflected signal subtraction.
The highest Q2 bin suffers from low statistics and therefore large errors.
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Figure A.2. The systematic errors, calculated and labelled for each source separately,
are displayed as a function of PT (D0). A large contribution for all PT bins comes from
varying the decay length significance cut and , at low PT , from varying the calorimeter
box cut and the transverse momenta of the daughter tracks.
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Figure A.3. The systematic errors, calculated and labelled for each source separately, are
displayed as a function of η(D0). A large contribution for all η bins comes from varying
the decay length significance cut and from turning off the reflected signal subtraction.
Also, errors induced by the background fit function and the cuts on the daughter track
momenta are significant.



149
σ/σ∆

   
   

   
   

 

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

 (K) TP

   rel. stat. error   

σ/σ∆
   

   
   

   
 

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

 (sec. vtx) 2χ

σ/σ∆

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

) -E (e

σ/σ∆

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Mvd Hits (K)  

X    
-410

-3
10 -210 10

σ/σ∆

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

Reflection Subtract. 

) π (TP

rel. syst. error: Up

D.L.  significance 

 
el

y

) πMvd Hits (

 (K) η

rel. syst. error: Down

Z (vtx)  

 
JB

y

Beauty x 2 

) π (η

 ZE-P

) 
-

Cal pos. (e

Linear Background 

Figure A.4. The systematic errors, calculated and labelled for each source separately, are
displayed as a function of Bjorken x. A large contribution for all x bins comes from varying
the decay length significance cut and from turning off the reflected signal subtraction.
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Figure A.5. The systematic errors on the double differential cross-section dσ/dQ2dy ,
for 5 < Q2 < 9GeV2, are shown for each source.
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Figure A.6. The systematic errors on the double differential cross-section dσ/dQ2dy ,
for 9 < Q2 < 44GeV2, are shown for each source.
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Figure A.7. The systematic errors on the double differential cross-section dσ/dQ2dy ,
for 44 < Q2 < 1000GeV2, are shown for each source.
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Cross-section tables

In this appendix, the measured cross-section values are listed in tables. The two

different measurements were presented in detail in Chap. 7 and 8.

PT (D0) > 3GeV

For the process e−p → e− + D0 + X, differential cross-sections as a function of Q2,

PT (D0), η(D0) and Bjorken x have been measured in the kinematic range:

• 5GeV2 < Q2 < 1000GeV2

• 0.02 < y < 0.7

• 3 < PT (D0) < 20GeV

The cross-section values are given in Tables B.1 , B.2, B.3 and B.4.

PT (D0) > 1.5GeV

For the process e−p → e− + D0 + X, differential cross-sections as a function of Q2,

PT (D0), η(D0) and Bjorken x have been measured in the kinematic range:

• 5GeV2 < Q2 < 1000GeV2

• 0.02 < y < 0.7

• 1.5 < PT (D0) < 20GeV
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The cross-section values are given in Tables B.5, B.6, B.7 and B.8.

The double differential cross-section in the bin σ(Q2
low, Q2

high, ylow, yhigh) has been

measured for the same kinematic region, of 1.5 < PT (D0) < 20GeV, and is given

in Table B.9. The measured structure function F cc̄
2 for the same kinematic range is

presented in Table B.10.
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Bin edges Q2(GeV2) Cross-section (nb/GeV2) Stat. error Syst. (up) Syst. (down)

5 - 15 0.119 0.009 0.006 0.013

15 - 40 0.0426 0.0029 0.0031 0.0024

40 - 100 0.0105 0.0010 0.0012 0.0025

100 - 1000 0.000357 0.000060 0.000018 0.000035

Table B.1. The measured cross-section dσ/dQ2 in bins of Q2. The values correspond to
the kinematic range defined in Sec. 6.3, for the process e−p → e−+D0+X.The statistical
and the upper and lower systematic errors are shown for each bin.

Bin edges PT (GeV) Cross-section (nb/GeV) Stat. error Syst. (up) Syst. (down)

3 - 3.5 1.82 0.21 0.14 0.23

3.5 - 4.5 1.011 0.086 0.1 0.034

4.5 - 6 0.435 0.037 0.078 0.037

6 - 20 0.0361 0.0028 0.0008 0.01

Table B.2. The measured cross-section dσ/dPT (D0) in bins of the transverse momentum
PT (D0) of the charmed meson. The values correspond to the kinematic range defined in
Sec. 6.3, for the process e−p → e− + D0 + X. The statistical and the upper and lower
systematic errors are shown for each bin.

Bin edges η Cross-section (nb) Stat. error Syst. (up) Syst. (down)

(-1.6) - (-0.8) 0.55 0.07 0.07 0.27

(-0.8) - (-0.4) 1.14 0.1 0.39 0.1

(-0.4) - (0) 1.15 0.11 0.08 0.21

(0) - (0.4) 1.29 0.12 0.15 0.11

(0.4) - (0.8) 1.36 0.14 0.04 0.09

(0.8) - (1.6) 0.77 0.12 0.14 0.1

Table B.3. The measured cross-section dσ/dη(D0) values in bins of the pseudo-rapidity η
of the charmed meson. The values correspond to the kinematic range defined in Sec. 6.3,
for the process e−p → e− + D0 + X. The statistical and the upper and lower systematic
errors are shown for each bin.

Bin edges x Cross-section (nb) Stat. error Syst. (up) Syst. (down)

10−4 - 5 · 10−4 2124 200 290 530

5 · 10−4 - 10−3 1230 109 184 83

10−3 - 3.5 · 10−3 386 27 19 31

3.5 · 10−3 - 10−1 7.38 0.86 0.26 0.55

Table B.4. The measured cross-section dσ/dx values are given in bins of the Bjorken
x. The values correspond to the kinematic range defined in Sec. 6.3, for the process
e−p → e− +D0 +X. The statistical and the upper and lower systematic errors are shown
for each bin.
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Bin edges Q2(GeV2) Cross-section (nb/GeV2) Stat. error Syst. (up) Syst. (down)

5 - 10 0.557 0.060 0.124 0.054

10 - 20 0.221 0.018 0.014 0.024

20 - 40 0.0669 0.0078 0.0085 0.0085

40 - 80 0.0188 0.0028 0.0017 0.0025

80 - 200 0.00290 0.00062 0.00062 0.00040

200 - 1000 0.000193 0.000090 0.000147 0.000071

Table B.5. The measured cross-section dσ/dQ2 values in bins of Q2. The values corre-
spond to the kinematic range defined in Sec. 8.1, for the process e−p → e− + D0 + X.
The statistical and the upper and lower systematic errors are given for each bin.

Bin edges PT (GeV) Cross-section (nb/GeV) Stat. error Syst. (up) Syst. (down)

1.5 - 2.4 2.97 0.42 0.30 0.35

2.4 - 3 2.13 0.28 0.16 0.10

3 - 4 1.50 0.13 0.08 0.12

4 - 6 0.554 0.040 0.051 0.025

6 - 20 0.0386 0.0032 0.0012 0.0121

Table B.6. The measured cross-section dσ/dPT (D0) values in bins of the transverse mo-
mentum PT (D0) of the charmed meson are given. The values correspond to the kinematic
range defined in Sec. 8.1, for the process e−p → e− + D0 + X. The statistical and the
upper and lower systematic errors are shown for each bin.

Bin edges η Cross-section (nb) Stat. error Syst. (up) Syst. (down)

(-1.6) - (-0.8) 1.63 0.24 0.20 0.22

(-0.8) - (-0.4) 2.21 0.26 0.50 0.17

(-0.4) - (0) 2.33 0.26 0.18 0.18

(0) - (0.4) 2.81 0.32 0.24 0.40

(0.4) - (0.8) 2.81 0.36 0.18 0.21

(0.8) - (1.6) 2.24 0.40 0.43 0.34

Table B.7. The measured cross-section dσ/dη(D0) in bins of the pseudo-rapidity η of
the charmed meson. The values correspond to the kinematic range defined in Sec. 8.1,
for the process e−p → e− + D0 + X. The statistical and the upper and lower systematic
errors are shown for each bin.
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Bin edges x Cross-section (nb) Stat. error Syst. (up) Syst. (down)

8 · 10−5 − 4 · 10−4 6081 748 758 1192

4 · 10−4 − 1.5 · 10−3 2848 222 187 179

1.5 · 10−3 − 5 · 10−3 440 48 49 50

5 · 10−3 − 10−2 139 20 16 34

10−2 − 10−1 2.42 1.12 0.70 1.42

Table B.8. The measured cross-section dσ/dx in bins of Bjorken x. The values corre-
spond to the kinematic range defined in Sec. 8.1, for the process e−p → e− + D0 + X.
The statistical and the upper and lower systematic errors are shown for each bin.

Bin edges Q2(GeV2) Bin edges y Cross-section (nb) Stat. error Syst. (up) Syst. (down)

0.02 − 0.12 0.79 0.18 0.01 0.04

5 − 9 0.12 − 0.3 1.03 0.17 0.36 0.07

0.3 − 0.7 0.69 0.18 0.18 0.32

0.02 − 0.12 1.49 0.16 0.03 0.22

9 − 44 0.12 − 0.3 1.48 0.14 0.04 0.05

0.3 − 0.7 1.28 0.18 0.13 0.10

0.02 − 0.12 0.214 0.091 0.016 0.081

44 − 1000 0.12 − 0.3 0.587 0.079 0. 0.036

0.3 − 0.7 0.330 0.091 0.090 0.019

Table B.9. The measured cross-section in the bin d2σ/dQ2dy. The values correspond
to the kinematic range defined in Sec. 8.1, for the process e−p → e− + D0 + X. The
statistical and the upper and lower systematic errors are shown for each bin.

Q2(GeV2) x F cc̄
2 ∆Fstat ∆F up

sys ∆F down
sys

2.22 · 10−4 0.191 0.049 0.051 0.088

7 4.61 · 10−4 0.157 0.026 0.055 0.012

2.01 · 10−3 0.067 0.015 0.001 0.004

6.48 · 10−4 0.293 0.041 0.019 0.015

20.39 1.34 · 10−3 0.186 0.017 0.004 0.005

5.88 · 10−3 0.100 0.011 0.001 0.010

3.55 · 10−3 0.186 0.051 0.052 0.011

112 7.38 · 10−3 0.229 0.030 0 0.009

3.23 · 10−2 0.046 0.019 0.005 0.025

Table B.10. Measured F cc̄
2 values at fixed Q2 and x. The statistical and systematic

errors are also shown.
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Samenvatting

Het meestvoorkomende element in het heelal is waterstof. Het vormt meer dan 75%

van de zichtbare materie1. Het proton is de kern van het waterstof atoom. Protonen

werden in groten getale gecreëerd ongeveer 10−6 seconde na de Big Bang. Protonen

worden stabiel verondersteld2.

In het midden van onze zon fuseren protonen met elkaar tot helium kernen. Dit

vindt plaats bĳ een druk die honderd miljard keer hoger is dan de atmosferische

druk van de aarde en een temperatuur van rond vĳftien millioen graden. Deze kern

reactie voorziet de zon van energie die constant vrĳkomt aan het oppervlak in de

vorm van, onder andere, fotonen. Dit is de energie die het leven op aarde mogelĳk

maakt en onderhoudt.

Na de ontdekking van het elektron door J.J.Thomson in 1897, werd het duidelĳk

dat atoom kernen positief geladen zĳn, zodat de atomen zelf neutraal zĳn. In

1918 voerde Ernest Rutherford verstrooiïngs experimenten uit met helium kernen,

ook wel alpha deeltjes genoemd, op stikstof gas. Hĳ bemerkte dat de scintillatie

detector signalen van waterstof kernen detecteerde. Rutherford bepaalde dat deze

kernen alleen van het stikstofgas afkomstig konden zĳn en zo concludeerde hĳ dat

stikstof kernen uit waterstof kernen bestaan. Dit impliceert dat de waterstof kern

een elementair deeltje is, genaamd het proton.

Rutherford postuleerde het bestaan van nog een ander deeltje, het neutron

genaamd, dat gevormd kan worden als een proton een electron vangt. Het neu-

tron is in massa vrĳwel gelĳk aan het proton, maar het is elektrisch neutraal. Het

neutron werd ontdekt in 1932 door James Chadwick. Het is een instabiel deeltje

met een levensduur van ongeveer 15 minuten voordat het vervalt tot een proton,

een elektron en een neutrino.

Als neutronen zich samen met protonen in een atoomkern bevinden, zĳn zĳ

1Slechts 4% van de totale energie dichtheid bestaat uit zichbare materie. De rest wordt gevormd
door donkere materie (22%) en donkere energie (74%).

2De experimentele ondergrens van de levensduur van een proton is 1035 jaar.
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echter stabiel. Twee protonen en twee neutronen vormen de heliumkern; 92 protonen

en 146 neutronen vormen de uraniumkern, het zwaarste element op aarde.

De ontwikkeling van deeltjes versnellers in de jaren 50 leidde tot de ontdekking

van verschillende deeltjes, hadronen genaamd. Het leek dat zulke grote aantallen

deeltjes niet elementair konden zĳn. Het idee van quarks kwam voort uit een klas-

sificatie van hadronen: het quark model was onafhankelĳk ontwikkeld door Murray

Gell-Mann and Kazuhiko Nishĳima in 1961. Er bestaan 6 verschillende soorten

quarks: up, down, charm, strange, top and bottom. Ze hebben elk hun antideeltje,

dat een identieke massa maar tegenovergestelde quantumgetallen heeft. Het wordt

verondersteld dat het proton, het neutron en alle anderen hadronen samengesteld

zĳn uit quarks. De ontdekking van ∆++, een hadron dat bestaat uit 3 identieke up

quarks, was in tegenspraak met de theorie: Pauli’s uitsluitings principe ging hier

niet op.

Een oplossing voor dit problem werd gevonden in 1965 door Young Han, Yoichiro

Nambu and Oscar W. Greenberg die onafhankelĳk van elkaar voorstelden dat quarks

een aanvullende SU(3) ĳk vrĳheidsgraad hadden, ook wel kleur lading genoemd.

In de jaren 70 werd een geunificieerde theorie ontwikkeld, het Standaard Model

genaamd. Deze theorie bracht drie fundamentele krachten onder één noemer: de

electromagnetische, de sterke en zwakke kern krachten.

Volgens het Standaard Model werken nieuwe deeltjes, ĳkbosonen genaamd, als

kracht mediatoren en ontstaan in de ĳk symmetrieën van de elementaire bouwstenen

van de theorie, de quarks en leptonen.

Quantum chromo-dynamica is een quantum velden theorie, onderdeel van het

Standaard Model, dat de sterke interactie via gluonen, de vector bosonen van het

kleuren veld, beschrĳft. Gluonen hebben zelf kleur lading en kunnen zodoende met

elkaar een wisselwerking aangaan. Experimenteel bewĳs van gluonen werd in 1979

gegeven bĳ de Petra collider in Duitsland. Vanuit het perspectief van de chromo-

dynamica, werd het proton een erg dynamisch en complex object, bestaande uit 3

quarks (uud) en een eeuwig veranderende zee van virtuele quarks en gluonen.

De structuur van het proton is uitvoerig bestudeerd door de ZEUS collaboratie

met behulp van de HERA deeltjes versneller in Hamburg, Duitsland. Daar werden

protonen en elektronen tot zeer hoge energieën gebracht en vervolgens frontaal tegen

elkaar gebotst. Door deze botsing valt het proton uiteen en komen er quarks en/of

gluonen vrĳ. De quarks en gluonen kunnen zich niet volledig vrĳmaken maar com-

bineren tot deeltjes zodat er een cascade van deeltjes de ZEUS detector doorkruist.
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Uit deze deeltjes kan informatie afgeleid worden over de oorspronkelĳke structuur

van het proton. De HERA deeltjes versneller kan gezien worden als een gigantische

elektronen microscoop die de onderdelen van het proton tot in detail onderzoekt.

De huidige analyse meet productie van charm quarks in diepe inelastische ver-

strooiïng door reconstructie van D0 charm mesonen, die vervallen via D0 → K +π.

De meting is sterk afhankelĳk van informatie van de microvertex detector (MVD)

en van nauwkeurige spoor- en vertexreconstructie. Op het niveau van de detector

is het recent mogelĳk geworden de microvertex detector nauwkeuriger te calibreren.

Dit is mogelĳk door het gebruik van sporen afkomstig van de e−p botsing, wat

leidde tot een verbeterd oplossend vermogen in de MVD van ongeveer 20 micron.

Dit vertaalt zich tot een oplossend vermogen voor de impact parameter voor

sporen ten opzichte van het e−p interactie punt van ongeveer 100 micron. Dit is de

theoretisch best mogelĳke waarde, gegeven de lange extrapolatie lengte en het dode

material in de MVD. Om optimaal gebruik te kunnen maken van het oplossend

vermogen van de MVD, werd een analyse-afhankelĳke benadering van vertexre-

constructie gebruikt: voor elke gebeurtenis, werden secundaire vertices van paren

sporen met tegengestelde lading geconstrueerd, terwĳl de rest van de sporen in de

gebeurtenis de positie van de primaire interactie bepaalden. Karakteristieke vervals

variabelen werden gereconstrueerd in de buurt van de vervalsvertex. Deze vari-

abelen zĳn bĳvoorbeeld vervalslengte, significantie van de vervalslengte, de eigen

levensduur en een pseudospoor dat wordt geassocieerd met het oorspronkelĳke ver-

vallende deeltje. Bovendien werden deze variabelen gebruikt als filter parameters

om het D0 meson signaal te versterken. Dit leidde tot een nauwkeurigere meting.

Ook stond deze reconstructie van het verval toe een signaal bĳ lage waarden van

de transversale impuls van het meson te detecteren. Dit resulteerde in een signifi-

cante toename van de statistiek, wat een betere granulariteit van de meting mogelĳk

maakte.

Charm quark productie werd gemeten als een functie van foton virtualiteit Q2,

transversale impuls van het D0 meson, pseudo-rapidity van het D0 meson alsmede

de Bjorken x waarde van de gebeurtenis. Deze differentiële werkzame doorsneden

werden vervolgens vergeleken met de next-to-leading-order theoretische voorspelling

van QCD. Overeenstemming werd gevonden in de vorm van alle verdelingen van

de werkzame doorsneden. Gemeten werd dat de algemene normalisatie 20-25%

lager was dan de voorspelde theoretische waarde. Ook werd de bĳdrage van de

charm quark aan de totale F2 structuur functie bepaald. Er werd aangetoond dat
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de charm productie gedomineerd wordt door gluons bĳ lage Bjorken x. Als de

discrepantie tussen de theoretische en gemeten normalisaties geïnterpreteerd wordt

als een discrepantie in de gluon dichtheid, dan zal elke doorsnede afhankelĳk van

gluon-gluon fusie bĳ de Large Hadron Collider met ongeveer 40% lager uitvallen.
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