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Abstract

As the screen at the BTV monitor is not orthogonal to the optical axis of the camera,
the image acquired by the CCD results distorted. An algorithm to correct for this distortion
and other orientation errors is described in this note.
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1 Introduction

In addition to the monitor calibration, the images acquiredat the BTVs should be corrected from the
distortion due to the orientation of the OTR screens with respect to the CCD cameras. It was agreed [1]
that the front-end should return in addition to the present set of data (i.e. the S1xS2 array with the signal
on each pixel and two vectors of length S1 and S2 respectively, describing the raw pixel coordinates)
another FESA property with the coordinates of 4 particular points (i.e. at the corners of the screen).
This allows extracting the parameters to calibrate the image and correct for the distortion via a simple
linear algorithm.

Figure 1 shows the image of the calibration pattern of TT10.BTV1018. The monitor is equipped with
an alumina screen on which is marked a grid of1cm x

√
2cm pitch size. Since the screen is oriented at

45o with respect to the optical axis, its projection on the orthogonal plane gives1cm x1cm pitch. For
the set of monitors in the transfer line TT10, it is possible to profit of the grid and get the coordinates
of four points on it. The algorithm to get, from the four points at the corners of a rectangular box,
the parameters to convert the distorted raw image (in pixels) into the real image at the screen will be
described in this note.

Figure 1: TT10.BTV1018 calibration image

2 The OTR monitors and the reference systems

Transition radiation is produced when the beam is crossing the surface of the screen conducting material.
The backward directed radiation, which will be collected bya CCD camera, is emitted in the direction
corresponding to the geometric reflection of the incident beam angleφ, as represented in Fig. 2. By
geometrical considerations,φ is also the tilt angle of the screen with respect to the plane perpendicular
to the axis of the OTR optical system.

For the purpose of calibrating and correcting the image, it is possible to identify three different
coordinate systems:

• the screen (the object)→ (xS, yS)

• the image at the camera→ (xI , yI)

• the pixel digitalization→ (xp, yp)
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Figure 2: The OTR system and the three coordinates sets

We have access to the coordinates of the pixels which are integer numbers and we want to know the
real coordinates at the screen, from which we can retrieve the ones of the beam that are (xS, yS cos φ).

The transformation from the screen to the image at the camerainvolves the geometrical optics equa-
tions and in particular the notion of magnification factorM with its dependence on the distance between
the object and the lens and thus dependence onyS. The digitalization of the image implies different
horizontal and vertical scaling factors, due to the different sampling frequency in the two directions.
Moreover, the origin of the coordinates in pixel is in the topleft corner of the image, so that the sign for
a variation in theyp coordinate is inverted, and the camera image can be tilted.

In addition to that, for what concerns the orientation (left/right, top/bottom) it is important to have
the same sign convention of MAD-X [2] for the BTV images. For this purpose, two flags have to be
passed from the front-end to the acquisition application, so that it will be easy to check if this is the case
and eventually change the sign of the horizontal/vertical coordinate.

The distorted image at a calibration screen is sketched in Fig. 3, left. The coordinates of the points
P1, P2, P3, P4, at the corner of a rectangular box are given both in the pixel reference and in the screen
reference frame.

3 Rotation and translation

First of all, the image can be tilted and needs to be rotated byan angleθ in order to make the box sides
P1-P2 and P4-P3 (see Fig. 3, left) horizontal:

θ = mean

{

arctan
yP2 − yP1

xP2 − xP1

, arctan
yP3 − yP4

xP3 − xP4

}

(1)

The rotation matrix to be applied is:

Mr =

(

cos θ sin θ
− sin θ cos θ

)

(2)

For convenience reasons, the y–axis is translated to the axis where there is no deformation. To
find the “neutral” axis we proceed by noting that the sides P1-P4 and P2-P3 are not parallel. They are
respectively laying on the linesr1 andr2 of equation:

r1 : yp = yp,1 + m1 (xp − xp,1)

r2 : yp = yp,2 + m2 (xp − xp,2)
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Figure 3: Left: Sketch of a deformed image used for calibration: the points P1, P2, P3, P4 coordinates
are given. Rigth: TT10.BTV1018 calibration image, after rotation and translation.

where the coefficientm1 andm2 are:

m1 =
yp,4 − yp,1

xp,4 − xp,1

; m2 =
yp,3 − yp,2

xp,3 − xp,2

(3)

The point Q=(xp,Q, yp,Q), in which the two lines are crossing, and through which the “neutral”
vertical axis is passing as well, is obtained by solving the system:

{

yp,Q = yp,1 + m1 (xp,Q − xp,1)
yp,Q = yp,2 + m2 (xp,Q − xp,2)

The point O, which will be the new origin of the coordinates system after the translation, will there-
fore have the same x–coordinate of the point Q:

xp,O = xp,Q =
yp,2 − yp,1 + m1xp,1 − m2xp,2

m1 − m2

(4)

The y–coordinate of the point O can be chosen arbitrarily, but it is convenient to set it to:

yp,0 =
yp,1 + yp,4

2
(5)

leading to the coordinates axis shown in Fig. 3 (left).
From now on, the treatment will always consider the image after the rotation and after the translation

to the point(x0, y0). In order to simplify the notation, the rotated and translated coordinates of the points
will be indicated again byxp,i, yp,i.In Fig. 3 (right) is shown the calibration image of TT10.BTV1018
after the rotation and translation.

4 Image correction and calibration

4.1 A little bit of optics...

The magnification factorM , which is the ratio between the image (I) and the object (S) dimensions
h = x, y, is:

M ≡
hI

hS

=
s′′

s
(6)
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so that:

xI = M · xS (7)

yI = M · yS cos φ (8)

s ands′′ (see Fig. 2) are respectively the distance of the object and the image from the principal point
of the lens and they are linked with the focal lengthf via the formula:

1

f
=

1

s
+

1

s′′
(9)

By putting together Eqs. 6 and 9, the magnification factor can be written as:

M =
f

s − f
(10)

In most of the BTVs in the LHC complex (transfer lines and SPS),the distances between the camera
and the screen is about∼ (30 ÷ 50) cm, while the focal length isf ∼ 25 mm, leading to aM < 0.1.
This translates into a CCD sensor of∼ 1/3′′ for a screen image of about∼ 10 cm.

The points on the screen, lying on a plane tilted by an angleφ (usually it isφ = 45o) with respect to
the plane perpendicular to the optical axis, have differents, for differentyS coordinates on the screen:

s = s0 + ∆s = s0 − yS sin φ (11)

In our case, we can assumes′′ constant (i.e. the pointsA′′, O′′ andB′′ of Fig. 2 lying on the same
plane perpendicular to the optical axis) and:

s′′ ∼ f ≪ s (12)

We can also consider:
yS sin φ ≪ s0 (13)

and expand the magnification factor for
(

yS sin φ

s0−f

)

≪ 1, keeping only the first order term:

M =
f

(s0 − yS sin φ) − f
≈

f

s0 − f

(

1 +
yS sin φ

s0 − f

)

(14)

Finally, since theyS coordinate on the screen is proportional to the image coordinateyI (to first
order) and:

yS ∝ yI ∝ −yp , (15)

we can write:
M ≈ C0 (1 − C1yp) (16)

The transformation from the screen coordinates to the CCD camera image coordinates is therefore:

xI = M(yp)xS = C0 (1 − C1yp) xS (17)

yI = M(yp)yS cos φ = C0 (1 − C1yp) yS cos φ (18)

with the coefficientsC0 andC1 to be determined.

4.2 Image digitalization

The CCD camera has an analog reading. In the conversion to the digitized signal, two different coeffi-
cientsDx andDy should be introduced, due to the different sampling frequency in the two directions,
i.e. the pixels are not exactly square. Moreover, the sign oftheyp coordinate needs to be exchanged (see
Fig. 2) to comply with the convention to have the zero in the top left corner and increasing y–coordinated
toward the bottom of the image (see Fig. 1) .

xp = Dx xI (19)

yp = −Dy yI = αDx yI ; α = −Dy/Dx (20)
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4.3 How to determine the coefficients

To summarize, the equations to go from the coordinates at thescreen to the coordinates of the pixels
are:

xp = DxM(yp) xS = C∗

0 xS − C∗

0 C1ypxS (21)

yp = −DyM(yp) yS cos φ = αC∗

0 yS cos φ − αC∗

0 C1ypyS cos φ , (22)

beingC∗

0 = (DxC0), and the inverse transformation (from the pixel to the real coordinates) is:

xS =
xp

C∗

0 − C∗

0 C1yp

(23)

yS cos φ =
yp

α (C∗

0 − C∗

0 C1yp)
(24)

The beam coordinates, in which finally we are interested, areexactly(xS, yS cos φ).
We need to determine 3 coefficients:C∗

0 , C1 andα, from the coordinates of the points P1,...P4 of the
digitized image (already rotated by the angleθ and translated to the point(x0, y0)).

From Eq. 21, let’s consider the differences∆xp,21 = (xp,2 − xp,1) and ∆xp,34 = (xp,3 − xp,4)
respectively between the x–coordinates of points P1–P2 andP3–P4, which on the screen are separated
by the same∆xS = (xS,2 − xS,1) = (xS,3 − xS,4), known:

{

∆xp,21 = C∗

0 ∆xS − C∗

0 C1 yp,1 ∆xS

∆xp,34 = C∗

0 ∆xS − C∗

0 C1 yp,4 ∆xS
(25)

By solving the system in Eq. 25, it is:

C∗

0 =
(∆xp,21 yp,4 − ∆xp,34 yp,1)

(yp,4 − yp,1)∆xS

(26)

and

C1 =
(∆xp,21 − ∆xp,34)

(∆xp,21 yp,4 − ∆xp,34 yp,1)
(27)

Finally, using Eq. 22 to compute the difference betweenyp,4 andyp,1, it is:

(yp,4 − yp,1) = αC∗

0(yS,4 − yS,1) cos φ − αC∗

0 C1(yp,4yS,4 − yp,1yS,1) cos φ (28)

from which the coefficientα is:

α =
(yp,4 − yp,1)

2∆xS / cos φ

(∆xp,21 yp,4 − ∆xp,34 yp,1)(yS,4 − yS,1) − (∆xp,21 − ∆xp,34)(yp,4 yS,4 − yp,1 yS,1)
(29)

5 Pixel intensity correction

Because of the variation of the magnification withyp, the intensityIS must be scaled accordingly. If
we look at Eq. 23 and 24 as a “y–dependent” scaling of the pixeldimensions, in order to preserve the
collected light intensity, if the pixel size is decreased its intensity should be augmented of the same
amount and vice versa:

IS = Ip

(

DxM(yp)

DxC0

) (

DyM(yp)

DyC0

)

= Ip (1 − C1yp)
2 (30)

6



�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(xP , yP )
(xk, yl) (xk+1, yl)

(xk, yl+1) (xk+1, yl+1)

Figure 4: The pixel mapped on the new equispaced mesh

6 Mapping to a new array

By applying this algorithm, the notion of mapping aSxxSy image to anotherSxxSy raster has been
abandoned, in favor of considering “pixels” of varying dimensions and intensity. This approach has the
advantages of having no discontinuities and the intensity-density being automatically preserved, but on
the practical point of view it is not possible any longer to compute easily the image projection on the
x(y)–axis, by simply summing over the columns(rows) of the 2D pixel-intensity array.

In order to have the intensity values on an array, it is possible, starting from Eqs 23 and 24, to linearly
interpolate the intensity values of the old pixels, which now have new coordinates, to a newly created
equispaced mesh (i.e. of∆xnew = 1/(DxC0) and∆ynew = 1/α/(DxC0)) in analogy to what is done
in the Particle In Cells and Cloud In Cells simulations algorithms [3]. The intensity of every pixel is
distributed in the 4 surrounding cells so that, as in the caseof Fig. 4:

Ik,l = Ip

(

1 −
xp − xk

xk+1 − xk

) (

1 −
yp − yl

yl+1 − yl

)

Ik,l+1 = Ip

(

1 −
xp − xk

xk+1 − xk

) (

yp − yl

yl+1 − yl

)

(31)

Ik+1,l = Ip

(

xp − xk

xk+1 − xk

) (

1 −
yp − yl

yl+1 − yl

)

Ik+1,l+1 = Ip

(

xp − xk

xk+1 − xk

) (

yp − yl

yl+1 − yl

)

This algorithm is valid for “small” corrections, i.e. if thepixel dimensions are comparable to the
size of the new cells∆xnew = 1/C∗

0 :
∣

∣

∣

(

1

C∗

0
−C∗

0
C1yp

)

− ∆xnew

∣

∣

∣

∆xnew

≪ 1 (32)

which is verified in our case since it requiresC1yp ≪ 1 (Eq. 13 and following).
Figure 5 illustrates the two approaches. On the left side, the pixels are “enlarged” and their inten-

sity is reduced accordingly, and vice versa, while on the right side, the pixels intensities with the new
coordinates are interpolated on a equispaced grid. Figure 6shows the resulting beam images after the
application of the calibration algorithms, and again the differences between the two methods.

7 Conclusions and observations

An algorithm to calibrate the BTVs images and correct for the tilt angle between the screen and the
optical axis has been written and it has been successfully tested for the OTR monitors installed in TT10.
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Figure 5: The corrected TT10.BTV1018 calibration image. Left: The image obtained from the pixel
“deformation”. Right: The result of the interpolation and mapping on a new mesh

Figure 6: Left: Beam image at TT10.BTV1018 obtained from the pixel “deformation”. Right: The
result of the interpolation and mapping on a new mesh

For this correction, the front-end should return, in addition to theS1xS2 image array and the two pixel-
coordinate vectors of lengthS1 and S2 respectively, another FESA property with the position of 4
particular points, both in the pixel coordinate system(xp, yp) and in realmm coordinates at the screen
(xS, yS), and the tilt angleφ of the screen with respect to the plane perpendicular to the optical axis.

For what concerns the BTVs in TT10, the screens are tilted by anangleφ = 45o and are equipped
with an Alumina screen on which is marked a grid of1cm x

√
2/2cm pitch size, so that the front-end

can easily provide the coordinates of the 4 corners of a rectangular “box”. Not all the BTVs have this
grid, e.g. the monitors in TI2, and for them it will be necessary to identify other solutions.

The algorithm, which involves rotation, translation and dilatations of the pixel coordinates, computes
a new set of coordinates for each pixel element. If only the 2Dfit on the beam profile was required, it
would be possible to stop at this point and work with pixels ofvariable size and intensity. This would be
the best approach, since it does not imply interpolations and it automatically preserves the total intensity.
However, on the practical point of view, it is useful to map the image on a newly-created equispaced
mesh, by linearly interpolating the pixel intensities on the new grid. The result of this exercise gives
back again two coordinate vectors of lengthS1 andS2 and the newS1xS2 image array, which is very
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easy to manipulate, i.e. the sum over the columns/rows givesthe horizontal/vertical profile projection
and it can be easily visualized e.g. in the standard Java application.

Concerning the 2D fit on the images, the two methods do not give appreciable differences in terms
of beam sizes. Moreover, the image mapping on an equispaced grid has the advantage that it is straight-
forward to retrieve the “first guess” for the 2D fit directly from the Gaussian fits on the projections. The
computational time which is required for this further step (i.e. the additional “for loop” over theS1xS2
pixels) at a first evaluation does not affect the speed of the application and for sure it is payed off by
avoiding complications in the algorithms for the visualization of the profiles and the fits.

Another information which have to provided from the front-end is the orientation of the image
(right/left, top/bottom). Two flags for that are already existing and it will be important to pass them to
the acquisition application and check if they are consistent with MAD-X convention.

8 Acknowledgments

The authors would like to thank G. Arduini for encouraging the study and useful discussions, J.J. Gras,
A. Guerrero, F. Follin, V. Kain for discussions and the implementation in the front-end and in the
operation applications.

References

[1] meeting, 20/12/07

[2] MAD-X web page, in particular: http://mad.web.cern.ch/mad/Introduction/conventions.html

[3] R.W. Hockeney, J.W. Eastood, Computer simulation using particles, McGraw-Hill, New York,
(1981)

9


