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FOREWARD TO THE UPDATED VERSION

This updated version has been produced by Ms Fern Simes/BNL. I am very much in-
debted for her patience and her extraordinary skill in converting the orginal text into a LATEX
file. I acknowledge with pleasure the expert advice of Dr. Frank Paige/BNL on the interface
problems relating to TEX and LATEX. I am indebted to Dr. Norman McCubbin/Rutherford
for sending me his suggested corrections and the typographical errors that he has found in
Sections 1 through 5. This ‘Second Version’ incorporates, in addition, all the corrections
that I have found necessary over the intervening years and the typographical errors that I
have come across.

There has been a time span of some 32 years, since I produced the original version while
I worked at CERN on leave-of-absence from BNL. I have since then come across many items
in the report which I would have treated differently today. Instead of rewriting the report
from scratch, I have decided to give a series of references, which I have found useful or which
represent an advance in the topics covered in the original version.

There are two textbooks and/or monographs which I consult often. They are:

• A. D. Martin and T. D. Spearman, ‘Elementary Particle Theory,’
North-Holland Publishing Co., Amsterdam (1970).

• Steven Weinberg, ‘The Quantum Theory of Fields,’
Volume I (Cambridge University Press, Cambridge, 1995), Chapter 2.

Another recent monograph which the reader may find useful is

• Elliot Leader, ‘Spin in Particle Physics,’
(Cambridge University Press, Cambridge, 2001),

There are two important references on the Poincarè group which should be mentioned:

• A. J. Macfarlane, J. Math. Phys. 4, 490 (1963).

• A. McKerrell, NC 34, 1289 (1964).

The first work treats the topic of the intrinsic spin of a two-particle system in terms of
the generators of the Poincarè group. The second work introduces, for the first time, the
concept of the relativistic orbital angular momenta, again starting from the generators of
the Poincarè group.

The Zemach formalism, used widely in hadron spectroscopy, is inherently non-relativistic.
A proper treatment requires introduction of the Lorentz factors γ = E/w, where w is the
mass of a daughter state and E is its energy in the parent rest frame. There are some recent
references which deal with this topic:

• S. U. Chung, Pys. Rev. D 48, 1225 (1995).

• S. U. Chung, Pys. Rev. D 57, 431 (1998).

• V. Filippini, A. Fonatana and A. Rotondi, Pys. Rev. D 51, 2247 (1995).
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The reader may consult the second reference above for a formula for the general wave func-
tion, corresponding to |JM〉 where J is an integer, which are constructed out of the familiar
polarization 4-vectors. An independent derivation of the same formula has recently been
carried out by

• S. Huang, T. Ruan, N. Wu and Z. Zheng,
Eur. Phys. J. C 26, 609 (2003).

They have also worked out an equivalent formula for half-integer spins.

One of the most important decay channels for a study of mesons is that involving two
pseudoscalar particles. Such a decay system is described by the familiar sperical harmonics,
but the analysis is complicated by the amibiguities in the partial-wave amplitudes. A general
method of dealing with such a problem can be found in

• S. U. Chung, Pys. Rev. D 56, 7299 (1997).

When a meson decays into two identical particles, the ensuing amibituity problem requires
introduction of a new polynomial; see the Appendix B for a derivation of the polynomial.

The reader will note that the references cited here are not intended to be exhaustive. It
is intended merely a guide—somehwat personal—for further reading.

Suh-Urk CHUNG

BNL

Upton, NY

April, 2003
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FOREWARD

One of the basic problems in the study of elementary particle physics is that of describing
the states of a system consisting of several particles with spin. This report represents an at-
tempt to present a coherent and comprehensive view of the various spin formalisms employed
in the study of the elementary particles. Particular emphasis is given to the description of
resonances decaying into two, three or more particles and the methods of determining the
spin and parity of resonances with sequential decay modes.

Relativistic spin formalisms are based on the study of the inhomogeneous Lorentz group
called the Poincaré group. This report, however, is not a systematic study of this group. It
is our opinion that most of the features of the spin formalisms may be understood on a more
elementary and intuitive level. Certainly, a deeper understanding of the subject is possible
only from a careful study of the Poincaré group. Suffice it to say that the group possesses
two invariants corresponding to the mass and the spin of a particle and that all possible
states of a free particle with arbitrary mass and spin form the set of basis vectors for an
irreducible representation of the group.

Our approach here is to start with the particle states at rest, which are the eigen-vectors
corresponding to the standard representation of angular momentum, and then “boost” the
eigenvectors to obtain states for relativistic particles with arbitrary momentum. If the boost
operator corresponds to a pure Lorentz transformation, we obtain the canonical basis of state
vectors which, in this report, we call the canonical states for brevity. On the other hand, a
certain boost operator corresponding to a mixture of a pure Lorentz transformation and a
rotation defines the helicity state vectors whose quantization axis is taken along the direction
of the momentum. Of course, this approach precludes discussion of massless particles on the
same footing. We may point out, however, that states of a massless particle can best be
treated in the helicity basis, with the proviso that the helicity quantum number be restricted
to positive or negative values of the spin. In this report, we deal exclusively with the problem
of describing the hadronic states.

In Sections 1 to 4, we develop concurrently the canonical and helicity states for one- and
two-particle systems. In Section 5 we discuss the partial-wave expansion of the scattering
amplitude for two-body reactions and describe in detail the decay of a resonance into two
particles with arbitrary spin. The treatment of a system consisting of three particles is given
in the helicity basis in Section 6.

Section 7 is devoted to a study of the spin-parity analysis of two-step decay processes, in
which each step proceeds via a pion emission. We give a formalism treating both baryon and
boson resonances on an equal footing, and illustrate the method with a few simple but, in
practice, important examples. In developing the formalism, we have endeavored to make a
judicious choice of notation, in order to bring out the basic principles as simply as possible.

In the last two sections, Sections 8 and 9, we discuss the tensor formalism for arbitrary
spin, the relativistic version of which is known as the Rarita-Schwinger formalism. In the
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case of integral spin, the starting point is the polarization vectors or the spin-1 wave functions
embedded in four-momentum space. The boost operators in this case correspond to the fa-
miliar four-vector representation of the Lorentz transformations. In the case of half-integral
spin, we start with four-component Dirac formalism for spin- 1

2
states; the boost operators

here correspond to the 4× 4 non-unitary representation of the homogeneous Lorentz group.
We derive explicit expressions for the wave functions for a few lower spin values and ex-
hibit the form of the corresponding spin projection operators. Particular emphasis is given,
through a series of examples, to elucidating the connection between the formalism of Rarita
and Schwinger and that of the non-relativistic spin tensors developed by Zemach, as well as
the relationship between these and the helicity formalism of Section 4.

It is in the spirit “Best equipped is he who can wield all tools available” that we have
attempted to present here a coherent and unified study of the spin formalisms that are fre-
quently employed in the study of resonant states. This report, however, is not an exhaustive
treatise on the subject; rather, it represents an elementary, but reasonably self-contained
account of the basic underlying principles and simple applications. We give below a list of
general references, either as a supplementary material for the subjects treated briefly in this
report, or as a source of alternative approaches to the methods developed here.

On the subject of angular momentum and related topics such as the Clebsch-Gordan
coefficients and the Wigner D-functions, the reader is referred to Messiah [1], Rose [2], and
Edmonds [3]. A thorough account of the irreducible unitary representation of the Poincaré
group is given in Werle [4] and in Halpern [5]; a more concise exposition of the subject
may be found in Gasiorowicz [6], Wick [7], Froissart and Omnès [8], and Moussa and Stora
[9]. For a good treatment of the resonance decays covered in Sections 5 to 7, the reader is
referred to Jackson [10]. Pilkuhn [11] gives a brief account of the spin tensors discussed in
Sections 8 and 9. A systematic study of the relativistic spin states in a direction not covered
in this report has been made by Weinberg [12] who has used the finite dimensional states
of arbitrary spin. Some of the notations we have used are, however, those of Weinberg. We
have not attempted to give a complete list of references on the subject of spin formalisms; the
reader is referred to Jackson [10] for a more extensive list of references. See also Tripp [13]
for a comprehensive survey on the methods of spin-parity analysis which have been applied
to the study of resonant states.

The author is indebted to Drs. M. Jacob and P. Auvil for several enlightening discussions
and to Drs. Reucroft and V. Chaloupka for careful reading of the draft. The author wishes to
thank Dr. L. Montanet for his encouragement and support and the Track Chambers Division
on CERN for its warm hospitality.
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1 One-Particle States at Rest

States of a single particle at rest (mass w > 0) may be denoted by |jm〉, where j is the
spin and m the z-component of the spin. The states |jm〉 are the canonical basis vectors by
which the angular momentum operators are represented in the standard way. The procedure
for representing the angular momentum operators is a familiar one from non-relativistic
quantum mechanics[2]. We merely list here the main properties for later reference. Since the
angular momentum operators are the infinitesimal generators of the rotation operator, the
spin of a particle characterizes how the particle at rest transforms under spatial rotations.

Let us denote the three components of the angular momentum operator by Jx, Jy, and
Jz (or J1, J2, and J3). They are Hermitian operators satisfying the following commutation
relations:

[Ji, Jj] = i ǫijk Jk , (1.1)

where i, j, and k run from 1 to 3. The operators Ji act on the canonical basis vectors |jm〉
as follows:

J2|jm〉 = j(j + 1)|jm〉
Jz|jm〉 = m|jm〉 (1.2)

J±|jm〉 = [(j ∓ m)(j ± m + 1)]
1

2 |jm ± 1〉 ,

where J2 = J2
x +J2

y +J2
z and J± = Jx ± iJy . The states |jm〉 are normalized in the standard

way and satisfy the completeness relation:

〈j′m′|jm〉 = δj′j δm′m
∑

jm

|jm〉〈jm| = I , (1.3)

where I denotes the identity operator.
A finite rotation of a physical system (with respect to fixed coordinate axes) may be

denoted by R(α, β, γ), where (α, β, γ) are the standard Euler angles. To each R, there
corresponds a unitary operator U [R], which acts on the states |jm〉, and preserves the mul-
tiplication law:

U [R2 R1] = U [R2] U [R1] .

Now the unitary operator representing a rotation R(α, β, γ) may be written

U [R(α, β, γ)] = e−iαJz e−iβJy e−iγJz (1.4)

corresponding to the rotation of a physical system (active rotation!) by γ around the z-axis,
β around the y-axis, and finally by α around the z-axis, with respect to a fixed (x, y, z)
coordinate system. Then rotation of a state |jm〉 is given by

U [R(α, β, γ)] |jm〉 =
∑

m′

|jm′〉Dj
m′m(α, β, γ) , (1.5)

where Dj
m′m is the standard rotation matrix as given by Rose[2]:

Dj
m′m(R) = Dj

m′m(α, β, γ) = 〈jm′|U [R(α, β, γ)] |jm〉
= e−i m′α d j

m′m(β) e−im γ
(1.6)
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and
d j

m
′
m

(β) = 〈jm′|e−i βJy |jm〉 . (1.7)

In Appendix A some useful formulae involving Dj

m′m
and d j

m′m
are listed.

2 Relativistic One-Particle States

Relativistic one-particle states with momentum ~p may be obtained by applying on the
states |jm〉 a unitary operator which represents a Lorentz transformation that takes a particle
at rest to a particle of momentum ~p. There are two distinct ways of doing this, leading to
canonical and helicity descriptions of relativistic free particle states.

Let us first consider an arbitrary four-momentum pµ defined by

pµ = (p0, p1, p2, p3) = (E, px, py, pz) = (E, ~p ) . (2.1)

With the metric tensor given by

gµν = gµν =









1 0
−1

−1
0 −1









(2.2)

we can also define a four-momentum with lower indices:

pµ = gµν pν = (E,−~p ) . (2.3)

The proper homogeneous orthochronous Lorentz transformation takes the four-momentum
pµ into p′µ as follows:

p ′µ = Λµ
ν pν , (2.4)

where Λµ
ν is the Lorentz transformation matrix defined by

gαβ Λα
µ Λβ

ν = gµν , det Λ = 1, Λ0
0 > 0 . (2.5)

The Lorentz transformation given by Λµ
ν includes, in general, rotations as well as the pure

Lorentz transformations. Let us denote by Lµ
ν(~β ) a pure time-like Lorentz transformation,

where ~β is the velocity of the transformation. Of particular importance is the pure Lorentz
transformation along the z-axis, denoted by Lz(β):

Lz(β) =









cosh α 0 0 sinh α
0 1 0 0
0 0 1 0

sinh α 0 0 cosh α









(2.6)

where β = tanhα.
In terms of Lz(β), it is easy to define a pure Lorentz transformation along an arbitrary

direction ~β:
L(~β ) = R(φ, θ, 0)Lz(β)R−1(φ, θ, 0) , (2.7)
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where R(φ, θ, 0) is the rotation which takes the z-axis into the direction of ~β with spherical
angles (θ, φ):

β̂ = R(φ, θ, 0)ẑ . (2.8)

The relation (2.7) is an obvious one, but the reader can easily check for a special case with
φ = 0:

R(φ, θ, 0) =

(

1 0
0 Rij

)

, Rij =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (2.9)

Now the action of an arbitrary Lorentz transformation Λ on relativistic particle states
may be represented by a unitary operator U [Λ]. The operator preserves the multiplication
law, called the group property:

U [Λ2Λ1] = U [Λ2] U [Λ1] . (2.10)

Let us denote by L(~p ) the “boost” which takes a particle with mass w > 0 from rest
to momentum ~p and the corresponding unitary operator acting on the particle states by
U [L(~p )]:

U [L(~p )] = e−iαp̂· ~K , (2.11)

where tanh α = p/E, sinh α = p/w, and cosh α = E/w.

In analogy to Eq. (1.4), a boost operator defines a Hermitian vector operator ~K, and
the components Ki are then the infinitesimal generators of “boosts”. The three components
Ki together with Ji form the six infinitesimal generators of the homogeneous Lorentz group,
and they satisfy definite commutation relations among them. We do not list the relations
here, for they are not needed for our purposes. The interested reader is referred to Werle
[4].

From the relation (2.7) and the group property (2.10), one obtains

U [L(~p )] = U [
◦

R(φ, θ, 0)]U [Lz(p)]U−1[
◦

R(φ, θ, 0)] , (2.12)

where the rotation
◦

R takes the z-axis into the direction of ~p with spherical angles (θ, φ):

p̂ =
◦

R(φ, θ, 0)ẑ . (2.13)

We are now ready to define the “standard” or canonical state describing a single particle
with spin j and momentum ~p:

|~p, jm〉 = |φ, θ, p, jm〉 = U [L(~p )] |jm〉

= U [
◦

R(φ, θ, 0)] U [Lz(p)] U−1[
◦

R(φ, θ, 0)] |jm〉 ,
(2.14)

where |jm〉 is the particle state at rest as defined in the previous section. We emphasize
that the z-component of spin m is measured in the rest frame of the particle and not in the
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frame where the particle has momentum ~p.
The advantage of the canonical state as defined in Eq. (2.14) is that the state transforms

formally under rotation in the same way as the “rest-state” |jm〉:

U [R] |~p, jm〉 = U [R
◦

R] U [Lz(p)] U−1[R
◦

R] U [R] |jm〉

=
∑

m′

Dj
m′m(R) |R ~p, jm′〉 ,

(2.15)

where one has used Eq. (1.5). It is clear from the relation (2.15) that one may take over all
the non-relativistic spin formalisms and apply them to situations involving relativistic par-
ticles with spin. One ought to remember, however, that the z-component of spin is defined
only in the particle rest frame obtained from the frame where the particle has momentum ~p
via the pure Lorentz transformation L−1(~p ) as given in Eq. (2.7) [see Fig. 1.1(a)].z

p̂
x y

node��

z
yx

(a) z
p̂

x y
node��

zh ŷh/ ẑ � p̂
(b)

Figure 1.1: The orientation of the coordinate systems associated with a particle at rest in the (a)

canonical (x̂c, ŷc, ẑc), and (b) helicity description (x̂h = ŷh × ẑh, ŷh ∝ ẑ × p̂, ẑh = p̂).

Next, we shall define the helicity state describing a single particle with spin j and mo-
mentum ~p [see Fig. 1.1(b)]:

|~p, jλ〉 = |φ, θ, p, jλ〉 = U [L(~p )] U [
◦

R(φ, θ, 0)] |jλ〉

= U [
◦

R(φ, θ, 0)] U [Lz(p)] |jλ〉 .
(2.16)

Helicity states may be defined in two different ways. One may first rotate the rest state |jλ〉
by

◦

R, so that the quantization axis is along the ~p direction and then boost the system along

~p to obtain the helicity state |~p, jλ〉. Or, equivalently, one may first boost the rest state
|jλ〉 along the z-axis and then rotate the system to obtain the state |~p, jλ〉. That these two
different definitions of helicity state are equivalent is obvious from the relation (2.12).

One sees that, by definition, the helicity quantum number λ is the component of the spin
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along the momentum ~p, and as such it is a rotationally invariant quantity, simply because
the quantization axis itself rotates with the system under rotation. This fact may be seen
easily from the definition (2.16):

U [R] |~p, jλ〉 = U [R
◦

R] U [Lz] |jλ〉
= |R ~p, jλ〉 . (2.17)

In addition, the helicity λ remains invariant under pure Lorentz transformation that takes
~p into ~p ′ , which is parallel to ~p. Then, the invariance of λ under L′ may be seen by

U [L′] |~p, jλ〉 = U [L′]U [L(~p )]U [
◦

R] |jλ〉

= U [L(~p ′ )]U [
◦

R] |jλ〉 (2.18)

= |~p ′ , jλ〉 .

There is a simple connection between the canonical and helicity descriptions. From the
definitions (2.14) and (2.16), on finds easily that

|~p, jλ〉 = U [
◦

R]U [Lz ]U
−1[

◦

R]U [
◦

R] |jλ〉

=
∑

m

Dj
mλ(

◦

R) |~p, jm〉 .
(2.19)

We shall adopt here the following normalizations for the one-particle states:

〈~p ′ j′m′|~pjm〉 = δ̃(~p ′ − ~p )δjj′ δmm′

〈~p ′ j′λ′|~pjλ〉 = δ̃(~p ′ − ~p )δjj′ δλλ′ ,
(2.20)

where δ̃(~p ′ − ~p ) is the Lorentz invariant δ-function given by

δ̃(~p ′ − ~p ) = (2π)3(2E) δ(3)(~p ′ − ~p ) . (2.21)

It can be shown that, with the invariant normalization of Eq. (2.20), an arbitrary Lorentz
transformation operator U [Λ] acting on the states |~p, jm〉 or |p, jλ〉 is indeed a unitary
operator, i.e. U+U = I. With the invariant volume element as defined by

d̃p =
d3~p

(2π)3(2E)
, (2.22)

the completeness relations may be written as follows:

∑

jm

∫

|~pjm〉 d̃p 〈~pjm| = I

∑

jλ

∫

|~pjλ〉 d̃p 〈~pjλ| = I ,

(2.23)

where I denotes the identity operator.
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3 Parity and Time-Reversal Operations

Classically, the action of parity and time-reversal operations, denoted P and T , may be
expressed as follows:

P : ~x → −~x, ~p → −~p, ~J → ~J

T : ~x → ~x, ~p → −~p, ~J → − ~J
(3.1)

where ~x, ~p, and ~J stand for the coordinate, momentum, and angular momentum, respec-
tively. It is seen from Eq. (3.1) that P and T commute with rotations, i.e.

[P , R] = 0, [T , R] = 0 . (3.2)

From Eq. (3.1), one sees also that the pure Lorentz transformations (in particular, boosts)
act under P and T according to

PL(~p ) = L(−~p )P , TL(~p ) = L(−~p )T . (3.3)

Let us now define operators acting on the physical states, representing the parity and
time-reversal operations:

Π = U [P ]

T = Ū [T ] ,
(3.4)

where Π is a unitary operator and T is an anti-unitary (or anti-linear unitary) operator [1].
T is represented by an anti-unitary operator due to the fact that the time-reversal operation
transforms an initial state into a final state and vice versa. Operators Π, T, U [R], and
U [L(~p )] acting on the physical states should obey the same relations as Eqs. (3.2) and (3.3):

[

Π, U [R]
]

= 0
[

T, U [R]
]

= 0 (3.5)

and
Π U [L(~p )] = U [L(−~p )] Π

T U [L(~p )] = U [L(−~p )] T .
(3.6)

We are now ready to express the actions of Π and T on the rest states |jm〉. From the
relation (3.5), it is clear that the quantum numbers j and m do not change under Π:

Π|jm〉 = η|jm〉 , (3.7)

where η is the intrinsic parity of the particle represented by |jm〉. Let us write the action of
T as follows:

T |jm〉 =
∑

k

Tkm|jk〉 .

The relation (3.5) implies that, remembering the anti-unitarity of T,

∑

k

Dj
m′k(R) Tkm =

∑

k

Tm′k Dj∗
km(R) .
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From Eqs. (A.8) and (A.9), one sees that the above relation may be satisfied, if Tm′m is given
by

Tm′m = d j
m′m(π) = (−)j−mδm′,−m ,

so that the action of T on the states |jm〉 may be expressed as

T |jm〉 = (−)j−m|j − m〉 . (3.8)

Using the definition (2.14) and Eq. (3.6), one can show that the canonical state with mo-
mentum ~p transforms under Π and T as follows:

Π |~p, jm〉 = η| − ~p, jm〉
Π |φ, θ, p, jm〉 = η|π + φ, π − θ, p, jm〉 (3.9)

and
T |~p, jm〉 = (−)j−m| − ~p, j − m〉

T |φ, θ, p, jm〉 = (−)j−m|π + φ, π − θ, p, j − m〉 .
(3.10)

Next, we wish to express the consequences of Π and T operations on the helicity states
|p, jλ〉. The simplest way to achieve this is to use the formula (2.19), which connects the
helicity and canonical states. Then, by using Eqs. (3.9), (3.10), and (A.12), one obtains
easily

Π|φ, θ, p, jλ〉 = η e−iπj |π + φ, π − θ, p, j −λ〉 (3.11)

and
T |φ, θ, p, jλ〉 = e−iπλ|π + φ, π − θ, p, jλ〉 . (3.12)

Now the helicity λ is an eigenvalue of ~J · p̂. According to expressions (3.1), ~J · p̂ → − ~J · p̂
under P and ~J · p̂ → ~J · p̂ under T . This explains why the helicity λ changes sign under Π,
while it remains invariant under T.

Finally, we wish to elaborate on the meaning of the negative momentum in the state
| − ~p, jm〉 in Eqs. (3.9) or (3.10). By definition,

| − ~p, jm〉 = U [L(−~p )] |jm〉 . (3.13)

Note the following obvious identity [see Eq. (2.7)]:

L(−~p ) =
◦

RL−z(p)
◦

R
−1

= R̄Lz(p)R̄−1 ,
(3.14)

where L−z(p) denotes a boost along the negative z-axis,
◦

R = R(φ, θ, 0) and R̄ = R(π+φ, π−
θ, 0). From Eqs. (3.13) and (3.14), we obtain the result

| − ~p, jm〉 = |π + φ, π − θ, p, jm〉 . (3.15)

On the other hand, one does not have the relation like (3.15) for helicity states. Let us write

| − ~p, jλ〉 = U [
◦

R]U [L−z(p)] |jλ〉 (3.16)

7



From Eq. (3.14), we see that
◦

RL−z(p) 6= R̄Lz(p)

so that
| − ~p, jλ〉 6= U [R̂]U [Lz(p)] |jλ〉 = |π + φ, π − θ, p, jλ〉 . (3.17)

The reason for this is that, while canonical states have been obtained using operators cor-
responding to pure Lorentz transformations, the helicity states are defined with operators
representing a mixture of rotation and pure Lorentz transformation. The phase factors ap-
pearing in Eqs. (3.11) and (3.12) may be viewed as a consequence of the inequality (3.17).

4 Two-Particle States

A system consisting of two particles with arbitrary spins may be constructed in two
different ways; one using the canonical basis vectors |~p, jm〉, and the other using the helic-
ity basis vectors |~p, jλ〉. We shall construct in this section both the canonical and helicity
states for a two-particle system having definite spin and z-component, and then derive the
recoupling coefficient which connects the two bases. Afterwards, we investigate the trans-
formation properties of the two-particle states under Π and T, as well as the consequences
of the symmetrization required when the two particles are identical.

4.1 Construction of two-particle states

Consider a system of two particles 1 and 2 with spins s1 and s2 and masses w1 and w2.
In the two-particle rest frame, let ~p be the momentum of the particle 1, with its direction
given by the spherical angles (θ, φ). we define the two-particle state in the canonical basis
by

|φθm1m2〉 = a U [L(~p )] |s1m1〉U [L(−~p )] |s2m2〉 , (4.1)

where |s1m1〉 is the rest-state of particle i and a is the normalization constant to be deter-
mined later. L(±p) is the boost given by [see Eq. (3.14)]

L(±~p ) =
◦

R(φ, θ, 0)L±z(p)
◦

R
−1

(φ, θ, 0) , (4.2)

where
◦

R(φ, θ, 0) is again the rotation which carries the z-axis into the direction of ~p and

L±z(p) is the boost along the ±z-axis.
Owing to the rotational property (2.15) of canonical one-particle states, one may define

a state of total spin s by

|φθsms〉 =
∑

m1m2

(s1m1 s2m2|sms)|φθm1m2〉 , (4.3)

where (s1m1 s2m2|sms) is the usual Clebsch-Gordan coefficient. Using the formula (A.14),
one may easily show that, if R is a rotation which takes Ω = (θ, φ) into R′ = RΩ,

U [R] |Ω sms〉 =
∑

m′
s

Ds
m′

sms
(R)|R′ sm′

s〉 , (4.4)
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so that the total spin s is a rotational invariant.
The state of a fixed orbital angular momentum is constructed from Eq. (4.3) in the usual

way:

|ℓmsms〉 =

∫

dΩ Y ℓ
m(Ω)|Ωsms〉 , (4.5)

where dΩ = dφ d cos θ. Let us investigate the rotational property of Eq. (4.5). Using
Eq. (4.4),

U [R] |ℓmsms〉 =

∫

dΩ Y ℓ
m(Ω)Ds

m′
sms

(R)|R′sm′
s〉 , (4.6)

where R′ = R′(α′, β ′, γ′) = R Ω, dΩ = dα′ d cos β ′, and, from Eqs. (A.13) and (A.3),

Y ℓ
m(Ω) =

√

2ℓ + 1

4π
Dℓ∗

m0(R
−1R′)

=

√

2ℓ + 1

4π

∑

m′

Dℓ∗
mm′(R−1) Dℓ∗

m′0(R
′) (4.7)

=
∑

m′

Dℓ
m′m(R)Y ℓ

m′(β ′, α′) ,

one obtains the result

U [R] |ℓmsms〉 =
∑

m′m′
s

Dℓ
m′m(R)Ds

m′
sms

(R)|ℓm′sm′
s〉 . (4.8)

This shows that the states |ℓmsms〉 transform under rotation as a product of two “rest
states” |ℓm〉 and |sms〉.

Now, it is easy to construct a state of total angular momentum J :

|JMℓs〉 =
∑

mms

(ℓm sms|JM)|ℓmsms〉

=
∑

mms
m1m2

(ℓm sms|JM)(s1m1 s2m2|sms) × (4.9)

×
∫

dΩ Y ℓ
m(Ω)|Ωm1m2〉 .

From Eqs. (4.8) and (A.14), one sees immediately

U [R] |JMℓs〉 =
∑

M ′

DJ
M ′M(R)|JM ′ℓs〉 . (4.10)

Note that, as expected, ℓ and s are rotational invariants: Eq. (4.9) is the equivalent of the
non-relativistic L-S coupling.

Next, we turn to the problem of constructing two-particle states from the helicity basis
vectors |~p, jλ〉. In analogy to Eq. (4.1), we write

|φθλ1λ2〉 = a U [
◦

R]
{

U [Lz(p)] |s1λ1〉U [L−z(p)] |s2 −λ2〉
}

≡ U [
◦

R(φ, θ, 0)] |00λ1λ2〉 , (4.11)
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where |siλi〉 is the rest state of particle i and a the normalization constant of Eq. (4.1). We
have constructed the helicity state for the particle 2 in such a way that its helicity quantum
number is +λ2.

States of definite angular momentum J may be constructed from Eq. (4.11) as follows:

|JMλ1λ2〉 =
NJ

2π

∫

dR DJ ∗
Mµ(R)U [R] |00λ1λ2〉 , (4.12)

where NJ is a normalization constant to be determined later. Let us apply an arbitrary
rotation R′ on the state (4.12):

U [R′ ] |JMλ1λ2〉 =
NJ

2π

∫

dR DJ ∗
Mµ(R)U [R′′ ] |00λ1λ2〉 ,

where R′′ = R′R. But, by using Eq. (A.3) and the unitarity of the D-functions,

DJ ∗
Mµ(R) = DJ ∗

Mµ(R′ −1R′′ )

=
∑

M ′

DJ ∗
MM ′(R′ −1)DJ ∗

M ′µ(R′′ )

=
∑

M ′

DJ
M ′M(R′) DJ ∗

M ′µ(R′′ ) .

Using this relation, as well as the fact that dR = dR′′, one obtains the result

U [R′ ] |JMλ1λ2〉 =
∑

M ′

DJ
M ′M(R′ )|JM ′λ1λ2〉 , (4.13)

so that states (4.12) are indeed states of a definite angular momentum J . Note that, as
expected, λ1 and λ2 are rotational invariants.

Now, let us specify the rotation R appearing in Eq. (4.12) by writing R = R(φ, θ, γ).
Then,

U [R(φ, θ, γ)] |00λ1λ2〉
= U [R(φ, θ, 0)]U [R(0, 0, γ)] |00λ1λ2〉 (4.14)

= e−i(λ1−λ2) γ U [R(φ, θ, 0)] |00λ1λ2〉 .

The last relation follows because of the commutation relation

[R(0, 0, γ), L±z(p)] = 0 . (4.15)

Substituting Eq. (4.14) into Eq. (4.12), and integrating over dγ, one obtains

|JMλ1λ2〉 = NJ

∫

dΩ DJ ∗
Mλ(φ, θ, 0)|φθλ1λ2〉 , (4.16)

where λ = λ1 − λ2.
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4.2 Normalization

We shall now specify the normalizations we adopt for states (4.1) and (4.11). The most
convenient choices are

〈Ω′m′
1m

′
2|Ωm1m2〉 = δ(2)(Ω′ − Ω)δm1m′

1
δm2m′

2
(4.17)

and
〈Ω′λ′

1λ
′
2|Ωλ1λ2〉 = δ(2)(Ω′ − Ω)δλ1λ′

1
δλ2λ′

2
. (4.18)

With the single particle normalizations as defined in Eqs. (2.20), one may show (see Appendix
C) that

a =
1

4π

√

p

w
, (4.19)

where p is the relative momentum and w is the effective mass of the two-particle system.
The normalization (4.17) implies that the states |JMℓs〉 given in Eq. (4.9) obey the following
normalizations:

〈J ′M ′ℓ′s′|JMℓs〉 = δJJ ′δMM ′δℓℓ′δss′ . (4.20)

From Eqs. (4.18) and (A.4), the state |JMλ1λ2〉 of formula (4.16) is seen to be normalized
according to

〈J ′M ′λ′
1λ

′
2|JMλ1λ2〉 = δJJ ′δMM ′δλ1λ′

1
δλ2λ′

2
, (4.21)

if the constant NJ is set equal to

NJ =

√

2J + 1

4π
. (4.22)

The completeness relations may now be written
∑

JM
ℓs

|JMℓs〉〈JMℓs| = I (4.23)

and
∑

JM
λ1λ2

|JMλ1λ2〉〈JMλ1λ2| = I . (4.24)

From Eqs. (4.16) and (4.18), we obtain the relation

〈Ωλ′
1λ

′
2|JMλ1λ2〉 = NJDJ ∗

Mλ(φ, θ, 0) δλ1λ′
1
δλ2λ′

2
. (4.25)

4.3 Connection between canonical and helicity states

We start from formula (4.11):

|φθλ1λ2〉 = a U [
◦

R]
{

U [Lz(p)] |s1λ1〉U [L−z(p)] |s2 −λ2〉
}

= a U [L(~p )]U [
◦

R] |s1λ1〉U [L(−~p )]U [
◦

R] |s2 −λ2〉 (4.26)

=
∑

m1m2

Ds1

m1λ1
(φ, θ, 0)Ds2

m2−λ2
(φ, θ, 0)|φθm1m2〉 ,
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where we have used the formulae (2.12), (1.5), and (4.1). Then from Eq. (4.16),

|JMλ1λ2〉 = NJ

∑

m1m2

∫

dΩ DJ ∗
Mλ(φ, θ, 0)Ds1

m1λ1
(φ, θ, 0)Ds2

m2−λ2
(φ, θ, 0)|φθm1m2〉 . (4.27)

The product of three D-functions appearing in Eq. (4.27) may be reduced as follows. From
Eq. (A.14),

Ds1

m1λ1
Ds2

m2−λ2
=
∑

sms

(s1m1 s2m2|sms)(s1λ1 s2 −λ2|sλ)Ds
msλ (4.28)

and, from Eq. (A.15),

DJ ∗
MλD

s
msλ =

∑

ℓm

√

4π

2ℓ + 1

(

2ℓ + 1

2J + 1

)

(ℓm sms|JM)(ℓ0 sλ|Jλ)Y ℓ
m . (4.29)

Substituting these into Eq. (4.27) and comparing the result with Eq. (4.9), we obtain finally

|JMλ1λ2〉 =
∑

ℓs

(

2ℓ + 1

2J + 1

)
1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)|JMℓs〉 , (4.30)

so that the recoupling coefficient between canonical and helicity states is given by

〈J ′M ′ℓs|JMλ1λ2〉 =

(

2ℓ + 1

2J + 1

)
1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)δJJ ′δMM ′ . (4.31)

The relation (4.30) may be inverted to give

|JMℓs〉 =
∑

λ1λ2

|JMλ1λ2〉〈JMλ1λ2|JMℓs〉

=
∑

λ1λ2

(

2ℓ + 1

2J + 1

)
1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)|JMλ1λ2〉 . (4.32)

4.4 Symmetry relations

The canonical states |JMℓs〉 transform in a particularly simple manner under symmetry
operations (e.g. parity and time-reversal), and the derivation is also much simpler than
for helicity states. For this reason, we shall first investigate the consequences of symmetry
operations on the canonical states, and then obtain the corresponding relations for the states
|JMλ1λ2〉 by using the relation (4.30).

We shall first start with the parity operation. Using the formula (3.9), we find easily

Π|φθm1m2〉 = η1η2|π + φ, π − θ, m1m2〉 , (4.33)

where η1(η2) is the intrinsic parity of particle 1(2). From the defining equation (4.9), we
then obtain immediately

Π|JMℓs〉 = η1η2(−)ℓ|JMℓs〉 , (4.34)
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so that the “ℓ-s coupled” states are in an eigenstate of Π with the eigenvalue η1η2(−)ℓ, a
well known result. Using the formula (4.30) and the symmetry relations of Clebsch-Gordan
coefficients, one finds for the helicity states

Π |JMλ1λ2〉 = η1η2(−)J−s1−s2|JM −λ1 −λ2〉 . (4.35)

Again, the helicities reverse sign, as was the case for the single-particle states [see Eq. (3.11)].
Consequences of the time-reversal operation may be explored in a similar fashion. Using

Eq. (3.10), one finds immediately

T |φθm1m2〉 = (−)s1−m1(−)s2−m2 |π + φ, π − θ,−m1 − m2〉 . (4.36)

Then, from Eq. (4.9),
T |JMℓs〉 = (−)J−M |J − Mℓs〉 (4.37)

and, from Eq. (4.30),
T |JMλ1λ2〉 = (−)J−M |J − Mλ1λ2〉 . (4.38)

Now, we investigate the effects of symmetrization required when the particles 1 and 2
are identical. Regardless of whether the particles are bosons or fermions, the symmetrized
state may be written, for the canonical states

|JMℓs〉s = as[1 + (−)2s1 P12] |JMℓs〉 , (4.39)

where P12 is the particle-exchange operator and as is the normalization constant. Again,
using the defining equation (4.9), one obtains

P12|JMℓs〉 = (−)ℓ+s−2s1|JMℓs〉

or
|JMℓs〉s = as[1 + (−)ℓ+s] |JMℓs〉 , (4.40)

so that ℓ + s = even for a system of identical particles in an eigenstate of orbital angular
momentum ℓ and total spin s and as = 1/2. Now, the symmetrized helicity state may be
written

|JMλ1λ2〉s = bs(λ1λ2)[1 + (−)2s1 P12] |JMλ1λ2〉 , (4.41)

where bs(λ1λ2) is the normalization constant. From Eqs. (4.30) and (4.40), one finds

|JMλ1λ2〉s = bs(λ1λ2)
{

|JMλ1λ2〉 + (−)J |JMλ2λ1〉
}

, (4.42)

where bs(λ1λ2) = 1/
√

2 for λ1 6= λ2 and bs(λ1λ2) = 1/2 for λ1 = λ2. Note that, for a system
of identical particles, the symmetrized states in both canonical and helicity bases have the
same forms, regardless of whether the particles involved are fermions or bosons.
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5 Applications

We are now ready to apply results of the previous section to a few physical problems
of practical importance. As a first application, we shall write down the invariant transition
amplitude for two-body reactions and derive the partial-wave expansion formula. We do this
in the helicity basis, following the derivation given in the “classic” paper by Jacob and Wick
[14]. Our main purpose in this exercise is to show how the particular normalization (2.20)
of single-particle states influences the precise definition of the invariant amplitudes and the
corresponding cross-section formula (see Appendix B).

Next, we shall discuss the general two-body decays of resonances and give the symmetry
relations satisfied by the decay amplitude, as well as the coupling formula which connects the
helicity decay amplitude to the partial-wave amplitudes. Finally, we take up the discussion of
the spin density matrices, introduce the multipole parameters, and then expand the angular
distribution for two-body decays in terms of the multipole parameters.

5.1 S-matrix for two-body reactions

Let us denote a two-body reaction by

a + b → c + d (5.1)

with ~pa, sa, λa, and ηa standing for the momentum, spin, helicity, and the intrinsic parity
of the particle a, etc. Let w0 denote the centre-of-mass (c.m.) energy and let ~pi(~pf) be the
c.m. momentum of the particle a(c). The invariant S-matrix element for the reaction (5.1)
may be written, in the over-all c.m. system,

〈~pcλc; ~pdλd|S|~paλa; ~pbλb〉 = 〈~pfλc;−~pfλd|S|~piλa;−~piλb〉
= (4π)2 w0√

pfpi

〈Ω0λcλd|S|00λaλb〉 , (5.2)

where we have used Eq. (4.11) with the normalization constant as given in Eq. (4.19), and
we have fixed the direction ~pi at the spherical angles (0, 0) and ~pf at Ω0 = (θ0, φ0). Because
of the invariant normalization (2.20) of the one-particle states, the absolute square of the
amplitude (5.2) summed over the helicities λa, λb, etc., is a Lorentz invariant quantity. It
is in this sense that formula (5.2) is referred to as the “invariant S matrix”. Due to the
energy-momentum conservation, one may write

〈Ω0λcλd|S|00λaλb〉 = (2π)4δ(4)(pc + pd − pa − pb) 〈Ω0λcλd|S(w0)|00λaλb〉 . (5.3)

If we define the T operator via S = 1 + iT , it is clear that we may write down the
T -matrix in the same way as in formulae (5.2) and (5.3), simply replacing S by T . Now, the
invariant transition amplitude Mfi is defined from the T matrix by

(2π)4δ(4)(pc + pd − pa − pb) Mfi = 〈pcλc; pdλd|T |paλa; pbλb〉 (5.4)

or
Mfi = (4π)2 w0√

pfpi
〈Ω0λcλd|T (w0)|00λaλb〉 . (5.5)
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The differential cross-section for fixed helicities is related to the transition amplitude by

dσ

dΩ0
=

pf

pi

∣

∣

∣

∣

Mfi

8πw0

∣

∣

∣

∣

2

, (5.6)

which has been obtained using Eqs. (B.2), (B.3), and (B.6).
Let us now expand the transition amplitude in terms of the partial-wave amplitudes:

〈Ω0λcλd|T (w0)|00λaλb〉 =
∑

JM

〈Ω0λcλd|JMλcλd〉〈JMλcλd|T (w0)|JMλaλb〉

×〈JMλaλb|00λaλb〉

=
1

4π

∑

J

(2J + 1)〈λcλd|T J(w0)|λaλb〉DJ ∗
λλ′ (φ0, θ0, 0) , (5.7)

where λ = λa − λb and λ′ = λc − λd.
If we define the “scattering amplitude” f(Ω0) via

dσ

dΩ0
= |f(Ω0)|2 (5.8)

we obtain

f(Ω0) =
(pf/pi)

1

2

8πw0
Mfi . (5.9)

This formula then relates to the “non-relativistic” scattering amplitude f(Ω0) to the Lorentz
invariant transition amplitude Mfi. From Eqs. (5.5) and (5.7), one sees immediately that

f(Ω0) =
1

pi

∑

J

(

J +
1

2

)

〈λcλd|T J(w0)|λaλb〉DJ ∗
λλ′ (φ0, θ0, 0) . (5.10)

The partial-wave T -matrix appearing in Eq. (5.10) is related to the partial-wave S-matrix
by

〈λcλd|SJ(w0)|λaλb〉 = δfiδλcλa
δλdλb

+ i〈λcλd|T J(w)|λaλb〉 , (5.11)

where δfi = 1 for elastic scattering and zero, otherwise.
If parity is conserved in the process (5.1), it follows from Eq. (4.35) that the partial-wave

amplitude given by Eq. (5.11) should satisfy the following symmetry relation:

〈−λc − λd|SJ(w0)| − λa − λb〉 = η 〈λcλd|SJ(w0)|λaλb〉 , (5.12)

where
η =

ηcηd

ηaηb

(−)sc+sd−sa−sb .

Next, we examine the consequences of time-reversal invariance. Let us denote by |i〉 and
|f〉 the initial and final system in a scattering process. Then, the time-reversed process takes
the initial state |T f〉 into the final state |T i〉, so that time-reversal invariance implies the
following relation for the S-matrix:

〈f |S|i〉 = 〈T i|S|T f〉 . (5.13)

Using Eq. (4.38), one finds immediately

〈λcλd|SJ(w0)|λaλb〉 = 〈λaλb|SJ(w0)|λcλd〉 , (5.14)

where the right-hand side refers to the process c + d → a + b.
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5.2 Two-body decays

Let us consider a resonance of spin-parity Jη and mass w (to be called the resonance J),
decaying into a two-particle system with particles 1 and 2:

J → 1 + 2 , (5.15)

and let s1(s2) and η1(η2) denote the spin and intrinsic parity of the particle 1(2). In the rest
frame of the resonance J(JRF), let ~p be the momentum of the particle 1 with the spherical
angles given by Ω = (θ, φ). Then, the amplitude A describing the decay of spin J with the
z-component M into two particles with helicities λ1 and λ2 may be written

A = 〈~pλ1;−~pλ2|M|JM〉

= 4π

(

w

p

)
1

2

〈φθλ1λ2|JMλ1λ2〉〈JMλ1λ2|M|JM〉

= NJF J
λ1λ2

DJ ∗
Mλ(φ, θ, 0), λ = λ1 − λ2 , (5.16)

where one has used the formulae (4.19), (4.24), and (4.25). The “helicity decay amplitude”
F is given by

F J
λ1λ2

= 4π

(

w

p

)
1

2

〈JMλ1λ2|M|JM〉 . (5.17)

Since M is a rotational invariant, the helicity amplitude F can depend only on the rotation-
ally invariant quantities, namely, J , λ1, and λ2.

It is easy to expand the helicity decay amplitude F in terms of the partial-wave ampli-
tudes. Using the recoupling coefficient (4.31), we may write

〈JMλ1λ2|M|JM〉 =
∑

ℓs

〈JMλ1λ2|JMℓs〉〈JMℓs|M|JM〉

=
∑

ℓs

(

2ℓ + 1

2J + 1

)
1

2

(ℓ0 sλ|Jλ)(s1λ1 s2 −λ2|sλ)〈JMℓs|M|JM〉

so that F may be expressed

F J
λ1λ2

=
∑

ℓs

(

2ℓ + 1

2J + 1

)
1

2

aJ
ℓs (ℓ0 sλ|Jλ) (s1λ1 s2 −λ2|sλ) , (5.18)

where the partial-wave amplitude aJ
ℓs is defined by

aJ
ℓs = 4π

(

w

p

)
1

2

〈JMℓs|M|JM〉 . (5.19)

The normalizations have a simple relationship

∑

λ1 λ2

|F J
λ1λ2

|2 =
∑

ℓ s

|aJ
ℓs|2 (5.19a)
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If parity is conserved in the decay, we have, from Eq. (4.35),

F J
λ1λ2

= ηη1η2(−)J−s1−s2F J
−λ1−λ2

, (5.20)

where η1 and η2 are the intrinsic parities of the particles 1 and 2. If the particles 1 and 2
are identical, we have to replace the state |JMλ1λ2〉 in Eq. (5.17) by the symmetrized state
of Eq. (4.42), so that we obtain the following symmetry relation:

F J
λ1λ2

= (−)JF J
λ2λ1

. (5.21)

It is possible to obtain a further symmetry relation on F by considering the time-reversal
operations. For the purpose, let us consider the elastic scattering of particles 1 and 2 in the
angular momentum state |JMλ1λ2〉, i.e.

〈JMλ′
1λ

′
2|T (w)|JMλ1λ2〉 ≡ 〈λ′

1λ
′
2|T J(w)|λ1λ2〉 , (5.22)

where w is the c.m. energy and coincides with the effective mass of the resonance J . Now,
we make the assumption that the J th partial wave for the elastic scattering of particles 1
and 2 is completely dominated by the resonance at the c.m. energy w (see Fig. 1.2).

�1
�2

jJMimass = w
�01
�02

Figure 1.2: Elastic scattering of particles 1 and 2, mediated by a resonance J in the s-channel.

Then, we may write

T (w) ∼
∑

M

M|JM〉D(w)〈JM |M† ,

where D(w) is the Breit-Wigner function for the resonance and M is the “decay operator”
of Eq. (5.17). Substituting this into Eq. (5.22), we obtain

〈λ′λ′
2|T J(w)|λ1λ2〉 ∼ D(w)F J

λ′
1
λ′
2

F J ∗
λ1λ2

,

so that time-reversal invariance for elastic scattering implies, from Eqs. (5.11) and (5.14),

F J
λ′
1
λ′
2

F J ∗
λ1λ2

= F J
λ1λ2

F J ∗
λ′
1
λ′
2

. (5.23)

This means that the phase of the complex amplitude F does not depend on the helicities λ1

and λ2. Therefore, we can consider F a real quantity without loss of generality:

F J
λ1λ2

= real . (5.24)
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We emphasize that this result follows only from the assumption that the J th partial wave
is dominated by the resonance J at the energy w. This condition is fulfilled, for example, in
the P -wave amplitudes of the π+π− or pπ+ elastic scattering at the c.m. energies correspond-
ing to ρ0 and ∆(1232) masses, where it is known that these resonances saturate the unitarity
limit. It is clear, however, that this condition may not be satisfied for all resonances. In this
sense, the relations (5.23) or (5.24) may be considered only an “approximate” symmetry.
We will show later in the discussion of the sequential decay modes that the symmetry (5.23)
can actually be tested experimentally.

Before we proceed to a discussion of the angular distribution resulting from the decay
of a resonance of spin J , it is necessary to construct the corresponding spin density matrix,
which carries the information on how the resonance has actually been produced.

5.3 Density matrix and angular distribution

Let us consider the production and decay of a resonance J given by

a + b → c + J, J → 1 + 2 . (5.25)

We shall use for this process the same notations, wherever possible, as those of Sections 5.1
and 5.2. Note, however, that the helicity corresponding to the resonance J is denoted by Λ,
and w is the effective mass of the particles 1 and 2. The over-all transition amplitude Mfi

may be written, combining Eqs. (5.5) and (5.16),

Mfi ∼
∑

Λ

〈~p λ1λ2|M|JΛ〉〈~pfλcΛ|T (w0)|~piλaλb〉 . (5.26)

The differential cross-section in the JRF decay angles Ω = (θ, φ) may be expressed, after
summing over all other variables except Ω,

dσ

dΩ
∼
∫

dΩ0 dwK(w)
∑

|Mfi|2 , (5.27)

where K(w) is a factor which includes all the quantities dependent on w, such as the phase
space factor [see Eq. (B.8)] and the square of the Breit-Wigner function D(w) of the resonance
J .

Next, we introduce the spin density matrix corresponding to the resonance J :

ρJ
ΛΛ′ ∼

∫

dΩ0

∑

〈~pfλcΛ|T (w0)|~piλaλb〉 × 〈~pfλcΛ|T (w0)|~piλaλb〉∗ , (5.28)

where the summation sign denotes the sum over λa, λb, and λc. Then, from expressions
(5.26) and (5.27),

dσ

dΩ
∼
∫

dw K(w)
∑

ΛΛ′

λ1λ2

〈~p λ1λ2|M|JΛ〉ρJ
ΛΛ′〈JΛ′|M†|~pλ1λ2〉 (5.29)
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One sometimes defines the density matrix by

ρJ =
∑

ΛΛ′

|JΛ〉ρJ
ΛΛ′〈JΛ′| . (5.30)

Then,
dσ

dΩ
∼
∫

dw K(w)
∑

λ1λ2

〈~p λ1λ2|MρJM†|~p λ1λ2〉 .

At this point, we introduce a simplifying assumption that rhoJ
ΛΛ′ , is independent of w

over the width of the resonance J . This assumption makes the resulting formalism much
simpler. It can be shown that a more general formalism without this simplifying assumption
leads to identical results in most cases [see Chung[15]]. We shall come back to this point
later, when we discuss the sequential decay modes.

Now, we can absorb the integration over dw into the decay amplitude F , and define

gJ
λ1λ2

∼
∫

dw K(w)|F J
λ1λ2

|2 . (5.31)

We emphasize that F is in general a complicated function of w. If the partial-wave amplitude
is proportional to pℓ, we see from Eq. (5.18) that F is a function of w in a way that makes
it impossible to “split off” a helicity-independent function of w from F .

Combining expressions (5.16), (5.29), and (5.31), we obtain the explicit expression for
the differential cross-section (λ = λ1 − λ2)

dσ

dΩ
∼ N2

J

∑

ΛΛ′

λ1λ2

ρJ
ΛΛ′DJ ∗

Λλ (φ, θ, 0) DJ
Λ′λ(φ, θ, 0) gJ

λ1λ2
. (5.32)

Let us denote by I(Ω) the normalized angular distribution, i.e.

∫

dΩ I(Ω) = 1 . (5.33)

Then, we may write

I(Ω) =

(

2J + 1

4π

)

∑

ΛΛ′

λ1λ2

ρJ
ΛΛ′DJ ∗

Λλ (φ, θ, 0)DJ
Λ′λ(φ, θ, 0) gJ

λ1λ2
. (5.34)

I(Ω) is a normalized distribution, if we impose:

∑

Λ

ρJ
ΛΛ = 1 (5.35)

and
∑

λ1λ2

gJ
λ1λ2

= 1 . (5.36)
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Note that I(Ω) is real, as it should be. This can be shown easily by using the fact that the
density matrix is Hermitian by definition [see Eq. (5.28)].

Next, we turn to a discussion of the symmetry relations for ρH
ΛΛ′ coming from parity

conservation in the production process. We fix the production coordinate system such that
the reaction a+ b → c+J takes place in the x-z plane. Consequences of parity conservation
may now be investigated using the reflection operator through the y-axis:

Πy = Πe−iπJy . (5.37)

It is clear that this operator commutes with any operator representing a rotation around the
y-axis:

[

Πy, U [Ry]
]

= 0 . (5.38)

In addition, it will commute with any operator representing a boost in the x-z plane:
[

Πy, U [L( ~K )]
]

= 0 , (5.39)

where the momentum ~K lies in the x-z plane.
It is now easy to see that the Πy acting on the T -matrix in Eq. (5.28) will leave the

momenta ~pf and ~pi unchanged and act directly on the rest states:

Πy|siλi〉 = ηi(−)si−λi |si −λi〉 , (5.40)

where the index i stands for the particles a, b, c, or J . substituting Eq. (5.40) into Eq. (5.28),
one obtains the result

ρJ
ΛΛ′ = (−)Λ−Λ′

ρJ
−Λ−Λ′ . (5.41)

Note that, owing to the relation (5.39), the density matrix defined in the canonical basis
instead of the helicity basis will satisfy the same symmetry relation as in Eq. (5.41). In
fact, expression (5.38) implies that the symmetry given in Eq. (5.41) is true as long as the
quantization axis remains in the production plane.

We shall derive another symmetry relation applicable to the density matrix defined in
the canonical basis. The canonical density matrix is, of course, obtained by replacing λi in
Eq. (5.28) by mi, the z-component of the spin si in the canonical description. Suppose now
that the production process a + b → c + J takes place in the x-y plane. It is convenient, in
this case, to define a reflection operator through the z-axis:

Πz = Πe−iπJz . (5.42)

Note that, in analogy to expression (5.39),
[

Πz, U [L(~q )]
]

= 0 , (5.43)

where the momentum ~q lies in the x-y plane.
Therefore, the Πz acting on the T -matrix in Eq. (5.28) leaves the momenta ~pf and ~pi in

peace, while the Πz acting on the rest states |simi〉 brings out a phase factor

Πz|simi〉 = ηie
−imiπ|simi〉 . (5.44)
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Now, the resulting symmetry relation can be written down easily:

ρJ
mm′ = (−)m−m′

ρJ
mm′ , (5.45)

where m is the z-component of spin J in the canonical basis. The relation (5.45) implies
that ρJ

mm′ = 0 if m − m′ is odd; this symmetry is known as Capps’ checker-board theorem
[10].

We are now ready to examine the implications of parity conservation in the angular
distribution given by Eq. (5.34). For the purpose, we choose the Jackson frame for the
resonance J , i.e. the z-axis along the direction ~pb and the y-axis along the production normal
in the JRF. Applying the symmetry (5.41) and the formula (A.12) for the D-functions to
the angular distribution (5.34), we obtain

I(θ, φ) = I(π − θ, π − φ) . (5.46)

This is then the general symmetry relation applicable if the quantization axis is in the
production plane, regardless of whether the parity is conserved in the decay process.

Integrating over the angle φm the angular distribution is seen to satisfy: I1(θ) = I1(π−θ).
So, if the distribution I1(θ) is a polynomial in cos θ, only the terms with even powers of cos θ
contribute. If we integrate over the angle θ, Eq. (5.46) implies the symmetry: I2(φ) =
I2(π − φ). Note that I2(φ) is simply the distribution in the Treiman-Yang angle in the
Jackson frame. So, parity conservation in the production process means that the Treiman-
Yang angle is symmetric around φ = π/2. Then, choosing the interval of φ between −π/2
and 3π/2, we may fold the distribution in φ about π/2 and consider only the interval between
−π/2 and +π/2.

If parity is conserved in the decay of the resonance J , we have the additional symmetry,
owing to the relations (5.20) and (A.12),

I(θ, φ) = I(π − θ, π + φ) . (5.47)

Note that this symmetry is valid, independent of the choice of the quantization axis in the
JRF, simply because Eq. (5.47) has been obtained without the use of the symmetry relations
of the density matrix. Note also that, if the particles 1 and 2 are identical, we obtain exactly
the same symmetry (5.47).

Integrating Eq. (5.47) over the angle θ, we obtain the symmetry: I3(φ) = I3(π +φ). This
means that the distribution in φ should be symmetric around φ = 0, so that the Treiman-
Yang angle distribution in the interval between −π/2 and +π/2 may be folded again around
φ = 0 to give a distribution between 0 and π/2. Therefore, if parity is conserved both
in the production and decay, one may fold the Treiman-Yang angle distribution twice in an
appropriate way, and consider only the interval between 0 and π/2, without loss of generality.

5.4 Multipole parameters

Our next task is to define the multipole parameters and expand the angular distribution
in these parameters. We shall first define the spherical tensor operators:

TLM =
∑

ΛΛ′

|JΛ〉(JΛ′LM |JΛ)〈JΛ′| . (5.48)
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Using the formula (A.15), we see immediately that under rotations these operators transform
according to

U [R]TLMU+[R] =
∑

M ′

DL
M ′M(R)TLM ′ . (5.49)

Now, we define the multipole parameter tJLM for the resonance J as the expectation value
of the tensor operators TLM ′, i.e.

tJLM = tr{ρJTLM} , (5.50)

where ρJ is the density matrix as defined in Eq. (5.30). From Eq. (5.48), we see immediately
that

tJ ∗LM =
∑

ΛΛ′

ρΛΛ′(JΛ′LM |JΛ) , (5.51)

or, by inverting this,

ρJ
ΛΛ′ =

∑

LM

(

2L + 1

2J + 1

)

tJ ∗LM(JΛ′LM |JΛ) . (5.52)

Then, the density matrix, as defined in Eq. (5.30), may be expressed as

ρJ =
∑

LM

(

2L + 1

2J + 1

)

tJ ∗LMTLM , (5.53)

so that tJ ∗LM is simply the coefficient in the expansion of ρJ in terms of TLM .
From the normalization (5.35), we see that the multipole parameters are normalized so

that T J
00 = 1, while the hermicity of the density matrix implies

tJLM = (−)M tJ ∗L−M . (5.54)

Note also that tJLM = 0 if L > 2J , as is clear from Eq. (5.51). If the z-axis of the JRF lies
in the production plane, we have from Eq. (5.41),

tJLM = (−)L+M tJL−M , (5.55)

or, by combining with Eq. (5.54),

tJ ∗LM = (−)LtJLM . (5.56)

On the other hand, if the z-axis of the JRF is along the production normal, we obtain from
Eq. (5.45),

tJLM = 0, for odd M . (5.57)

Let us remark at this point that the tJLM ’s may not in general assume arbitrary values
but are constrained to a certain physical domain resulting from the positivity of the density
matrix and the Eberhard-Good theorem, where applicable. The reader is referred to Jacksom
[10] and Byers [16] for simple expressions for the lower and upper bounds of tJLM ; for more
elaborate considerations, see Ademollo, Gatto and Preparata [17], and Minnaert [18].
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Next, we introduce what we shall call the “moments”; they are the experimental averages
of the D-functions:

H(LM) = 〈DL
M0(φ, θ, 0)〉

=

∫

dΩ I(Ω)DL
M0(φ, θ, 0) . (5.58)

Note that H(00) = 1 from Eq. (5.33). Using Eqs. (5.34), (5.51), and (A.16), we find that
the moments H(LM) may be expressed as

H(LM) = tJ ∗LMfJ
L , (5.59)

where
fJ

L =
∑

λ1λ2

gJ
λ1λ2

(JλL0|Jλ), λ = λ1 − λ2 (5.60)

and fJ
0 = 1 from Eq. (5.36). So the moment H(LM) is in general given by a product of

two terms; the first term tJ ∗LM contains the information on how the resonance J is produced,
while the second term fJ

L carries the information on the decay of the resonance.
If parity is conserved in the decay, it follows from Eq. (5.20) and the symmetry of the

Clebsch-Gordan coefficients that fJ
L satisfies the symmetry

fJ
L = 0, for odd L . (5.61)

Note that the same symmetry holds if the two decay products are identical. It is now a
simple matter to find the symmetry relations of H(LM); it enjoys all the symmetries that
are satisfied by both tJLM and fJ

L .
The angular distribution has a simple expansion in terms of the moments:

I(Ω) =
∑

LM

(

2L + 1

4π

)

H(LM)DL∗
M0(φ, θ, 0) , (5.62)

where the sum on L extends from 0 to 2J . Again, owing to the symmetry (5.54), the angular
distribution I(Ω) is real. For parity-conserving decays, L takes on only the even values in
the sum.

6 Three-Particle Systems

A system consisting of three particles may be treated most elegantly in the helicity basis,
as was done by Berman and Jacob [19] [for an alternative approach, see Wick [20]]. In
this section, we shall first construct a three-particle system in a definite angular momentum
state and then apply the formalism to a case of a resonance decaying into three particles.
We will give the decay angular distribution in terms of the spin density matrix and discuss
the implications of parity conservation. Finally, we will show that in a Dalitz plot analysis
different spin-parity states of the three-particle system do not interfere with one another.

Consider a system of three particles 1, 2, and 3. Let us use the notations si, ηi, λi, and
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wi for the spin, intrinsic parity, helicity, and mass of the particle i. In the rest frame (r.f.)
of the three particles, the momentum and energy of the particle i will be denoted by ~pi and
Ei. In the r.f., we define the “standard orientation” of the three-particle system, as shown
in Fig. 1.3. this coordinate system is then the “body-fixed” coordinate system, which may
be rotated by the Euler angles α, β, and γ to obtain a system with arbitrary orientation.

x

y
~p1~p2

~p3
Figure 1.3: Standard orientation of the three-particle rest system. Note that the y-axis is defined

along the negative direction of ~p3, and the z-axis along ~p1 × ~p2.

A system with the standard orientation can be written

|000, Eiλi〉 = b

3
∏

i=1

|~pi siλi〉 , (6.1)

where b is a normalization constant and the helicity basis vectors for each individual particle
are given in the usual way [see Eq. (2.16)]:

|~p siλi〉 = U [RiLz(pi)] |siλi〉 (6.2)

with
Ri = R(φi, π/2, 0) . (6.3)

A three-particle system with an arbitrary orientation in the r.f. can now be obtained by
applying a rotation R(α, β, γ) to the state (6.1):

|αβγ, Eiλi〉 = U [R(α, β, γ)] |000, Eiλi〉 . (6.4)

If we impose the normalization of the above states via

〈α′β ′γ′, E ′
iλ

′
i|αβγ, Eiλi〉 = δ(3)(R′ − R) δ(E ′

1 − E1) δ(E ′
2 − E2)

∏

i

δλiλ′
i

(6.5)
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we obtain easily (see Appendix C) that the normalization constant b should be chosen as
follows:

b−1 = 8π2
√

4π . (6.6)

Let us now define a state of definite angular momentum:

|JMµ, Eiλi〉 =
NJ√
2π

∫

dR DJ ∗
Mµ(α, β, γ)|αβγ, Eiλi〉 , (6.7)

where NJ is the normalization constant as given in Eq. (4.22). That this state represents a
state of definite angular momentum is easy to show following steps identical to those which
led to the relation (4.13). Therefore,states (6.7) transform under a rotation R′ according to

U [R′] |JMµ, Eiλi〉 =
∑

M ′

DJ
M ′M(R′)|JM ′µ, Eiλi〉 . (6.8)

This relation also shows that, in addition to the obvious invariants Ei and λi, the quantity
µ is also a rotational invariant.

The physical meaning of µ may be investigated as follows. Let ~n be a unit vector parallel
to the body-fixed z-axis, which coincides with the direction ~p1×~p2 in the standard orientation.
Now, the integration over dγ in Eq. (6.7) involves:

∫

dγ eiµγe−i ~J ·~nγ|000, Eiλi〉 .

We see that this integration has the effect of picking out from the state |000, Eiλi〉 an

eigenstate of ~J · ~n with the eigenvalue µ. Then the subsequent rotation by R(αβγ) [see

Eq. (6.4)] makes µ the eigenvalue of ~J ·~n with ~n along the body-fixed z-axis. It now becomes
obvious why µ is rotationally invariant; it is the z-component of angular momentum whose
quantization axis itself rotates under a rotation of the system.

Let us examine the transformation property of the state (6.7) under parity operations.
Since the parity commutes with rotations, we may apply the parity operator

∏

on the state
(6.1):

Π|000, Eiλi〉 = b
∏

i

Π|Ri, pi, siλi〉

= b
∏

i

ηie
−iπsi|R̄i, pi, si −λi〉

=

{

∏

i

ηie
−iπsi

}

U [R(π, 0, 0)] |000, Ei −λi〉 , (6.9)

where, from Eq. (3.11),

R̄i = R(π + φi, π/2, 0) = R(π, 0, 0)Ri

so that

Π|αβγ, Eiλi〉 =

{

∏

i

ηie
−iπsi

}

U [R(α, β, γ + π)] |000, Ei −λi〉 . (6.10)
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Using this relation in Eq. (6.7) and changing the integration over γ into one over γ′ + γ + π,
we obtain finally

Π|JMµ, Eiλi〉 = η1η2η3(−)s1+s2+s3−µ|JMµ, Ei −λi〉 . (6.11)

We note that this formula is not the same as that given in Berman and Jacob [19]. The reason
for this is that their definition of one-particle helicity states involves a rotation R(φ, θ,−φ),
instead of our convention R(φ, θ, 0) [see Eq. (2.16)].

In order to treat the case when two of the three particles are identical, we shall work out
a transformation formula for exchanging the particles 1 and 2. The exchange operator P12

applied to the state (6.4) is equivalent to performing a rotation by π around the body-fixed
y-axis [see Fig. 1.3]:

P12|αβγ, E1λ1, E2λ2, E3λ3〉 = |π + α, π − β, π − γ, E2λ2, E1λ1, E3λ3〉 , (6.12)

where one has used the formula (A.10). Combining this formula with formula (6.7) and
using Eq. (A.11),

P12|JMµ, E1λ1, E2λ2, E3λ3〉 = (−)J+µ|JM −µ, E2λ2, E1λ1, E3λ3〉 . (6.13)

Again, this formula is not the same as that given in Berman and Jacob [19]. This arises
because their standard orientation for the three-particle system has been defined differently
from our convention; their coordinate system has been set up with the negative x-axis along
the momentum ~p3.

From Eqs. (6.5) and ( refeq6.7), we find that our angular momentum states are normal-
ized according to

〈J ′M ′mu′E ′
iλ

′
i|JMµEiλi〉 = δJJ ′δMM ′δµµ′δ(E1 − E1)δ(E2 − E2)

∏

i

δλiλ′
i
. (6.14)

The completeness relation is given by

∑

JM
µλi

∫

|JMµEiλi〉dE1dE2〈JMµEiλi| = I . (6.15)

From Eqs. (6.5) and (6.7), we obtain the matrix element

〈αβγ, E′
iλ

′
i|JMµ, Eiλi〉 =

NJ√
2π

DJ ∗
Mµ(α, β, γ)δ(E ′

1 − E1)δ(E
′
2 − E2)

∏

1

δλiλ′
i
. (6.16)

We are now ready to discuss the process in which a resonance J with spin-parity η and
mass w decays into three particles 1, 2, and 3. In the rest frame of the resonance (JRF), let
the angles (α, β, γ) describe the orientation of the three-particle system. Then, the decay
amplitude may be written

A = 〈αβγ, Eiλi|M|JM〉
= 〈αβγ, Eiλi|JMµEiλi〉〈JMµEiλi|M|JM〉

=
NJ√
2π

F J
µ (Eiλi)D

J ∗
Mµ(αβγ) (6.17)
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after using formulae (6.15) and (6.16). If the “decay operator” M is rotationally invariant,
the decay amplitude F should depend only on the rotational invariants, i.e.

F j
µ(Eiλi) = 〈JMµEiλi|M|JM〉 . (6.18)

If parity is conserved in the decay, we have the symmetry from Eq. (6.11):

F J
µ (Eiλi) = ηη1η2η3(−)s1+s2+s3+µF j

µ(Ei −λi) . (6.19)

And, if particles 1 and 2 are identical,

F J
µ (E1λ1, E2λ2, E3λ3) = ±(−)J+µF J

−µ(E2λ2, E1λ1, E3λ3) , (6.20)

where the plus sign holds for two identical bosons and the minus sign for fermions.
Let us assume that the resonance J is produced in the following process:

a + b → c + J, J → 1 + 2 + 3 . (6.21)

In analogy to the two-body decays, we introduce the density matrix for the resonance J ,
and assume as before that it is independent of w, the resonance mass. From Eq. (6.17), we
may write the differential cross-section as

dσ

dRdwdE1dE2
∼
(

2J + 1

8π2

)

∑

MM′

µµ′

ρJ
MM ′DJ ∗

Mµ(R)DJ
M ′µ′(R) × K(w)

∑

λi

F J
µ F J ∗

µ′ , (6.22)

where R = R(α, β, γ) is the rotation specifying the orientation of the three-particle system
in the JRF, and K(w) is the kinematic factor which contains, among others, the phase space
factors [see formula (B.11)].

If we integrate over dγ, dE1, dE2, and dw, we obtain the angular distribution in Ω = (θ, φ)
describing the direction of the normal to the decay plane:

I(Ω) =

(

2J + 1

4π

)

∑

MM ′

∑

µ

DJ ∗
mµ

(φ, θ, 0)gJ
µ (6.23)

where

gJ
µ =

∫

dw dE1 dE2 K(w)
∑

λi

|F J
µ (Eiλi)|2 . (6.24)

Note that I(Ω) is properly normalized, if we require that ΣMρJ
MM = 1 and Σµg

J
µ = 1.

If the z-axis in the JRF is fixed to be i the production plane, we obtain the symmetry,
following the same argument as that for the two-body decays,

I(θ, φ) = I(π + θ, π − φ) . (6.25)

This is identical to formula (5.46). So, in the Jackson frame, the distribution in the Treiman-
Yang angle may be folded around π/2, and one may consider only the interval between −π/2
and +π/2.
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The distribution I(Ω) for three-particle decays is different in one important aspect from
that for two-body decays: the parity conservation in the decay process does not in general
lead to any additional symmetry in I(Ω), as gJ

µ remains invariant under parity [see Eqs. (6.19)
and (6.24)]. One important exception occurs in the case of the decay ω → 3π. The parity
conservation implies from Eq. (6.19) that g1

±1 = 0 with only one non-zero component g1
0, so

that the resulting angular distribution is identical to a two-body decay, i.e. ρ → 2π [compare
expressions (5.34) and (6.23)]. In this case, then, we have the additional symmetry given by
Eq. (5.47).

It is possible to obtain an additional symmetry, if the particles 1 and 2 are identical.
From formulae (6.20) and (6.24), we see that gJ

µ = gJ
−µ in this case. Then, using expressions

(6.23) and (A.12), we get
I(θ, φ) = I(π − θ, π + φ) (6.26)

identical to Eq. (5.47) for two-body decays. Following the same argument in Section 5.3, we
conclude that the Treiman-Yang angle distribution can be confined to the interval between
0 and +π/2.

The angular distribution of Eq. (6.23) may be expanded in terms of the moments H(LM)
in the same way as in Section 5.4. The relations (5.58), (5.59), and (5.62) remain the same,
and the fJ

L of Eq. (5.60) is now given by

fJ
L =

∑

µ

gJ
µ(JµL0|Jµ) . (6.27)

If the particles 1 and 2 are identical fJ
L = 0 for odd L, as was the case for the two-body

decays.
As a final item to be discussed in this section, we shall show that, in a Dalitz plot

analysis, two different spin-parity states do not interfere with each other. Suppose that in
a reaction two resonances are produced with spins J1 and J2, each of which in turn decays
into a common set of three particles. The over-all amplitude may be written

mfi ∼
∑

M1µ1

T1(M1)D
J1∗
M1µ1

(R)F J1

µ1
(Eiλi) +

∑

M2µ2

T2(M2)D
J2 ∗
M2µ2

(R)F J2

µ2
(Eiλi) . (6.28)

where Ti(M) is the production amplitude. If J1 6= J2, the Dalitz plot distribution is given
by

dσ

dwdE1dE2
∼
∑

M1µ1λi

|T1(M1)F
J1

µ1
|2 +

∑

M2µ2λi

|T2(M2)F
J2

µ2
|2 (6.29)

after integrating over dR. This shows that, if one integrates over the orientation of the
three-particle system, states of two different spins do not interfere due to the orthogonality
of the D-functions.

Suppose now that the spins are the same but the parities of the two resonances are
opposite, Again, integrating over dR, one obtains

dσ

dwdE1dE2
∼
∑

Mµλi

|T1(M)F J
µ + T2(M)F̄ J

µ |2 , (6.30)
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where F̄ indicates a decay amplitude of opposite parity to that of F . Applying the symmetry
(6.19) from parity conservation, one may rewrite expression (6.30) with a minus sign in
front of the second term, which means that the interference term is identically zero, again
obtaining the result (6.29). In conclusion, we may state that, as long as one integrates over
the orientation of the three particle system and sums over the helicities of the final particles,
states of different spin-parity do not interfere with one another in a Dalitz-plot analysis.

7 Sequential Decays

If a resonance decays in two steps, each consisting of a two-body decay, then the moments
obtained from the joint decay distribution provide a powerful means of determining the spin
and parity of the parent resonance. In this section we shall develop a general formalism for
the sequential decay, J → s + 0, s → s1 + 0, where the spins J , s and s1 are arbitrary,
and illustrate the formalism with a few simple but, i practice, important examples, namely
Σ(1385) → Λ+π, ∆(1950) → ∆(1232)+π, b1(1235) → π +ω, and π2(1670) → π +f2(1270).

It is possible to use for the spin-parity analysis two-particle states constructed from the
canonical basis vectors, as was done by Ademollo and Gatto [21] and Ademollo, Gatto and
Preparate [22]. We shall adopt, however, the helicity formalism in this section, for it not
only involves simpler algebra but also brings out certain salient features in the problem, not
quite transparent within the canonical formalism. The helicity formalism was first used by
Byers and Fenster [23], who treated the case of a resonance decaying into a Λ + π system
with Λ → p + π−. Their method has been successfully employed [24] to determine the spin
and parity of Ξ(1530) ad Σ(1385). Button-Shafer [25] later has extended the method to
treat a fermion resonance decaying into a pins-3/2 baryon and a pion, and chung[15] has
applied the technique to treat a boson resonance into two intermediate bosons with spin,
each of which in turn decays into two or three spinless particles. Ascoli et al. [26] have used
a formalism very similar to that of Chung in their spin-parity analysis of the b1(1235) meson.
Berman and Jacob [27] have also given a similar formalism treating both the fermion and
boson resonances. Donohue [28], on the other hand, treats the problem of analyzing a boson
resonance decaying into a fermion and an anti-fermion (see also Ref. [22]).

Let us suppose that a resonance of unknown spin-parity Jη with mass w is produced and
decays via the following chain of processes:

a + b → c + J

J → s + π1 (7.1)

s → s1 + π2 ,

where π1 or π2 stands for pion and J , s, and s1 designate the parent, intermediate, and final
particles, as well as their spin. Let ηs, λ, and ws (η1, λ1, and w1) denote the parity, helicity
and mass of the particle s (s1). In the rest frame of J (s), denoted by JRF (sRF), let Ps

(p1) and Ω (Ω1) be the magnitude and direction of the s (s1) momentum measured in the
helicity coordinate system as shown in Fig. 1.1b.

Although the sRF should always be described by the helicity coordinate system, which
is related to the JRF as illustrated in Fig. 1.1b, the coordinate axes specifying the JRF
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need not be those of the helicity system with respect to the production coordinate axes; the
JRF can just as well be described by the Jackson coordinate system, or the one with the
z-axis along the production normal (see Section 5.3). For concreteness, however, we shall
use the helicity coordinate system for the JRF, and use the symbol Λ for the helicity of the
resonance J , bearing in mind that we are at liberty to choose any coordinate system we wish
for the JRF.

The over-all invariant amplitude for the process (7.1) may be written

Mfi ∼ 〈Ω1s1λ1|Ms|sλ〉 〈Ωsλ|MJ |JΛ〉 〈~pfλcΛ|T (w0)|~pλaλb〉 , (7.2)

where the first and the second factor describe the s and J decay, respectively, and the third
factor is the production amplitude for the J with helicity Λ. This production amplitude is
identical to that given in (5.26).

As in Section 5.3, we make the simplifying assumption that the J production amplitude
is independent of w. Then, the spin density matrix for the J as given in Eq. (5.28) is a
constant and can safely be normalized according to Eq. (5.35). The decay amplitudes in
Eq. (7.2) are given, according to Eq. (5.16), by

〈Ωsλ|MJ |JΛ〉 = NJF J
λ DJ ∗

Λλ (φ, θ, 0) (7.3)

and
〈Ω1s1λ1|Ms|sλ〉 = NsF

s
λ1

Ds∗
λλ1

(φ1, θ1, 0) , (7.4)

where Ω = (θ, φ) and Ω1 = (θ1, φ1). In analogy to Eq. (5.31), we shall introduce the following
symbols to describe the bilinear products of the helicity amplitudes:

gJ
λλ′ =

∫

dw dwsK(w, ws)F
J
λ F J ∗

λ′ (7.5)

and
gs

λ1
= |F s

λ1
|2 , (7.6)

where K(w, ws) includes all the functions of w or ws, such as the squares of Breit-Wigner
functions for the particles J and s and the phase-space factors [see Eq. (B.10)].

We emphasize that any dependence of ws in the helicity amplitude F s
λ1

has been factored
out and absorbed into K(w, ws), so that gs

λ1
can be considered constant. As pointed out in

Section 5.3, this is not in general possible. However, with the examples we consider here,
this is an excellent approximation: if the intermediate resonance s is Λ(1115), the helicity
amplitude F s

λ1
is clearly a constant, owing to the narrow width of the Λ; if the s is ∆(1232),

F s
λ1

may be assumed to be proportional to p1, owing to the p-wave nature of the decay, and
the p2

1 factor may then be absorbed into K(w, ws).
Now, we are ready to write down the joint angular distribution in Ω and Ω1:

I(Ω, Ω1) =

(

2J + 1

4π

)(

2s + 1

4π

)

∑

ΛΛ′

λλ′λ1

ρJ
ΛΛ′ gJ

λλ′ gs
λ1

× DJ ∗
Λλ (Ω)DJ

Λ′λ′(Ω)Ds∗
λλ1

(Ω1)D
s
λ′λ1

(Ω1) ,

(7.7)
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where we have used the shorthand notation:

DJ
µm(Ω) = DJ

µm(φ, θ, 0) . (7.8)

We shall adopt the following normalizations for the g’s:

∑

λ

gJ
λλ = 1 (7.9)

∑

λ1

gs
λ1

= 1 , (7.10)

so that the joint angular distribution is normalized according to

∫

dΩ dΩ1I(Ω, Ω1) = 1 (7.11)

with the trace of ρJ equal to 1 as given in Eq. (5.35).
Let us now introduce the joint “moments”, which are the experimental averages of the

product of two D-functions:

H(ℓmLM) = 〈DL
M m(Ω)Dℓ

m 0(Ω1)〉 (7.12)

with the normalization,
H(0000) = 1 . (7.13)

Then the moments are given by

H(ℓmLM) =

∫

dΩ dΩ1 I(Ω, Ω1)D
L
Mm(Ω)Dℓ

m0(Ω1) . (7.14)

Using Eqs. (7.7) and (A.16), we find that the H ’s may be expressed as:

H(ℓmLM) = tJ ∗LMfJL
ℓm f s

ℓ , (7.15)

where tJ ∗LM is the multipole parameter as given in Eqs. (5.51), and the f ’s are related to the
g’s by

fJL
ℓm =

∑

λλ′

gJ
λλ′(Jλ′Lm|Jλ)(sλ′ℓm|sλ) (7.16)

and
f s

ℓ =
∑

λ1

gs
λ1

(sλ1ℓ0|sλ1) (7.17)

with the normalizations given by
fJ0

00 = f s
0 = 1 . (7.18)

The expression (7.15) displays neatly how the moments H depend on the resonances J
and s. The H ’s are in general a product of three factors; the first one carries the informa-
tion on how the resonance J has been produced, while the second (third) one contains the
information on the decay of the resonance J (resonance s).
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Let us turn to a discussion of the symmetry relations satisfied by the f ’s. For this purpose,
we first recall that parity conservation in the decay implies, according to Eq. (5.20),

F J
λ = εF J

−λ, ε = ηηs(−)J−s+1 (7.19)

and
F s

λ1
= εsF

s
−λ1

, εs = ηsη1(−)s−s1+1 (7.20)

so that we have the conditions

gJ
λλ′ = εgJ

−λλ′ = εgJ
λ−λ′ = gJ

−λ−λ′ . (7.21a)

Also, if time-reversal invariance is applicable, we should have [see Eq. (5.24)],

gJ
λλ′ ≃ real (7.21b)

where the symbol ≃ reminds us that this symmetry may not hold in all cases. From
Eq. (7.20),

gs
λ1

= gs
−λ1

. (7.22)

In addition, by the definition (7.5),
gJ

λλ′ = gJ ∗
λ′λ . (7.23)

Now, the symmetry relations on the f ’s can be derived easily using the definition (7.16)
and Eq. (7.23),

fJL
ℓ−m = fJL∗

ℓm . (7.24a)

From parity conservation [using Eq. (7.21a)]

fJL
ℓm = (−)ℓ+LfJL

ℓ−m . (7.24b)

Or, by combining the above two relations,

fJL
ℓm = (−)ℓ+LfJL∗

ℓm . (7.24c)

From Eq. (7.21b),

fJL
ℓm ≃ real (7.24d)

or, from Eq. (7.24c),

fJL
ℓm ≃ 0, for odd (ℓ + L) . (7.24e)

If the s decay is parity-conserving, one has

f s
ℓ = 0, for odd ℓ . (7.25)

The symmetry relations on the H ’s are readily derived, once the symmetry relations on
the multipole parameters and on the two f ’s are known. Firs of all, from the definition (7.12)
and Eq. (A.9), we have

H∗(ℓmLM) = (−)MH(ℓ −m L −M) . (7.26a)
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Also, from the definitions (5.51), (7.16) and (7.17),

H(ℓmLM) = 0, if ℓ > 2s or L > 2J . (7.26b)

From parity conservation in the J decay, using Eq. (7.24b),

H(ℓmLM) = (−)ℓ+LH(ℓ −mLM) . (7.26c)

If the s decay is parity-conserving, from Eq. (7.25),

H(ℓmLM) = 0, for odd ℓ . (7.26d)

If the argument for time-reversal invariance as given in Section 5.2 is applicable, from
Eq. (7.24e),

H(ℓmLM) ≃ 0, for odd (ℓ + L) (7.26e)

Finally, parity conservation in the production process leads to the following additional sym-
metry. If the JRF z-axis is in the production plane, from Eq. (5.55),

H(ℓmLM) = (−)L+MH(ℓmL −M) . (7.26f)

If the z-axis is along the production normal,

H(ℓmLM) = 0, for odd M . (7.26g)

For the spin-parity analysis, it turns out to be useful to invert Eq. (7.16) using the
orthonormality of the Clebsch-Gordan coefficients:

gJ
λλ′(Jλ′Lm|Jλ) =

∑

ℓ

(

2ℓ + 1

2s + 1

)

fJL
ℓm (sλ′ℓm|sλ) . (7.27)

Multiplying both sides by tJ ∗LM , one obtains

tJ ∗LM gJ
λλ′(Jλ′Lm|Jλ) = Gλλ′(LM) , (7.28)

where

Gλλ′(LM) =
∑

ℓ

(

2ℓ + 1

2s + 1

)

(sλ′ℓm|sλ)(f s
ℓ )−1H(ℓmLM) . (7.29)

We shall see, in the examples to be given later, that f s
ℓ is always a know quantity, being

proportional to a Clebsch-Gordan coefficient. Therefore, the Gλλ′(LM) is an experimentally
measurable quantity; it is this quantity that yields most directly the information on the spin
and parity of the resonance J .

Because of the symmetry (7.26d), it is not possible to perform the sum on ℓ in Eq. (7.29)
for odd ℓ, if the s decay is parity-conserving. It is easy to restrict, however, the sum on ℓ
to even values by the following procedure: exchange the index λ to −λ′ and λ′ to −λ in
Eq. (7.27), and add the resulting equation to the original formula (7.27), to obtain

tJ ∗LM

1

2
[ gJ

λλ′ + (−)LgJ ∗
λλ′ ] (Jλ′Lm|Jλ) = G

(+)
λλ′ (LM) , (7.30)
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where the G
(+)
λλ′ (LM) now has the same form as the Gλλ′(LM) of Eq. (7.29) but the sum

is confined to even values of ℓ. Therefore, if the parity is conserved in the decay of the
intermediate resonance s, it is the G

(+)
λλ′ (LM) that is experimentally measurable. We shall

see later that measurement of the G
(+)
λλ′ (LM)’s for all allowed values of λ, λ′, L and M enables

us to determine uniquely the spin and parity of the J .
Let us note the following symmetry relations satisfied by the G(+)’s: from Eq. (7.26c),

G
(+)
λ′λ(LM) = (−)L+λ−λ′

G
(+)
λλ′ (LM) (7.31a)

and

G
(+)
−λ−λ′(LM) = (−)LG

(+)
λλ′ (LM) . (7.31b)

In addition, the G(+)’s clearly obey the same symmetries as those satisfied by the multipole
parameters tJ ∗LM .

At this point, we shall briefly mention how we can test experimentally the applicability
of the time-reversal invariance discussed in Section 5.2. It is clear from Eq. (7.26e) that,
if the H ’s are non-zero for odd (ℓ + L), the argument of Section 5.2 is not applicable; or,

equivalently, one may look for non-zero G
(+)
λλ′ (LM) with odd L, since it should be zero if the

H ’s are zero for odd (ℓ + L). From the point of view of the spin-parity analysis, we may
state that, in general, the H ’s with odd (ℓ + L) or the G(+)’s with odd L may not be as
useful in yielding the quantum numbers of the J as the other H ’s or G(+)’s, for they may be
either zero or approximately zero.

In analogy to the two-body decays discussed in Section 5.4, the joint angular distribution
given in Eq. (7.7) has a simple expansion in terms of the product of two D-functions:

I(Ω, Ω1) =
∑

ℓm
LM

(

2ℓ + 1

4π

)(

2L + 1

4π

)

H(ℓmLM)DL∗
Mm(Ω)Dℓ∗

m0(Ω1) . (7.32)

Note that this angular distribution is, of course, real, owing to the symmetry (7.26a) for
the H ’s. The formula (7.32) affords an alternative method of determining the moments H ;
by using the maximum likelihood method, one may fit the joint angular distribution with
the formula (7.32), using the H ’s as the unknown parameters after taking into account the
symmetries (7.26a)–(7.26g). One experimental uncertainty is, of course, how large a number
one may take as the maximum value of L (Lmax). Perhaps the most reasonable procedure is
to take the smallest Lmax for which an acceptable fit to the data can be obtained.

In the remainder of this section, we shall apply the general formalism developed so far to
a few concrete and, in practice, important examples. It is hoped that the examples selected
here are sufficiently diverse to give the reader an over-all picture of the various techniques
involved and that, after going through these examples, he has acquired enough skill with
which he can tackle any new decay modes he may encounter. In fact, our formalism can be
easily generalized to treat resonances with decay products which both have spin, for example
Λ + ω or ρ + ω.
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7.1 Σ(1385) → Λ + π

In this case, the intermediate particle s is the Λ(1115) with sηs = 1
2

+
, which decays into

the (p + π−) system via the weak interaction. Note that the final particle s1 is the proton,

i.e. sη1

1 = 1
2

+
. We wish to determine the spin-parity Jη of Σ(1385) by the moment analysis.

Let us first write the normalization (7.9) explicitly:

gJ
++ + gJ

−− = 2gJ
++ = 1

so that
gJ
++ = gJ

−− = 1/2

gJ
+− = gJ

−+ = ε/2 ,
(7.33)

where ε = η(−)J+ 1

2 . Since the Λ decay is parity non-conserving, f s
ℓ is non-zero for both

ℓ = 0 and 1:
f s

0 = gs
+ + gs

− = 1

f s
1 = (gs

+ − gs
−)( 1

2

1

2
10| 1

2

1

2
) =

1√
3
(gs

+ − gs
−) .

(7.34)

We do not give the explicit expression for gs
λ1

, but is related to the well-known decay asym-
metry parameter α, so that f s

1 may be considered a known quantity.
Let us write down explicitly the G’s using Eq. (7.29). For arbitrary values of L and M ,

G++(LM) =
1

2
H(00LM) +

3

2
( 1

2

1

2
10| 1

2

1

2
)(f s

1 )−1H(10LM)

=
1

2
H(00LM), for even L (7.35)

=

√
3

2
(f s

1 )−1H(00LM), for odd L ,

where one has used the symmetry (7.26c). Also,

G+−(LM) =
3

2
( 1

2
− 1

2
11| 1

2

1

2
)(f s

1 )−1H(11LM)

= −
√

3

2
(f s

1 )−1H(11LM) (odd L) . (7.36)

Using the relations (7.28) and (7.33), one obtains for the ratio of Eqs. (7.36) to (7.35),

G+−(LM)

G++(LM)
= −

√
2
H(11LM)

H(10LM)
= ε

(J − 1

2
L1|J 1

2
)

(J 1

2
L0|J 1

2
)

(odd L) .

From Eq. (A.17), one obtains the final result

H(11LM)

H(10LM)
= ε

2J + 1
√

2L(L + 1)
(odd L) . (7.37)

The formula (7.37) may be used to determine both the spin and parity of the resonance
J : the spin can be determined by evaluating the absolute value of the ratio of the two
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moments, while the parity can be determined by the relative sign of the two moments. This
method has been used to determine the spin and parity of Σ(1385). One must exercise some
care in using the formula (7.37), for the ratio of two experimental averages does not have a
Gaussian distribution, even though the averages themselves may be Gaussian.

A simpler approach might be to write formula (7.37) in the form

H(11LM) − ε
2J + 1

√

2L(L + 1)
H(10LM) = 0 (odd L) (7.38)

and, for given values of L and M , test this equality for all spin-parity combinations. In this
way, one can obtain the χ2 probability for each possible spin-parity assignment. Of course,
it is necessary to choose the values of L and M such that both the moments in Eq. (7.38) are
appreciably different from zero (or different from the background). Otherwise, the formula
will give no differentiation between different spin-parity assignments.

Note that, although the formula (7.37) or (7.38) can be used for any odd L, it is most
useful for L + 1, for then it is applicable to any spin H ≥ 1

2
[see Eq. (7.26b)]. If the spin J

turns out to be greater that 1

2
, one may use higher odd L as a consistency check.

7.2 ∆(1950) → ∆(1232) + π

We shall now treat the case where the intermediate resonance s decays via the parity-
conserving strong interaction. Specifically, we shall consider a high-mass isobar decaying into
∆(1232) + π. Note that in this case sηs = 3/2+ for the ∆ and sη1

1 = 1/2+ for the nucleon.
Let us first note that, because of the normalization (7.10) and the parity conservation in

the ∆(1232) decay, we have

gs
+ = gs

− =
1

2
. (7.39)

Then, from Eq. (7.17), we see that

f s
ℓ = 0, for odd ℓ; f s

ℓ = ( 3

2

1

2
ℓ0| 3

2

1

2
), for even ℓ . (7.40)

The G(+)’s are now experimentally accessible quantities given by

G
(+)
λλ′ (LM) +

∑

ℓ=0,2

(

2ℓ + 1

4

)

( 3

2
λ′ℓm| 3

2
λ)

( 3

2

1

2
ℓ0| 3

2

1

2
)

H(ℓmLM) . (7.41)

Explicitly written, the G(+)’s have the form

G
(+)
1

2
− 1

2

(LM) = G
(+)
3

2
− 3

2

(LM) = 0 (7.42a)

G
(+)
1

2
− 3

2

(LM) = −
(

5
√

2

4

)

H(22LM) (L ≥ 2) (7.42b)

G
(+)
1

2
− 3

2

(LM) =

(

5
√

2

4

)

H21LM) (L ≥ 1) (7.42c)

G
(+)
1

2

1

2

(LM) =
1

4
H(00LM) +

5

4
H(20LM) (even L) (7.42d)

G
(+)
3

2

3

2

(LM) =
1

4
H(00LM) +

5

4
H(20LM) (even L) . (7.42e)
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The last two relations can be used to determine the following ratio, using the formula
(7.30),

gJ
3

2

3

2

gJ
1

2

1

2

=
G

(+)
3

2

3

2

(00)

G
(+)
1

2

1

2

(00)

=
1 − 5H(2000)

1 + 5H(2000)
. (7.43)

This allows us to write down the following spin formula, applicable if J ≥ 3/2:

(

gJ
1

2

1

2

gJ
3

2

3

2

)

G
(+)
3

2

3

2

(LM)

G
(+)
1

2

1

2

(LM)
=

J 3

2
L0|J 3

2
)

(J 1

2
L0|J 1

2
)

(even L ≥ 2) .

Or, more explicitly, by using Eq. (A.18),

[

1 + 5H(2000)

1 − 5H(2000)

] [

H(00LM) − 5H(20LM)

H(00LM) + 5H(20LM)

]

= 1− 4L(L + 1)

4J(J + 1) − 3
(even L ≥ 2) . (7.44)

This formula is a potentially powerful one; it allows one to determine uniquely the spin
J ≥ 3/2 regardless of the parity of the parent resonance, if the relevant moments are found
to be non-zero for L = 2 and some allowed M .

It should be emphasized that we have been able to obtain the formula (7.44) as a conse-
quence of our assumption that the density matrix for the J does not depend on the invariant
mass w of the J . If this assumption is relaxed, both the tJLM and gJ

λλ′ are in general func-
tions of w and they cannot be separated from each other and treated as constants, once the
integration over w has been performed over the region of the resonance J .

There is yet another formula by which one can determine simultaneously the spin and
parity of the parent resonance. Let us take the ratio of Eqs. (7.42b) to (7.42c) and utilize
the relations (7.30) and (A.19):

H(22LM)

H(21LM)
= ε

J + 1
2

[(L − 1)(L + 2)]
1

2

(even L ≥ 2) , (7.45)

where ε = η(−)J− 1

2 . Note that, again, the above formula can be used only if J ≥ 3/2 [see
Eq. (7.26b)].

Let us now consider the case when J = 1/2. From Eq. (7.26b), we see immediately that

H(ℓmLM) = 0 for all L > 1 . (7.46)

Moreover, G
(+)
λλ′ should be zero if either λ or λ′ is equal to ±3/2. Then, from Eqs. (7.42a)–

(7.42e),
H(21LM) = 0 (L = 1) (7.47)

and
H(2000) = 1

5
. (7.48)
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The relation (7.47) might not be a useful test, because of the possibility that it could be a
consequence of time-reversal invariance.

It is rather unfortunate that the parity cannot be determined within our formalism if
J = 1/2. One can determine the parity, however, if the fermion s1 is unstable and its decay
angles are also observed [see Button-Shafer [25]]. An example might be the following decay
sequence: Ξ(1820) → Ξ(1530) + π, Ξ(1530) → Ξ + π, and Ξ → Λ + π.

7.3 b1(1235) → π + ω

As pointed out in Section 6, the decay of the ω can be treated on an identical footing to
that of the ρ0 within our formalism; we merely have to use the normal to the decay plane of ω
as the analyzer instead of the relative momentum of the ρ0 decay. We take up the πω decay
mode as our first example of the spin-parity analysis of boson resonances, because, owing to
the narrow width of ω, there is negligible interference effect coming from the identity of two
pions in the 4π final state. Thus, this decay mode constitutes an ideal case for our moment
analysis. This problem has been treated using various techniques by Zemach [29], Ademollo,
Gatto and Preparata [30], Berman and Jacob [27], and Chung [15].

Before we proceed to discuss the πω decay mode, we shall write down the form of the
G(+)’s valid for any arbitrary intermediate resonance s decaying into two pions. In this case,
we have sη1

1 = 0− and gs = 1, so that

f s
ℓ = (s0ℓ0|s0) . (7.49)

From Eq. (7.29), we obtain the formula

G
(+)
λλ′ (LM) =

∑

even ℓ

(

2ℓ + 1

2s + 1

)

(sλ′ℓm|sλ)

(s0ℓ0|s0)
H(ℓmLM) . (7.50)

This shows explicitly how the G(+)’s can be measured experimentally. Once they are mea-
sured, the spin and parity of the parent boson can be determined easily by using the formula
(7.30).

Let us come back to the discussion of the πω decay mode. The G(+)’s in this case are
given by relation (7.50) with s = 1. Explicitly, they are

G
(+)
11 (LM) =

1

3
H(00LM) − 5

6
H(20LM) (even L) (7.51a)

G
(+)
10 (LM) =

5

2
√

3
H(21LM) (L ≥ 1) (7.51b)

G
(+)
1−1(LM) = − 5√

6
H(22LM) (L ≥ 2) (7.51c)

G
(+)
00 (LM) =

1

3
H(00LM) +

5

3
H(20LM) ( even L) . (7.51d)

The first information on the spin and parity can be obtained by noting the following.
From Eq. (7.21a), we see that gJ

λλ′ = 0 for λ or λ′ = 0, if ε = η(−)J−1 = −1. Therefore, if
ε = −1,

G
(+)
10 (LM) = G

(+)
00 (LM) = 0 . (7.52)
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if this relation is not satisfied for some value of L and M , then we may conclude immediately
that ε = +1.

If ε is known, we can determine the spin itself by dividing Eq. (7.51a) by Eq. (7.51c).
Using formula (7.30), we obtain the following useful relation valid for J ≥ 1:

G
(+)
11 (LM)

G
(+)
1−1(LM)

= ε
(J1L0|J1)

(J − 1L2|J1)

= −ε

[

(L − 1)(L + 2)

L(L + 1)

]
1

2

[

1 − L(L + 1)

2J(J + 1)

]

(even L ≥ 2) , (7.53)

where one has used Eqs. (A.20) and (A.21). Of course, this formula has meaning only if the
relevant G(+)’s are non-zero for some value of L and M .

It is possible to obtain an additional spin formula applicable for the case ε = +1 and
J ≥ 1. If ε = +1, gJ

00 is non-zero in general and related to gJ
11 by

gJ
11

gJ
00

=
G

(+)
11 (00)

G
(+)
00 (00)

. (7.54)

Now, the desired spin formula can be obtained by taking the ratio of relations (7.51a) to
(7.51d) and using Eq. (7.54):

G
(+)
00 (00)

G
(+)
11 (00)

=
(J1L0|J1)

(J0L0|J0)

= 1 − L(L + 1)

2J(J + 1)
(even L ≥ 2) . (7.55)

Therefore, if ε = +1 and J ≥ 1, this formula supplies additional information on the spin J .
If J = 0, all H ’s should be zero for L ≥ 1. In addition, we see that, from Eq. (7.30), the

G
(+)
λλ′ (00) vanish if λ or λ′ is non-zero. Therefore, using Eq. (7.51a), we obtain H(2000) = 2/5.

Note that η = −1 if J = 0, so that ε = +1.

7.4 π2(1670) → π + f2(1270)

Let us consider, as a final example of our formalism, the problem of analyzing a boson
resonance decaying into π + f2. the f2 meson is not a narrow resonance and the interference
effect can be a serious problem, for our formalism does not apply in that case. However, the
formalism can be applied, for instance, if the analysis is limited to the neutral decay mode
π0 + f2 with f2 decaying into the π+π− system. In this case, there is no interference effect,
because each of the three pions has a different charge.

As before, we start out by writing down the G(+)’s explicitly (note sηs = 2+):

G
(+)
22 (LM) =

1

5
H(00LM) − H(20LM) +

3

10
(40LM) (even L) (7.56a)

G
(+)
21 (LM) =

√

3

2
H(21LM) − 3

2
√

5
H(41LM) (L ≥ 1) (7.56b)
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G
(+)
20 (LM) = −H(22LM) +

3

2

√

3

5
H(42LM) (L ≥ 2) (7.56c)

G
(+)
2−1(LM) = −3

2

√

7

5
H(43LM) (L ≥ 3) (7.56d)

G
(+)
2−2(LM) = 3

√

7

10
H(44LM) (L ≥ 4) (7.56e)

G
(+)
11 (LM) =

1

5
H(00LM) +

1

2
H(20LM) − 6

5
H(40LM) (even L) (7.56f)

G
(+)
10 (LM) =

1

2
H(21LM) + 3

√

3

10
H(41LM) (L ≥ 1) (7.56g)

G
(+)
1−1(LM) = −

√

3

2
H(22LM) − 3

√

2

5
H(42LM) (L ≥ 2) (7.56h)

G
(+)
00 (LM) =

1

5
H(00LM) + H(20LM) +

9

5
H(40LM) (even L) . (7.56i)

We want to determine the value of ε = η(−)J−1. If ε = −1, we have from Eq. (7.21a)
that gJ

λλ′ = 0 for λ or λ′ = 0. Thus, if ε = −1, we obtain the following conditions:

G
(+)
00 (LM) = G

(+)
10 (LM) = G

(+)
20 (LM) = 0 . (7.57a)

Of course, this statement becomes non-trivial only for the allowed values of L as indicated in
formulae (7.56a)–(7.56i). If J = 1 and ε = −1 (i.e. Hη = 1−), both Eqs. (7.56b) and (7.56g)
should be zero, so that one has the additional condition

H(21LM) = H(41LM) = 0 (L = 1 or 2) . (7.57b)

Only one parity state is allowed if J = 0, i.e. η = −1, so that ε = +1 in that case.
Once ε is known, we proceed to determine J in the following manner. First, consider the

case J = 0. then, all the H ’s and G(+)’s for L ≥ 1 should vanish. In addition, G
(+)
λλ′ (00) = 0, if

λ or λ′ 6= 0, so that by using Eqs. (7.56a) and (7.56f), we obtain H(2000) = H(4000 = 2/7.
Next, consider the case J = 1. Then, all the H ’s and G(+)’s must vanish if L ≥ 3. In
addition, we have the condition gJ

λλ′ = 0 for λ or λ′ = 2, so that

G
(+)
22 (LM) = G

(+)
21 (LM) = G

(+)
20 (LM) = 0 (L = 0, 1, 2) . (7.58)

Again, these relations are non-trivial only for those values of L as are indicated in Eqs. (7.56a),
(7.56b), and (7.56c).

Now, we write down the spin-parity formula valid for all J ≥ 1. Taking the ratio of
Eqs. (7.56f) to (7.56h), we get

G
(+)
11 (LM)

G
(+)
1−1(LM)

= ε
(J1L0|J1)

(J − 1L2|J1)
(even L ≥ 2) , (7.59)

where we have used the relation (7.30). Note that this formula is “formally” identical to
formula (7.53). there exist three additional formulae, applicable if J ≥ 2:

G
(+)
21 (LM)

G
(+)
2−1(LM)

= ε
J1L1|J2)

(J − 1L3|J2)
(L ≥ 3) (7.60)
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G
(+)
22 (LM)

G
(+)
2−2(LM)

= ε
(J1L0|J2)

(J − 2L4|J0)
(even L ≥ 4) (7.61)

and
G

(+)
11 (00)

G
(+)
22 (00)

G
(+)
22 (LM)

G
(+)
11 (LM)

=
(J2L0|J2)

(J1L0|J1)
(even L ≥ 2) . (7.62)

Note that the formula (7.62) does not depend on the parity.
In analogy to the example of the B-meson decay, one can write down additional spin

formulae, if ε = +1. We list them below for the sake of completeness. If ε = +1 and J ≥ 1,
one obtains

G
(+)
00 (00)

G
(+)
11 (00)

G
(+)
11 (LM)

G
(+)
00 (LM)

=
(J1L0|J1)

(J0L0|J0)
(even L ≥ 2) . (7.63)

If ε = +1 and J ≥ 2, one has, in addition,

G
(+)
00 (00)

G
(+)
22 (00)

G
(+)
22 (LM)

G
(+)
00 (LM)

=
(J2L0|J2)

J0L0|J0)
(even L ≥ 2) . (7.64)

The ratios of Clebsch-Fordan coefficients appearing in Eqs. (7.59) to (7.64) may be expressed
as explicit functions of J and L [see the formulae (A.20) and (A.24)].

8 Tensor Formalism for Integral Spin

In this and the next section, we consider the tensor wave functions describing relativistic
particles with spin and satisfying the Rarita-Schwinger formalism [31]. Our main objective
is to construct explicitly the tensor wave functions, following the method proposed by Auvil
and Brehm [32], and show how they may be used to write down the covariant amplitudes
for physical processes. The advantage of using the tensor formalism is that a spin tensor,
its indices being those of four-momenta, can be coupled to any four-momenta and/or other
spin tensors to form the simplest scalar amplitude satisfying the requirement of the Lorentz
invariance.

As before, our main emphasis will be on the problem of describing resonance decays.
We will consider in detail how the helicity amplitudes are related to the coupling constants
appearing in the tensor formalism. In addition, we will demonstrate why it is possible to use
the non-relativistic formalism of Zemach [33] in a relativistic problem. We shall see, in fact,
that the non-relativistic formalism is more convenient to use in a purely phenomenological
approach than the fully relativistic Rarita-Schwinger formalism.

In this section, we will concentrate on the problem of representing the integral spin states
in the tensor formalism. Our first task is to construct the non-relativistic wave functions
for particles of spin 1 known as the polarization vectors. They are the analogue of the
state vectors |jm〉 with j = 1, but the Hilbert space of which they form the basis vectors is
the familiar momentum space. As such, they carry indices of four-momenta as well as the
magnetic quantum number m. We shall construct canonical as well as helicity state vectors
and show that they transform in exactly the same way as the states |jm〉 or |jλ〉 under
rotation.
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The wave functions for spin 2 are given by the tensors of rank 2 which are constructed
out of two polarization vectors by coupling them with the Clebsch-Gordan coefficients. The
states of spin 2 have five independent components corresponding to the different values the
magnetic quantum number can assume, whereas tensors of rank 2 with four-momentum
indices have 16 independent components. This implies that a pure spin-2 tensor ought to
satisfy subsidiary conditions which reduce the number of independent components to five.
These subsidiary conditions are just those of the Rarita-Schwinger formalism. We shall
see that the conditions for spin 2 can be easily generalized to those applicable to higher
rank tensors describing particles of higher spin. Thensor wave functions corresponding to
higher rank spin are constructed by coupling to the maximum possible spin, i.e. the rank
of the tensors is equal to the spin. In this way, the tensor wave functions of arbitrary spin
automatically satisfy the Rarita-Schwinger conditions.

8.1 Spin-1 states at rest

Consider an arbitrary three-momentum ~p. It may be specified in terms of the three
Cartesian orthonormal basis vectors ~ei as follows:

~p =

3
∑

i=1

pi ~ei , (8.1)

where ~e1, ~e2, and ~e3 are the unit vectors along the x-, y-, and z-axis, respectively. Alterna-
tively, ~p can be expressed in terms of the spherical basis vectors ~e (m):

~p =
∑

m

p(m)~e (m) (m = −1, 0, +1) , (8.2)

where

~e (±1) = ∓ 1√
2
(~e1 ± i~e2), ~e (0) = ~e3 . (8.3)

The vectors ~e (m) are the polarization vectors in the three-momentum space; they correspond
to spin-1 states at rest.

In order to gain a deeper understanding of these basis vectors, it is first necessary to con-
sider the rotation matrices acting on the momentum ~p and obtain an explicit representation
of the spin-1 angular momentum operators. For the purpose, we represent ~ei as a column
vector, so that ~p itself may be considered a column vector,

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 , p =





p1

p2

p3



 . (8.4)

Then, the rotation operator R acting on ~p is a 3 × 3 matrix:

R pi =
3
∑

j=1

Rij pj (i = 1, 2, 3) . (8.5)
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As before, we consider always the “active rotation”, i.e. the rotation of momentum ~p with
respect to a given fixed coordinate system.

Consider now rotations of ~p by ε with respect to the x-, y-, and z-axis to be denoted by
Rk(ε), k = 1, 2, 3. They are exhibited explicitly below:

R3(ε) =





cos ε − sin ε 0
sin ε cos ε 0

0 0 1



 (8.6a)

R2(ε) =





cos ε 0 sin ε
0 1 0

− sin ε 0 cos ε



 (8.6b)

R1(ε) =





1 0 0
0 cos ε − sin ε
0 sin ε cos ε



 . (8.6c)

Let us denote by Jk the infinitesimal generators of the rotations Rk(ε):

Rk(ε) = e−iεJk . (8.7)

For formulae (8.6a)–(8.6c), we find that the matrices Jk have the following form (by consid-
ering the limit ε → 0):

(Jk)ℓm = −iεkℓm . (8.8)

The matrices Jk are Hermitian and satisfy the relations,

[Jk, Jℓ] = iεkℓmJm (8.9a)

J2 = JkJk = 2I (8.9b)

where the summation is implied over repeated indices and I is a 3 × 3 unit matrix. These
relations show immediately that the matrices Jk constitute a representation of angular mo-
mentum with eigenvalue one.

It is easy to see that the vectors ~e (m) given by Eqs. (8.3) are just the eigenvectors
corresponding to angular momenta Jk:

J3 e(m) = m e(m) (m = −1, 0, +1)

J± e(∓1) =
√

2 e(0)

J± e(±1) = 0 (8.10)

J± e(0) =
√

2 e(±1)

where J± = J1 ± iJ2 and ~e (m) is the column vector given by

e(±1) = ∓ 1√
2





1
±i
0



 , e(0) =





0
0
1



 . (8.3a)

Comparing Eq. (8.10) with Eq. (1.2), we see that the vectors ~e (m) represent the spin-1 wave
functions, similar to the state vectors |jm〉 (j = 1) discussed in Section 1. As such, they carry
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two different sets of indices, one corresponding to the z-component of angular momentum
and the other corresponding to the three-momentum index. It is interesting to note that,
once the angular momentum operator is given by Eq. (8.8), the corresponding eigenvectors
satisfying Eqs. (8.10) [or more generally Eqs. (1.2)] can be deduced by considering J3 and
J±; it can be shown that the simplest solution is just the set of eigenvectors given in formulae
(8.3a).

From Eq. (1.5), one finds that under a rotation R = R(α, β, γ), the vector ~e (m) trans-
forms according to

R(α, β, γ) ei(m) =
∑

m′

D
(1)
m′m(α, β, γ) ei(m

′) (i = 1, 2, 3) . (8.11)

We have dropped the symbol U [ ] from the operator representing a rotation R(α, β, γ), in
order to emphasize the fact that canonical states ~e (m) are not the basis vectors of some ab-
stract Hilbert space but those of the familiar three-momentum space. There is an alternative
way of representing a rotation on ~e (m). It follows from the fact that both the momentum ~p
and the polarization vector ~e (m) may be expanded in terms of the same set of basis vectors
~ei [see Eqs. (8.1) and (8.3)]. If Rij is a 3 × 3 matrix acting on the components pi as shown
in Eq. (8.5), one finds

R(α, β, γ) ei(m) =
∑

j

Rij(α, β, γ) ej(m) (m = −1, 0, +1) . (8.12)

The rotation matrix R(α, β, γ) may be expressed in terms of the matrices Rk of Eqs. (8.6a)–
(8.6c) as follows:

R(α, β, γ) = R3(α)R2(β)R3(γ) . (8.13)

The reader may easily check that Eqs. (8.11) and (8.12) are indeed identical by using the

explicit expressions for D
(1)
m′m and Eq. (8.13).

The relation (8.12) may be used to show that the inner product of ~e (m) with an arbitrary
momentum vector is rotationally invariant, i.e.

~p · ~e (m) = ~p ′ · ~e ′(m) , (8.14)

where
p ′

i = Rijpj and e ′
i(m) = Rij ej(m) . (8.15)

This follows, of course, from the fact that the rotation matrices are orthogonal:

R−1
ij = R̃ij = Rji . (8.16)

In other words, the inverse of a rotation matrix is equal to its transpose. As we shall see
later, it is the property (8.14) which enables one to mix ~p and ~e (m) to construct rotationally
invariant amplitudes.

Finally, let us note the following properties of the polarization vectors:

~e ∗(m) · ~e (m′) = δmm′ (8.17a)
∑

m

ei (m) e∗j(m) = δij (8.17b)

~e ∗(m) = (−)m ~e (−m) . (8.17c)
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8.2 Relativistic spin-1 wave functions

The polarization vectors ~e (m) we have considered so far are, of course, the canonical
state vectors (or wave functions) describing particles of spin 1 at rest. By definition, spin
characterizes how a particle at rest behaves under spatial rotations. It follows, therefore,
that it cannot have the energy component, if the spin wave function is to be represented in
the momentum space. With this in mind, we define a four-vector describing a spin-1 particle
at rest,

eµ(0, m) = {0, ~e (m)}
eµ(0, m) = {0,−~e (m)} .

(8.18)

We are now ready to define the canonical and helicity state vectors. In analogy to Eqs. (2.14)
and (2.16), we write

eµ(~p, m) = [
◦

RLz(p)
◦

R−1]µν eν(0, m) (8.19)

and

eµ(~p, λ) = (
◦

RLz(p)]µν eν(0, λ) , (8.20)

where Lz(p) is given in Eq. (2.6) and
◦

R is the rotation which takes the z-axis (or ~e3) into

the direction of ~p, i.e. p̂ = (θ, φ),

◦

R µ
ν =

(

1 0

0
◦

Rij

)

and
◦

Rij is the 3× 3 rotation matrix R(φ, θ, 0) of Eq. (8.13). If the momentum ~p is along the

z-axis, both Eqs. (8.19) and (8.20) have the same form. Explicitly, one obtains

eµ(pẑ,±1) = ∓ 1√
2
(0, 1,±i, 0)

eµ(pẑ, 0) =

(

p

w
, 0, 0,

E

w

)

,

(8.21)

where E, P , and w are the energy, momentum, and mass of the spin-1 particle.
The property (8.11) guarantees that the states given by Eqs. (8.19) and (8.20) transform

under rotation in the same way as the ket vectors |~p, jm〉 and |~p, jλ〉 discussed in Section 2.
Therefore, we have

R eµ(~p, m) =
∑

m′

D
(1)
m′m(R) eµ(R~p, m′) (8.22)

and
R eµ(~p, λ) = eµ(R~p, λ) . (8.23)

As before, the helicity vectors are related to the canonical vectors via

eµ(~p, λ) =
∑

m

D
(1)
mλ(

◦

R) eµ(~p, m) , (8.24)
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where
◦

R is the rotation that appears in Eq. (8.20).

Listed below are a number of properties satisfied by the polarization four-vectors:

pµeµ(~p, m) = 0 (8.25a)

e∗µ(~p, m) eµ(~p, m′) = −δmm′ (8.25b)

P (1)
µν =

∑

m

eµ(~p, m) e∗ν(~p, m) = ḡµν(p) (8.26a)

ḡµν(p) = −gµν +
pµpν

w2
, (8.26b)

where P
(1)
µν is the spin-1 projection operator to be discussed below and ḡµν is an object which

reduces to δij (no energy component) in the rest system of the particle with mass w. The
relation (8.25a) is a consequence of our definition (8.18); it may be viewed as a necessary
condition to be satisfied by a spin-1 wave function (with three independent components),
when it has been imbedded into a four-dimensional space. The relations (8.25b), (8.26a)
and (8.26b) are generalizations of the rest-state formulae (8.17a) and (8.17b). Note that the

tensors P
(1)
µν satisfy

P (1)
µα P (1) α

ν = −P (1)
µν . (8.27)

Therefore, P
(1)
µν may be considered as a projection operator in the sense that, when it is

applied to any four-vector, the resulting four-vector is orthogonal to pµ owing to the property
(8.25a). We point out that there exist relations identical to (8.25a), (8.25b), (8.26a), and
(8.26b) for the helicity state vectors eµ(~p, λ).

Let us briefly discuss the parity and time-reversal operations on the polarization vectors.
First, the rest-states transform as follows:

P ~e (m) = η ~e (m) (8.28)

T ~e (m) = (−)1−m ~e (−m) = −~e ∗(m) , (8.29)

where one has used Eqs. (3.7) and (3.8). The polarization four-vectors transform under P

and T according to Eqs. (3.9) and (3.10):

P eµ(~p, m) = η eµ(−~p, m) = −ηP µ
ν eν(~p, m) (8.30)

T eµ(~p, m) = (−)1−m eµ(−~p,−m) = P µ
ν e∗ν(~p, m) , (8.31)

where P µ
ν denotes the space inversion, i.e.

P µ
ν =









+1 0
−1

−1
0 −1









. (8.32)

According to Eqs. (3.11) and (3.12), the helicity vectors transform as follows:

P eµ(~p, λ) = −η eµ(−~p,−λ) = η P µ
ν eν(~p,−λ) (8.30a)

T eµ(~p, λ) = (−)λ eµ(~p, λ) = −P µ
ν e∗ν(~p,−λ) . (8.31a)
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8.3 Spin-2 and higher-spin wave functions

The wave functions describing spin-2 particles can be constructed out of the polarization
vectors as follows:

eµν(~p, 2m) =
∑

m1m2

(1m11m2|2m) eµ(~p, m1) eν(~p, m2) . (8.33)

The rotational property (8.22) for the polarization vectors guarantees that our spin-2 states
have the correct rotational property:

R eµν(~p, 2m) =
∑

m′

D
(2)
m′m(R) eµν(R~p, 2m′) . (8.34)

The spin-2 helicity states are given in terms of the spin-1 helicity vectors in exactly the same
way as the spin-2 canonical states in Eq. (8.33); one merely replaces the m’s in Eq. (8.33) by
the λ’s. The relation (8.24) can be used to show that the spin-2 helicity states are correctly
related to the canonical states:

eµν(~p, 2λ) =
∑

m

D
(2)
mλ(

◦

R) eµν(~p, 2m) , (8.35)

where, as before,
◦

R describes the ~p direction.

Now, spin-2 states have five independent components corresponding to the number of
different values the z-component of spin can take. The formula (8.33) shows, on the other
hand, that our spin-2 wave function is a tensor of rank 2 with sixteen independent com-
ponents. This implies that there exist supplementary conditions which reduce the number
of independent components to 5. These are just the Rarita-Schwinger conditions for the
integral-spin tensors. From the definition (8.33), we can show, in fact, that

pµ eµν(~p, 2m) = 0 (8.36a)

eµν(~p, 2m) = eνµ(~p, 2m) (8.36b)

gµν eµν(p, 2m) = 0 . (8.36c)

It is easy to see that these conditions limit to five the number of independent components
in eµν .

In the rest frame of the spin-2 particle, the relations (8.36) reduce to

eij(2m) = eji(2m) (8.37a)
∑

i

eii(2m) = 0 . (8.37b)

The condition (8.36a) simply ensures that in the rest frame indices µ and ν can have the
space components only, i.e. 1, 2, or 3. Equations (8.37) tell us that the tensors eij are
symmetric and traceless.

Let us note that eµν is normalized according to

e∗µν(~p, 2m) eµν(~p, 2m′) = δmm′ , (8.38)
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which can be shown using Eqs. (8.33) and (8.25b). In analogy to Eq. (8.26a), we may also
define a spin-2 projection operator:

P
(2)
µναβ =

∑

m

eµν(~p, 2m) e∗αβ(~p, 2m) (8.39)

with the normalization given by

P (2)
µνσρ P (2) σρ

αβ = P
(2)
µναβ . (8.40)

Again, the spin-2 projection operator has the property that, when it is applied to any second-
rank tensor, the resulting tensor satisfies all the conditions in Eqs. (8.36). In the rest frame,
this operator simply projects out that part of a second-rank tensor which is symmetric and
traceless. From this, one sees immediately that in the rest frame

P
(2)
ijkℓ =

1

2
(δik δjℓ + δiℓ δjk) −

1

3
δij δkℓ . (8.41)

A projection operator defined in an arbitrary frame out to reduce to formula (8.41) in the
rest frame, so that it can be written

P
(2)
µναβ =

1

2
(ḡµα ḡνβ + ḡµβ ḡνα) − 1

3
ḡµν ḡαβ , (8.42)

where ḡµν is given in Eq. (8.26b) and reduces to δij in the rest frame.
It is clear how one can generalize to high spin states the results we have developed so far

for spin-2 states. Let us briefly discuss the case of spin-3 states. They may be described in
general by a third-rank tensor

eµνσ(~p, 3m) =
∑

m1m2

(2m11m2|3m) eµν(~p, 2m1) eσ(~p, m2) (8.43)

with the normalization,
e∗µνγ(~p, 3m) eµνσ(~p, 3m′) = −δmm′ . (8.43a)

Proper rotational property is guaranteed by construction, implying that it is indeed a wave
function appropriate for a spin-3 state. Therefore, the wave functions should satisfy the
Rarita-Schwinger conditions:

pµ eµνσ = 0 (8.44a)

eµνσ = pairwise symmetric (8.44b)

gµν eµνγ = 0 . (8.44c)

The condition (8.44b) states that eµνσ should remain invariant under interchange of any two
indices. In the rest frame, eµνσ reduces to eijk with only space indices and it is symmetric
(pair-wise) and traceless.

The spin-3 projection operators can be constructed in a similar fashion as in Eq. (8.39):

P
(3)
µνσαβγ =

∑

m

eµνγ(~p, 3m) e∗αβγ(~p, 3m) . (8.45)
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In the rest frame, this operator projects out a symmetric and traceless tensor from an
arbitrary third-rank tensor. Using this fact, it is easy to construct a projection operator in
the rest frame analogous to formula (8.41):

P S
ijkℓmn =

1

6

∑

p

δiℓ δjm δkn (8.45a)

P
(3)
ijkℓmn = P S

ijkℓmn − 1

5

[

δij P S
aakℓmn + δjk P S

aaiℓmn + δki P
S
aajℓmn

]

, (8.45b)

where the summation in the first relation goes over the six possible permutations of the three
indices (i, j, k). The second relation is clearly traceless in any pair of the indices (i, j, k). The
formulae (8.45b) and (8.41) are two special cases of the general formula given by Zemach
[33]. In order to obtain a projection operator valid in an arbitrary frame, one merely needs
to replace the Kronecker δ’s in Eq. (8.45a) by the ḡ’s of Eq. (8.26b). The reader is referred to
Fronsdal [34] for an explicit expression of relativistic projection operators of arbitrary spin.

8.4 Zemach formalism

Let us now turn to a discussion of how the projection operators may be used to facilitate
calculations in actual problems. For the purpose, it is best to consider an example; let us
suppose that we wish to describe the production and decay of the f2(1270) meson. Then,
the simplest Lorentz-invariant amplitude will assume the form

Mfi ∼
∑

m

pµ
1 pν

2 eµν(~p, 2m) e∗αβ(~p, 2m) qα
1 qβ

2 , (8.46)

where ~p is the momentum of the f meson, p1 and p2 are the decay pion momenta from
the f meson, and q1 and q2 are some momenta taken from the production process (the
Breit-Wigner function for the f propagator has been suppressed).

Let us explain at this point the meaning of the amplitude (8.46). The isospin-zero ππ
scattering at the f mass is really a product of two processes, i.e. the production and decay
of the f meson (see Fig. 2). The amplitude corresponding to each process should be Lorentz
invariant and exhibit the degree of freedom corresponding to the z-component of the spin
(the quantum number m). Furthermore, one has to sum over the quantum numbers m in
the amplitude, since the f meson is an intermediate resonance and is not observed directly.
Note that all these requirements are neatly satisfied by the expression (8.46). The complex
conjugation of the second wave function in the expression signifies the production (and not
the decay) of a resonance.

Using the definition (8.39), Mfi may be written in terms of the projection operator:

Mfi ∼ pµ
1p

ν
2 P

(2)
µναβ qα

1 qβ
2 . (8.46a)

This example shows that is not in general necessary to construct explicitly the tensor wave
functions; one only needs to know the corresponding projection operators. In the f rest
frame, the amplitude can be expressed as follows:

Mfi ∼ pi
1p

j
2 T

(2)
ij (q1q2) , (8.47)
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where T
(2)
ij is a symmetric and traceless tensor given by

T
(2)
ij (q1q2) = P

(2)
ijkℓ qk

1q
ℓ
2 . (8.48)

Eq. (8.46a) may be reduced to the following equivalent form:

Mfi ∼ qi
1q

j
2 T

(2)
ij (p1p2) , (8.49)

where
T

(2)
ij (p1p2) = P

(2)
ijkℓ pk

1p
ℓ
2 . (8.50)

Both Eqs. (8.47) and (8.49) tell us how to construct amplitudes: out of the decay (or
production) momenta, construct a “pure” tensor (symmetric and traceless) and combine it
with a “raw” tensor built out of the production (or decay) momenta, to obtain the desired
amplitude.

This example illustrates the use of angular momentum tensors proposed by Zemach
[33] in its simplest form. In his formalism, the pure spin tensors play the central role,
thereby avoiding the explicit construction of spin wave functions. In addition, by evaluating
amplitudes always in the rest frame of the particle to be described, his formalism avoids the
complication arising from the use of the four-momentum indices. Listed below are a few of
the pure spin tensors (i.e. symmetric and traceless):

T
(1)
i (a) = ai (8.51)

T
(2)
ij (ab) =

1

2
(aibj + biaj) −

1

3
δij(~a ·~b ) (8.52)

T
(3)
ijk (a) = aiajak −

a2

5
(δijak + δjkai + δkiaj) , (8.53)

where ~a and ~b are arbitrary three-vectors. A general prescription for constructing pure
tensors of arbitrary spin can be found in Zemach [33].

The Zemach formalism is particularly suited to problems where interference effects occur
due to the presence of identical particles. Let us discuss this problem by analyzing the decay
of a2(1320) as an example. For simplicity, we shall discuss the decay of a positively charged
a2:

a+
2 (p) → π+(p1) + ρ0(p23), ρ0(p23) → π+(p2) + π−(p3) (8.54a)

a+
2 (p) → π+(p2) + ρ0(p13), ρ0(p13) → π+(p1) + π−(p3). (8.54b)

where we have indicated the momenta of the particles in parenthesis. Let us denote by w
and w23 (or w13) the invariant masses of the a2 and ρ0, respectively.

In a Dalitz plot analysis of the 3π final state, one may integrate over the orientation of
the 3π system. From Eq. (6.20), one sees that in this case the distribution is independent of
the density matrix of the a2 (i.e. independent of the production process):

dσ

dwdw2
13dw2

23

∼
∑

m

|Fm|2 , (8.55)
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where m is the z component of the a2 spin along the normal to the 3π plane. The decay
amplitude Fm may be expressed in terms of the a2(J

p = 2+) wave function eµν :

Fm ∼ φµνeµν(~p, 2m) , (8.56)

where φµν is a second-rank tensor to be built out of the variables of the 3π system. Then,
∑

m

|Fm|2 ∼ φµνeµνe
∗
αβφ∗αβ

∼ φµνP
(2)
µναβφ∗αβ

∼ φ∗µνP
(2)
µναβφαβ ,

(8.57)

where the last line has been obtained using the reality of the projection operators. In the a2

rest frame, formula (8.57) becomes
∑

m

|Fm|2 ∼ φ∗ij P
(2)
ijkℓ φkℓ . (8.57a)

Let us now construct explicitly the tensor φµν . Taking into account the Bose symmetriza-
tion between the two π+’s, the tensor can be written

φµν = D(w23) φµν
23 + D(w13) φµν

13 , (8.58)

where the first term corresponds to the process (8.54a) and the second term to the process
(8.54b). D(w) is the usual Breit-Wigner function with invariant mass w. φµν

23 describes the
case in which the intermediate ρ0 is formed out of π+(p2) and π−(p3):

φµν
23 =

∑

m1

(p2 − p3)
σ eσ(~p23, m1) e∗α(~p23, m1) p

1β
pγ εµαβγ pν

1 . (8.59)

It can be shown that the decay amplitude given by

φµν
23 eµν(~p, 2m) (8.60)

is invariant under parity operation by using Eqs. (8.30) and (8.33) [the presence of the totally
antisymmetric 4th rank tensor in Eq. (8.59) can be understood in this way]. Using the spin-1
projection operator Eq.(8.26a), the tensor φµν

23 can be rewritten

φµν
23 = (p2 − p3)α p

1β
pγ εµαβγ pν

1 . (8.61)

In the a2 rest frame, the four-vector p has only the energy component, so that Eq. (8.61)
becomes

φij
23 ∼ qi

23 pj
1, ~q23 = (~p2 − ~p3) × ~p1 . (8.62)

Similarly,
φij

13 ∼ qi
13 pj

2, ~q13 = (~p1 − ~p3) × ~p2 . (8.63)

Let us write down explicitly the factors appearing in Eq. (8.57a):

φ∗ ij = D∗(w23) φij
13 + D∗(w13) φij

13 (8.63a)

P
(2)
ijkℓ φkℓ = D(w23) T

(2)
ij (q23, p1) + D(w13) T

(2)
ij (q13, p2) . (8.63b)
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T
(2)
ij is the pure spin-2 tensor given in (8.52).

This example illustrates how one may construct the general distribution function for the
3π Dalitz plot. The prescription is this: for any assumed spin-parity of the a2, construct
a raw tensor out of the variables in the 3π system consistent with the spin-parity and the
Bose symmetrization [e.g. Eq. (8.63a)], form a pure tensor through the use of the projection
operators, and multiply the two tensors together as shown in Eq. (8.57a), to obtain the
desired distribution function. This demonstrates the convenience of employing the Zemach
formalism for this type of problem.

8.5 Decay amplitudes in tensor formalism

Through a series of simple examples, we wish to show next how to construct invariant
amplitudes for resonance decays in the tensor formalism. The purpose is two-fold. Firstly,
we wish to demonstrate the connection between the decay amplitudes given in the tensor
formalism to those derived in the helicity formalism. Secondly, we wish to show how one can
use in a phenomenological approach the non-relativistic rest-state wave function in relativistic
problems.

The examples we shall consider are all special cases of the following general problem, i.e.
decay of a resonance J into a particle s by a pion emission:

Jη(p) → sηs(p1) + π(p2) , (8.64)

where the spin-parity and momentum for each particle are indicated in an obvious way. Let
us denote by w and w1 the invariant mass of J and s, respectively. Let ω = (θ, φ) be the
spherical angles of ~p1 in the rest frame of J(JRF). Then, the decay amplitude is given, from
Eq. (5.16), by

A = NJF J
λ DJ ∗

mλ(φ, θ, 0) (8.65)

and, from parity conservation,

F J
λ = εF J

−λ, ε = ηηs(−)J−s+1 . (8.66)

The helicity amplitude has the following partial-wave expansion [from Eq. (5.18)]:

F J
λ =

∑

ℓ

(

2ℓ + 1

2J + 1

)
1

2

aJ
ℓ (ℓ0 sλ|Jλ) . (8.67)

The parity conservation implies that the partial-waves ℓ can take only even (odd) values, if
the factor ηηs is odd (even).

Let us now see how the decay amplitudes constructed in the tensor formalism may be
cast into forms similar to Eq. (8.65). Wherever possible, we shall use the symbols introduced
in the previous paragraph.

i) 2+ → 0− + 0−

The invariant amplitude for this decay may be written

A ∼ g pµ
1 pν

2 eµν(~p, 2m)

∼ g pi
1 pj

2 eij(2m) ,
(8.68)
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where g is the coupling constant and the second line has been evaluated in the JRF. Let us
rotate the wave function eij by R(φ, θ, 0):

e′ij(2m) = R eij(2m) =
∑

m′

D
(2)
m′m(φ, θ, 0)eij(2m

′) .

This can be inverted to obtain

eij(2m) =
∑

m′

D
(2)∗
mm′ (φ, θ, 0) e′ij(2m

′) . (8.69)

e′ij is by definition a wave function with the quantization axis along the direction ~p1. Using
this fact, one can easily evaluate the following term:

pi
1 pj

2 e′ij(2m
′) =

∑

m1m2

(1m11m2|2m′) pi
1 e′1(m1) pj

1 e′j(m2) = p2 (1010|20) δm′,0 , (8.70)

where one has used the relation

~p1 · ~e ′(m) = p1δm,0 . (8.71)

This relation follows from the fact that the quantization axis coincides with the direction of
~p1 and that the momentum ~p1 may be thought of as having only a z-component.

Combining Eqs. (8.69) and (8.70), one can recast the amplitude A in Eq. (8.68) into

A ∼
√

2

3
g p2

1 D
(2)∗
m0 (φ, θ, 0) . (8.72)

Of course, one could have written down this formula immediately by applying Eq. (8.65). The
formula (8.72), however, tells us something further; it indicates that the helicity amplitude F
ought to have the dependence p2

1, commensurate with the D-wave in the di-pion system. We
shall see that this is a general feature with the tensor formalism. Namely, the amplitude F J

λ ,
which is an undefined quantity in the helicity formalism except for the symmetry property
(8.66), has a more explicit representation in the tensor formalism. This point is illustrated
further in the next example.

ii) 2+ → 1− + 0−

This decay process has been considered previously. Let us write the amplitude in the
following way:

A ∼ g εµαβγ e∗α(~p1, λ) p
2β

pγ pν
2 eµν(~p, 2m)

∼ g [~e ∗(~p1, λ) × ~p2]
i pj

2 eij(2m) , (8.73)

where λ is the helicity of the 1− particle. As before, we express eij in terms of the e′ij whose
quantization axis is along the ~p1 direction:

eij(2m) =
∑

m′

D
(2)∗
mm′ (φ, θ, 0) eij(2m

′)

=
∑

m′

m1m2

D
(2)∗
mm′ (φ, θ, 0) (1m11m2|2m′) e′i(m1) e′j(m2) . (8.74)

53



Note the following relation,

[~e ∗(p1, λ) × ~p2]
i e′i(m1) = i p1 λ δλ,m1

. (8.75)

which may be obtained by using expression (8.21). Combining this with Eq. (8.71), one
obtains finally

A ∼ g p2
1 λ(101λ|2λ) D

(2)∗
mλ (φ, θ, 0) . (8.76)

This exercise shows that the helicity amplitude F J
λ has the following explicit expression

F
(2)
λ ∼ g p2

1(101λ|2λ) . (8.77)

Note that F
(2)
λ satisfies the symmetry relations of Eqs. (8.66). Let us compare expression

(8.77) with the amplitude obtained by using Eq. (8.67) with ℓ = 2:

F
(2)
λ ∼ a2 (201λ|2λ) . (8.77a)

We see that formula (8.77a) is equivalent to formula (8.77), if we set a2 ∼ gp2
1.

Next, let us consider the following non-relativistic amplitude:

A ∼ g [~e ∗(λ) × ~p2]
i pj

2 eij(2m) , (8.78)

where ~e (λ) is the polarization vector evaluated in the sRF (or the 1− particle rest frame).
Formula (8.78) is clearly non-relativistic, because ~e (λ) and eij(2m) are the wave functions
evaluated in two different rest frames. However, it can be shown easily that Eq. (8.78) leads
to the same result (8.76). In this sense, Eq. (8.78) is an equally valid description of the decay
process as the fully relativistic amplitude (8.73). We have now seen the simplest example
which demonstrates how it is possible to use non-relativistic wave functions in a relativistic
problem. A more complicated case involving two different amplitudes is given in the next
example.

iii) 2− → 1− + 0−

This decay involves in general two independent amplitudes, reflecting the fact that there
can be two orbital angular momenta, i.e. P - and F -waves. Let us write the invariant ampli-
tude as follows:

A ∼ g1 eµ ∗(~p1, λ) pν
1 eµν(~p, 2m) + g3 eα ∗(~p1, λ) pα pµ

1 pν
1 eµν(~p, 2m) , (8.79)

where g1 and g3 are the two Lorentz-invariant coupling constants. This amplitude incorpo-
rates parity conservation in the decay in the sense that when the helicity vector is replaced
by the canonical vector (i.e. replace λ by m1), the amplitude is invariant under parity op-
eration [this can be shown by using Eqs. (8.30) and (8.33)]. Note that the amplitude A as
it appears in Eq. (8.79) is not parity-invariant, simply because the helicity λ changes sign
under parity operation.

Let us express the amplitude A in the JRF:

A ∼ g1 ei ∗(~p1, λ) pj
1 eij(2m) + g3 we0(~p1, λ) pi

1 pj
1 eij(2m) . (8.79a)
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Using the same technique we have used in previous examples, we expand eij in terms of the
e′ij whose quantization axis points along the momentum ~p1. Afterwards, we use the relation
(8.71) and [use Eqs. (8.21)]

~e ∗(~p1, λ) · ~e ′(m1) =

[

λ2 +
E1

w1
(1 − λ2)

]

δλ,m1
(8.80)

to cast the amplitude A into the following form:

A ∼ Bλ D
(2)∗
mλ (φ, θ, 0) , (8.81)

where

B± =
1√
2
g1 p1

B0 =

√

2

3

[

g1 p1
E1

w1
+ g3 p3

1

w

w1

]

.

(8.82)

Comparison of Eq. (8.81) with Eq. (8.65) shows that Bλ may be set equal to F J
λ , which

has the following expansion in terms of the partial-wave amplitudes aJ
ℓ (ℓ = 1 or 3):

F± =

√

3

10
a1 +

√

1

5
a3

F0 =

√

2

5
a1 −

√

3

5
a3 .

(8.83)

where the superscripts J have been suppressed for brevity. Equations (8.82) and (8.83) can
be used to solve for a1 and a3 in terms of g1 and g3 by setting Bλ = Fλ

a1 =

√

1

15

[

g1 p1

(

2E1 + 3w1

w1

)

+ 2g3 p3
1

w

w1

]

a3 = −
√

2

5

[

g1 p1

(

E1 − w1

w1

)

+ g3 p3
1

w

w1

]

.

(8.84)

We have now exhibited clearly how the Lorentz invariant coupling constants are related to
the partial-wave amplitudes. We see that in general it is not possible to define a Lorentz
invariant coupling constant which corresponds to a single partial-wave amplitude. The reason
is that the orbital angular momentum is a well-defined concept only in the parent-resonance
rest frame (the JRF).

One may ask the following question: Is it possible in the tensor formalism to construct
amplitudes corresponding to states of a pure orbital angular momentum? The answer is
that one has to use the non-relativistic tensor formalism. Let us examine the following
non-relativisitc amplitude:

A ∼ b1 ei∗(λ) pj
1 eij(2m) + b3 ei∗(λ) T

(3)
ijk (p1) ejk(2m) , (8.85)

where T
(3)
ijk is the pure spin-3 tensor given in Eq. (8.53).
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Let us proceed to the task of reformulating the above amplitude to the one similar to
Eq. (8.65). Using the by-now standard technique, we re-express eij in terms of e′ij as given
in Eq. (8.69). For the first term in formula (8.85), we evaluate [use Eq. (8.17a)]

ei∗(λ) pj
1 e′ij(2m

′) = p1 (101λ|2λ) δλm′

to obtain the result
b1 p1 (101λ|2λ) D

(2)∗
mλ (φ, θ, 0) (8.86)

This shows that the first term in indeed proportional to the P -wave amplitude [see Eq.
(8.67)]:

a1 =

√

5

3
b1 p1 . (8.87)

The second term can be reduced to the desired form by using the explicit expression
for the third-rank tensor given in Eq. (8.53). However, it is instructive to use the following
method, which is easily applicable to higher spin cases. Let us express the tensor in terms
of the projection operator:

T
(3)
ijk (p1) = P

(3)
ijkℓmn pℓ

1 pm
1 pn

1

=
∑

µ

eijk(3µ) e∗ℓmn(3µ) pℓ
1 pm

1 pn
1 . (8.88)

If we assume that the z-component µ is defined along the direction of ~p1, then the ten-
sor reduces to the following simple form [it should be emphasized that this form does not
correspond to a general expression; see Eq. (8.53)]:

T
(3)
ijk (p1) = p3

1 (2010|30)(1010|20) eijk(3, 0)

=

√

2

5
p3

1 eijk(3, 0) ,
(8.88a)

where
eijk(3, 0) =

∑

µ

(1µ2 −µ|30) e1(µ) ejk(2,−µ)

= −
√

7

5

∑

µ

(301µ|2µ) e2(µ) e∗jk(2µ) .

(8.88b)

From the normalization (8.38), we see that

e∗jk(2µ) e′jk(2m′) = δνm′ . (8.88c)

Note that this result follows because both the spin-2 wave functions have the same quanti-
zation axis. Substituting Eq. (8.88) into Eq. (8.85), we finally obtain for the second term

−
√

14

5
b3 p3

1 (301λ|2λ) D
(2)∗
mλ (φ, θ, 0) , (8.89)
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which shows clearly that this term corresponds to a pure F -wave amplitude. Comparing
this with Eq. (8.67), we may identify

a3 = −
√

2

5
b3 p3

1 . (8.90)

We have now completed the proof that the non-relativistic amplitude given in Eq. (8.85)
corresponds to a sum of pure P - and F -wave amplitudes. It is clear how to write down
amplitudes similar to (8.85) for different spin parity combinations for the parent resonance
J . Let us make the following remarks concerning this type of amplitude. First, it gives the
correct angular distribution in the JRF corresponding to a given orbital angular momentum.
Second, it is “relativistically correct” in the sense that b1 and b3 can be expressed in terms
of the Lorentz invariant coupling constants g1 and g3 [see Eqs. (8.82)]. In a phenomenolog-
ical approach, it is clearly irrelevant as to which set of constants are used to describe the
amplitude.

Suppose that the vector particle s decays into two pseudo-scalar mesons. In order to
describe the over-all amplitude for the J decay into three pseudo-scalar mesons, one has to
multiply Eq. (8.85) by a factor ~k · ~e (λ) and sum over the helicity λ, where ~k is the relative
decay momentum in the sRF. Owing to the relation (8.17b), the net effect is to replace
ei∗(λ) by ki in (8.85):

A ∼ b1k
ipj

1eij(2m) + b3k
iT

(3)
ijk (p1)e

jk(2m) . (8.91)

The Dalitz plot distribution is obtained by taking the absolute value of A and summing over
m [see expression (8.57)]:

∑

m

|A|2 ∼ φ∗
ij P

(2)
ijkℓ φkℓ , (8.92)

where
φ∗

ij ∼ b∗1 ki pij + b∗3 kℓ T
(3)
ℓij (p1) (8.93)

and
P

(2)
ijkℓ φkℓ ∼ b1 T

(2)
ij (k, p1) + b3 kℓ T

(3)
ℓij (p1) . (8.94)

Note that the second term in Eq. (8.94) is already symmetric and traceless in the indices i
and j.

This exercise shows how to calculate the Dalitz-plot distribution function out of the
non-relativistic amplitude we have constructed. It is important to realize that we are using
momenta defined in two different rest frames; the ~p1 is given in the JRF, whereas the ~k is
defined in the sRF. Of course, this is a consequence of the non-relativistic approach we have
adopted here. For a more general discussion of the non relativistic tensor formalism, the
reader is referred to Zemach [33].

One may consider Eq. (8.92) as defining the distribution in the internal angle, cos θ1 ∼
~k ·~p1. Of course, the distribution in cos θ1 may be derived within the helicity formalism. Note
that the decay we consider here is a special case of the general sequential decays considered
in the previous section. The desired distribution in cos θ1 is obtained by integrating over all
angles except cos θ1 in Eq. (7.7):

I(cos θ1) ∼
∑

λ

g
(2)
λλ [D

(1)
λ0 (θ1)]

2 , (8.95)
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where g
(2)
λλ is related to the partial-wave amplitudes a

(2)
ℓ (ℓ = 1 or 3) via

g
(2)
λλ ∼

∣

∣

∣

∣

∣

∑

ℓ

(2ℓ + 1)
1

2 a
(2)
ℓ (ℓ0 1λ|2λ)

∣

∣

∣

∣

∣

2

. (8.96)

It can be checked that the angular distribution obtained using Eq. (8.92) is indeed identical
to that given by the formula (8.95).

9 Tensor Formalism for Half-Integral Spin

In this section we wish to develop the tensor formalism for wave functions describing
relativistic particles with half-integer spin. We construct explicitly the tensor wave functions
and illustrate how they may be used to construct invariant amplitudes. We have seen in
the previous section that it is advantageous to use the purely non-relativistic formalism,
whereby one employs only the wave functions evaluated in the rest frames. For this reason,
we shall first concentrate on the non-relativistic two-component tensor formalism and then
generalize later to the four-component tensor formalism, which satisfies the Rarita-Schwinger
conditions [31].

Our first task is to construct the spinor wave functions describing spin-1/2 particles as
rest, and show how the Pauli matrices may be used to build up the rotationally invariant
amplitudes. Next, we discuss the spin-3/2 wave function constructed out of a polarization
vector and a spinor, and give the subsidiary conditions limiting the number of independent
operators which are constructed from the spin wave functions. The pure tensors, normally
obtained by the use of the projection operators, can also be constructed in the following
manner

for half-integer spins. Let T (n) be a pure tensor for an integer spin n. The product of
T (n) with a spinor will then correspond to a spin n + 1/2 or n − 1/2. As will be shown in
this section, it is a simple matter to project out the spin n+1/2 or n− 1/2 component from
the product. This is the approach adopted by Zemach [33].

As for the relativistic wave functions for the half-integer spins, our starting point is
the Dirac four-component formalism for spin-1

2
particles. Following Auvil and Brehm [32],

we then combine the spin-1
2

wave function with the relativistic tensor wave function of the
previous section to form explicitly the tensor wave funct8ions for arbitrary half-integer spins.
We shall show that these wave functions satisfy the Rarita-Schwinger conditions. The explicit
form of the relativistic projection operators corresponding to arbitrary half-integer spins has
been given by Fronsdal [34].

9.1 Spin-1/2 states at rest

States corresponding to a particle of spin-1/2 at rest have two independent components,
owing to the two values the z-component of the spin can take. In this case, the basis vectors
may be given by the spinors or two dimensional column vectors:

χ(+ 1

2
) =

(

1
0

)

, χ(− 1

2
) =

(

0
1

)

. (9.1)
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States χ(m) are, of course the analogue of the ket vectors |jm〉 with j = 1/2 [see Eqs. (1.2)].
It is well known that the representation of the angular momentum satisfying Eqs. (1.2)

in the spinor basis is given by

~J =
1

2
~σ , (9.2)

where σi is the Pauli matrix:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (9.3)

In fact, once the spin-1/2 basis vectors are given by Eqs. (9.1), the corresponding angular
momentum matrices can be derived using Eqs. (1.2); the result can be expressed as in Eq.
(9.2). this is to be contrasted with the approach we have taken in the previous section.
There we have started out with 3 × 3 rotation matrices and, by considering the infinitesi-
mal rotations, found the 3 × 3 matrix representation of the angular momentum, and then
“derived” the corresponding basis vectors, which turned out to be the polarization vectors.

Under rotation, states χ(m) transform according to [see Eq. (1.5)]

U [R(α, β, γ)] χ(m) =
∑

m′

D
1

2

m′m(α, β, γ) χ(m′) . (9.4)

The normalization and the completeness relation for χ(m) have the standard form:

χ†(m)χ(m′) = δmm′

∑

m

χ(m)χ†(m) = I , (9.5)

where χ†(m) is the Hermitian conjugate of χ(m), i.e. a two-dimensional row vector, and I
is the 2 × 2 unit matrix.

We shall now derive an important property which is that the Pauli matrices ~σ may be
considered a vector in the construction of invariant amplitudes. For the purpose, let us
exhibit explicitly the 2 × 2 rotation matrix:

U [R(α, β, γ)] = exp
(

−i
α

2
σ3

)

exp

(

−i
β

2
σ2

)

exp
(

−i
γ

2
σ3

)

. (9.6)

Each factor in this expression can be expanded by using the following general property:

exp[−i θ ~n · ~σ] = cos θ − i ~n · ~σ sin θ , (9.7)

where ~n is a unit vector. We are now ready to prove the following relation:

U−1[R]σiU [R] = Rij σj . (9.8)

If U [R] is given by Eq. (9.6), Rij is an element of the 3 × 3 matrix given in Eq. (8.13). It is
a straightforward algebra to prove the relation (9.8) by using Eq. (9.7). The scalar product
~σ · ~p for an arbitrary momentum ~p is a rotational invariant in the sense that

χ†(m1) ~σ · ~p χ(m2) = χ′†(m1)~σ · ~p ′ χ′(m2) , (9.9)
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where the prime indicate the rotated quantities:

χ′(m) = U [R] χ(m)

p′i = Rij pj . (9.10)

The relation (9.9) is the analogue of Eq. (8.14) for the polarization vectors.
One important characteristic of the product ~σ · ~p is the fact that it is a pseudo-scalar,

because the angular momentum vector ~J = 1/2~σ is a pseudo-vector. This allows us to write
down, for example, a general amplitude for the decay of the Λ(1115) via the weak interaction:

M ∼ χ†

N
(m′)A χ

Λ
(m) , (9.11)

where the subscripts denote states corresponding to either a nucleon or a Λ, and A is given
by

A = a0 + a1~σ · ~p . (9.12)

a0 and a1 are the coupling constants and ~p is the momentum of the nucleon in the Λ rest
frame. Note that we have used in formula (9.11) the wave functions (or states) evaluated in
two different rest frames. The situation here is identical to that discussed in the previous
section for integer spins; in a phenomenological description, Eq. (9.11) is a perfectly valid
expression in the sense that the constants a0 and a1 are merely linear combinations of the
Lorentz invariant coupling constants. We shall give the explicit relations when we take up
the discussion of relativistic wave functions.

9.2 Non-relativistic spin-3/2 and higher spin states

Wave functions corresponding to a particle of spin 3/2 may be constructed by coupling
the polarization vector with a spinor:

~χ( 3

2
m) =

∑

m1m2

(1m1
1

2
m2| 32m)~e (m1)χ(m2) . (9.13)

We know that both ~e (m1) and χ(m2) transform under rotation in the standard way. The
Clebsch-Gordan coefficient in Eq.. (9.13) ensures that the states ~χ(3/2m) transform under
rotation as those of a particle of spin-3/2 [use Eqs. (8.11), (9.4), and (A.14)]:

U [R(α, β, γ)]~χ( 3

2
m) =

∑

m′

D
3

2

m′m(α, β, γ)~χ( 3

2
m′) . (9.14)

States ~χ(3/2m) are by definition three-vectors, each component of which is a spinor. There-
fore, there are six independent components for ~χ(3/2m). On the other hand, states of a pure
spin-3/2 particle have only four independent components, so that ~χ(3/2m) of Eq. (9.13)
ought to satisfy two subsidiary conditions. It is a matter of straightforward algebra to prove
that the desired conditions assume the following form:

~σ · ~χ( 3

2
m) = 0 . (9.15)
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The wave functions ~χ(3/2m) have the following simple normalization:

~χ †( 3

2
m) · ~χ( 3

2
m′) = δmm′ , (9.16)

where ~χ† is a three-vector with each component being a two-dimensional row vector. The
outer product summed over all spin states defines, as before, the spin-3/2 projection operator

P
( 3

2
)

ij =
∑

m

χi( 3

2
m)χ†

j(
3

2
m) (9.17)

with the normalization given by

∑

k

P
( 3

2
)

ik P
( 3

2
)

kj = P
( 3

2
)

ij . (9.18)

By definition, the projection operator has the property

P
( 3

2
)†

ij = P
( 3

2
)

ji . (9.19)

Because of the condition (9.15), it satisfies, in addition,

σi P
( 3

2
)

ij = 0 . (9.20)

The following form clearly satisfies Eq. (9.20):

P
( 3

2
)

ij = δij −
1

3
σiσj . (9.21a)

It is simple to show that this form also satisfies Eqs. (9.18) and (9.19). Equation (9.21a)
may be recast into the form:

P
( 3

2
)

ij =
2

3

[

δij +
i

2
εikj σk

]

. (9.21b)

We shall give later a general expression for half-integer spin projection operators.
Let us go on to a discussion of spin-5/2 wave functions. They may be construed by

coupling spin-2 wave functions with the spinor:

χij( 5

2
m) =

∑

m1m2

(2m1
1

2
m2| 52m)eij(m1)χ(m2) . (9.22)

By construction, this wave function has the correct property under rotation:

U [R(α, β, γ)]χij( 5

2
m) =

∑

m′

D
5

2

m′m(α, β, γ)χij( 5

2
m′) . (9.23)

Because our wave functions have been constructed by coupling to the maximum possible
spin, it can be shown that the following expression is equivalent to Eq. (9.22):

χij( 5

2
m) =

∑

m1m2

( 3

2
m11m2| 52m) χi( 3

2
m1) ej(m2) . (9.22a)
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Now, we are ready to enumerate the supplementary conditions on χij limiting the number
of independent components to six. From Eq. (9.22) we see that χij is symmetric and traceless
in the indices i and j. On the other hand, we have an additional condition from (9.22a) and
(9.15)

σi χij( 5

2
m) = 0 . (9.24)

Let us multiply Eq. (9.24) by σj and sum over the index j. then, we obtain

(δij + iεjikσk)χij( 5

2
m) = 0 . (9.25)

This relation shows us that, if χij is symmetric, Eq. (9.24) automatically ensures that it
is also traceless. It is thus clear that a symmetric χij satisfying Eq. (9.24) has indeed six
independent components.

The spin-5/2 wave functions are normalized according to

∑

ij

χ†
ij(

5

2
m)χij( 5

2
m′) = δmm′ (9.26)

and give the spin-5/2 projection operator

P
( 5

2
)

ijkℓ =
∑

m

χij( 5

2
m)χ†

kℓ(
5

2
m) . (9.27)

This operator has the following properties:

∑

ab

P
( 5

2
)

ijab P
( 5

2
)

abkℓ = P
( 5

2
)

ijkℓ (9.28)

P
( 5

2
)†

ijkℓ = P
( 5

2
)

kℓij (9.29)

σi P
( 5

2
)

ijkℓ = 0 . (9.30)

Of course, the projection operator is symmetric and traceless in the pairs of indices (i, j)
and (k, ℓ). We give below explicit expressions for the spin-5/2 projection operator, as well
as the general formula corresponding to arbitrary half-integral spins.

9.3 Non-relativistic spin projection operators

Consider the expression

P
( 5

2
)

ijkℓ =
3

7
σm σn P

(3)
mijnkℓ , (9.31)

where P (3) is the spin-3 projection operator [see Eq. (8.45b)]. It is clear that the projection
operator (9.31) satisfies Eq. (9.29). It also satisfies Eq. (9.30), since

σiP
( 5

2
)

ijkℓ =
3

7
(2δmi − σmσi) σn P

(3)
mijnkℓ

= −σm P
( 5

2
)

mjkℓ .
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It can also be shown that Eq. (9.31) obeys Eq. (9.28). The formula (9.31) is a special case of
the general expression for projection operators given by Fronsdal [34]. The non-relativistic
version on his formula reads as follows (n ≥ 1):

P
(n+ 1

2
)

i1···inj1···jn
=

(

n + 1

2n + 3

)

σk σℓ P n+1
ki1···inℓj1···jn

, (9.32)

where n is an integer and P n+1 is the projection operator for spin (n + 1). Note that
application of this formula for spin-3/2 gives immediately Eq. (9.21a).

After some algebra, Eq. (9.31) can be re-expressed in the following form

P
( 5

2
)

ijkℓ = P
(2)
ijkℓ −

1

5

[

σi σm P
(2)
mjkℓ + σj σm P

(2)
imkℓ

]

, (9.33a)

where P (2) is the spin-2 projection operator [see Eq. (8.41)]. Or equivalently,

P
( 5

2
)

ijkℓ =
3

5
P

(2)
ijkℓ +

i

5

[

εinm σn P
(2)
mjkℓ + εjnm σn P

(2)
imkl

]

. (9.33b)

Note that similarity of this formula with the form of the spin-3/1 projection operator given
in Eq. (9.21b); these are the two simplest cases of the general formula give by Zemach [33].
Let us briefly outline his derivation. If we combine a pure tensor of integer spin n with a
spinor, the product can at most describe spins n + 1/2 or n − 1/2. The operator projecting
out the (n+1/2) component is well known; combining it with the spin-n projection operator
P (n)(n ≥ 1),

P (n+ 1

2
) =

1

2n + 1

[

n + 1 + ~σ · ~J (n)
]

P (n) , (9.34)

where ~J (n) is the spin-n angular momentum operator given by

~J (n) =

n
∑

i=1

~J (i) (9.35)

and ~J (i) is the spin-1 operator acting on the ith vector index, its matrix element being given
by Eq. (8.8). the reader can check that application of the formula (9.34) for spins 3/2 and
5/2 gives Eqs. (9.21b) and (9.33b), respectively.

Let us now turn to a discussion of the half-integral spin tensors. We shall give explicit
expressions for the spin-3/2 and -5/2 tensors constructed out of an arbitrary three-vector ~a:

~T ( 3

2
)(a) = ~a − 1

3
~σ(~σ · ~a )

=
2

3

[

~a +
i

2
~σ × ~a

]

(9.36)

and

T
( 5

2
)

ij (a) = qaiaj −
a2

5
δij −

1

5
[aiσj + ajσi](~σ · ~a ) . (9.37)
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Of course, these have been obtained by applying the projection operators (9.21b) and (9.33b).
these tensors satisfy the constraint

~σ · ~T ( 3

2
)(a) = 0 (9.38a)

σiT
( 5

2
)

ij (a) = 0 (9.38b)

and T
(5/2)
ij is, in addition, symmetric and traceless.

There exists an alternative way of constructing the spin tensors. It consists in multiplying
the pure spin tensors by pseudoscalar (~σ · ~a ) from the left . The resulting tensors are then
appropriate for describing particles of opposite parity. Let us write

Q(n+ 1

2
)(a) = T (n+ 1

2
)(a)(~σ · ~a ) . (9.39)

Note that the tensors Q satisfy the constraint (9.38b), because the T ’s obey the constraint.
The explicit expressions for the spin-3/2 and 5/2 tensors are:

Q( 3

2
)(a) = ~a (~σ · ~a ) − a2

3
~σ (9.36a)

and

Q
( 5

2
)

ij (a) = ai aj (~σ · ~a ) − a2

5
δij(~σ · ~a ) − a2

5
[aiσj + ajσi] . (9.37a)

The spin tensors Q may be obtained in the following alternative way:

Q
(n+ 1

2
)

i1...in (a) = σmT
(n+1)
mi1···in

(a) a (9.40)

where T (n+1) is the pure tensor corresponding to the integer spin (n + 1). Note that the
tensors Q defined by Eq. (9.40) are transverse to ~σ; this can be shown by following the same
argument used in the discussion of Eq. (9.31). One can prove that the tensors (9.40) are
identical to those defined by formula (9.39), using the general expression (9.32) for the half-
integral spin projection operators [ for this proof, one needs in addition the formula (3.28)
of Zemach [33]]. the proof is simple for spin-3/2 and 5/2; one merely needs to contract the
spin-2 and spin-3 tensors given in Eqs. (8.52) and (8.53) with ~σ, to obtain the desired results
(9.36a) and (9.37a).

Later, we shall illustrate with simple examples the uses of the spin tensors given in this
section.

9.4 Dirac formalism for spin-1/2 states

We adopt the four-component Dirac formalism to describe the relativistic spin-1/2 states.
In the rest frame, the two-component spinors χ(m) are generalized to the four-component
spinors u(0, m):

U(0, m) =

(

χ(m)
0

)

. (9.41)
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Let us suppose that a spin-1/2 particle with mass w has momentum ~p and energy E in an
arbitrary frame. The boost operator which takes the rest-state wave function u(0, m) to that
of momentum ~p can be written

D[l(~p )] =

(

cosh α/2 ~σ · p̂ sinh α/2
σ · p̂ sinh α/2 cosh α/2

)

. (9.42)

where p̂ is the unit vector along ~p and tanh α = p/E. Then, the inverse of the boost operator
is given by

D−1[L(~p )] = DL(−~p )] . (9.43)

The formula (9.42) is the analogue of the boost operator (2.11) for arbitrary spin. How-
ever, it is different in one important respect; the operators (2.11) are unitary, whereas the
“boosts” given by expression (9.42) are not unitary. In fact, there are two different ways of
representing the homogeneous Lorentz group. One is the infinite-dimensional unitary repre-
sentation, in which the infinitesimal generators are given by the Hermitian operators ~J and
~K [see Eq. (2.11)]. This is the representation we have used in Section 2. The other is the

finite-dimensional non-unitary representation, where the generators of the boosts ~K may be
given by either +i ~J or −i ~J so that ~K is not Hermitian if ~J is Hermitian. The operator
defined in expression (9.42) corresponds to the second representation, in which the boost
generators corresponding to both +i~σ/2 and −i~σ/2 have been employed. The reader is re-
ferred to Froissart and Omnès [8] for a discussion of these topics. It should be mentioned,
however, that the form of the boost operator we have adopted here is not the same as that
given in their article.

In analogy to the formula (2.12), the boosts (9.42) along an arbitrary direction can be
re-expressed in terms of the boosts along the z-axis:

D[L(~p )] = D[
◦

R]D[Lz(p)]D−1[
◦

R] , (9.44)

where
◦

R is the usual rotation which takes the z-axis into the direction of the momentum ~p,

D[
◦

R] =





U [
◦

R] 0

0 U [
◦

R]



 (9.45)

and U [
◦

R] is the 2 × 2 unitary matrix given in Eq. (9.6). It is easy to check the relation

(9.44) by using Eq. (9.8). We are now ready to define the canonical and helicity states in
the four-component formalism:

u(~p, m) = D[L(~p )]u(0, m)

= D[
◦

R]D[Lz(p)]D−1[
◦

R]u(0, m) (9.46)

and

u(~p, λ) = D[L(~p )]D[
◦

R]u(0, m)

= D[
◦

R]D[Lz(p)]u(0, m) . (9.47)
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Using the explicit expression (9.42) for the boost operator, the canonical states (9.46) can
be cast into the familiar form

u(~p, m) =

[

E + w

2w

]
1

2

(

χ(m)
~σ · ~p

E + wχ(m)

)

. (9.46a)

The rotational property (9.4) for the two-component spinors assures that the canonical
and helicity states have the correct rotational property:

D[R]u(~p, m) =
∑

m′

D
1

2

m′m(R)u(R~p, m′) (9.48)

and
D[R]u(~p, λ) = u(R~p, λ) . (9.49)

The helicity states are related to the canonical states via the usual relation,

U(~p, λ) =
∑

m

D
1

2

mλ(
◦

R)u(~p, m) . (9.50)

Now, the states of spin-1/2 particle have two degrees of freedom. This means that, if
the four-component spinors are to describe spin-1/2 states, there has to be a supplementary
condition relating the upper two components to the lower two components in the spinor.
This supplementary condition is in fact the well-known Dirac equation:

(γµpµ − w)u(~p, m) = 0 , (9.51)

where the γµ’s are the familiar 4 × 4 matrices satisfying the anti-commutation relation

γµγν + γνγµ = 2gµν (9.52a)

and are given by

γ0 = γ0 =

(

10

0 −1

)

(9.52b)

γi = −γi =

(

0 σi

−σi 0

)

(9.52c)

γ5 = γ5 =

(

0 1
1 0

)

= iγ0γ1γ2γ3 (9.52d)

γµ = γ+
µ = γ−1

µ , γµ† = γ0γµγ0, γ5 = −γ0γ5γ0 . (9.52e)

Using Eqs. (9.46a), (9.52b), and (9.52c), one can easily verify the Dirac equation (9.51).
Let us define the “adjoint” spinor,

ū(~p, m) = u†(~p, m)γ0 , (9.53)

which obeys the adjoint Dirac equation

ū(~p, m)(γµpµ − w) = 0 . (9.54)
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Note that the boost operator (refeq9.42) may be expressed as

D[L(~p )] = D†[L(~p )] = γ0D−1[L(~p )]γ0 , (9.55)

so that the adjoint spinor takes the form

ū(~p, m) = ū(0, m)D−1[L(~p )] . (9.53a)

In terms of the adjoint spinors, the normalization condition may be given by

ū(~p, m)u(~p, m′) = δmm′ (9.56)

and the projection operator can be defined

Λ+(p) =
∑

m

u(~p, m)ū(~p, m)

=
1

2w
(γµpµ + w) , (9.57)

where one has used Eq. (9.53a) to obtain the explicit expression.
Let us now turn to a discussion of an important property of the γµ matrices:

D−1[Λ]γµD[Λ] = Λµ
νγ

ν , (9.58)

where Λ denotes an arbitrary Lorentz transformation. If Λ represents a rotation, one can
readily prove this formula by using Eq. (9.8) for the Pauli matrices. One can also easily prove
it for the case when Λ represents a pure Lorentz transformation. The reader may verify this
for a Lorentz transformation along the z-axis by using the relations (2.6) and (9.42). The
property (9.58) implies that the combination

ū(~p ′ , m′)γµu(~p, m)

behaves like a four-vector under Lorentz transformations. This allows one to mix γµ with
any four-momentum to construct Lorentz invariant amplitudes. One may think of this as
the relativistic generalization of the property (9.9) for the Pauli matrices.

Let us give the transformation property of the four-component spinors under parity and
time-reversal operations. Using Eqs. (3.9) and (3.10), we obtain

Π u(~p, m) = ηu(−~p, m) = ηγ0u(~p, m) (9.59)

T u(~p, m) = (−)
1

2
−mu(−~p,−m) = γ3γ1u∗(~p, m) , (9.60)

where η is the intrinsic parity of the spin-1/2 particle. The last expressions in (9.59) and
(9.60) can be checked by using Eqs. (9.46a), (9.52b), and (9.52c). The product γ3γ1 in Eq.
(9.60) represents a rotation by π around the y-axis, which is associated with the action of T

as explained in Section 3; note that

γ3γ1 =

(

−iσ2 0
0 −iσ2

)

=

(

exp
(

−iπ
2
σ2

)

0
0 exp

(

−iπ
2
σ2

)

)

. (9.61)
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The adjoint spinors transform under Π and T according to

ū(~p, m)Π† = ηū(~p, m)γ0 (9.59a)

ū(~p, m)T† = ū∗(~p, m)γ1γ3 . (9.60a)

The γ5 matrix in Eq. (9.52d) is a pseudoscalar in the sense that the combination

ū(~p ′ , m′)γ5u(~p, m)

reverses sign under parity transformation [see Eq. (9.52e)].
Let us now come back to the discussion of the Λ(1115) decay. We may write for the

explicitly covariant decay amplitude,

m ∼ ūN(~p, m′)BuΛ(~q, m) , (9.62)

where the first (second) spinor corresponds to that of the nucleon (the Λ), and B has the
general expression

B = g0 + g1γ
5 , (9.63)

where g0 and g1 are the Lorentz invariant coupling constants. Evaluating the expression
(9.62) in the Λ rest frame, we can find the relationship between the relativistic and non-
relativistic coupling constants [compare expressions (9.11) and (9.62)]. They are

a0 =

(

E + w

2w

)
1

2

g0

a1 = − g1

[2w(E + w)]
1

2

, (9.64)

where w is the mass of the nucleon and E is its energy in the Λ rest frame.

9.5 Relativistic spin-3/2 and higher spin states

Wave functions corresponding to relativistic particles of spin j(= n+1/2, n = integer) can
be constructed by coupling the spin-n tensor of the previous section with the four-component
spinor. The rotational property (9.48) for the spinors and the similar property for the integer
spin tensors [e.g. Eq. (8.34)] assure us that the desired wave functions can be written

uµ1···µn
(~p, jm) =

∑

m1m2

(nm1
1

2
m2|jm) eµ1···µn

(~p, nm1) u(~p, m2) , (9.65)

where e(~p, nm1) is the spin-n tensor to be constructed in the manner described in the previous
section. Of course, the adjoint wave function is constructed in the same way by coupling
e∗(~p, nm1) with ū(~p, m2). Under rotations, the spin-j wave functions transform according to

D[R]u(~p, jm) =
∑

m

D−1
m′m(R)u(R~p, jm′) . (9.66)

The wave functions given in Eq. (9.65) are, of course, the canonical wave functions. The
helicity states may be constructed by merely replacing the m’s in Eq. (9.65) by the λ’s. It
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can be shown that the resulting helicity states are correctly related to the canonical states
via

e(~p, jλ) =
∑

m

Dj
mλ(

◦

R)e(~p, jm) , (9.67)

where
◦

R is as before the rotation which takes the z-axis into the direction of ~p.

The spin-j wave function (9.65) is a four-component spinor with the four-vector indices
µ1 · · ·µn. Since it describes a state of spin j, it can have only (2j + 1) independent compo-
nents. The desired supplementary conditions are just the Rarita-Schwinger equations [31]:

(γµpµ − w)uµ1···µn
= 0 (9.68a)

u···µ1···µj ··· = u···µj ···µi··· (9.68b)

pµ1uµ1···µn
= 0 (9.68c)

γµ1uµ1···µn
= 0 (9.68d)

gµ1µ2uµ1µ2···µn
= 0 , (9.68e)

where w is the mass of the spin-j particle and p is its four-momentum. The relation (9.68d)
is the relativistic generalization of the conditions (9.15) or (9.24). The reader may verify the
relation (9.68d) for spin-3/2 by writing down the explicit expression for the spin-3/2 wave
function and carrying out the necessary algebra. The condition (9.68e) is not an independent
condition; it is in fact a consequence of the relations (9.68b) and (9.68d).

The spin-j wave functions u are normalized according to (j = n + 1/2)

ūµ1···µn
(~p, jm) uµ1···µn(~p, jm′) = (−)nδmm′ (9.69)

and they define the projection operator

P (j)
µ1···µnν1···νn

=
∑

m

uµ1···µn
(~p, jm) ūν1···νn

(~p, jm) . (9.70)

This operator obviously satisfies all the conditions of Eqs. (9.68a)–(9.68e); in addition, it
has the properties:

P (j)
µ1···µm α1···αn

P (j)α1···αn

ν1···νn
= (−)nP (j)

µ1···µn ν1···νn
(9.71)

P (j)†
µ1···µn ν1···νn

= γ0P (j)
ν1···νn µ1···µn

γ0 . (9.72)

The explicit expression for the projection operator has been given by Fronsdal [34]. It may
be written, in our notation,

P (j)
µ1···µn ν1···νn

= −
(

n + 1

2n + 3

)

Λ+(p)γµγνP (n+1)
µµ1···µn νν1···νn

, (9.73)

where Λ+(p) is the spin-1/2 projection operator given in Eq. (9.57) and P (n+1) is the pro-
jection operator for the integral spin (n + 1). Evaluating this in the rest frame of the spin-j
particle, one obtains the non-relativistic spin-3/2 projection operator:

P
( 3

2
)

µν = Λ+(p)

[

ḡµν +
1

3
ḡµα γα ḡνβ γβ

]

. (9.74)

It can be shown easily that this operator satisfies the properties (9.71) and (9.72), as well as
the conditions (9.68a)–(9.68e). Note that Eq. (9.74) reduces to Eq.
eqleq9.21a in the rest frame.
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9.6 Applications

We give here a few simple examples to illustrate the uses of the tensor formalism we have
developed so far. Through these examples, we wish to exhibit the connections between these
and the helicity formalism of Section 3.

i) π+p → ∆++(1232) → π+p

The invariant scattering amplitude for this process is proportional to

Mfi ∼
∑

m

ū(~pf , mf) pµ
f uµ(~p, 3

2
m) pν

i u(~pi, mi) , (9.75a)

where the subscripts i and f refer to the initial and final protons and ~p is the ∆++ momentum.
By means of the spin-3/2 projection operator, the transition amplitude can be reduced to

Mfi ∼ ū(~pf , mf) pµ
f P

( 3

2
)

µν pν
i u(~pi, mi) . (9.75b)

Using the expression (9.74), the square of the amplitude summed over the spin states of the
protons can be given in an explicitly covariant form. However, we prefer to evaluate Eq.
(9.75b) in the over-all c.m. system. Then, the amplitude takes the form, from Eq. (9.46a),

Mfi ∼
(

E + w

2w

)

χ†(mf )A χ(mi) , (9.75c)

where w is the mass of the proton and E the proton energy, and

A ∼ ~pf · ~T ( 3

2
)(pi)

∼ ~pi · ~pf +
i

2
~σ · (~pi × ~pf) . (9.75d)

Here we have used the expression (9.36). Let us note that, aside from the energy dependent
factor, the amplitude given in formula (9.75c) is precisely the one we would have obtained,
had we started out with the non-relativistic formalism. The energy dependent factor is, of
course, the consequence of the fact that the protons are not at rest in the over-all c.m.

Let us calculate the distribution in the scattering angle cos θ ∼ ~pi · ~pf . By taking the
absolute square of the amplitude (9.75b) and performing the sum over the spin states,

∑

|Mfi|2 ∼ tr{AA†}
∼ 1 + 3 cos2 θ , (9.76)

where we have suppressed the energy dependent factor.
The form of the amplitude (9.75a)–(9.75d) is such that it is invariant under parity trans-

formations. The reader may verify this by writing down explicitly the expression for the
spin-3/2 wave function [see Eq. (9.65)] and exhibiting its parity-transformation property
[use the formulae (8.30) and (9.59)]. Suppose now that the ∆(1232) had spin-parity 3/2−.
The modified scattering amplitude is, from formula (9.75b),

Mfi ∼ ū γ5 pµ
f P

( 3

2
)

µν pν
i γ5 u (9.77a)
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or, evaluating in the c.m. system,

Mfi ∼ 1

2w(E + w)
χ†(mf )Bχ(m1) , (9.77b)

where B is given by [see Eq. (9.36a)]

B = (~σ · ~pf)A(~σ · ~pi)

∼ (~σ · ~pf)~pf · ~Q( 3

2
)(pi)

∼ (~pf · ~pi)(~σ · ~pf)(~σ · ~pi) −
1

3
p2

f p2
i . (9.78)

Then, the distribution in the scattering angle is given by

∑

|Mfi|2 ∼ tr{BB†}
∼ 1 + 3 cos2 θ , (9.79)

which is identical to the expression (9.76).
It is instructive to re-derive the angular distribution within the helicity formalism. Our

starting point is the partial-wave expansion of the scattering amplitude given in Eq. (5.10).
Limiting the expansion to a term corresponding to J = 3/2, we obtain for the angular
distribution

I(cos θ) ∼
∑

λλ′

|FλF
∗
λ |2[d

3

2

λλ′(θ)]
2 (9.80)

where Fλ is the helicity decay amplitude of the J = 3/2 resonance. Owing to the parity
conservation in the decay, we have

|F+|2 = |F−|2 (9.81)

regardless of the intrinsic parity of the resonance. Then, the angular distribution given by

I(cos θ) ∼ [d
3

2

++(θ)]2 + [d
3

2

+−(θ)]2

∼ 1 + 3 cos2 θ . (9.80a)

ii) 3/2+ → 1/2+ + 0−

We shall consider this decay in terms of the helicity states for the nucleon. The decay
amplitude may be written

M ∼ g ū(~p1, λ) pµ
1 uµ (~p, 3

2
m) , (9.82)

where λ is the helicity of the nucleon and ~p1 is its momentum, and g is the invariant coupling
constant. If the decay amplitude is evaluated in the 3/2+ rest frame, we obtain

M ∼ g

[

e1 + w1

2w1

]
1

2

χ†(λ)~p1 · ~χ( 3

2
m) , (9.83)

where E1 and w1 are the energy and mass of the nucleon. Following exactly the same
technique as that used for the integer-spin resonances, we re-express the spin-3/2 wave
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function in terms of that with the quantization axis along the momentum ~p1. Indicating this
wave function by primes, we have

~χ( 3

2
m) =

∑

m′

D
( 3

2
)∗

mm′ (φ, θ, 0)~χ′( 3

2
m′) , (9.84)

where (θ, φ) are the spherical angles describing the direction of ~p1. Substituting the expres-
sion (9.13) for ~χ′ in Eq. (9.84), we can cast Eq. (9.83) in the following form:

M ∼ F
( 3

2
)

λ D
( 3

2
)∗

mλ (φ, θ, 0) , (9.85)

where

F
( 3

2
)

λ ∼ g

[

E1 + w1

2w1

]
1

2

p1(10 1

2
λ| 3

2
λ) . (9.86)

The formula (9.85) is precisely that of the helicity formalism [see Eqs. (8.65) and (8.67)].
However, the tensor formalism gives further information; it gives the P -wave decay amplitude
a1 in terms of the invariant coupling constant g.

It is clear that the non-relativistic tensor formalism would have given us the identical
result, as far as the angular dependence is concerned. The reason is that the parity conserva-
tion limits the decay amplitude to only one decay constant. Recall that we have encountered
the same situation in connection with the decay 2+ → 1− + 0− discussed in the previous
section. The situation becomes more complex, if the resonance decay allows more than one
coupling constant, as we shall see in our next example.

iii) 3/2− → 3/2+ + 0−

The general amplitude for this decay process may be written, in the four-component
formalism,

M ∼ g0 ūµ(~p1, 3

2
λ) uµ(~p, 3

2
m) + g2 ūµ(~p1, 3

2
λ) pµ pν

1 uν(~p, 3

2
m) , (9.87)

where the subscript 1 corresponds to the 3/2+ particle, λ is its helicity, and g0 and g2 are the
invariant coupling constants. Evaluating M in the 3/2− rest frame and using the rotated
wave functions as before, the amplitude can be cast into the form

M ∼ Bλ D
( 3

2
)∗

mλ (φ, θ, 0) , (9.88)

where

B± 3

2

=

[

E1 + w1

2w1

]
1

2

g0

B± 1

2

=
1

3
g0

[

E1 + w1

2w1

] 1

2

(

1 +
2E1

w1

)

+
2

3
g2

w

w1
p2

1 , (9.89)

and w is the mass of the 3/2− particle. Comparing this with the amplitude in the helic-
ity formalism [see Eqs. (8.65) and (8.67)], one finds the connection between the invariant
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coupling constants and the partial-wave amplitudes a0 and a2 (corresponding to the S- and
D-waves, respectively):

g0 =

[

2w1

E1 + 21

]
1

2

(a0 + a2)

w

w1
p2

1 g2 = −
(

E1

w1
− 1

)

a0 −
(

E1

w1
+ 2

)

a2 . (9.90)

If we wish to write down the amplitude in terms of the states corresponding to pure
orbital angular momentum, then we have to use the non-relativistic tensor formalism. The
situation here is similar to that of the decay 2− → 1− +0− discussed in the previous section.
The desired amplitude has the form

M ∼ b0~χ
†( 3

2
λ) · ~χ( 3

2
m) + b2χ

†
i (

3

2
λ)T

(2)
ij (p1)χj( 3

2
m) . (9.91)

By re-expressing this into the form (9.88), it can be shown that a0 may be set equal to b0

and a2 to −b2p
2
1/3.

Let us suppose now that the 3/2+ particle decays into a nucleon and an pion. Then, the
amplitude (9.91) should be multiplied by a factor [see formula (9.83)]

χ†(λ′)~k · ~χ( 3

2
λ)

and summed over the intermediate helicity λ (λ′ is the nucleon helicity and ~k is the nucleon
momentum in the 3/2+ rest frame). The over-all amplitude may be written

M′ ∼ χ†(λ′) ~φ · ~χ( 3

2
m) , (9.92)

where
φi ∼ b0 T

( 3

2
)†

i (k) + b2 T
( 3

2
)†

j (k)T
(2)
ji (p1) . (9.93)

The square of the amplitude summed over the initial and final spin states takes the form

∑

|M|2 ∼ tr{φiP
( 3

2
)

ij φ†
j} , (9.94)

where
P

( 3

2
)

ij φ†
j ∼ b∗0 P

( 3

2
)

ij T
( 3

2
)

j (k) + b∗2 P
( 3

2
)

ij T
(2)
jℓ (p1)T

( 3

2
)

ℓ (k) . (9.95)

This example illustrates how the projection operators and the spin tensors enter into the
calculation of the square of amplitudes. Note that ~p1 is evaluated in the 3/2− rest frame,

while ~k is given in the 3/2+ rest frame.

The formula (9.94) defines the angular distribution in cos θ1 ∼ ~k · ~p1. Within the helicity
formalism, the same angular distribution can be obtained by integrating over all angles
except cos θ1 in Eq. (7.7):

I(cos θ1) ∼
∑

λ

g
( 3

2
)

λλ

{

[d
3

2

λ+(θ1)]
2 + [d

3

2

λ−(θ1)]
2
}

, (9.96)
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where g
( 3

2
)

λλ is given in terms of the partial-wave amplitudes a
( 3

2
)

ℓ (ℓ = 0 or 2) by

g
( 3

2
)

λλ ∼
∣

∣

∣

∣

∣

∑

ℓ

(2ℓ + 1)
1

2 a
( 3

2
)

ℓ (ℓ0 3

2
λ| 3

2
λ)

∣

∣

∣

∣

∣

2

. (9.97)

It can be shown that the distribution given in formula (9.94) is indeed identical to the
expression (9.96).
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A D-Functions and Clebsch-Gordan Coefficients

We list here some useful formulae involving the rotation matrices Dj
m′m(α, β, γ) and

d j
m′m(β). In addition, we list a few relations involving the Clebsch-Gordan coefficients which

have been used in the text. The explicit d functions for j up to three are given in Berman
and Jacob [19].

For the rotation matrix, we use the definition as given in Rose [2], namely,

Dj
m′m(α, β, γ) = 〈jm′|e−iαJze−iβJye−iγJz |jm〉

= e−i m′α d j
m′m(β) e−im γ . (A.1)

By definition, the matrices Dj
m′m are unitary and satisfy the group property:

∑

k

Dj
m′k(R)Dj∗

mk(R) = δmm′ (A.2)

Dj
m′m(R2R1) =

∑

k

Dj
m′k(R2)D

j
km(R1) . (A.3)

The D-functions are normalized according to

∫

dR Dj1 ∗
µ1m1

(R)Dj2
µ2m2

(R) =
8π2

2j1 + 1
δj1j2δµ1µ2

δm1m2
, (A.4)

where R = R(α, β, γ) and dR = dα d cosβ dγ.
The functions d j

m′m have the following symmetry properties:

d j
m′m(β) = (−)m′−md j

mm′(β) = (−)m′−md j
m′m(−β) (A.5)

d j
m′m(β) = (−)m′−md j

−m′−m(β) (A.6)

d j
m′m(π − β) = (−)j+m′

d j
m′−m(β) (A.7)

d j
m′m(π) = (−)j−mδm′,−m . (A.8)

Owing to Eq. (A.6), the D-functions have the symmetry

Dj ∗
m′m(α, β, γ) = (−)m′−mDj

−m′−m(αβγ) . (A.9)

One may use the identity

R(π + α, π − β, π − γ) = R(α, β, γ)R(0, π, 0) (A.10)

to show that
Dj

m′m(π + α, π − β, π − γ) = (−)j−mDj
m′−m(α, β, γ) (A.11)

and
Dj

m′m(π + φ, π − θ, 0) = eiπjDj
m′−m(φ, θ, 0) (A.12)

or taking φ → −φ and using Eq. (A.9)

Dj
m′m(π − φ, π − θ, 0) = eiπj (−)m′+mDj

−m′m(φ, θ, 0) (A.12a)
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the spherical harmonics Y ℓ
m(θ, φ) are related to the D-function via

Dℓ∗
m0(φ, θ, 0) =

√

4π

2ℓ + 1
Y ℓ

m(θ, φ) . (A.13)

The D-functions satisfy the following coupling rule:

Dj1
µ1m1

Dj2
µ2m2

=
∑

j3µ3m3

(j1µ1 j2µ2|j3µ3)(j1m1 j2m2|j3m3)D
j3
µ3m3

. (A.14)

Or, equivalently,

Dj1
µ1m1

Dj3 ∗
µ3m3

=
∑

j2µ2m2

(

2j2 + 1

2j3 + 1

)

(j1µ1j2µ2|j3µ3)(j1m1j2m2|j3m3)D
j2∗
µ2m2

. (A.15)

Using Eqs. (A.4) and (A.15), one obtains
∫

dR Dj1
µ1m1

(R)Dj2
µ2m2

(R)Dj3∗
µ3m3

(R) =
8π2

2j3 + 1
(j1µ1j2µ2|j3µ3)(j1m1j2m2|j3m3) . (A.16)

The following relations involving Clebsch-Gordan coefficients have been used in Sec-
tion 7. These formulae can be derived by using the recursion relations for Clebsch-Gordan
coefficients [Edmonds [3], p. 39]. In terms of the shorthand notations

L̃ = L(L + 1) and J̃ = J(J + 1)

one may write

(J −1

2
L1|J 1

2
)

(J 1

2
L0|J 1

2
)

= −2J + 1
√

L̃
(odd L ≥ 1) (A.17)

(J 3

2
L0|J 3

2
)

(J 1

2
L0|J 1

2
)

= 1 − 4L̃

4J̃ − 3
(even L) (A.18)

(J −3

2
L2|J 1

2
)

(J −3

2
L1|J −1

2
)

=
J + 1

2
√

L̃ − 2
(even L ≥ 2) (A.19)

(J1L0|J1)

(J0L0|J0)
= 1 − L̃

2J̃
(even L) (A.20)

(J −1L2|J1)

(J0L0|J0)
= −

[

L̃

L̃ − 2

] 1

2

(even L ≥ 2) (A.21)

(J2L0|J2)

(J0L0|J0)
= 1 −

(

L̃

2J̃

)(

4J̃ − L̃ − 2

J̃ − 2

)

(even L) (A.22)

(J −2L4|J2)

(J0L0|J0)
=

[

L̃(L̃ − 6)

(L̃ − 2)(L̃ − 12)

]
1

2

(even L ≥ 4) (A.23)

(J1L1|J2)

(J0L0|J0)
= −

[

L̃ − 2

L̃ − 6

]
1

2

(

3 − L̃

J̃

)

(even L ≥ 4) . (A.24)
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B Cross-Section and Phase Space

The purpose of this appendix is to show how one may define the cross-section and phase-
space formulae, once the normalizations for the single-particle states have been fixed as in
Eq. (2.20). Also listed here are a few explicit phase-space formulae, as they have been used
in the main text. All the formulae listed here are, of course, extremely well known; we merely
collect them here for ease of reference. The normalizations of one-particle states, as well as
the conventions for cross-section and phase-space formulae, are the same as those given in
Pilkuhn [11].

For simplicity of notation, we consider a reaction involving only spinless particles. Let
us denote a reaction producing n particles in the final state, i.e.

a + b → 1 + 2 + . . . n . (B.1)

In the over-all c.m. system, let w0 be the c.m. energy, ~pi the initial relative momentum, and
pi(pf) the over-all four-momentum in the initial (final) state. The differential cross-section
corresponding to reaction (B.1) may be written, in terms of the invariant amplitude Mfi,

dσ =
1

4F |Mfi|2dφn(1, 2, . . . , n), F =
[

(pa · pb)
2 − (wa wb)

2
]1/2

(B.2)

where F is the flux factor, which in the over-all c.m. is given by

F = piw0 (B.3)

and dφn is the n-body phase space:

dφn(i → 1, 2, . . . , n) = (2π)4δ(4)(p1 + p2 + · · ·+ pn − pi)

n
∏

k=1

d̃pk . (B.4)

d̃pk is the invariant volume element of the kth particle as given in Eq. (2.22).
The phase-space formula may be broken up into two factors as follows:

dφn = dφℓ(i → c, m + 1, · · · , n)

(

dw2
c

2π

)

dφm(c → 1, 2, · · · , m) , (B.5)

where ℓ + m = n +1 and c denotes a system consisting of particles 1 to m, its effective mass
being wc. After repeated application of Eq. (B.5) and using the explicit expression for the
two-body phase space,

dφ2 =
1

(4π)2

p

w
dΩ , (B.6)

where w is the effective mass of the particles 1 and 2, and p and Ω denote the magnitude
and direction of the relative momentum in the (1,2) rest frame, we may express the n-body
phase-space succinctly as follows:

dφn =
1

2n
· (2π)4

(2π)3n
· p0

w0

dΩ0

n−2
∏

k=0

{p dw dΩ}k , (B.7)
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where the n-body phase space has been broken up into n−1 arbitrary two-body subsystems,
each with effective mass wk, relative momentum pk, and direction Ωk in the respective rest
frame (k = 0, 1, 2, . . . , n− 2). We must require n ≥ 2 and {· · ·}0 = 1 to take care of the case
with k = 0. Note that, for n = 2, Eq. (B.7) reduces to Eq. (B.6).

If n = 3, we obtain from Eq. (B.7),

dφ3 =
4

(4π)5

p0

w0
dΩ0 {p dw dΩ} , (B.8)

where we have dropped the subscript 1 from p1, dw1, and dΩ1. This formula is then the phase
space appropriate for the reaction (5.25). Equation (B.8) may be changed into a different
form by a simple change of variables:

dφ3 =
4

(4π)5
dR dE1 dE2 , (B.9)

where R stands for the Euler angles describing the orientation of the three-particle system,
and E1(E2) is the energy of the particle 1(2) in the over-all rest frame.

If n = 4, we see from Eq. (B.7) that

dφ4 =
16

(4π)8

p0

w0

dΩ0 {ps dw dΩ} {p1 dws dΩ1} . (B.10)

This is the formula corresponding to the process (7.1) in the notation described in Section 7.
Formula (B.10) may be recast into a different form using Eqs. (B.8) and (B.9):

dφ4 =
16

(4π)8

p0

w0
dΩ0 {w dw dR dE1 dE2} , (B.11)

which corresponds to the reaction (6.21).
We can now generalize the n-body phase formula Eq. (B.7) to include direct 3-body

systems

dφn =
1

2n
· (2π)4

(2π)3n
· p

0

w0
dΩ0

n2
∏

k=0

{p dw dΩ}k

n3
∏

ℓ=0

{w′ dw′ dR dE dE′}ℓ (B.12)

where n = n2 + 2n3 + 2 ≥ 2. n2 ≥ 0 is the number of 2-body subsytems, while n3 ≥ 0 is the
number of 3-body subsytems in the problem. Eℓ and E ′

ℓ are the energies of any two particles
of a 3-body system ℓ, evaluated in the 3-body rest frame. Again, we must require n ≥ 2 and
{· · ·}0 = 1 to take care of the case with k = 0 or with ℓ = 0.
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C Normalization of two- and three-particle states

For simplicity of notation, we shall deal with spinless particles. Owing to Eqs. (2.20),
two-particle states are normalized:

〈~p ′
1~p

′
2|~p1~p2〉 = δ̃(~p ′

1 − ~p1) δ̃(~p ′
2 − ~p2) , (C.1)

where the invariant δ-function is given in Eq. (2.21). A system consisting of two momenta ~p1

and ~p2 may be described, in general, by one four-momentum p representing the sum of the
four-momenta of particles 1 and 2 and Ω describing the orientation of the relative momentum
in the (1,2) rest frame, i.e.

|p, Ω〉 = a |~p1~p2〉 . (C.2)

We adopt the normalization for this state as follows:

〈p′, Ω′|p, Ω〉 = (2π)4δ(4)(p′ − p) δ(2)(Ω′ − Ω) . (C.3)

Let us multiply (C.1) and (C.3) by the invariant volume element d̃p1 d̃p2 [see Eq. (2.22)],
and integrate over these variables. Note that Eq. (C.1) gives 1, whereas Eq. (C.3) involves
an integration of the following form [see Eq. (B.4)]

∫

δ(2)(Ω′ − Ω) dφ2(1, 2) =
1

(4π)2

p

w

after using the formula (B.6). From Eq. (C.2), we see immediately that

a =
1

4π

√

p

w
, (C.4)

Next, we turn to a discussion of the three-particle states, normalized according to

〈p′1 p′2 p′3|p1 p2 p3〉 =
3
∏

i=1

δ̃(p′i − pi) . (C.5)

A system of three particles with momentum ~p1, ~p2, and ~p3 may be specified by a four-
momentum p representing the sum of the three individual four-momenta, the Euler angles
R(α, β, γ) describing the orientation in the rest frame, and E1 and E2, the energies of the
particles 1 and 2, evaluated in the rest frame. Let us write

|P, R, E1, E2〉 = b |~p1 ~p2 ~p3〉 (C.6)

with the normalization

〈P ′, R′, E ′
1, E

′
2|P, R, E1, E2〉 = (2π)4δ(4)(p′ − p) δ(3)(R′ − R) δ(E ′

1 − E1) δ(E ′
2 − E2) . (C.7)

As with the two-particle system, we multiply Eqs. (C.5) and (C.7) by dp̃1 dp̃2 dp̃3 and inte-
grate over these variables. Equation (C.5) gives 1, while for Eq. (C.7) one needs to evaluate

∫

δ(3)(R′ − R) δ(E ′
1 − E1) δ(E ′

2 − E2) dφ3(1, 2, 3) =
4

(4π)5
,

where one has used Eq. (B.9). From Eq. (C.6), we see that the normalization constant b is

b−1 = 8π2
√

4π . (C.8)
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